diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +97 -4
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +13 -1
- diffusers/image_processor.py +282 -71
- diffusers/loaders/__init__.py +24 -3
- diffusers/loaders/ip_adapter.py +543 -16
- diffusers/loaders/lora_base.py +138 -125
- diffusers/loaders/lora_conversion_utils.py +647 -0
- diffusers/loaders/lora_pipeline.py +2216 -230
- diffusers/loaders/peft.py +380 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +597 -10
- diffusers/loaders/textual_inversion.py +5 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +56 -12
- diffusers/models/__init__.py +49 -12
- diffusers/models/activations.py +22 -9
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +98 -13
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2160 -346
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +73 -12
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +26 -376
- diffusers/models/controlnet_sparsectrl.py +46 -719
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +996 -92
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +264 -14
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +334 -51
- diffusers/models/normalization.py +157 -13
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +10 -2
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +189 -51
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +112 -18
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +9 -9
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +46 -68
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +14 -6
- diffusers/pipelines/__init__.py +69 -6
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
- diffusers/pipelines/auto_pipeline.py +88 -10
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
- diffusers/pipelines/flux/__init__.py +23 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +256 -48
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +13 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +250 -31
- diffusers/pipelines/pipeline_utils.py +158 -186
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +6 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
- diffusers/schedulers/scheduling_deis_multistep.py +102 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +102 -6
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
- diffusers/training_utils.py +63 -19
- diffusers/utils/__init__.py +7 -1
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +240 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +44 -40
- diffusers/utils/import_utils.py +98 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +6 -3
- diffusers/utils/testing_utils.py +115 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,306 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
"""
|
15
|
+
Adapted from
|
16
|
+
https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/integrations/bitsandbytes.py
|
17
|
+
"""
|
18
|
+
|
19
|
+
import inspect
|
20
|
+
from inspect import signature
|
21
|
+
from typing import Union
|
22
|
+
|
23
|
+
from ...utils import is_accelerate_available, is_bitsandbytes_available, is_torch_available, logging
|
24
|
+
from ..quantization_config import QuantizationMethod
|
25
|
+
|
26
|
+
|
27
|
+
if is_torch_available():
|
28
|
+
import torch
|
29
|
+
import torch.nn as nn
|
30
|
+
|
31
|
+
if is_bitsandbytes_available():
|
32
|
+
import bitsandbytes as bnb
|
33
|
+
|
34
|
+
if is_accelerate_available():
|
35
|
+
import accelerate
|
36
|
+
from accelerate import init_empty_weights
|
37
|
+
from accelerate.hooks import add_hook_to_module, remove_hook_from_module
|
38
|
+
|
39
|
+
logger = logging.get_logger(__name__)
|
40
|
+
|
41
|
+
|
42
|
+
def _replace_with_bnb_linear(
|
43
|
+
model,
|
44
|
+
modules_to_not_convert=None,
|
45
|
+
current_key_name=None,
|
46
|
+
quantization_config=None,
|
47
|
+
has_been_replaced=False,
|
48
|
+
):
|
49
|
+
"""
|
50
|
+
Private method that wraps the recursion for module replacement.
|
51
|
+
|
52
|
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
53
|
+
"""
|
54
|
+
for name, module in model.named_children():
|
55
|
+
if current_key_name is None:
|
56
|
+
current_key_name = []
|
57
|
+
current_key_name.append(name)
|
58
|
+
|
59
|
+
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
60
|
+
# Check if the current key is not in the `modules_to_not_convert`
|
61
|
+
current_key_name_str = ".".join(current_key_name)
|
62
|
+
if not any(
|
63
|
+
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert
|
64
|
+
):
|
65
|
+
with init_empty_weights():
|
66
|
+
in_features = module.in_features
|
67
|
+
out_features = module.out_features
|
68
|
+
|
69
|
+
if quantization_config.quantization_method() == "llm_int8":
|
70
|
+
model._modules[name] = bnb.nn.Linear8bitLt(
|
71
|
+
in_features,
|
72
|
+
out_features,
|
73
|
+
module.bias is not None,
|
74
|
+
has_fp16_weights=quantization_config.llm_int8_has_fp16_weight,
|
75
|
+
threshold=quantization_config.llm_int8_threshold,
|
76
|
+
)
|
77
|
+
has_been_replaced = True
|
78
|
+
else:
|
79
|
+
if (
|
80
|
+
quantization_config.llm_int8_skip_modules is not None
|
81
|
+
and name in quantization_config.llm_int8_skip_modules
|
82
|
+
):
|
83
|
+
pass
|
84
|
+
else:
|
85
|
+
extra_kwargs = (
|
86
|
+
{"quant_storage": quantization_config.bnb_4bit_quant_storage}
|
87
|
+
if "quant_storage" in list(signature(bnb.nn.Linear4bit).parameters)
|
88
|
+
else {}
|
89
|
+
)
|
90
|
+
model._modules[name] = bnb.nn.Linear4bit(
|
91
|
+
in_features,
|
92
|
+
out_features,
|
93
|
+
module.bias is not None,
|
94
|
+
quantization_config.bnb_4bit_compute_dtype,
|
95
|
+
compress_statistics=quantization_config.bnb_4bit_use_double_quant,
|
96
|
+
quant_type=quantization_config.bnb_4bit_quant_type,
|
97
|
+
**extra_kwargs,
|
98
|
+
)
|
99
|
+
has_been_replaced = True
|
100
|
+
# Store the module class in case we need to transpose the weight later
|
101
|
+
model._modules[name].source_cls = type(module)
|
102
|
+
# Force requires grad to False to avoid unexpected errors
|
103
|
+
model._modules[name].requires_grad_(False)
|
104
|
+
if len(list(module.children())) > 0:
|
105
|
+
_, has_been_replaced = _replace_with_bnb_linear(
|
106
|
+
module,
|
107
|
+
modules_to_not_convert,
|
108
|
+
current_key_name,
|
109
|
+
quantization_config,
|
110
|
+
has_been_replaced=has_been_replaced,
|
111
|
+
)
|
112
|
+
# Remove the last key for recursion
|
113
|
+
current_key_name.pop(-1)
|
114
|
+
return model, has_been_replaced
|
115
|
+
|
116
|
+
|
117
|
+
def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name=None, quantization_config=None):
|
118
|
+
"""
|
119
|
+
Helper function to replace the `nn.Linear` layers within `model` with either `bnb.nn.Linear8bit` or
|
120
|
+
`bnb.nn.Linear4bit` using the `bitsandbytes` library.
|
121
|
+
|
122
|
+
References:
|
123
|
+
* `bnb.nn.Linear8bit`: [LLM.int8(): 8-bit Matrix Multiplication for Transformers at
|
124
|
+
Scale](https://arxiv.org/abs/2208.07339)
|
125
|
+
* `bnb.nn.Linear4bit`: [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/abs/2305.14314)
|
126
|
+
|
127
|
+
Parameters:
|
128
|
+
model (`torch.nn.Module`):
|
129
|
+
Input model or `torch.nn.Module` as the function is run recursively.
|
130
|
+
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `[]`):
|
131
|
+
Names of the modules to not convert in `Linear8bitLt`. In practice we keep the `modules_to_not_convert` in
|
132
|
+
full precision for numerical stability reasons.
|
133
|
+
current_key_name (`List[`str`]`, *optional*):
|
134
|
+
An array to track the current key of the recursion. This is used to check whether the current key (part of
|
135
|
+
it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or
|
136
|
+
`disk`).
|
137
|
+
quantization_config ('transformers.utils.quantization_config.BitsAndBytesConfig'):
|
138
|
+
To configure and manage settings related to quantization, a technique used to compress neural network
|
139
|
+
models by reducing the precision of the weights and activations, thus making models more efficient in terms
|
140
|
+
of both storage and computation.
|
141
|
+
"""
|
142
|
+
model, has_been_replaced = _replace_with_bnb_linear(
|
143
|
+
model, modules_to_not_convert, current_key_name, quantization_config
|
144
|
+
)
|
145
|
+
|
146
|
+
if not has_been_replaced:
|
147
|
+
logger.warning(
|
148
|
+
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
|
149
|
+
" Please double check your model architecture, or submit an issue on github if you think this is"
|
150
|
+
" a bug."
|
151
|
+
)
|
152
|
+
|
153
|
+
return model
|
154
|
+
|
155
|
+
|
156
|
+
# Copied from PEFT: https://github.com/huggingface/peft/blob/47b3712898539569c02ec5b3ed4a6c36811331a1/src/peft/utils/integrations.py#L41
|
157
|
+
def dequantize_bnb_weight(weight: "torch.nn.Parameter", state=None):
|
158
|
+
"""
|
159
|
+
Helper function to dequantize 4bit or 8bit bnb weights.
|
160
|
+
|
161
|
+
If the weight is not a bnb quantized weight, it will be returned as is.
|
162
|
+
"""
|
163
|
+
if not isinstance(weight, torch.nn.Parameter):
|
164
|
+
raise TypeError(f"Input weight should be of type nn.Parameter, got {type(weight)} instead")
|
165
|
+
|
166
|
+
cls_name = weight.__class__.__name__
|
167
|
+
if cls_name not in ("Params4bit", "Int8Params"):
|
168
|
+
return weight
|
169
|
+
|
170
|
+
if cls_name == "Params4bit":
|
171
|
+
output_tensor = bnb.functional.dequantize_4bit(weight.data, weight.quant_state)
|
172
|
+
logger.warning_once(
|
173
|
+
f"The model is going to be dequantized in {output_tensor.dtype} - if you want to upcast it to another dtype, make sure to pass the desired dtype when quantizing the model through `bnb_4bit_quant_type` argument of `BitsAndBytesConfig`"
|
174
|
+
)
|
175
|
+
return output_tensor
|
176
|
+
|
177
|
+
if state.SCB is None:
|
178
|
+
state.SCB = weight.SCB
|
179
|
+
|
180
|
+
im = torch.eye(weight.data.shape[-1]).contiguous().half().to(weight.device)
|
181
|
+
im, imt, SCim, SCimt, coo_tensorim = bnb.functional.double_quant(im)
|
182
|
+
im, Sim = bnb.functional.transform(im, "col32")
|
183
|
+
if state.CxB is None:
|
184
|
+
state.CxB, state.SB = bnb.functional.transform(weight.data, to_order=state.formatB)
|
185
|
+
out32, Sout32 = bnb.functional.igemmlt(im, state.CxB, Sim, state.SB)
|
186
|
+
return bnb.functional.mm_dequant(out32, Sout32, SCim, state.SCB, bias=None).t()
|
187
|
+
|
188
|
+
|
189
|
+
def _create_accelerate_new_hook(old_hook):
|
190
|
+
r"""
|
191
|
+
Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of:
|
192
|
+
https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with
|
193
|
+
some changes
|
194
|
+
"""
|
195
|
+
old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__)
|
196
|
+
old_hook_attr = old_hook.__dict__
|
197
|
+
filtered_old_hook_attr = {}
|
198
|
+
old_hook_init_signature = inspect.signature(old_hook_cls.__init__)
|
199
|
+
for k in old_hook_attr.keys():
|
200
|
+
if k in old_hook_init_signature.parameters:
|
201
|
+
filtered_old_hook_attr[k] = old_hook_attr[k]
|
202
|
+
new_hook = old_hook_cls(**filtered_old_hook_attr)
|
203
|
+
return new_hook
|
204
|
+
|
205
|
+
|
206
|
+
def _dequantize_and_replace(
|
207
|
+
model,
|
208
|
+
modules_to_not_convert=None,
|
209
|
+
current_key_name=None,
|
210
|
+
quantization_config=None,
|
211
|
+
has_been_replaced=False,
|
212
|
+
):
|
213
|
+
"""
|
214
|
+
Converts a quantized model into its dequantized original version. The newly converted model will have some
|
215
|
+
performance drop compared to the original model before quantization - use it only for specific usecases such as
|
216
|
+
QLoRA adapters merging.
|
217
|
+
|
218
|
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
219
|
+
"""
|
220
|
+
quant_method = quantization_config.quantization_method()
|
221
|
+
|
222
|
+
target_cls = bnb.nn.Linear8bitLt if quant_method == "llm_int8" else bnb.nn.Linear4bit
|
223
|
+
|
224
|
+
for name, module in model.named_children():
|
225
|
+
if current_key_name is None:
|
226
|
+
current_key_name = []
|
227
|
+
current_key_name.append(name)
|
228
|
+
|
229
|
+
if isinstance(module, target_cls) and name not in modules_to_not_convert:
|
230
|
+
# Check if the current key is not in the `modules_to_not_convert`
|
231
|
+
current_key_name_str = ".".join(current_key_name)
|
232
|
+
|
233
|
+
if not any(
|
234
|
+
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert
|
235
|
+
):
|
236
|
+
bias = getattr(module, "bias", None)
|
237
|
+
|
238
|
+
device = module.weight.device
|
239
|
+
with init_empty_weights():
|
240
|
+
new_module = torch.nn.Linear(module.in_features, module.out_features, bias=bias is not None)
|
241
|
+
|
242
|
+
if quant_method == "llm_int8":
|
243
|
+
state = module.state
|
244
|
+
else:
|
245
|
+
state = None
|
246
|
+
|
247
|
+
new_module.weight = torch.nn.Parameter(dequantize_bnb_weight(module.weight, state))
|
248
|
+
|
249
|
+
if bias is not None:
|
250
|
+
new_module.bias = bias
|
251
|
+
|
252
|
+
# Create a new hook and attach it in case we use accelerate
|
253
|
+
if hasattr(module, "_hf_hook"):
|
254
|
+
old_hook = module._hf_hook
|
255
|
+
new_hook = _create_accelerate_new_hook(old_hook)
|
256
|
+
|
257
|
+
remove_hook_from_module(module)
|
258
|
+
add_hook_to_module(new_module, new_hook)
|
259
|
+
|
260
|
+
new_module.to(device)
|
261
|
+
model._modules[name] = new_module
|
262
|
+
has_been_replaced = True
|
263
|
+
if len(list(module.children())) > 0:
|
264
|
+
_, has_been_replaced = _dequantize_and_replace(
|
265
|
+
module,
|
266
|
+
modules_to_not_convert,
|
267
|
+
current_key_name,
|
268
|
+
quantization_config,
|
269
|
+
has_been_replaced=has_been_replaced,
|
270
|
+
)
|
271
|
+
# Remove the last key for recursion
|
272
|
+
current_key_name.pop(-1)
|
273
|
+
return model, has_been_replaced
|
274
|
+
|
275
|
+
|
276
|
+
def dequantize_and_replace(
|
277
|
+
model,
|
278
|
+
modules_to_not_convert=None,
|
279
|
+
quantization_config=None,
|
280
|
+
):
|
281
|
+
model, has_been_replaced = _dequantize_and_replace(
|
282
|
+
model,
|
283
|
+
modules_to_not_convert=modules_to_not_convert,
|
284
|
+
quantization_config=quantization_config,
|
285
|
+
)
|
286
|
+
|
287
|
+
if not has_been_replaced:
|
288
|
+
logger.warning(
|
289
|
+
"For some reason the model has not been properly dequantized. You might see unexpected behavior."
|
290
|
+
)
|
291
|
+
|
292
|
+
return model
|
293
|
+
|
294
|
+
|
295
|
+
def _check_bnb_status(module) -> Union[bool, bool]:
|
296
|
+
is_loaded_in_4bit_bnb = (
|
297
|
+
hasattr(module, "is_loaded_in_4bit")
|
298
|
+
and module.is_loaded_in_4bit
|
299
|
+
and getattr(module, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES
|
300
|
+
)
|
301
|
+
is_loaded_in_8bit_bnb = (
|
302
|
+
hasattr(module, "is_loaded_in_8bit")
|
303
|
+
and module.is_loaded_in_8bit
|
304
|
+
and getattr(module, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES
|
305
|
+
)
|
306
|
+
return is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb
|
@@ -0,0 +1 @@
|
|
1
|
+
from .gguf_quantizer import GGUFQuantizer
|
@@ -0,0 +1,159 @@
|
|
1
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
2
|
+
|
3
|
+
from ..base import DiffusersQuantizer
|
4
|
+
|
5
|
+
|
6
|
+
if TYPE_CHECKING:
|
7
|
+
from ...models.modeling_utils import ModelMixin
|
8
|
+
|
9
|
+
|
10
|
+
from ...utils import (
|
11
|
+
get_module_from_name,
|
12
|
+
is_accelerate_available,
|
13
|
+
is_accelerate_version,
|
14
|
+
is_gguf_available,
|
15
|
+
is_gguf_version,
|
16
|
+
is_torch_available,
|
17
|
+
logging,
|
18
|
+
)
|
19
|
+
|
20
|
+
|
21
|
+
if is_torch_available() and is_gguf_available():
|
22
|
+
import torch
|
23
|
+
|
24
|
+
from .utils import (
|
25
|
+
GGML_QUANT_SIZES,
|
26
|
+
GGUFParameter,
|
27
|
+
_dequantize_gguf_and_restore_linear,
|
28
|
+
_quant_shape_from_byte_shape,
|
29
|
+
_replace_with_gguf_linear,
|
30
|
+
)
|
31
|
+
|
32
|
+
|
33
|
+
logger = logging.get_logger(__name__)
|
34
|
+
|
35
|
+
|
36
|
+
class GGUFQuantizer(DiffusersQuantizer):
|
37
|
+
use_keep_in_fp32_modules = True
|
38
|
+
|
39
|
+
def __init__(self, quantization_config, **kwargs):
|
40
|
+
super().__init__(quantization_config, **kwargs)
|
41
|
+
|
42
|
+
self.compute_dtype = quantization_config.compute_dtype
|
43
|
+
self.pre_quantized = quantization_config.pre_quantized
|
44
|
+
self.modules_to_not_convert = quantization_config.modules_to_not_convert
|
45
|
+
|
46
|
+
if not isinstance(self.modules_to_not_convert, list):
|
47
|
+
self.modules_to_not_convert = [self.modules_to_not_convert]
|
48
|
+
|
49
|
+
def validate_environment(self, *args, **kwargs):
|
50
|
+
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
|
51
|
+
raise ImportError(
|
52
|
+
"Loading GGUF Parameters requires `accelerate` installed in your enviroment: `pip install 'accelerate>=0.26.0'`"
|
53
|
+
)
|
54
|
+
if not is_gguf_available() or is_gguf_version("<", "0.10.0"):
|
55
|
+
raise ImportError(
|
56
|
+
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`"
|
57
|
+
)
|
58
|
+
|
59
|
+
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory
|
60
|
+
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
61
|
+
# need more space for buffers that are created during quantization
|
62
|
+
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
63
|
+
return max_memory
|
64
|
+
|
65
|
+
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
66
|
+
if target_dtype != torch.uint8:
|
67
|
+
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization")
|
68
|
+
return torch.uint8
|
69
|
+
|
70
|
+
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
71
|
+
if torch_dtype is None:
|
72
|
+
torch_dtype = self.compute_dtype
|
73
|
+
return torch_dtype
|
74
|
+
|
75
|
+
def check_quantized_param_shape(self, param_name, current_param, loaded_param):
|
76
|
+
loaded_param_shape = loaded_param.shape
|
77
|
+
current_param_shape = current_param.shape
|
78
|
+
quant_type = loaded_param.quant_type
|
79
|
+
|
80
|
+
block_size, type_size = GGML_QUANT_SIZES[quant_type]
|
81
|
+
|
82
|
+
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size)
|
83
|
+
if inferred_shape != current_param_shape:
|
84
|
+
raise ValueError(
|
85
|
+
f"{param_name} has an expected quantized shape of: {inferred_shape}, but receieved shape: {loaded_param_shape}"
|
86
|
+
)
|
87
|
+
|
88
|
+
return True
|
89
|
+
|
90
|
+
def check_if_quantized_param(
|
91
|
+
self,
|
92
|
+
model: "ModelMixin",
|
93
|
+
param_value: Union["GGUFParameter", "torch.Tensor"],
|
94
|
+
param_name: str,
|
95
|
+
state_dict: Dict[str, Any],
|
96
|
+
**kwargs,
|
97
|
+
) -> bool:
|
98
|
+
if isinstance(param_value, GGUFParameter):
|
99
|
+
return True
|
100
|
+
|
101
|
+
return False
|
102
|
+
|
103
|
+
def create_quantized_param(
|
104
|
+
self,
|
105
|
+
model: "ModelMixin",
|
106
|
+
param_value: Union["GGUFParameter", "torch.Tensor"],
|
107
|
+
param_name: str,
|
108
|
+
target_device: "torch.device",
|
109
|
+
state_dict: Optional[Dict[str, Any]] = None,
|
110
|
+
unexpected_keys: Optional[List[str]] = None,
|
111
|
+
):
|
112
|
+
module, tensor_name = get_module_from_name(model, param_name)
|
113
|
+
if tensor_name not in module._parameters and tensor_name not in module._buffers:
|
114
|
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
115
|
+
|
116
|
+
if tensor_name in module._parameters:
|
117
|
+
module._parameters[tensor_name] = param_value.to(target_device)
|
118
|
+
if tensor_name in module._buffers:
|
119
|
+
module._buffers[tensor_name] = param_value.to(target_device)
|
120
|
+
|
121
|
+
def _process_model_before_weight_loading(
|
122
|
+
self,
|
123
|
+
model: "ModelMixin",
|
124
|
+
device_map,
|
125
|
+
keep_in_fp32_modules: List[str] = [],
|
126
|
+
**kwargs,
|
127
|
+
):
|
128
|
+
state_dict = kwargs.get("state_dict", None)
|
129
|
+
|
130
|
+
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
131
|
+
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
|
132
|
+
|
133
|
+
_replace_with_gguf_linear(
|
134
|
+
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert
|
135
|
+
)
|
136
|
+
|
137
|
+
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
|
138
|
+
return model
|
139
|
+
|
140
|
+
@property
|
141
|
+
def is_serializable(self):
|
142
|
+
return False
|
143
|
+
|
144
|
+
@property
|
145
|
+
def is_trainable(self) -> bool:
|
146
|
+
return False
|
147
|
+
|
148
|
+
def _dequantize(self, model):
|
149
|
+
is_model_on_cpu = model.device.type == "cpu"
|
150
|
+
if is_model_on_cpu:
|
151
|
+
logger.info(
|
152
|
+
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to GPU. After dequantization, will move the model back to CPU again to preserve the previous device."
|
153
|
+
)
|
154
|
+
model.to(torch.cuda.current_device())
|
155
|
+
|
156
|
+
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert)
|
157
|
+
if is_model_on_cpu:
|
158
|
+
model.to("cpu")
|
159
|
+
return model
|