diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +97 -4
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +13 -1
- diffusers/image_processor.py +282 -71
- diffusers/loaders/__init__.py +24 -3
- diffusers/loaders/ip_adapter.py +543 -16
- diffusers/loaders/lora_base.py +138 -125
- diffusers/loaders/lora_conversion_utils.py +647 -0
- diffusers/loaders/lora_pipeline.py +2216 -230
- diffusers/loaders/peft.py +380 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +597 -10
- diffusers/loaders/textual_inversion.py +5 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +56 -12
- diffusers/models/__init__.py +49 -12
- diffusers/models/activations.py +22 -9
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +98 -13
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2160 -346
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +73 -12
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +26 -376
- diffusers/models/controlnet_sparsectrl.py +46 -719
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +996 -92
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +264 -14
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +334 -51
- diffusers/models/normalization.py +157 -13
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +10 -2
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +189 -51
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +112 -18
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +9 -9
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +46 -68
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +14 -6
- diffusers/pipelines/__init__.py +69 -6
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
- diffusers/pipelines/auto_pipeline.py +88 -10
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
- diffusers/pipelines/flux/__init__.py +23 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +256 -48
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +13 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +250 -31
- diffusers/pipelines/pipeline_utils.py +158 -186
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +6 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
- diffusers/schedulers/scheduling_deis_multistep.py +102 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +102 -6
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
- diffusers/training_utils.py +63 -19
- diffusers/utils/__init__.py +7 -1
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +240 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +44 -40
- diffusers/utils/import_utils.py +98 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +6 -3
- diffusers/utils/testing_utils.py +115 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,499 @@
|
|
1
|
+
# Copyright 2024 The Genmo team and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
|
21
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22
|
+
from ...loaders import PeftAdapterMixin
|
23
|
+
from ...loaders.single_file_model import FromOriginalModelMixin
|
24
|
+
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
25
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
26
|
+
from ..attention import FeedForward
|
27
|
+
from ..attention_processor import MochiAttention, MochiAttnProcessor2_0
|
28
|
+
from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed
|
29
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
30
|
+
from ..modeling_utils import ModelMixin
|
31
|
+
from ..normalization import AdaLayerNormContinuous, RMSNorm
|
32
|
+
|
33
|
+
|
34
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35
|
+
|
36
|
+
|
37
|
+
class MochiModulatedRMSNorm(nn.Module):
|
38
|
+
def __init__(self, eps: float):
|
39
|
+
super().__init__()
|
40
|
+
|
41
|
+
self.eps = eps
|
42
|
+
self.norm = RMSNorm(0, eps, False)
|
43
|
+
|
44
|
+
def forward(self, hidden_states, scale=None):
|
45
|
+
hidden_states_dtype = hidden_states.dtype
|
46
|
+
hidden_states = hidden_states.to(torch.float32)
|
47
|
+
|
48
|
+
hidden_states = self.norm(hidden_states)
|
49
|
+
|
50
|
+
if scale is not None:
|
51
|
+
hidden_states = hidden_states * scale
|
52
|
+
|
53
|
+
hidden_states = hidden_states.to(hidden_states_dtype)
|
54
|
+
|
55
|
+
return hidden_states
|
56
|
+
|
57
|
+
|
58
|
+
class MochiLayerNormContinuous(nn.Module):
|
59
|
+
def __init__(
|
60
|
+
self,
|
61
|
+
embedding_dim: int,
|
62
|
+
conditioning_embedding_dim: int,
|
63
|
+
eps=1e-5,
|
64
|
+
bias=True,
|
65
|
+
):
|
66
|
+
super().__init__()
|
67
|
+
|
68
|
+
# AdaLN
|
69
|
+
self.silu = nn.SiLU()
|
70
|
+
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
|
71
|
+
self.norm = MochiModulatedRMSNorm(eps=eps)
|
72
|
+
|
73
|
+
def forward(
|
74
|
+
self,
|
75
|
+
x: torch.Tensor,
|
76
|
+
conditioning_embedding: torch.Tensor,
|
77
|
+
) -> torch.Tensor:
|
78
|
+
input_dtype = x.dtype
|
79
|
+
|
80
|
+
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
81
|
+
scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
|
82
|
+
x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32)))
|
83
|
+
|
84
|
+
return x.to(input_dtype)
|
85
|
+
|
86
|
+
|
87
|
+
class MochiRMSNormZero(nn.Module):
|
88
|
+
r"""
|
89
|
+
Adaptive RMS Norm used in Mochi.
|
90
|
+
|
91
|
+
Parameters:
|
92
|
+
embedding_dim (`int`): The size of each embedding vector.
|
93
|
+
"""
|
94
|
+
|
95
|
+
def __init__(
|
96
|
+
self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False
|
97
|
+
) -> None:
|
98
|
+
super().__init__()
|
99
|
+
|
100
|
+
self.silu = nn.SiLU()
|
101
|
+
self.linear = nn.Linear(embedding_dim, hidden_dim)
|
102
|
+
self.norm = RMSNorm(0, eps, False)
|
103
|
+
|
104
|
+
def forward(
|
105
|
+
self, hidden_states: torch.Tensor, emb: torch.Tensor
|
106
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
107
|
+
hidden_states_dtype = hidden_states.dtype
|
108
|
+
|
109
|
+
emb = self.linear(self.silu(emb))
|
110
|
+
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
|
111
|
+
hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32))
|
112
|
+
hidden_states = hidden_states.to(hidden_states_dtype)
|
113
|
+
|
114
|
+
return hidden_states, gate_msa, scale_mlp, gate_mlp
|
115
|
+
|
116
|
+
|
117
|
+
@maybe_allow_in_graph
|
118
|
+
class MochiTransformerBlock(nn.Module):
|
119
|
+
r"""
|
120
|
+
Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
|
121
|
+
|
122
|
+
Args:
|
123
|
+
dim (`int`):
|
124
|
+
The number of channels in the input and output.
|
125
|
+
num_attention_heads (`int`):
|
126
|
+
The number of heads to use for multi-head attention.
|
127
|
+
attention_head_dim (`int`):
|
128
|
+
The number of channels in each head.
|
129
|
+
qk_norm (`str`, defaults to `"rms_norm"`):
|
130
|
+
The normalization layer to use.
|
131
|
+
activation_fn (`str`, defaults to `"swiglu"`):
|
132
|
+
Activation function to use in feed-forward.
|
133
|
+
context_pre_only (`bool`, defaults to `False`):
|
134
|
+
Whether or not to process context-related conditions with additional layers.
|
135
|
+
eps (`float`, defaults to `1e-6`):
|
136
|
+
Epsilon value for normalization layers.
|
137
|
+
"""
|
138
|
+
|
139
|
+
def __init__(
|
140
|
+
self,
|
141
|
+
dim: int,
|
142
|
+
num_attention_heads: int,
|
143
|
+
attention_head_dim: int,
|
144
|
+
pooled_projection_dim: int,
|
145
|
+
qk_norm: str = "rms_norm",
|
146
|
+
activation_fn: str = "swiglu",
|
147
|
+
context_pre_only: bool = False,
|
148
|
+
eps: float = 1e-6,
|
149
|
+
) -> None:
|
150
|
+
super().__init__()
|
151
|
+
|
152
|
+
self.context_pre_only = context_pre_only
|
153
|
+
self.ff_inner_dim = (4 * dim * 2) // 3
|
154
|
+
self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3
|
155
|
+
|
156
|
+
self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False)
|
157
|
+
|
158
|
+
if not context_pre_only:
|
159
|
+
self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False)
|
160
|
+
else:
|
161
|
+
self.norm1_context = MochiLayerNormContinuous(
|
162
|
+
embedding_dim=pooled_projection_dim,
|
163
|
+
conditioning_embedding_dim=dim,
|
164
|
+
eps=eps,
|
165
|
+
)
|
166
|
+
|
167
|
+
self.attn1 = MochiAttention(
|
168
|
+
query_dim=dim,
|
169
|
+
heads=num_attention_heads,
|
170
|
+
dim_head=attention_head_dim,
|
171
|
+
bias=False,
|
172
|
+
added_kv_proj_dim=pooled_projection_dim,
|
173
|
+
added_proj_bias=False,
|
174
|
+
out_dim=dim,
|
175
|
+
out_context_dim=pooled_projection_dim,
|
176
|
+
context_pre_only=context_pre_only,
|
177
|
+
processor=MochiAttnProcessor2_0(),
|
178
|
+
eps=1e-5,
|
179
|
+
)
|
180
|
+
|
181
|
+
# TODO(aryan): norm_context layers are not needed when `context_pre_only` is True
|
182
|
+
self.norm2 = MochiModulatedRMSNorm(eps=eps)
|
183
|
+
self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
|
184
|
+
|
185
|
+
self.norm3 = MochiModulatedRMSNorm(eps)
|
186
|
+
self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None
|
187
|
+
|
188
|
+
self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False)
|
189
|
+
self.ff_context = None
|
190
|
+
if not context_pre_only:
|
191
|
+
self.ff_context = FeedForward(
|
192
|
+
pooled_projection_dim,
|
193
|
+
inner_dim=self.ff_context_inner_dim,
|
194
|
+
activation_fn=activation_fn,
|
195
|
+
bias=False,
|
196
|
+
)
|
197
|
+
|
198
|
+
self.norm4 = MochiModulatedRMSNorm(eps=eps)
|
199
|
+
self.norm4_context = MochiModulatedRMSNorm(eps=eps)
|
200
|
+
|
201
|
+
def forward(
|
202
|
+
self,
|
203
|
+
hidden_states: torch.Tensor,
|
204
|
+
encoder_hidden_states: torch.Tensor,
|
205
|
+
temb: torch.Tensor,
|
206
|
+
encoder_attention_mask: torch.Tensor,
|
207
|
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
208
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
209
|
+
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
210
|
+
|
211
|
+
if not self.context_pre_only:
|
212
|
+
norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context(
|
213
|
+
encoder_hidden_states, temb
|
214
|
+
)
|
215
|
+
else:
|
216
|
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
217
|
+
|
218
|
+
attn_hidden_states, context_attn_hidden_states = self.attn1(
|
219
|
+
hidden_states=norm_hidden_states,
|
220
|
+
encoder_hidden_states=norm_encoder_hidden_states,
|
221
|
+
image_rotary_emb=image_rotary_emb,
|
222
|
+
attention_mask=encoder_attention_mask,
|
223
|
+
)
|
224
|
+
|
225
|
+
hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1))
|
226
|
+
norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32)))
|
227
|
+
ff_output = self.ff(norm_hidden_states)
|
228
|
+
hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1))
|
229
|
+
|
230
|
+
if not self.context_pre_only:
|
231
|
+
encoder_hidden_states = encoder_hidden_states + self.norm2_context(
|
232
|
+
context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1)
|
233
|
+
)
|
234
|
+
norm_encoder_hidden_states = self.norm3_context(
|
235
|
+
encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32))
|
236
|
+
)
|
237
|
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
238
|
+
encoder_hidden_states = encoder_hidden_states + self.norm4_context(
|
239
|
+
context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1)
|
240
|
+
)
|
241
|
+
|
242
|
+
return hidden_states, encoder_hidden_states
|
243
|
+
|
244
|
+
|
245
|
+
class MochiRoPE(nn.Module):
|
246
|
+
r"""
|
247
|
+
RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
|
248
|
+
|
249
|
+
Args:
|
250
|
+
base_height (`int`, defaults to `192`):
|
251
|
+
Base height used to compute interpolation scale for rotary positional embeddings.
|
252
|
+
base_width (`int`, defaults to `192`):
|
253
|
+
Base width used to compute interpolation scale for rotary positional embeddings.
|
254
|
+
"""
|
255
|
+
|
256
|
+
def __init__(self, base_height: int = 192, base_width: int = 192) -> None:
|
257
|
+
super().__init__()
|
258
|
+
|
259
|
+
self.target_area = base_height * base_width
|
260
|
+
|
261
|
+
def _centers(self, start, stop, num, device, dtype) -> torch.Tensor:
|
262
|
+
edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype)
|
263
|
+
return (edges[:-1] + edges[1:]) / 2
|
264
|
+
|
265
|
+
def _get_positions(
|
266
|
+
self,
|
267
|
+
num_frames: int,
|
268
|
+
height: int,
|
269
|
+
width: int,
|
270
|
+
device: Optional[torch.device] = None,
|
271
|
+
dtype: Optional[torch.dtype] = None,
|
272
|
+
) -> torch.Tensor:
|
273
|
+
scale = (self.target_area / (height * width)) ** 0.5
|
274
|
+
|
275
|
+
t = torch.arange(num_frames, device=device, dtype=dtype)
|
276
|
+
h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype)
|
277
|
+
w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype)
|
278
|
+
|
279
|
+
grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
|
280
|
+
|
281
|
+
positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3)
|
282
|
+
return positions
|
283
|
+
|
284
|
+
def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor:
|
285
|
+
with torch.autocast(freqs.device.type, torch.float32):
|
286
|
+
# Always run ROPE freqs computation in FP32
|
287
|
+
freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32))
|
288
|
+
|
289
|
+
freqs_cos = torch.cos(freqs)
|
290
|
+
freqs_sin = torch.sin(freqs)
|
291
|
+
return freqs_cos, freqs_sin
|
292
|
+
|
293
|
+
def forward(
|
294
|
+
self,
|
295
|
+
pos_frequencies: torch.Tensor,
|
296
|
+
num_frames: int,
|
297
|
+
height: int,
|
298
|
+
width: int,
|
299
|
+
device: Optional[torch.device] = None,
|
300
|
+
dtype: Optional[torch.dtype] = None,
|
301
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
302
|
+
pos = self._get_positions(num_frames, height, width, device, dtype)
|
303
|
+
rope_cos, rope_sin = self._create_rope(pos_frequencies, pos)
|
304
|
+
return rope_cos, rope_sin
|
305
|
+
|
306
|
+
|
307
|
+
@maybe_allow_in_graph
|
308
|
+
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
309
|
+
r"""
|
310
|
+
A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview).
|
311
|
+
|
312
|
+
Args:
|
313
|
+
patch_size (`int`, defaults to `2`):
|
314
|
+
The size of the patches to use in the patch embedding layer.
|
315
|
+
num_attention_heads (`int`, defaults to `24`):
|
316
|
+
The number of heads to use for multi-head attention.
|
317
|
+
attention_head_dim (`int`, defaults to `128`):
|
318
|
+
The number of channels in each head.
|
319
|
+
num_layers (`int`, defaults to `48`):
|
320
|
+
The number of layers of Transformer blocks to use.
|
321
|
+
in_channels (`int`, defaults to `12`):
|
322
|
+
The number of channels in the input.
|
323
|
+
out_channels (`int`, *optional*, defaults to `None`):
|
324
|
+
The number of channels in the output.
|
325
|
+
qk_norm (`str`, defaults to `"rms_norm"`):
|
326
|
+
The normalization layer to use.
|
327
|
+
text_embed_dim (`int`, defaults to `4096`):
|
328
|
+
Input dimension of text embeddings from the text encoder.
|
329
|
+
time_embed_dim (`int`, defaults to `256`):
|
330
|
+
Output dimension of timestep embeddings.
|
331
|
+
activation_fn (`str`, defaults to `"swiglu"`):
|
332
|
+
Activation function to use in feed-forward.
|
333
|
+
max_sequence_length (`int`, defaults to `256`):
|
334
|
+
The maximum sequence length of text embeddings supported.
|
335
|
+
"""
|
336
|
+
|
337
|
+
_supports_gradient_checkpointing = True
|
338
|
+
_no_split_modules = ["MochiTransformerBlock"]
|
339
|
+
|
340
|
+
@register_to_config
|
341
|
+
def __init__(
|
342
|
+
self,
|
343
|
+
patch_size: int = 2,
|
344
|
+
num_attention_heads: int = 24,
|
345
|
+
attention_head_dim: int = 128,
|
346
|
+
num_layers: int = 48,
|
347
|
+
pooled_projection_dim: int = 1536,
|
348
|
+
in_channels: int = 12,
|
349
|
+
out_channels: Optional[int] = None,
|
350
|
+
qk_norm: str = "rms_norm",
|
351
|
+
text_embed_dim: int = 4096,
|
352
|
+
time_embed_dim: int = 256,
|
353
|
+
activation_fn: str = "swiglu",
|
354
|
+
max_sequence_length: int = 256,
|
355
|
+
) -> None:
|
356
|
+
super().__init__()
|
357
|
+
|
358
|
+
inner_dim = num_attention_heads * attention_head_dim
|
359
|
+
out_channels = out_channels or in_channels
|
360
|
+
|
361
|
+
self.patch_embed = PatchEmbed(
|
362
|
+
patch_size=patch_size,
|
363
|
+
in_channels=in_channels,
|
364
|
+
embed_dim=inner_dim,
|
365
|
+
pos_embed_type=None,
|
366
|
+
)
|
367
|
+
|
368
|
+
self.time_embed = MochiCombinedTimestepCaptionEmbedding(
|
369
|
+
embedding_dim=inner_dim,
|
370
|
+
pooled_projection_dim=pooled_projection_dim,
|
371
|
+
text_embed_dim=text_embed_dim,
|
372
|
+
time_embed_dim=time_embed_dim,
|
373
|
+
num_attention_heads=8,
|
374
|
+
)
|
375
|
+
|
376
|
+
self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0))
|
377
|
+
self.rope = MochiRoPE()
|
378
|
+
|
379
|
+
self.transformer_blocks = nn.ModuleList(
|
380
|
+
[
|
381
|
+
MochiTransformerBlock(
|
382
|
+
dim=inner_dim,
|
383
|
+
num_attention_heads=num_attention_heads,
|
384
|
+
attention_head_dim=attention_head_dim,
|
385
|
+
pooled_projection_dim=pooled_projection_dim,
|
386
|
+
qk_norm=qk_norm,
|
387
|
+
activation_fn=activation_fn,
|
388
|
+
context_pre_only=i == num_layers - 1,
|
389
|
+
)
|
390
|
+
for i in range(num_layers)
|
391
|
+
]
|
392
|
+
)
|
393
|
+
|
394
|
+
self.norm_out = AdaLayerNormContinuous(
|
395
|
+
inner_dim,
|
396
|
+
inner_dim,
|
397
|
+
elementwise_affine=False,
|
398
|
+
eps=1e-6,
|
399
|
+
norm_type="layer_norm",
|
400
|
+
)
|
401
|
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels)
|
402
|
+
|
403
|
+
self.gradient_checkpointing = False
|
404
|
+
|
405
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
406
|
+
if hasattr(module, "gradient_checkpointing"):
|
407
|
+
module.gradient_checkpointing = value
|
408
|
+
|
409
|
+
def forward(
|
410
|
+
self,
|
411
|
+
hidden_states: torch.Tensor,
|
412
|
+
encoder_hidden_states: torch.Tensor,
|
413
|
+
timestep: torch.LongTensor,
|
414
|
+
encoder_attention_mask: torch.Tensor,
|
415
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
416
|
+
return_dict: bool = True,
|
417
|
+
) -> torch.Tensor:
|
418
|
+
if attention_kwargs is not None:
|
419
|
+
attention_kwargs = attention_kwargs.copy()
|
420
|
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
421
|
+
else:
|
422
|
+
lora_scale = 1.0
|
423
|
+
|
424
|
+
if USE_PEFT_BACKEND:
|
425
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
426
|
+
scale_lora_layers(self, lora_scale)
|
427
|
+
else:
|
428
|
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
429
|
+
logger.warning(
|
430
|
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
431
|
+
)
|
432
|
+
|
433
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
434
|
+
p = self.config.patch_size
|
435
|
+
|
436
|
+
post_patch_height = height // p
|
437
|
+
post_patch_width = width // p
|
438
|
+
|
439
|
+
temb, encoder_hidden_states = self.time_embed(
|
440
|
+
timestep,
|
441
|
+
encoder_hidden_states,
|
442
|
+
encoder_attention_mask,
|
443
|
+
hidden_dtype=hidden_states.dtype,
|
444
|
+
)
|
445
|
+
|
446
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
447
|
+
hidden_states = self.patch_embed(hidden_states)
|
448
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
|
449
|
+
|
450
|
+
image_rotary_emb = self.rope(
|
451
|
+
self.pos_frequencies,
|
452
|
+
num_frames,
|
453
|
+
post_patch_height,
|
454
|
+
post_patch_width,
|
455
|
+
device=hidden_states.device,
|
456
|
+
dtype=torch.float32,
|
457
|
+
)
|
458
|
+
|
459
|
+
for i, block in enumerate(self.transformer_blocks):
|
460
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
461
|
+
|
462
|
+
def create_custom_forward(module):
|
463
|
+
def custom_forward(*inputs):
|
464
|
+
return module(*inputs)
|
465
|
+
|
466
|
+
return custom_forward
|
467
|
+
|
468
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
469
|
+
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
|
470
|
+
create_custom_forward(block),
|
471
|
+
hidden_states,
|
472
|
+
encoder_hidden_states,
|
473
|
+
temb,
|
474
|
+
encoder_attention_mask,
|
475
|
+
image_rotary_emb,
|
476
|
+
**ckpt_kwargs,
|
477
|
+
)
|
478
|
+
else:
|
479
|
+
hidden_states, encoder_hidden_states = block(
|
480
|
+
hidden_states=hidden_states,
|
481
|
+
encoder_hidden_states=encoder_hidden_states,
|
482
|
+
temb=temb,
|
483
|
+
encoder_attention_mask=encoder_attention_mask,
|
484
|
+
image_rotary_emb=image_rotary_emb,
|
485
|
+
)
|
486
|
+
hidden_states = self.norm_out(hidden_states, temb)
|
487
|
+
hidden_states = self.proj_out(hidden_states)
|
488
|
+
|
489
|
+
hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1)
|
490
|
+
hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5)
|
491
|
+
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
|
492
|
+
|
493
|
+
if USE_PEFT_BACKEND:
|
494
|
+
# remove `lora_scale` from each PEFT layer
|
495
|
+
unscale_lora_layers(self, lora_scale)
|
496
|
+
|
497
|
+
if not return_dict:
|
498
|
+
return (output,)
|
499
|
+
return Transformer2DModelOutput(sample=output)
|