diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,499 @@
1
+ # Copyright 2024 The Genmo team and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Any, Dict, Optional, Tuple
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...loaders import PeftAdapterMixin
23
+ from ...loaders.single_file_model import FromOriginalModelMixin
24
+ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
25
+ from ...utils.torch_utils import maybe_allow_in_graph
26
+ from ..attention import FeedForward
27
+ from ..attention_processor import MochiAttention, MochiAttnProcessor2_0
28
+ from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
29
+ from ..modeling_outputs import Transformer2DModelOutput
30
+ from ..modeling_utils import ModelMixin
31
+ from ..normalization import AdaLayerNormContinuous, RMSNorm
32
+
33
+
34
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
35
+
36
+
37
+ class MochiModulatedRMSNorm(nn.Module):
38
+ def __init__(self, eps: float):
39
+ super().__init__()
40
+
41
+ self.eps = eps
42
+ self.norm = RMSNorm(0, eps, False)
43
+
44
+ def forward(self, hidden_states, scale=None):
45
+ hidden_states_dtype = hidden_states.dtype
46
+ hidden_states = hidden_states.to(torch.float32)
47
+
48
+ hidden_states = self.norm(hidden_states)
49
+
50
+ if scale is not None:
51
+ hidden_states = hidden_states * scale
52
+
53
+ hidden_states = hidden_states.to(hidden_states_dtype)
54
+
55
+ return hidden_states
56
+
57
+
58
+ class MochiLayerNormContinuous(nn.Module):
59
+ def __init__(
60
+ self,
61
+ embedding_dim: int,
62
+ conditioning_embedding_dim: int,
63
+ eps=1e-5,
64
+ bias=True,
65
+ ):
66
+ super().__init__()
67
+
68
+ # AdaLN
69
+ self.silu = nn.SiLU()
70
+ self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
71
+ self.norm = MochiModulatedRMSNorm(eps=eps)
72
+
73
+ def forward(
74
+ self,
75
+ x: torch.Tensor,
76
+ conditioning_embedding: torch.Tensor,
77
+ ) -> torch.Tensor:
78
+ input_dtype = x.dtype
79
+
80
+ # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
81
+ scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
82
+ x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32)))
83
+
84
+ return x.to(input_dtype)
85
+
86
+
87
+ class MochiRMSNormZero(nn.Module):
88
+ r"""
89
+ Adaptive RMS Norm used in Mochi.
90
+
91
+ Parameters:
92
+ embedding_dim (`int`): The size of each embedding vector.
93
+ """
94
+
95
+ def __init__(
96
+ self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
97
+ ) -> None:
98
+ super().__init__()
99
+
100
+ self.silu = nn.SiLU()
101
+ self.linear = nn.Linear(embedding_dim, hidden_dim)
102
+ self.norm = RMSNorm(0, eps, False)
103
+
104
+ def forward(
105
+ self, hidden_states: torch.Tensor, emb: torch.Tensor
106
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
107
+ hidden_states_dtype = hidden_states.dtype
108
+
109
+ emb = self.linear(self.silu(emb))
110
+ scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
111
+ hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32))
112
+ hidden_states = hidden_states.to(hidden_states_dtype)
113
+
114
+ return hidden_states, gate_msa, scale_mlp, gate_mlp
115
+
116
+
117
+ @maybe_allow_in_graph
118
+ class MochiTransformerBlock(nn.Module):
119
+ r"""
120
+ Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
121
+
122
+ Args:
123
+ dim (`int`):
124
+ The number of channels in the input and output.
125
+ num_attention_heads (`int`):
126
+ The number of heads to use for multi-head attention.
127
+ attention_head_dim (`int`):
128
+ The number of channels in each head.
129
+ qk_norm (`str`, defaults to `"rms_norm"`):
130
+ The normalization layer to use.
131
+ activation_fn (`str`, defaults to `"swiglu"`):
132
+ Activation function to use in feed-forward.
133
+ context_pre_only (`bool`, defaults to `False`):
134
+ Whether or not to process context-related conditions with additional layers.
135
+ eps (`float`, defaults to `1e-6`):
136
+ Epsilon value for normalization layers.
137
+ """
138
+
139
+ def __init__(
140
+ self,
141
+ dim: int,
142
+ num_attention_heads: int,
143
+ attention_head_dim: int,
144
+ pooled_projection_dim: int,
145
+ qk_norm: str = "rms_norm",
146
+ activation_fn: str = "swiglu",
147
+ context_pre_only: bool = False,
148
+ eps: float = 1e-6,
149
+ ) -> None:
150
+ super().__init__()
151
+
152
+ self.context_pre_only = context_pre_only
153
+ self.ff_inner_dim = (4 * dim * 2) // 3
154
+ self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3
155
+
156
+ self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False)
157
+
158
+ if not context_pre_only:
159
+ self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
160
+ else:
161
+ self.norm1_context = MochiLayerNormContinuous(
162
+ embedding_dim=pooled_projection_dim,
163
+ conditioning_embedding_dim=dim,
164
+ eps=eps,
165
+ )
166
+
167
+ self.attn1 = MochiAttention(
168
+ query_dim=dim,
169
+ heads=num_attention_heads,
170
+ dim_head=attention_head_dim,
171
+ bias=False,
172
+ added_kv_proj_dim=pooled_projection_dim,
173
+ added_proj_bias=False,
174
+ out_dim=dim,
175
+ out_context_dim=pooled_projection_dim,
176
+ context_pre_only=context_pre_only,
177
+ processor=MochiAttnProcessor2_0(),
178
+ eps=1e-5,
179
+ )
180
+
181
+ # TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
182
+ self.norm2 = MochiModulatedRMSNorm(eps=eps)
183
+ self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
184
+
185
+ self.norm3 = MochiModulatedRMSNorm(eps)
186
+ self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
187
+
188
+ self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
189
+ self.ff_context = None
190
+ if not context_pre_only:
191
+ self.ff_context = FeedForward(
192
+ pooled_projection_dim,
193
+ inner_dim=self.ff_context_inner_dim,
194
+ activation_fn=activation_fn,
195
+ bias=False,
196
+ )
197
+
198
+ self.norm4 = MochiModulatedRMSNorm(eps=eps)
199
+ self.norm4_context = MochiModulatedRMSNorm(eps=eps)
200
+
201
+ def forward(
202
+ self,
203
+ hidden_states: torch.Tensor,
204
+ encoder_hidden_states: torch.Tensor,
205
+ temb: torch.Tensor,
206
+ encoder_attention_mask: torch.Tensor,
207
+ image_rotary_emb: Optional[torch.Tensor] = None,
208
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
209
+ norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
210
+
211
+ if not self.context_pre_only:
212
+ norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context(
213
+ encoder_hidden_states, temb
214
+ )
215
+ else:
216
+ norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
217
+
218
+ attn_hidden_states, context_attn_hidden_states = self.attn1(
219
+ hidden_states=norm_hidden_states,
220
+ encoder_hidden_states=norm_encoder_hidden_states,
221
+ image_rotary_emb=image_rotary_emb,
222
+ attention_mask=encoder_attention_mask,
223
+ )
224
+
225
+ hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
226
+ norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32)))
227
+ ff_output = self.ff(norm_hidden_states)
228
+ hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))
229
+
230
+ if not self.context_pre_only:
231
+ encoder_hidden_states = encoder_hidden_states + self.norm2_context(
232
+ context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
233
+ )
234
+ norm_encoder_hidden_states = self.norm3_context(
235
+ encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32))
236
+ )
237
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
238
+ encoder_hidden_states = encoder_hidden_states + self.norm4_context(
239
+ context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
240
+ )
241
+
242
+ return hidden_states, encoder_hidden_states
243
+
244
+
245
+ class MochiRoPE(nn.Module):
246
+ r"""
247
+ RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
248
+
249
+ Args:
250
+ base_height (`int`, defaults to `192`):
251
+ Base height used to compute interpolation scale for rotary positional embeddings.
252
+ base_width (`int`, defaults to `192`):
253
+ Base width used to compute interpolation scale for rotary positional embeddings.
254
+ """
255
+
256
+ def __init__(self, base_height: int = 192, base_width: int = 192) -> None:
257
+ super().__init__()
258
+
259
+ self.target_area = base_height * base_width
260
+
261
+ def _centers(self, start, stop, num, device, dtype) -> torch.Tensor:
262
+ edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype)
263
+ return (edges[:-1] + edges[1:]) / 2
264
+
265
+ def _get_positions(
266
+ self,
267
+ num_frames: int,
268
+ height: int,
269
+ width: int,
270
+ device: Optional[torch.device] = None,
271
+ dtype: Optional[torch.dtype] = None,
272
+ ) -> torch.Tensor:
273
+ scale = (self.target_area / (height * width)) ** 0.5
274
+
275
+ t = torch.arange(num_frames, device=device, dtype=dtype)
276
+ h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype)
277
+ w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype)
278
+
279
+ grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
280
+
281
+ positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3)
282
+ return positions
283
+
284
+ def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
285
+ with torch.autocast(freqs.device.type, torch.float32):
286
+ # Always run ROPE freqs computation in FP32
287
+ freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32))
288
+
289
+ freqs_cos = torch.cos(freqs)
290
+ freqs_sin = torch.sin(freqs)
291
+ return freqs_cos, freqs_sin
292
+
293
+ def forward(
294
+ self,
295
+ pos_frequencies: torch.Tensor,
296
+ num_frames: int,
297
+ height: int,
298
+ width: int,
299
+ device: Optional[torch.device] = None,
300
+ dtype: Optional[torch.dtype] = None,
301
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
302
+ pos = self._get_positions(num_frames, height, width, device, dtype)
303
+ rope_cos, rope_sin = self._create_rope(pos_frequencies, pos)
304
+ return rope_cos, rope_sin
305
+
306
+
307
+ @maybe_allow_in_graph
308
+ class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
309
+ r"""
310
+ A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
311
+
312
+ Args:
313
+ patch_size (`int`, defaults to `2`):
314
+ The size of the patches to use in the patch embedding layer.
315
+ num_attention_heads (`int`, defaults to `24`):
316
+ The number of heads to use for multi-head attention.
317
+ attention_head_dim (`int`, defaults to `128`):
318
+ The number of channels in each head.
319
+ num_layers (`int`, defaults to `48`):
320
+ The number of layers of Transformer blocks to use.
321
+ in_channels (`int`, defaults to `12`):
322
+ The number of channels in the input.
323
+ out_channels (`int`, *optional*, defaults to `None`):
324
+ The number of channels in the output.
325
+ qk_norm (`str`, defaults to `"rms_norm"`):
326
+ The normalization layer to use.
327
+ text_embed_dim (`int`, defaults to `4096`):
328
+ Input dimension of text embeddings from the text encoder.
329
+ time_embed_dim (`int`, defaults to `256`):
330
+ Output dimension of timestep embeddings.
331
+ activation_fn (`str`, defaults to `"swiglu"`):
332
+ Activation function to use in feed-forward.
333
+ max_sequence_length (`int`, defaults to `256`):
334
+ The maximum sequence length of text embeddings supported.
335
+ """
336
+
337
+ _supports_gradient_checkpointing = True
338
+ _no_split_modules = ["MochiTransformerBlock"]
339
+
340
+ @register_to_config
341
+ def __init__(
342
+ self,
343
+ patch_size: int = 2,
344
+ num_attention_heads: int = 24,
345
+ attention_head_dim: int = 128,
346
+ num_layers: int = 48,
347
+ pooled_projection_dim: int = 1536,
348
+ in_channels: int = 12,
349
+ out_channels: Optional[int] = None,
350
+ qk_norm: str = "rms_norm",
351
+ text_embed_dim: int = 4096,
352
+ time_embed_dim: int = 256,
353
+ activation_fn: str = "swiglu",
354
+ max_sequence_length: int = 256,
355
+ ) -> None:
356
+ super().__init__()
357
+
358
+ inner_dim = num_attention_heads * attention_head_dim
359
+ out_channels = out_channels or in_channels
360
+
361
+ self.patch_embed = PatchEmbed(
362
+ patch_size=patch_size,
363
+ in_channels=in_channels,
364
+ embed_dim=inner_dim,
365
+ pos_embed_type=None,
366
+ )
367
+
368
+ self.time_embed = MochiCombinedTimestepCaptionEmbedding(
369
+ embedding_dim=inner_dim,
370
+ pooled_projection_dim=pooled_projection_dim,
371
+ text_embed_dim=text_embed_dim,
372
+ time_embed_dim=time_embed_dim,
373
+ num_attention_heads=8,
374
+ )
375
+
376
+ self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0))
377
+ self.rope = MochiRoPE()
378
+
379
+ self.transformer_blocks = nn.ModuleList(
380
+ [
381
+ MochiTransformerBlock(
382
+ dim=inner_dim,
383
+ num_attention_heads=num_attention_heads,
384
+ attention_head_dim=attention_head_dim,
385
+ pooled_projection_dim=pooled_projection_dim,
386
+ qk_norm=qk_norm,
387
+ activation_fn=activation_fn,
388
+ context_pre_only=i == num_layers - 1,
389
+ )
390
+ for i in range(num_layers)
391
+ ]
392
+ )
393
+
394
+ self.norm_out = AdaLayerNormContinuous(
395
+ inner_dim,
396
+ inner_dim,
397
+ elementwise_affine=False,
398
+ eps=1e-6,
399
+ norm_type="layer_norm",
400
+ )
401
+ self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
402
+
403
+ self.gradient_checkpointing = False
404
+
405
+ def _set_gradient_checkpointing(self, module, value=False):
406
+ if hasattr(module, "gradient_checkpointing"):
407
+ module.gradient_checkpointing = value
408
+
409
+ def forward(
410
+ self,
411
+ hidden_states: torch.Tensor,
412
+ encoder_hidden_states: torch.Tensor,
413
+ timestep: torch.LongTensor,
414
+ encoder_attention_mask: torch.Tensor,
415
+ attention_kwargs: Optional[Dict[str, Any]] = None,
416
+ return_dict: bool = True,
417
+ ) -> torch.Tensor:
418
+ if attention_kwargs is not None:
419
+ attention_kwargs = attention_kwargs.copy()
420
+ lora_scale = attention_kwargs.pop("scale", 1.0)
421
+ else:
422
+ lora_scale = 1.0
423
+
424
+ if USE_PEFT_BACKEND:
425
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
426
+ scale_lora_layers(self, lora_scale)
427
+ else:
428
+ if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
429
+ logger.warning(
430
+ "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
431
+ )
432
+
433
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
434
+ p = self.config.patch_size
435
+
436
+ post_patch_height = height // p
437
+ post_patch_width = width // p
438
+
439
+ temb, encoder_hidden_states = self.time_embed(
440
+ timestep,
441
+ encoder_hidden_states,
442
+ encoder_attention_mask,
443
+ hidden_dtype=hidden_states.dtype,
444
+ )
445
+
446
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
447
+ hidden_states = self.patch_embed(hidden_states)
448
+ hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
449
+
450
+ image_rotary_emb = self.rope(
451
+ self.pos_frequencies,
452
+ num_frames,
453
+ post_patch_height,
454
+ post_patch_width,
455
+ device=hidden_states.device,
456
+ dtype=torch.float32,
457
+ )
458
+
459
+ for i, block in enumerate(self.transformer_blocks):
460
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
461
+
462
+ def create_custom_forward(module):
463
+ def custom_forward(*inputs):
464
+ return module(*inputs)
465
+
466
+ return custom_forward
467
+
468
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
469
+ hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
470
+ create_custom_forward(block),
471
+ hidden_states,
472
+ encoder_hidden_states,
473
+ temb,
474
+ encoder_attention_mask,
475
+ image_rotary_emb,
476
+ **ckpt_kwargs,
477
+ )
478
+ else:
479
+ hidden_states, encoder_hidden_states = block(
480
+ hidden_states=hidden_states,
481
+ encoder_hidden_states=encoder_hidden_states,
482
+ temb=temb,
483
+ encoder_attention_mask=encoder_attention_mask,
484
+ image_rotary_emb=image_rotary_emb,
485
+ )
486
+ hidden_states = self.norm_out(hidden_states, temb)
487
+ hidden_states = self.proj_out(hidden_states)
488
+
489
+ hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1)
490
+ hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
491
+ output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
492
+
493
+ if USE_PEFT_BACKEND:
494
+ # remove `lora_scale` from each PEFT layer
495
+ unscale_lora_layers(self, lora_scale)
496
+
497
+ if not return_dict:
498
+ return (output,)
499
+ return Transformer2DModelOutput(sample=output)