diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +97 -4
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +13 -1
- diffusers/image_processor.py +282 -71
- diffusers/loaders/__init__.py +24 -3
- diffusers/loaders/ip_adapter.py +543 -16
- diffusers/loaders/lora_base.py +138 -125
- diffusers/loaders/lora_conversion_utils.py +647 -0
- diffusers/loaders/lora_pipeline.py +2216 -230
- diffusers/loaders/peft.py +380 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +597 -10
- diffusers/loaders/textual_inversion.py +5 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +56 -12
- diffusers/models/__init__.py +49 -12
- diffusers/models/activations.py +22 -9
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +98 -13
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2160 -346
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +73 -12
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +26 -376
- diffusers/models/controlnet_sparsectrl.py +46 -719
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +996 -92
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +264 -14
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +334 -51
- diffusers/models/normalization.py +157 -13
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +10 -2
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +189 -51
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +112 -18
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +9 -9
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +46 -68
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +14 -6
- diffusers/pipelines/__init__.py +69 -6
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
- diffusers/pipelines/auto_pipeline.py +88 -10
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
- diffusers/pipelines/flux/__init__.py +23 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +256 -48
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +13 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +250 -31
- diffusers/pipelines/pipeline_utils.py +158 -186
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +6 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
- diffusers/schedulers/scheduling_deis_multistep.py +102 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +102 -6
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
- diffusers/training_utils.py +63 -19
- diffusers/utils/__init__.py +7 -1
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +240 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +44 -40
- diffusers/utils/import_utils.py +98 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +6 -3
- diffusers/utils/testing_utils.py +115 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,422 @@
|
|
1
|
+
# Copyright 2024 The RhymesAI and The HuggingFace Team.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
from typing import Any, Dict, Optional, Tuple
|
17
|
+
|
18
|
+
import torch
|
19
|
+
import torch.nn as nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
|
22
|
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23
|
+
from ...utils import is_torch_version, logging
|
24
|
+
from ...utils.torch_utils import maybe_allow_in_graph
|
25
|
+
from ..attention import FeedForward
|
26
|
+
from ..attention_processor import AllegroAttnProcessor2_0, Attention
|
27
|
+
from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
|
28
|
+
from ..modeling_outputs import Transformer2DModelOutput
|
29
|
+
from ..modeling_utils import ModelMixin
|
30
|
+
from ..normalization import AdaLayerNormSingle
|
31
|
+
|
32
|
+
|
33
|
+
logger = logging.get_logger(__name__)
|
34
|
+
|
35
|
+
|
36
|
+
@maybe_allow_in_graph
|
37
|
+
class AllegroTransformerBlock(nn.Module):
|
38
|
+
r"""
|
39
|
+
Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
dim (`int`):
|
43
|
+
The number of channels in the input and output.
|
44
|
+
num_attention_heads (`int`):
|
45
|
+
The number of heads to use for multi-head attention.
|
46
|
+
attention_head_dim (`int`):
|
47
|
+
The number of channels in each head.
|
48
|
+
dropout (`float`, defaults to `0.0`):
|
49
|
+
The dropout probability to use.
|
50
|
+
cross_attention_dim (`int`, defaults to `2304`):
|
51
|
+
The dimension of the cross attention features.
|
52
|
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
53
|
+
Activation function to be used in feed-forward.
|
54
|
+
attention_bias (`bool`, defaults to `False`):
|
55
|
+
Whether or not to use bias in attention projection layers.
|
56
|
+
only_cross_attention (`bool`, defaults to `False`):
|
57
|
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
58
|
+
Whether to use learnable elementwise affine parameters for normalization.
|
59
|
+
norm_eps (`float`, defaults to `1e-5`):
|
60
|
+
Epsilon value for normalization layers.
|
61
|
+
final_dropout (`bool` defaults to `False`):
|
62
|
+
Whether to apply a final dropout after the last feed-forward layer.
|
63
|
+
"""
|
64
|
+
|
65
|
+
def __init__(
|
66
|
+
self,
|
67
|
+
dim: int,
|
68
|
+
num_attention_heads: int,
|
69
|
+
attention_head_dim: int,
|
70
|
+
dropout=0.0,
|
71
|
+
cross_attention_dim: Optional[int] = None,
|
72
|
+
activation_fn: str = "geglu",
|
73
|
+
attention_bias: bool = False,
|
74
|
+
norm_elementwise_affine: bool = True,
|
75
|
+
norm_eps: float = 1e-5,
|
76
|
+
):
|
77
|
+
super().__init__()
|
78
|
+
|
79
|
+
# 1. Self Attention
|
80
|
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
81
|
+
|
82
|
+
self.attn1 = Attention(
|
83
|
+
query_dim=dim,
|
84
|
+
heads=num_attention_heads,
|
85
|
+
dim_head=attention_head_dim,
|
86
|
+
dropout=dropout,
|
87
|
+
bias=attention_bias,
|
88
|
+
cross_attention_dim=None,
|
89
|
+
processor=AllegroAttnProcessor2_0(),
|
90
|
+
)
|
91
|
+
|
92
|
+
# 2. Cross Attention
|
93
|
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
94
|
+
self.attn2 = Attention(
|
95
|
+
query_dim=dim,
|
96
|
+
cross_attention_dim=cross_attention_dim,
|
97
|
+
heads=num_attention_heads,
|
98
|
+
dim_head=attention_head_dim,
|
99
|
+
dropout=dropout,
|
100
|
+
bias=attention_bias,
|
101
|
+
processor=AllegroAttnProcessor2_0(),
|
102
|
+
)
|
103
|
+
|
104
|
+
# 3. Feed Forward
|
105
|
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
106
|
+
|
107
|
+
self.ff = FeedForward(
|
108
|
+
dim,
|
109
|
+
dropout=dropout,
|
110
|
+
activation_fn=activation_fn,
|
111
|
+
)
|
112
|
+
|
113
|
+
# 4. Scale-shift
|
114
|
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
115
|
+
|
116
|
+
def forward(
|
117
|
+
self,
|
118
|
+
hidden_states: torch.Tensor,
|
119
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
120
|
+
temb: Optional[torch.LongTensor] = None,
|
121
|
+
attention_mask: Optional[torch.Tensor] = None,
|
122
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
123
|
+
image_rotary_emb=None,
|
124
|
+
) -> torch.Tensor:
|
125
|
+
# 0. Self-Attention
|
126
|
+
batch_size = hidden_states.shape[0]
|
127
|
+
|
128
|
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
129
|
+
self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1)
|
130
|
+
).chunk(6, dim=1)
|
131
|
+
norm_hidden_states = self.norm1(hidden_states)
|
132
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
133
|
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
134
|
+
|
135
|
+
attn_output = self.attn1(
|
136
|
+
norm_hidden_states,
|
137
|
+
encoder_hidden_states=None,
|
138
|
+
attention_mask=attention_mask,
|
139
|
+
image_rotary_emb=image_rotary_emb,
|
140
|
+
)
|
141
|
+
attn_output = gate_msa * attn_output
|
142
|
+
|
143
|
+
hidden_states = attn_output + hidden_states
|
144
|
+
if hidden_states.ndim == 4:
|
145
|
+
hidden_states = hidden_states.squeeze(1)
|
146
|
+
|
147
|
+
# 1. Cross-Attention
|
148
|
+
if self.attn2 is not None:
|
149
|
+
norm_hidden_states = hidden_states
|
150
|
+
|
151
|
+
attn_output = self.attn2(
|
152
|
+
norm_hidden_states,
|
153
|
+
encoder_hidden_states=encoder_hidden_states,
|
154
|
+
attention_mask=encoder_attention_mask,
|
155
|
+
image_rotary_emb=None,
|
156
|
+
)
|
157
|
+
hidden_states = attn_output + hidden_states
|
158
|
+
|
159
|
+
# 2. Feed-forward
|
160
|
+
norm_hidden_states = self.norm2(hidden_states)
|
161
|
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
162
|
+
|
163
|
+
ff_output = self.ff(norm_hidden_states)
|
164
|
+
ff_output = gate_mlp * ff_output
|
165
|
+
|
166
|
+
hidden_states = ff_output + hidden_states
|
167
|
+
|
168
|
+
# TODO(aryan): maybe following line is not required
|
169
|
+
if hidden_states.ndim == 4:
|
170
|
+
hidden_states = hidden_states.squeeze(1)
|
171
|
+
|
172
|
+
return hidden_states
|
173
|
+
|
174
|
+
|
175
|
+
class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
|
176
|
+
_supports_gradient_checkpointing = True
|
177
|
+
|
178
|
+
"""
|
179
|
+
A 3D Transformer model for video-like data.
|
180
|
+
|
181
|
+
Args:
|
182
|
+
patch_size (`int`, defaults to `2`):
|
183
|
+
The size of spatial patches to use in the patch embedding layer.
|
184
|
+
patch_size_t (`int`, defaults to `1`):
|
185
|
+
The size of temporal patches to use in the patch embedding layer.
|
186
|
+
num_attention_heads (`int`, defaults to `24`):
|
187
|
+
The number of heads to use for multi-head attention.
|
188
|
+
attention_head_dim (`int`, defaults to `96`):
|
189
|
+
The number of channels in each head.
|
190
|
+
in_channels (`int`, defaults to `4`):
|
191
|
+
The number of channels in the input.
|
192
|
+
out_channels (`int`, *optional*, defaults to `4`):
|
193
|
+
The number of channels in the output.
|
194
|
+
num_layers (`int`, defaults to `32`):
|
195
|
+
The number of layers of Transformer blocks to use.
|
196
|
+
dropout (`float`, defaults to `0.0`):
|
197
|
+
The dropout probability to use.
|
198
|
+
cross_attention_dim (`int`, defaults to `2304`):
|
199
|
+
The dimension of the cross attention features.
|
200
|
+
attention_bias (`bool`, defaults to `True`):
|
201
|
+
Whether or not to use bias in the attention projection layers.
|
202
|
+
sample_height (`int`, defaults to `90`):
|
203
|
+
The height of the input latents.
|
204
|
+
sample_width (`int`, defaults to `160`):
|
205
|
+
The width of the input latents.
|
206
|
+
sample_frames (`int`, defaults to `22`):
|
207
|
+
The number of frames in the input latents.
|
208
|
+
activation_fn (`str`, defaults to `"gelu-approximate"`):
|
209
|
+
Activation function to use in feed-forward.
|
210
|
+
norm_elementwise_affine (`bool`, defaults to `False`):
|
211
|
+
Whether or not to use elementwise affine in normalization layers.
|
212
|
+
norm_eps (`float`, defaults to `1e-6`):
|
213
|
+
The epsilon value to use in normalization layers.
|
214
|
+
caption_channels (`int`, defaults to `4096`):
|
215
|
+
Number of channels to use for projecting the caption embeddings.
|
216
|
+
interpolation_scale_h (`float`, defaults to `2.0`):
|
217
|
+
Scaling factor to apply in 3D positional embeddings across height dimension.
|
218
|
+
interpolation_scale_w (`float`, defaults to `2.0`):
|
219
|
+
Scaling factor to apply in 3D positional embeddings across width dimension.
|
220
|
+
interpolation_scale_t (`float`, defaults to `2.2`):
|
221
|
+
Scaling factor to apply in 3D positional embeddings across time dimension.
|
222
|
+
"""
|
223
|
+
|
224
|
+
@register_to_config
|
225
|
+
def __init__(
|
226
|
+
self,
|
227
|
+
patch_size: int = 2,
|
228
|
+
patch_size_t: int = 1,
|
229
|
+
num_attention_heads: int = 24,
|
230
|
+
attention_head_dim: int = 96,
|
231
|
+
in_channels: int = 4,
|
232
|
+
out_channels: int = 4,
|
233
|
+
num_layers: int = 32,
|
234
|
+
dropout: float = 0.0,
|
235
|
+
cross_attention_dim: int = 2304,
|
236
|
+
attention_bias: bool = True,
|
237
|
+
sample_height: int = 90,
|
238
|
+
sample_width: int = 160,
|
239
|
+
sample_frames: int = 22,
|
240
|
+
activation_fn: str = "gelu-approximate",
|
241
|
+
norm_elementwise_affine: bool = False,
|
242
|
+
norm_eps: float = 1e-6,
|
243
|
+
caption_channels: int = 4096,
|
244
|
+
interpolation_scale_h: float = 2.0,
|
245
|
+
interpolation_scale_w: float = 2.0,
|
246
|
+
interpolation_scale_t: float = 2.2,
|
247
|
+
):
|
248
|
+
super().__init__()
|
249
|
+
|
250
|
+
self.inner_dim = num_attention_heads * attention_head_dim
|
251
|
+
|
252
|
+
interpolation_scale_t = (
|
253
|
+
interpolation_scale_t
|
254
|
+
if interpolation_scale_t is not None
|
255
|
+
else ((sample_frames - 1) // 16 + 1)
|
256
|
+
if sample_frames % 2 == 1
|
257
|
+
else sample_frames // 16
|
258
|
+
)
|
259
|
+
interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
|
260
|
+
interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40
|
261
|
+
|
262
|
+
# 1. Patch embedding
|
263
|
+
self.pos_embed = PatchEmbed(
|
264
|
+
height=sample_height,
|
265
|
+
width=sample_width,
|
266
|
+
patch_size=patch_size,
|
267
|
+
in_channels=in_channels,
|
268
|
+
embed_dim=self.inner_dim,
|
269
|
+
pos_embed_type=None,
|
270
|
+
)
|
271
|
+
|
272
|
+
# 2. Transformer blocks
|
273
|
+
self.transformer_blocks = nn.ModuleList(
|
274
|
+
[
|
275
|
+
AllegroTransformerBlock(
|
276
|
+
self.inner_dim,
|
277
|
+
num_attention_heads,
|
278
|
+
attention_head_dim,
|
279
|
+
dropout=dropout,
|
280
|
+
cross_attention_dim=cross_attention_dim,
|
281
|
+
activation_fn=activation_fn,
|
282
|
+
attention_bias=attention_bias,
|
283
|
+
norm_elementwise_affine=norm_elementwise_affine,
|
284
|
+
norm_eps=norm_eps,
|
285
|
+
)
|
286
|
+
for _ in range(num_layers)
|
287
|
+
]
|
288
|
+
)
|
289
|
+
|
290
|
+
# 3. Output projection & norm
|
291
|
+
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
292
|
+
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
|
293
|
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels)
|
294
|
+
|
295
|
+
# 4. Timestep embeddings
|
296
|
+
self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
|
297
|
+
|
298
|
+
# 5. Caption projection
|
299
|
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)
|
300
|
+
|
301
|
+
self.gradient_checkpointing = False
|
302
|
+
|
303
|
+
def _set_gradient_checkpointing(self, module, value=False):
|
304
|
+
self.gradient_checkpointing = value
|
305
|
+
|
306
|
+
def forward(
|
307
|
+
self,
|
308
|
+
hidden_states: torch.Tensor,
|
309
|
+
encoder_hidden_states: torch.Tensor,
|
310
|
+
timestep: torch.LongTensor,
|
311
|
+
attention_mask: Optional[torch.Tensor] = None,
|
312
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
313
|
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
314
|
+
return_dict: bool = True,
|
315
|
+
):
|
316
|
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
317
|
+
p_t = self.config.patch_size_t
|
318
|
+
p = self.config.patch_size
|
319
|
+
|
320
|
+
post_patch_num_frames = num_frames // p_t
|
321
|
+
post_patch_height = height // p
|
322
|
+
post_patch_width = width // p
|
323
|
+
|
324
|
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
325
|
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
326
|
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
327
|
+
# expects mask of shape:
|
328
|
+
# [batch, key_tokens]
|
329
|
+
# adds singleton query_tokens dimension:
|
330
|
+
# [batch, 1, key_tokens]
|
331
|
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
332
|
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
333
|
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
|
334
|
+
if attention_mask is not None and attention_mask.ndim == 4:
|
335
|
+
# assume that mask is expressed as:
|
336
|
+
# (1 = keep, 0 = discard)
|
337
|
+
# convert mask into a bias that can be added to attention scores:
|
338
|
+
# (keep = +0, discard = -10000.0)
|
339
|
+
# b, frame+use_image_num, h, w -> a video with images
|
340
|
+
# b, 1, h, w -> only images
|
341
|
+
attention_mask = attention_mask.to(hidden_states.dtype)
|
342
|
+
attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width]
|
343
|
+
|
344
|
+
if attention_mask.numel() > 0:
|
345
|
+
attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width]
|
346
|
+
attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
|
347
|
+
attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)
|
348
|
+
|
349
|
+
attention_mask = (
|
350
|
+
(1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
|
351
|
+
)
|
352
|
+
|
353
|
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
354
|
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
355
|
+
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
|
356
|
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
357
|
+
|
358
|
+
# 1. Timestep embeddings
|
359
|
+
timestep, embedded_timestep = self.adaln_single(
|
360
|
+
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
361
|
+
)
|
362
|
+
|
363
|
+
# 2. Patch embeddings
|
364
|
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
365
|
+
hidden_states = self.pos_embed(hidden_states)
|
366
|
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
|
367
|
+
|
368
|
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
369
|
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])
|
370
|
+
|
371
|
+
# 3. Transformer blocks
|
372
|
+
for i, block in enumerate(self.transformer_blocks):
|
373
|
+
# TODO(aryan): Implement gradient checkpointing
|
374
|
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
375
|
+
|
376
|
+
def create_custom_forward(module):
|
377
|
+
def custom_forward(*inputs):
|
378
|
+
return module(*inputs)
|
379
|
+
|
380
|
+
return custom_forward
|
381
|
+
|
382
|
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
383
|
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
384
|
+
create_custom_forward(block),
|
385
|
+
hidden_states,
|
386
|
+
encoder_hidden_states,
|
387
|
+
timestep,
|
388
|
+
attention_mask,
|
389
|
+
encoder_attention_mask,
|
390
|
+
image_rotary_emb,
|
391
|
+
**ckpt_kwargs,
|
392
|
+
)
|
393
|
+
else:
|
394
|
+
hidden_states = block(
|
395
|
+
hidden_states=hidden_states,
|
396
|
+
encoder_hidden_states=encoder_hidden_states,
|
397
|
+
temb=timestep,
|
398
|
+
attention_mask=attention_mask,
|
399
|
+
encoder_attention_mask=encoder_attention_mask,
|
400
|
+
image_rotary_emb=image_rotary_emb,
|
401
|
+
)
|
402
|
+
|
403
|
+
# 4. Output normalization & projection
|
404
|
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
405
|
+
hidden_states = self.norm_out(hidden_states)
|
406
|
+
|
407
|
+
# Modulation
|
408
|
+
hidden_states = hidden_states * (1 + scale) + shift
|
409
|
+
hidden_states = self.proj_out(hidden_states)
|
410
|
+
hidden_states = hidden_states.squeeze(1)
|
411
|
+
|
412
|
+
# 5. Unpatchify
|
413
|
+
hidden_states = hidden_states.reshape(
|
414
|
+
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
|
415
|
+
)
|
416
|
+
hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
|
417
|
+
output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
|
418
|
+
|
419
|
+
if not return_dict:
|
420
|
+
return (output,)
|
421
|
+
|
422
|
+
return Transformer2DModelOutput(sample=output)
|