diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +97 -4
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +13 -1
- diffusers/image_processor.py +282 -71
- diffusers/loaders/__init__.py +24 -3
- diffusers/loaders/ip_adapter.py +543 -16
- diffusers/loaders/lora_base.py +138 -125
- diffusers/loaders/lora_conversion_utils.py +647 -0
- diffusers/loaders/lora_pipeline.py +2216 -230
- diffusers/loaders/peft.py +380 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +597 -10
- diffusers/loaders/textual_inversion.py +5 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +56 -12
- diffusers/models/__init__.py +49 -12
- diffusers/models/activations.py +22 -9
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +98 -13
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2160 -346
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +73 -12
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +26 -376
- diffusers/models/controlnet_sparsectrl.py +46 -719
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +996 -92
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +264 -14
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +334 -51
- diffusers/models/normalization.py +157 -13
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +10 -2
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +189 -51
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +112 -18
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +9 -9
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +46 -68
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +14 -6
- diffusers/pipelines/__init__.py +69 -6
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
- diffusers/pipelines/auto_pipeline.py +88 -10
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
- diffusers/pipelines/flux/__init__.py +23 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +256 -48
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +13 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +250 -31
- diffusers/pipelines/pipeline_utils.py +158 -186
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +6 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
- diffusers/schedulers/scheduling_deis_multistep.py +102 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +102 -6
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
- diffusers/training_utils.py +63 -19
- diffusers/utils/__init__.py +7 -1
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +240 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +44 -40
- diffusers/utils/import_utils.py +98 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +6 -3
- diffusers/utils/testing_utils.py +115 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,489 @@
|
|
1
|
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
|
16
|
+
from dataclasses import dataclass
|
17
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
18
|
+
|
19
|
+
import torch
|
20
|
+
import torch.nn as nn
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...loaders import FromOriginalModelMixin, PeftAdapterMixin
|
24
|
+
from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
25
|
+
from ..attention import JointTransformerBlock
|
26
|
+
from ..attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
27
|
+
from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
28
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
29
|
+
from ..modeling_utils import ModelMixin
|
30
|
+
from ..transformers.transformer_sd3 import SD3SingleTransformerBlock
|
31
|
+
from .controlnet import BaseOutput, zero_module
|
32
|
+
|
33
|
+
|
34
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35
|
+
|
36
|
+
|
37
|
+
@dataclass
|
38
|
+
class SD3ControlNetOutput(BaseOutput):
|
39
|
+
controlnet_block_samples: Tuple[torch.Tensor]
|
40
|
+
|
41
|
+
|
42
|
+
class SD3ControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
43
|
+
_supports_gradient_checkpointing = True
|
44
|
+
|
45
|
+
@register_to_config
|
46
|
+
def __init__(
|
47
|
+
self,
|
48
|
+
sample_size: int = 128,
|
49
|
+
patch_size: int = 2,
|
50
|
+
in_channels: int = 16,
|
51
|
+
num_layers: int = 18,
|
52
|
+
attention_head_dim: int = 64,
|
53
|
+
num_attention_heads: int = 18,
|
54
|
+
joint_attention_dim: int = 4096,
|
55
|
+
caption_projection_dim: int = 1152,
|
56
|
+
pooled_projection_dim: int = 2048,
|
57
|
+
out_channels: int = 16,
|
58
|
+
pos_embed_max_size: int = 96,
|
59
|
+
extra_conditioning_channels: int = 0,
|
60
|
+
dual_attention_layers: Tuple[int, ...] = (),
|
61
|
+
qk_norm: Optional[str] = None,
|
62
|
+
pos_embed_type: Optional[str] = "sincos",
|
63
|
+
use_pos_embed: bool = True,
|
64
|
+
force_zeros_for_pooled_projection: bool = True,
|
65
|
+
):
|
66
|
+
super().__init__()
|
67
|
+
default_out_channels = in_channels
|
68
|
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
69
|
+
self.inner_dim = num_attention_heads * attention_head_dim
|
70
|
+
|
71
|
+
if use_pos_embed:
|
72
|
+
self.pos_embed = PatchEmbed(
|
73
|
+
height=sample_size,
|
74
|
+
width=sample_size,
|
75
|
+
patch_size=patch_size,
|
76
|
+
in_channels=in_channels,
|
77
|
+
embed_dim=self.inner_dim,
|
78
|
+
pos_embed_max_size=pos_embed_max_size,
|
79
|
+
pos_embed_type=pos_embed_type,
|
80
|
+
)
|
81
|
+
else:
|
82
|
+
self.pos_embed = None
|
83
|
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
84
|
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
85
|
+
)
|
86
|
+
if joint_attention_dim is not None:
|
87
|
+
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
88
|
+
|
89
|
+
# `attention_head_dim` is doubled to account for the mixing.
|
90
|
+
# It needs to crafted when we get the actual checkpoints.
|
91
|
+
self.transformer_blocks = nn.ModuleList(
|
92
|
+
[
|
93
|
+
JointTransformerBlock(
|
94
|
+
dim=self.inner_dim,
|
95
|
+
num_attention_heads=num_attention_heads,
|
96
|
+
attention_head_dim=self.config.attention_head_dim,
|
97
|
+
context_pre_only=False,
|
98
|
+
qk_norm=qk_norm,
|
99
|
+
use_dual_attention=True if i in dual_attention_layers else False,
|
100
|
+
)
|
101
|
+
for i in range(num_layers)
|
102
|
+
]
|
103
|
+
)
|
104
|
+
else:
|
105
|
+
self.context_embedder = None
|
106
|
+
self.transformer_blocks = nn.ModuleList(
|
107
|
+
[
|
108
|
+
SD3SingleTransformerBlock(
|
109
|
+
dim=self.inner_dim,
|
110
|
+
num_attention_heads=num_attention_heads,
|
111
|
+
attention_head_dim=self.config.attention_head_dim,
|
112
|
+
)
|
113
|
+
for _ in range(num_layers)
|
114
|
+
]
|
115
|
+
)
|
116
|
+
|
117
|
+
# controlnet_blocks
|
118
|
+
self.controlnet_blocks = nn.ModuleList([])
|
119
|
+
for _ in range(len(self.transformer_blocks)):
|
120
|
+
controlnet_block = nn.Linear(self.inner_dim, self.inner_dim)
|
121
|
+
controlnet_block = zero_module(controlnet_block)
|
122
|
+
self.controlnet_blocks.append(controlnet_block)
|
123
|
+
pos_embed_input = PatchEmbed(
|
124
|
+
height=sample_size,
|
125
|
+
width=sample_size,
|
126
|
+
patch_size=patch_size,
|
127
|
+
in_channels=in_channels + extra_conditioning_channels,
|
128
|
+
embed_dim=self.inner_dim,
|
129
|
+
pos_embed_type=None,
|
130
|
+
)
|
131
|
+
self.pos_embed_input = zero_module(pos_embed_input)
|
132
|
+
|
133
|
+
self.gradient_checkpointing = False
|
134
|
+
|
135
|
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
136
|
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
137
|
+
"""
|
138
|
+
Sets the attention processor to use [feed forward
|
139
|
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
140
|
+
|
141
|
+
Parameters:
|
142
|
+
chunk_size (`int`, *optional*):
|
143
|
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
144
|
+
over each tensor of dim=`dim`.
|
145
|
+
dim (`int`, *optional*, defaults to `0`):
|
146
|
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
147
|
+
or dim=1 (sequence length).
|
148
|
+
"""
|
149
|
+
if dim not in [0, 1]:
|
150
|
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
151
|
+
|
152
|
+
# By default chunk size is 1
|
153
|
+
chunk_size = chunk_size or 1
|
154
|
+
|
155
|
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
156
|
+
if hasattr(module, "set_chunk_feed_forward"):
|
157
|
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
158
|
+
|
159
|
+
for child in module.children():
|
160
|
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
161
|
+
|
162
|
+
for module in self.children():
|
163
|
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
164
|
+
|
165
|
+
@property
|
166
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
167
|
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
168
|
+
r"""
|
169
|
+
Returns:
|
170
|
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
171
|
+
indexed by its weight name.
|
172
|
+
"""
|
173
|
+
# set recursively
|
174
|
+
processors = {}
|
175
|
+
|
176
|
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
177
|
+
if hasattr(module, "get_processor"):
|
178
|
+
processors[f"{name}.processor"] = module.get_processor()
|
179
|
+
|
180
|
+
for sub_name, child in module.named_children():
|
181
|
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
182
|
+
|
183
|
+
return processors
|
184
|
+
|
185
|
+
for name, module in self.named_children():
|
186
|
+
fn_recursive_add_processors(name, module, processors)
|
187
|
+
|
188
|
+
return processors
|
189
|
+
|
190
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
191
|
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
192
|
+
r"""
|
193
|
+
Sets the attention processor to use to compute attention.
|
194
|
+
|
195
|
+
Parameters:
|
196
|
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
197
|
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
198
|
+
for **all** `Attention` layers.
|
199
|
+
|
200
|
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
201
|
+
processor. This is strongly recommended when setting trainable attention processors.
|
202
|
+
|
203
|
+
"""
|
204
|
+
count = len(self.attn_processors.keys())
|
205
|
+
|
206
|
+
if isinstance(processor, dict) and len(processor) != count:
|
207
|
+
raise ValueError(
|
208
|
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
209
|
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
210
|
+
)
|
211
|
+
|
212
|
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
213
|
+
if hasattr(module, "set_processor"):
|
214
|
+
if not isinstance(processor, dict):
|
215
|
+
module.set_processor(processor)
|
216
|
+
else:
|
217
|
+
module.set_processor(processor.pop(f"{name}.processor"))
|
218
|
+
|
219
|
+
for sub_name, child in module.named_children():
|
220
|
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
221
|
+
|
222
|
+
for name, module in self.named_children():
|
223
|
+
fn_recursive_attn_processor(name, module, processor)
|
224
|
+
|
225
|
+
# Copied from diffusers.models.transformers.transformer_sd3.SD3Transformer2DModel.fuse_qkv_projections
|
226
|
+
def fuse_qkv_projections(self):
|
227
|
+
"""
|
228
|
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
229
|
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
230
|
+
|
231
|
+
<Tip warning={true}>
|
232
|
+
|
233
|
+
This API is 🧪 experimental.
|
234
|
+
|
235
|
+
</Tip>
|
236
|
+
"""
|
237
|
+
self.original_attn_processors = None
|
238
|
+
|
239
|
+
for _, attn_processor in self.attn_processors.items():
|
240
|
+
if "Added" in str(attn_processor.__class__.__name__):
|
241
|
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
242
|
+
|
243
|
+
self.original_attn_processors = self.attn_processors
|
244
|
+
|
245
|
+
for module in self.modules():
|
246
|
+
if isinstance(module, Attention):
|
247
|
+
module.fuse_projections(fuse=True)
|
248
|
+
|
249
|
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
250
|
+
|
251
|
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
252
|
+
def unfuse_qkv_projections(self):
|
253
|
+
"""Disables the fused QKV projection if enabled.
|
254
|
+
|
255
|
+
<Tip warning={true}>
|
256
|
+
|
257
|
+
This API is 🧪 experimental.
|
258
|
+
|
259
|
+
</Tip>
|
260
|
+
|
261
|
+
"""
|
262
|
+
if self.original_attn_processors is not None:
|
263
|
+
self.set_attn_processor(self.original_attn_processors)
|
264
|
+
|
265
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
266
|
+
if hasattr(module, "gradient_checkpointing"):
|
267
|
+
module.gradient_checkpointing = value
|
268
|
+
|
269
|
+
# Notes: This is for SD3.5 8b controlnet, which shares the pos_embed with the transformer
|
270
|
+
# we should have handled this in conversion script
|
271
|
+
def _get_pos_embed_from_transformer(self, transformer):
|
272
|
+
pos_embed = PatchEmbed(
|
273
|
+
height=transformer.config.sample_size,
|
274
|
+
width=transformer.config.sample_size,
|
275
|
+
patch_size=transformer.config.patch_size,
|
276
|
+
in_channels=transformer.config.in_channels,
|
277
|
+
embed_dim=transformer.inner_dim,
|
278
|
+
pos_embed_max_size=transformer.config.pos_embed_max_size,
|
279
|
+
)
|
280
|
+
pos_embed.load_state_dict(transformer.pos_embed.state_dict(), strict=True)
|
281
|
+
return pos_embed
|
282
|
+
|
283
|
+
@classmethod
|
284
|
+
def from_transformer(
|
285
|
+
cls, transformer, num_layers=12, num_extra_conditioning_channels=1, load_weights_from_transformer=True
|
286
|
+
):
|
287
|
+
config = transformer.config
|
288
|
+
config["num_layers"] = num_layers or config.num_layers
|
289
|
+
config["extra_conditioning_channels"] = num_extra_conditioning_channels
|
290
|
+
controlnet = cls.from_config(config)
|
291
|
+
|
292
|
+
if load_weights_from_transformer:
|
293
|
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
294
|
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
295
|
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
296
|
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
297
|
+
|
298
|
+
controlnet.pos_embed_input = zero_module(controlnet.pos_embed_input)
|
299
|
+
|
300
|
+
return controlnet
|
301
|
+
|
302
|
+
def forward(
|
303
|
+
self,
|
304
|
+
hidden_states: torch.FloatTensor,
|
305
|
+
controlnet_cond: torch.Tensor,
|
306
|
+
conditioning_scale: float = 1.0,
|
307
|
+
encoder_hidden_states: torch.FloatTensor = None,
|
308
|
+
pooled_projections: torch.FloatTensor = None,
|
309
|
+
timestep: torch.LongTensor = None,
|
310
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
311
|
+
return_dict: bool = True,
|
312
|
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
313
|
+
"""
|
314
|
+
The [`SD3Transformer2DModel`] forward method.
|
315
|
+
|
316
|
+
Args:
|
317
|
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
318
|
+
Input `hidden_states`.
|
319
|
+
controlnet_cond (`torch.Tensor`):
|
320
|
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
321
|
+
conditioning_scale (`float`, defaults to `1.0`):
|
322
|
+
The scale factor for ControlNet outputs.
|
323
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
324
|
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
325
|
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
326
|
+
from the embeddings of input conditions.
|
327
|
+
timestep ( `torch.LongTensor`):
|
328
|
+
Used to indicate denoising step.
|
329
|
+
joint_attention_kwargs (`dict`, *optional*):
|
330
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
331
|
+
`self.processor` in
|
332
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
333
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
334
|
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
335
|
+
tuple.
|
336
|
+
|
337
|
+
Returns:
|
338
|
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
339
|
+
`tuple` where the first element is the sample tensor.
|
340
|
+
"""
|
341
|
+
if joint_attention_kwargs is not None:
|
342
|
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
343
|
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
344
|
+
else:
|
345
|
+
lora_scale = 1.0
|
346
|
+
|
347
|
+
if USE_PEFT_BACKEND:
|
348
|
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
349
|
+
scale_lora_layers(self, lora_scale)
|
350
|
+
else:
|
351
|
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
352
|
+
logger.warning(
|
353
|
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
354
|
+
)
|
355
|
+
|
356
|
+
if self.pos_embed is not None and hidden_states.ndim != 4:
|
357
|
+
raise ValueError("hidden_states must be 4D when pos_embed is used")
|
358
|
+
|
359
|
+
# SD3.5 8b controlnet does not have a `pos_embed`,
|
360
|
+
# it use the `pos_embed` from the transformer to process input before passing to controlnet
|
361
|
+
elif self.pos_embed is None and hidden_states.ndim != 3:
|
362
|
+
raise ValueError("hidden_states must be 3D when pos_embed is not used")
|
363
|
+
|
364
|
+
if self.context_embedder is not None and encoder_hidden_states is None:
|
365
|
+
raise ValueError("encoder_hidden_states must be provided when context_embedder is used")
|
366
|
+
# SD3.5 8b controlnet does not have a `context_embedder`, it does not use `encoder_hidden_states`
|
367
|
+
elif self.context_embedder is None and encoder_hidden_states is not None:
|
368
|
+
raise ValueError("encoder_hidden_states should not be provided when context_embedder is not used")
|
369
|
+
|
370
|
+
if self.pos_embed is not None:
|
371
|
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
372
|
+
|
373
|
+
temb = self.time_text_embed(timestep, pooled_projections)
|
374
|
+
|
375
|
+
if self.context_embedder is not None:
|
376
|
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
377
|
+
|
378
|
+
# add
|
379
|
+
hidden_states = hidden_states + self.pos_embed_input(controlnet_cond)
|
380
|
+
|
381
|
+
block_res_samples = ()
|
382
|
+
|
383
|
+
for block in self.transformer_blocks:
|
384
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
385
|
+
|
386
|
+
def create_custom_forward(module, return_dict=None):
|
387
|
+
def custom_forward(*inputs):
|
388
|
+
if return_dict is not None:
|
389
|
+
return module(*inputs, return_dict=return_dict)
|
390
|
+
else:
|
391
|
+
return module(*inputs)
|
392
|
+
|
393
|
+
return custom_forward
|
394
|
+
|
395
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
396
|
+
if self.context_embedder is not None:
|
397
|
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
398
|
+
create_custom_forward(block),
|
399
|
+
hidden_states,
|
400
|
+
encoder_hidden_states,
|
401
|
+
temb,
|
402
|
+
**ckpt_kwargs,
|
403
|
+
)
|
404
|
+
else:
|
405
|
+
# SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
|
406
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
407
|
+
create_custom_forward(block), hidden_states, temb, **ckpt_kwargs
|
408
|
+
)
|
409
|
+
|
410
|
+
else:
|
411
|
+
if self.context_embedder is not None:
|
412
|
+
encoder_hidden_states, hidden_states = block(
|
413
|
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb
|
414
|
+
)
|
415
|
+
else:
|
416
|
+
# SD3.5 8b controlnet use single transformer block, which does not use `encoder_hidden_states`
|
417
|
+
hidden_states = block(hidden_states, temb)
|
418
|
+
|
419
|
+
block_res_samples = block_res_samples + (hidden_states,)
|
420
|
+
|
421
|
+
controlnet_block_res_samples = ()
|
422
|
+
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
423
|
+
block_res_sample = controlnet_block(block_res_sample)
|
424
|
+
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
425
|
+
|
426
|
+
# 6. scaling
|
427
|
+
controlnet_block_res_samples = [sample * conditioning_scale for sample in controlnet_block_res_samples]
|
428
|
+
|
429
|
+
if USE_PEFT_BACKEND:
|
430
|
+
# remove `lora_scale` from each PEFT layer
|
431
|
+
unscale_lora_layers(self, lora_scale)
|
432
|
+
|
433
|
+
if not return_dict:
|
434
|
+
return (controlnet_block_res_samples,)
|
435
|
+
|
436
|
+
return SD3ControlNetOutput(controlnet_block_samples=controlnet_block_res_samples)
|
437
|
+
|
438
|
+
|
439
|
+
class SD3MultiControlNetModel(ModelMixin):
|
440
|
+
r"""
|
441
|
+
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
|
442
|
+
|
443
|
+
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
|
444
|
+
compatible with `SD3ControlNetModel`.
|
445
|
+
|
446
|
+
Args:
|
447
|
+
controlnets (`List[SD3ControlNetModel]`):
|
448
|
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
449
|
+
`SD3ControlNetModel` as a list.
|
450
|
+
"""
|
451
|
+
|
452
|
+
def __init__(self, controlnets):
|
453
|
+
super().__init__()
|
454
|
+
self.nets = nn.ModuleList(controlnets)
|
455
|
+
|
456
|
+
def forward(
|
457
|
+
self,
|
458
|
+
hidden_states: torch.FloatTensor,
|
459
|
+
controlnet_cond: List[torch.tensor],
|
460
|
+
conditioning_scale: List[float],
|
461
|
+
pooled_projections: torch.FloatTensor,
|
462
|
+
encoder_hidden_states: torch.FloatTensor = None,
|
463
|
+
timestep: torch.LongTensor = None,
|
464
|
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
465
|
+
return_dict: bool = True,
|
466
|
+
) -> Union[SD3ControlNetOutput, Tuple]:
|
467
|
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
468
|
+
block_samples = controlnet(
|
469
|
+
hidden_states=hidden_states,
|
470
|
+
timestep=timestep,
|
471
|
+
encoder_hidden_states=encoder_hidden_states,
|
472
|
+
pooled_projections=pooled_projections,
|
473
|
+
controlnet_cond=image,
|
474
|
+
conditioning_scale=scale,
|
475
|
+
joint_attention_kwargs=joint_attention_kwargs,
|
476
|
+
return_dict=return_dict,
|
477
|
+
)
|
478
|
+
|
479
|
+
# merge samples
|
480
|
+
if i == 0:
|
481
|
+
control_block_samples = block_samples
|
482
|
+
else:
|
483
|
+
control_block_samples = [
|
484
|
+
control_block_sample + block_sample
|
485
|
+
for control_block_sample, block_sample in zip(control_block_samples[0], block_samples[0])
|
486
|
+
]
|
487
|
+
control_block_samples = (tuple(control_block_samples),)
|
488
|
+
|
489
|
+
return control_block_samples
|