diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,886 @@
1
+ # Copyright 2024 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import html
16
+ import inspect
17
+ import re
18
+ import urllib.parse as ul
19
+ from typing import Callable, Dict, List, Optional, Tuple, Union
20
+
21
+ import torch
22
+ from transformers import AutoModelForCausalLM, AutoTokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PixArtImageProcessor
26
+ from ...models import AutoencoderDC, SanaTransformer2DModel
27
+ from ...models.attention_processor import PAGCFGSanaLinearAttnProcessor2_0, PAGIdentitySanaLinearAttnProcessor2_0
28
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
29
+ from ...utils import (
30
+ BACKENDS_MAPPING,
31
+ is_bs4_available,
32
+ is_ftfy_available,
33
+ logging,
34
+ replace_example_docstring,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
38
+ from ..pixart_alpha.pipeline_pixart_alpha import (
39
+ ASPECT_RATIO_512_BIN,
40
+ ASPECT_RATIO_1024_BIN,
41
+ )
42
+ from ..pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
43
+ from .pag_utils import PAGMixin
44
+
45
+
46
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
47
+
48
+ if is_bs4_available():
49
+ from bs4 import BeautifulSoup
50
+
51
+ if is_ftfy_available():
52
+ import ftfy
53
+
54
+
55
+ EXAMPLE_DOC_STRING = """
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers import SanaPAGPipeline
60
+
61
+ >>> pipe = SanaPAGPipeline.from_pretrained(
62
+ ... "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
63
+ ... pag_applied_layers=["transformer_blocks.8"],
64
+ ... torch_dtype=torch.float32,
65
+ ... )
66
+ >>> pipe.to("cuda")
67
+ >>> pipe.text_encoder.to(torch.bfloat16)
68
+ >>> pipe.transformer = pipe.transformer.to(torch.bfloat16)
69
+
70
+ >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
71
+ >>> image[0].save("output.png")
72
+ ```
73
+ """
74
+
75
+
76
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
77
+ def retrieve_timesteps(
78
+ scheduler,
79
+ num_inference_steps: Optional[int] = None,
80
+ device: Optional[Union[str, torch.device]] = None,
81
+ timesteps: Optional[List[int]] = None,
82
+ sigmas: Optional[List[float]] = None,
83
+ **kwargs,
84
+ ):
85
+ r"""
86
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
87
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
88
+
89
+ Args:
90
+ scheduler (`SchedulerMixin`):
91
+ The scheduler to get timesteps from.
92
+ num_inference_steps (`int`):
93
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
94
+ must be `None`.
95
+ device (`str` or `torch.device`, *optional*):
96
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
97
+ timesteps (`List[int]`, *optional*):
98
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
99
+ `num_inference_steps` and `sigmas` must be `None`.
100
+ sigmas (`List[float]`, *optional*):
101
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
102
+ `num_inference_steps` and `timesteps` must be `None`.
103
+
104
+ Returns:
105
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
106
+ second element is the number of inference steps.
107
+ """
108
+ if timesteps is not None and sigmas is not None:
109
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
110
+ if timesteps is not None:
111
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
112
+ if not accepts_timesteps:
113
+ raise ValueError(
114
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
115
+ f" timestep schedules. Please check whether you are using the correct scheduler."
116
+ )
117
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
118
+ timesteps = scheduler.timesteps
119
+ num_inference_steps = len(timesteps)
120
+ elif sigmas is not None:
121
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
122
+ if not accept_sigmas:
123
+ raise ValueError(
124
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
125
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
126
+ )
127
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
128
+ timesteps = scheduler.timesteps
129
+ num_inference_steps = len(timesteps)
130
+ else:
131
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ return timesteps, num_inference_steps
134
+
135
+
136
+ class SanaPAGPipeline(DiffusionPipeline, PAGMixin):
137
+ r"""
138
+ Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629). This pipeline
139
+ supports the use of [Perturbed Attention Guidance
140
+ (PAG)](https://huggingface.co/docs/diffusers/main/en/using-diffusers/pag).
141
+ """
142
+
143
+ # fmt: off
144
+ bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
145
+ # fmt: on
146
+
147
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
148
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
149
+
150
+ def __init__(
151
+ self,
152
+ tokenizer: AutoTokenizer,
153
+ text_encoder: AutoModelForCausalLM,
154
+ vae: AutoencoderDC,
155
+ transformer: SanaTransformer2DModel,
156
+ scheduler: FlowMatchEulerDiscreteScheduler,
157
+ pag_applied_layers: Union[str, List[str]] = "transformer_blocks.0",
158
+ ):
159
+ super().__init__()
160
+
161
+ self.register_modules(
162
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
163
+ )
164
+
165
+ self.vae_scale_factor = 2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
166
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
167
+
168
+ self.set_pag_applied_layers(
169
+ pag_applied_layers,
170
+ pag_attn_processors=(PAGCFGSanaLinearAttnProcessor2_0(), PAGIdentitySanaLinearAttnProcessor2_0()),
171
+ )
172
+
173
+ def encode_prompt(
174
+ self,
175
+ prompt: Union[str, List[str]],
176
+ do_classifier_free_guidance: bool = True,
177
+ negative_prompt: str = "",
178
+ num_images_per_prompt: int = 1,
179
+ device: Optional[torch.device] = None,
180
+ prompt_embeds: Optional[torch.Tensor] = None,
181
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
182
+ prompt_attention_mask: Optional[torch.Tensor] = None,
183
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
184
+ clean_caption: bool = False,
185
+ max_sequence_length: int = 300,
186
+ complex_human_instruction: Optional[List[str]] = None,
187
+ ):
188
+ r"""
189
+ Encodes the prompt into text encoder hidden states.
190
+
191
+ Args:
192
+ prompt (`str` or `List[str]`, *optional*):
193
+ prompt to be encoded
194
+ negative_prompt (`str` or `List[str]`, *optional*):
195
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
196
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
197
+ PixArt-Alpha, this should be "".
198
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
199
+ whether to use classifier free guidance or not
200
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
201
+ number of images that should be generated per prompt
202
+ device: (`torch.device`, *optional*):
203
+ torch device to place the resulting embeddings on
204
+ prompt_embeds (`torch.Tensor`, *optional*):
205
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
206
+ provided, text embeddings will be generated from `prompt` input argument.
207
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
208
+ Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
209
+ clean_caption (`bool`, defaults to `False`):
210
+ If `True`, the function will preprocess and clean the provided caption before encoding.
211
+ max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
212
+ complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
213
+ If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
214
+ the prompt.
215
+ """
216
+
217
+ if device is None:
218
+ device = self._execution_device
219
+
220
+ if prompt is not None and isinstance(prompt, str):
221
+ batch_size = 1
222
+ elif prompt is not None and isinstance(prompt, list):
223
+ batch_size = len(prompt)
224
+ else:
225
+ batch_size = prompt_embeds.shape[0]
226
+
227
+ self.tokenizer.padding_side = "right"
228
+
229
+ # See Section 3.1. of the paper.
230
+ max_length = max_sequence_length
231
+ select_index = [0] + list(range(-max_length + 1, 0))
232
+
233
+ if prompt_embeds is None:
234
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
235
+
236
+ # prepare complex human instruction
237
+ if not complex_human_instruction:
238
+ max_length_all = max_length
239
+ else:
240
+ chi_prompt = "\n".join(complex_human_instruction)
241
+ prompt = [chi_prompt + p for p in prompt]
242
+ num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
243
+ max_length_all = num_chi_prompt_tokens + max_length - 2
244
+
245
+ text_inputs = self.tokenizer(
246
+ prompt,
247
+ padding="max_length",
248
+ max_length=max_length_all,
249
+ truncation=True,
250
+ add_special_tokens=True,
251
+ return_tensors="pt",
252
+ )
253
+ text_input_ids = text_inputs.input_ids
254
+
255
+ prompt_attention_mask = text_inputs.attention_mask
256
+ prompt_attention_mask = prompt_attention_mask.to(device)
257
+
258
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
259
+ prompt_embeds = prompt_embeds[0][:, select_index]
260
+ prompt_attention_mask = prompt_attention_mask[:, select_index]
261
+
262
+ if self.transformer is not None:
263
+ dtype = self.transformer.dtype
264
+ elif self.text_encoder is not None:
265
+ dtype = self.text_encoder.dtype
266
+ else:
267
+ dtype = None
268
+
269
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
270
+
271
+ bs_embed, seq_len, _ = prompt_embeds.shape
272
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
273
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
274
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
275
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
276
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
277
+
278
+ # get unconditional embeddings for classifier free guidance
279
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
280
+ uncond_tokens = [negative_prompt] * batch_size if isinstance(negative_prompt, str) else negative_prompt
281
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
282
+ max_length = prompt_embeds.shape[1]
283
+ uncond_input = self.tokenizer(
284
+ uncond_tokens,
285
+ padding="max_length",
286
+ max_length=max_length,
287
+ truncation=True,
288
+ return_attention_mask=True,
289
+ add_special_tokens=True,
290
+ return_tensors="pt",
291
+ )
292
+ negative_prompt_attention_mask = uncond_input.attention_mask
293
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
294
+
295
+ negative_prompt_embeds = self.text_encoder(
296
+ uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
297
+ )
298
+ negative_prompt_embeds = negative_prompt_embeds[0]
299
+
300
+ if do_classifier_free_guidance:
301
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
302
+ seq_len = negative_prompt_embeds.shape[1]
303
+
304
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
305
+
306
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
307
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
308
+
309
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
310
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
311
+ else:
312
+ negative_prompt_embeds = None
313
+ negative_prompt_attention_mask = None
314
+
315
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
316
+
317
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
318
+ def prepare_extra_step_kwargs(self, generator, eta):
319
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
320
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
321
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
322
+ # and should be between [0, 1]
323
+
324
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
325
+ extra_step_kwargs = {}
326
+ if accepts_eta:
327
+ extra_step_kwargs["eta"] = eta
328
+
329
+ # check if the scheduler accepts generator
330
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
331
+ if accepts_generator:
332
+ extra_step_kwargs["generator"] = generator
333
+ return extra_step_kwargs
334
+
335
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.check_inputs
336
+ def check_inputs(
337
+ self,
338
+ prompt,
339
+ height,
340
+ width,
341
+ callback_on_step_end_tensor_inputs=None,
342
+ negative_prompt=None,
343
+ prompt_embeds=None,
344
+ negative_prompt_embeds=None,
345
+ prompt_attention_mask=None,
346
+ negative_prompt_attention_mask=None,
347
+ ):
348
+ if height % 32 != 0 or width % 32 != 0:
349
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
350
+
351
+ if callback_on_step_end_tensor_inputs is not None and not all(
352
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
353
+ ):
354
+ raise ValueError(
355
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
356
+ )
357
+
358
+ if prompt is not None and prompt_embeds is not None:
359
+ raise ValueError(
360
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
361
+ " only forward one of the two."
362
+ )
363
+ elif prompt is None and prompt_embeds is None:
364
+ raise ValueError(
365
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
366
+ )
367
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
368
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
369
+
370
+ if prompt is not None and negative_prompt_embeds is not None:
371
+ raise ValueError(
372
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
373
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
374
+ )
375
+
376
+ if negative_prompt is not None and negative_prompt_embeds is not None:
377
+ raise ValueError(
378
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
379
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
380
+ )
381
+
382
+ if prompt_embeds is not None and prompt_attention_mask is None:
383
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
384
+
385
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
386
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
387
+
388
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
389
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
390
+ raise ValueError(
391
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
392
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
393
+ f" {negative_prompt_embeds.shape}."
394
+ )
395
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
396
+ raise ValueError(
397
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
398
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
399
+ f" {negative_prompt_attention_mask.shape}."
400
+ )
401
+
402
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._text_preprocessing
403
+ def _text_preprocessing(self, text, clean_caption=False):
404
+ if clean_caption and not is_bs4_available():
405
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
406
+ logger.warning("Setting `clean_caption` to False...")
407
+ clean_caption = False
408
+
409
+ if clean_caption and not is_ftfy_available():
410
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
411
+ logger.warning("Setting `clean_caption` to False...")
412
+ clean_caption = False
413
+
414
+ if not isinstance(text, (tuple, list)):
415
+ text = [text]
416
+
417
+ def process(text: str):
418
+ if clean_caption:
419
+ text = self._clean_caption(text)
420
+ text = self._clean_caption(text)
421
+ else:
422
+ text = text.lower().strip()
423
+ return text
424
+
425
+ return [process(t) for t in text]
426
+
427
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline._clean_caption
428
+ def _clean_caption(self, caption):
429
+ caption = str(caption)
430
+ caption = ul.unquote_plus(caption)
431
+ caption = caption.strip().lower()
432
+ caption = re.sub("<person>", "person", caption)
433
+ # urls:
434
+ caption = re.sub(
435
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
436
+ "",
437
+ caption,
438
+ ) # regex for urls
439
+ caption = re.sub(
440
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
441
+ "",
442
+ caption,
443
+ ) # regex for urls
444
+ # html:
445
+ caption = BeautifulSoup(caption, features="html.parser").text
446
+
447
+ # @<nickname>
448
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
449
+
450
+ # 31C0—31EF CJK Strokes
451
+ # 31F0—31FF Katakana Phonetic Extensions
452
+ # 3200—32FF Enclosed CJK Letters and Months
453
+ # 3300—33FF CJK Compatibility
454
+ # 3400—4DBF CJK Unified Ideographs Extension A
455
+ # 4DC0—4DFF Yijing Hexagram Symbols
456
+ # 4E00—9FFF CJK Unified Ideographs
457
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
458
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
459
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
460
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
461
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
462
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
463
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
464
+ #######################################################
465
+
466
+ # все виды тире / all types of dash --> "-"
467
+ caption = re.sub(
468
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
469
+ "-",
470
+ caption,
471
+ )
472
+
473
+ # кавычки к одному стандарту
474
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
475
+ caption = re.sub(r"[‘’]", "'", caption)
476
+
477
+ # &quot;
478
+ caption = re.sub(r"&quot;?", "", caption)
479
+ # &amp
480
+ caption = re.sub(r"&amp", "", caption)
481
+
482
+ # ip adresses:
483
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
484
+
485
+ # article ids:
486
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
487
+
488
+ # \n
489
+ caption = re.sub(r"\\n", " ", caption)
490
+
491
+ # "#123"
492
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
493
+ # "#12345.."
494
+ caption = re.sub(r"#\d{5,}\b", "", caption)
495
+ # "123456.."
496
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
497
+ # filenames:
498
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
499
+
500
+ #
501
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
502
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
503
+
504
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
505
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
506
+
507
+ # this-is-my-cute-cat / this_is_my_cute_cat
508
+ regex2 = re.compile(r"(?:\-|\_)")
509
+ if len(re.findall(regex2, caption)) > 3:
510
+ caption = re.sub(regex2, " ", caption)
511
+
512
+ caption = ftfy.fix_text(caption)
513
+ caption = html.unescape(html.unescape(caption))
514
+
515
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
516
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
517
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
518
+
519
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
520
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
521
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
522
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
523
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
524
+
525
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
526
+
527
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
528
+
529
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
530
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
531
+ caption = re.sub(r"\s+", " ", caption)
532
+
533
+ caption.strip()
534
+
535
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
536
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
537
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
538
+ caption = re.sub(r"^\.\S+$", "", caption)
539
+
540
+ return caption.strip()
541
+
542
+ # Copied from diffusers.pipelines.sana.pipeline_sana.SanaPipeline.prepare_latents
543
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
544
+ if latents is not None:
545
+ return latents.to(device=device, dtype=dtype)
546
+
547
+ shape = (
548
+ batch_size,
549
+ num_channels_latents,
550
+ int(height) // self.vae_scale_factor,
551
+ int(width) // self.vae_scale_factor,
552
+ )
553
+ if isinstance(generator, list) and len(generator) != batch_size:
554
+ raise ValueError(
555
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
556
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
557
+ )
558
+
559
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
560
+ return latents
561
+
562
+ @property
563
+ def guidance_scale(self):
564
+ return self._guidance_scale
565
+
566
+ @property
567
+ def do_classifier_free_guidance(self):
568
+ return self._guidance_scale > 1.0
569
+
570
+ @property
571
+ def num_timesteps(self):
572
+ return self._num_timesteps
573
+
574
+ @property
575
+ def interrupt(self):
576
+ return self._interrupt
577
+
578
+ @torch.no_grad()
579
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
580
+ def __call__(
581
+ self,
582
+ prompt: Union[str, List[str]] = None,
583
+ negative_prompt: str = "",
584
+ num_inference_steps: int = 20,
585
+ timesteps: List[int] = None,
586
+ sigmas: List[float] = None,
587
+ guidance_scale: float = 4.5,
588
+ num_images_per_prompt: Optional[int] = 1,
589
+ height: int = 1024,
590
+ width: int = 1024,
591
+ eta: float = 0.0,
592
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
593
+ latents: Optional[torch.Tensor] = None,
594
+ prompt_embeds: Optional[torch.Tensor] = None,
595
+ prompt_attention_mask: Optional[torch.Tensor] = None,
596
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
597
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
598
+ output_type: Optional[str] = "pil",
599
+ return_dict: bool = True,
600
+ clean_caption: bool = True,
601
+ use_resolution_binning: bool = True,
602
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
603
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
604
+ max_sequence_length: int = 300,
605
+ complex_human_instruction: List[str] = [
606
+ "Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
607
+ "- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
608
+ "- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
609
+ "Here are examples of how to transform or refine prompts:",
610
+ "- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
611
+ "- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
612
+ "Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
613
+ "User Prompt: ",
614
+ ],
615
+ pag_scale: float = 3.0,
616
+ pag_adaptive_scale: float = 0.0,
617
+ ) -> Union[ImagePipelineOutput, Tuple]:
618
+ """
619
+ Function invoked when calling the pipeline for generation.
620
+
621
+ Args:
622
+ prompt (`str` or `List[str]`, *optional*):
623
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
624
+ instead.
625
+ negative_prompt (`str` or `List[str]`, *optional*):
626
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
627
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
628
+ less than `1`).
629
+ num_inference_steps (`int`, *optional*, defaults to 20):
630
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
631
+ expense of slower inference.
632
+ timesteps (`List[int]`, *optional*):
633
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
634
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
635
+ passed will be used. Must be in descending order.
636
+ sigmas (`List[float]`, *optional*):
637
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
638
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
639
+ will be used.
640
+ guidance_scale (`float`, *optional*, defaults to 4.5):
641
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
642
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
643
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
644
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
645
+ usually at the expense of lower image quality.
646
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
647
+ The number of images to generate per prompt.
648
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
649
+ The height in pixels of the generated image.
650
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
651
+ The width in pixels of the generated image.
652
+ eta (`float`, *optional*, defaults to 0.0):
653
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
654
+ [`schedulers.DDIMScheduler`], will be ignored for others.
655
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
656
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
657
+ to make generation deterministic.
658
+ latents (`torch.Tensor`, *optional*):
659
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
660
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
661
+ tensor will ge generated by sampling using the supplied random `generator`.
662
+ prompt_embeds (`torch.Tensor`, *optional*):
663
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
664
+ provided, text embeddings will be generated from `prompt` input argument.
665
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
666
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
667
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
668
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
669
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
670
+ Pre-generated attention mask for negative text embeddings.
671
+ output_type (`str`, *optional*, defaults to `"pil"`):
672
+ The output format of the generate image. Choose between
673
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
674
+ return_dict (`bool`, *optional*, defaults to `True`):
675
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
676
+ clean_caption (`bool`, *optional*, defaults to `True`):
677
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
678
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
679
+ prompt.
680
+ use_resolution_binning (`bool` defaults to `True`):
681
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
682
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
683
+ the requested resolution. Useful for generating non-square images.
684
+ callback_on_step_end (`Callable`, *optional*):
685
+ A function that calls at the end of each denoising steps during the inference. The function is called
686
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
687
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
688
+ `callback_on_step_end_tensor_inputs`.
689
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
690
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
691
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
692
+ `._callback_tensor_inputs` attribute of your pipeline class.
693
+ max_sequence_length (`int` defaults to 300): Maximum sequence length to use with the `prompt`.
694
+ complex_human_instruction (`List[str]`, *optional*):
695
+ Instructions for complex human attention:
696
+ https://github.com/NVlabs/Sana/blob/main/configs/sana_app_config/Sana_1600M_app.yaml#L55.
697
+ pag_scale (`float`, *optional*, defaults to 3.0):
698
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
699
+ guidance will not be used.
700
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
701
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
702
+ used.
703
+
704
+ Examples:
705
+
706
+ Returns:
707
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
708
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
709
+ returned where the first element is a list with the generated images
710
+ """
711
+
712
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
713
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
714
+
715
+ if use_resolution_binning:
716
+ if self.transformer.config.sample_size == 64:
717
+ aspect_ratio_bin = ASPECT_RATIO_2048_BIN
718
+ elif self.transformer.config.sample_size == 32:
719
+ aspect_ratio_bin = ASPECT_RATIO_1024_BIN
720
+ elif self.transformer.config.sample_size == 16:
721
+ aspect_ratio_bin = ASPECT_RATIO_512_BIN
722
+ else:
723
+ raise ValueError("Invalid sample size")
724
+ orig_height, orig_width = height, width
725
+ height, width = self.image_processor.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
726
+
727
+ self.check_inputs(
728
+ prompt,
729
+ height,
730
+ width,
731
+ callback_on_step_end_tensor_inputs,
732
+ negative_prompt,
733
+ prompt_embeds,
734
+ negative_prompt_embeds,
735
+ prompt_attention_mask,
736
+ negative_prompt_attention_mask,
737
+ )
738
+
739
+ self._pag_scale = pag_scale
740
+ self._pag_adaptive_scale = pag_adaptive_scale
741
+ self._guidance_scale = guidance_scale
742
+ self._interrupt = False
743
+
744
+ # 2. Default height and width to transformer
745
+ if prompt is not None and isinstance(prompt, str):
746
+ batch_size = 1
747
+ elif prompt is not None and isinstance(prompt, list):
748
+ batch_size = len(prompt)
749
+ else:
750
+ batch_size = prompt_embeds.shape[0]
751
+
752
+ device = self._execution_device
753
+
754
+ # 3. Encode input prompt
755
+ (
756
+ prompt_embeds,
757
+ prompt_attention_mask,
758
+ negative_prompt_embeds,
759
+ negative_prompt_attention_mask,
760
+ ) = self.encode_prompt(
761
+ prompt,
762
+ self.do_classifier_free_guidance,
763
+ negative_prompt=negative_prompt,
764
+ num_images_per_prompt=num_images_per_prompt,
765
+ device=device,
766
+ prompt_embeds=prompt_embeds,
767
+ negative_prompt_embeds=negative_prompt_embeds,
768
+ prompt_attention_mask=prompt_attention_mask,
769
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
770
+ clean_caption=clean_caption,
771
+ max_sequence_length=max_sequence_length,
772
+ complex_human_instruction=complex_human_instruction,
773
+ )
774
+
775
+ if self.do_perturbed_attention_guidance:
776
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
777
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
778
+ )
779
+ prompt_attention_mask = self._prepare_perturbed_attention_guidance(
780
+ prompt_attention_mask, negative_prompt_attention_mask, self.do_classifier_free_guidance
781
+ )
782
+ elif self.do_classifier_free_guidance:
783
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
784
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
785
+
786
+ # 4. Prepare timesteps
787
+ timesteps, num_inference_steps = retrieve_timesteps(
788
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
789
+ )
790
+
791
+ # 5. Prepare latents.
792
+ latent_channels = self.transformer.config.in_channels
793
+ latents = self.prepare_latents(
794
+ batch_size * num_images_per_prompt,
795
+ latent_channels,
796
+ height,
797
+ width,
798
+ torch.float32,
799
+ device,
800
+ generator,
801
+ latents,
802
+ )
803
+ if self.do_perturbed_attention_guidance:
804
+ original_attn_proc = self.transformer.attn_processors
805
+ self._set_pag_attn_processor(
806
+ pag_applied_layers=self.pag_applied_layers,
807
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
808
+ )
809
+
810
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
811
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
812
+
813
+ # 7. Denoising loop
814
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
815
+ self._num_timesteps = len(timesteps)
816
+
817
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
818
+ for i, t in enumerate(timesteps):
819
+ if self.interrupt:
820
+ continue
821
+
822
+ # expand the latents if we are doing classifier free guidance, perturbed-attention guidance, or both
823
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
824
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
825
+
826
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
827
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
828
+
829
+ # predict noise model_output
830
+ noise_pred = self.transformer(
831
+ latent_model_input,
832
+ encoder_hidden_states=prompt_embeds,
833
+ encoder_attention_mask=prompt_attention_mask,
834
+ timestep=timestep,
835
+ return_dict=False,
836
+ )[0]
837
+ noise_pred = noise_pred.float()
838
+
839
+ # perform guidance
840
+ if self.do_perturbed_attention_guidance:
841
+ noise_pred = self._apply_perturbed_attention_guidance(
842
+ noise_pred, self.do_classifier_free_guidance, guidance_scale, t
843
+ )
844
+ elif self.do_classifier_free_guidance:
845
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
846
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
847
+
848
+ # compute previous image: x_t -> x_t-1
849
+ latents_dtype = latents.dtype
850
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
851
+
852
+ # call the callback, if provided
853
+ if callback_on_step_end is not None:
854
+ callback_kwargs = {}
855
+ for k in callback_on_step_end_tensor_inputs:
856
+ callback_kwargs[k] = locals()[k]
857
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
858
+
859
+ latents = callback_outputs.pop("latents", latents)
860
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
861
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
862
+
863
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
864
+ progress_bar.update()
865
+
866
+ if output_type == "latent":
867
+ image = latents
868
+ else:
869
+ latents = latents.to(self.vae.dtype)
870
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
871
+ if use_resolution_binning:
872
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
873
+
874
+ if not output_type == "latent":
875
+ image = self.image_processor.postprocess(image, output_type=output_type)
876
+
877
+ # Offload all models
878
+ self.maybe_free_model_hooks()
879
+
880
+ if self.do_perturbed_attention_guidance:
881
+ self.transformer.set_attn_processor(original_attn_proc)
882
+
883
+ if not return_dict:
884
+ return (image,)
885
+
886
+ return ImagePipelineOutput(images=image)