diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,422 @@
1
+ # Copyright 2024 The RhymesAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Any, Dict, Optional, Tuple
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+
22
+ from ...configuration_utils import ConfigMixin, register_to_config
23
+ from ...utils import is_torch_version, logging
24
+ from ...utils.torch_utils import maybe_allow_in_graph
25
+ from ..attention import FeedForward
26
+ from ..attention_processor import AllegroAttnProcessor2_0, Attention
27
+ from ..embeddings import PatchEmbed, PixArtAlphaTextProjection
28
+ from ..modeling_outputs import Transformer2DModelOutput
29
+ from ..modeling_utils import ModelMixin
30
+ from ..normalization import AdaLayerNormSingle
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ @maybe_allow_in_graph
37
+ class AllegroTransformerBlock(nn.Module):
38
+ r"""
39
+ Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model.
40
+
41
+ Args:
42
+ dim (`int`):
43
+ The number of channels in the input and output.
44
+ num_attention_heads (`int`):
45
+ The number of heads to use for multi-head attention.
46
+ attention_head_dim (`int`):
47
+ The number of channels in each head.
48
+ dropout (`float`, defaults to `0.0`):
49
+ The dropout probability to use.
50
+ cross_attention_dim (`int`, defaults to `2304`):
51
+ The dimension of the cross attention features.
52
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
53
+ Activation function to be used in feed-forward.
54
+ attention_bias (`bool`, defaults to `False`):
55
+ Whether or not to use bias in attention projection layers.
56
+ only_cross_attention (`bool`, defaults to `False`):
57
+ norm_elementwise_affine (`bool`, defaults to `True`):
58
+ Whether to use learnable elementwise affine parameters for normalization.
59
+ norm_eps (`float`, defaults to `1e-5`):
60
+ Epsilon value for normalization layers.
61
+ final_dropout (`bool` defaults to `False`):
62
+ Whether to apply a final dropout after the last feed-forward layer.
63
+ """
64
+
65
+ def __init__(
66
+ self,
67
+ dim: int,
68
+ num_attention_heads: int,
69
+ attention_head_dim: int,
70
+ dropout=0.0,
71
+ cross_attention_dim: Optional[int] = None,
72
+ activation_fn: str = "geglu",
73
+ attention_bias: bool = False,
74
+ norm_elementwise_affine: bool = True,
75
+ norm_eps: float = 1e-5,
76
+ ):
77
+ super().__init__()
78
+
79
+ # 1. Self Attention
80
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
81
+
82
+ self.attn1 = Attention(
83
+ query_dim=dim,
84
+ heads=num_attention_heads,
85
+ dim_head=attention_head_dim,
86
+ dropout=dropout,
87
+ bias=attention_bias,
88
+ cross_attention_dim=None,
89
+ processor=AllegroAttnProcessor2_0(),
90
+ )
91
+
92
+ # 2. Cross Attention
93
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
94
+ self.attn2 = Attention(
95
+ query_dim=dim,
96
+ cross_attention_dim=cross_attention_dim,
97
+ heads=num_attention_heads,
98
+ dim_head=attention_head_dim,
99
+ dropout=dropout,
100
+ bias=attention_bias,
101
+ processor=AllegroAttnProcessor2_0(),
102
+ )
103
+
104
+ # 3. Feed Forward
105
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
106
+
107
+ self.ff = FeedForward(
108
+ dim,
109
+ dropout=dropout,
110
+ activation_fn=activation_fn,
111
+ )
112
+
113
+ # 4. Scale-shift
114
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
115
+
116
+ def forward(
117
+ self,
118
+ hidden_states: torch.Tensor,
119
+ encoder_hidden_states: Optional[torch.Tensor] = None,
120
+ temb: Optional[torch.LongTensor] = None,
121
+ attention_mask: Optional[torch.Tensor] = None,
122
+ encoder_attention_mask: Optional[torch.Tensor] = None,
123
+ image_rotary_emb=None,
124
+ ) -> torch.Tensor:
125
+ # 0. Self-Attention
126
+ batch_size = hidden_states.shape[0]
127
+
128
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
129
+ self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1)
130
+ ).chunk(6, dim=1)
131
+ norm_hidden_states = self.norm1(hidden_states)
132
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
133
+ norm_hidden_states = norm_hidden_states.squeeze(1)
134
+
135
+ attn_output = self.attn1(
136
+ norm_hidden_states,
137
+ encoder_hidden_states=None,
138
+ attention_mask=attention_mask,
139
+ image_rotary_emb=image_rotary_emb,
140
+ )
141
+ attn_output = gate_msa * attn_output
142
+
143
+ hidden_states = attn_output + hidden_states
144
+ if hidden_states.ndim == 4:
145
+ hidden_states = hidden_states.squeeze(1)
146
+
147
+ # 1. Cross-Attention
148
+ if self.attn2 is not None:
149
+ norm_hidden_states = hidden_states
150
+
151
+ attn_output = self.attn2(
152
+ norm_hidden_states,
153
+ encoder_hidden_states=encoder_hidden_states,
154
+ attention_mask=encoder_attention_mask,
155
+ image_rotary_emb=None,
156
+ )
157
+ hidden_states = attn_output + hidden_states
158
+
159
+ # 2. Feed-forward
160
+ norm_hidden_states = self.norm2(hidden_states)
161
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
162
+
163
+ ff_output = self.ff(norm_hidden_states)
164
+ ff_output = gate_mlp * ff_output
165
+
166
+ hidden_states = ff_output + hidden_states
167
+
168
+ # TODO(aryan): maybe following line is not required
169
+ if hidden_states.ndim == 4:
170
+ hidden_states = hidden_states.squeeze(1)
171
+
172
+ return hidden_states
173
+
174
+
175
+ class AllegroTransformer3DModel(ModelMixin, ConfigMixin):
176
+ _supports_gradient_checkpointing = True
177
+
178
+ """
179
+ A 3D Transformer model for video-like data.
180
+
181
+ Args:
182
+ patch_size (`int`, defaults to `2`):
183
+ The size of spatial patches to use in the patch embedding layer.
184
+ patch_size_t (`int`, defaults to `1`):
185
+ The size of temporal patches to use in the patch embedding layer.
186
+ num_attention_heads (`int`, defaults to `24`):
187
+ The number of heads to use for multi-head attention.
188
+ attention_head_dim (`int`, defaults to `96`):
189
+ The number of channels in each head.
190
+ in_channels (`int`, defaults to `4`):
191
+ The number of channels in the input.
192
+ out_channels (`int`, *optional*, defaults to `4`):
193
+ The number of channels in the output.
194
+ num_layers (`int`, defaults to `32`):
195
+ The number of layers of Transformer blocks to use.
196
+ dropout (`float`, defaults to `0.0`):
197
+ The dropout probability to use.
198
+ cross_attention_dim (`int`, defaults to `2304`):
199
+ The dimension of the cross attention features.
200
+ attention_bias (`bool`, defaults to `True`):
201
+ Whether or not to use bias in the attention projection layers.
202
+ sample_height (`int`, defaults to `90`):
203
+ The height of the input latents.
204
+ sample_width (`int`, defaults to `160`):
205
+ The width of the input latents.
206
+ sample_frames (`int`, defaults to `22`):
207
+ The number of frames in the input latents.
208
+ activation_fn (`str`, defaults to `"gelu-approximate"`):
209
+ Activation function to use in feed-forward.
210
+ norm_elementwise_affine (`bool`, defaults to `False`):
211
+ Whether or not to use elementwise affine in normalization layers.
212
+ norm_eps (`float`, defaults to `1e-6`):
213
+ The epsilon value to use in normalization layers.
214
+ caption_channels (`int`, defaults to `4096`):
215
+ Number of channels to use for projecting the caption embeddings.
216
+ interpolation_scale_h (`float`, defaults to `2.0`):
217
+ Scaling factor to apply in 3D positional embeddings across height dimension.
218
+ interpolation_scale_w (`float`, defaults to `2.0`):
219
+ Scaling factor to apply in 3D positional embeddings across width dimension.
220
+ interpolation_scale_t (`float`, defaults to `2.2`):
221
+ Scaling factor to apply in 3D positional embeddings across time dimension.
222
+ """
223
+
224
+ @register_to_config
225
+ def __init__(
226
+ self,
227
+ patch_size: int = 2,
228
+ patch_size_t: int = 1,
229
+ num_attention_heads: int = 24,
230
+ attention_head_dim: int = 96,
231
+ in_channels: int = 4,
232
+ out_channels: int = 4,
233
+ num_layers: int = 32,
234
+ dropout: float = 0.0,
235
+ cross_attention_dim: int = 2304,
236
+ attention_bias: bool = True,
237
+ sample_height: int = 90,
238
+ sample_width: int = 160,
239
+ sample_frames: int = 22,
240
+ activation_fn: str = "gelu-approximate",
241
+ norm_elementwise_affine: bool = False,
242
+ norm_eps: float = 1e-6,
243
+ caption_channels: int = 4096,
244
+ interpolation_scale_h: float = 2.0,
245
+ interpolation_scale_w: float = 2.0,
246
+ interpolation_scale_t: float = 2.2,
247
+ ):
248
+ super().__init__()
249
+
250
+ self.inner_dim = num_attention_heads * attention_head_dim
251
+
252
+ interpolation_scale_t = (
253
+ interpolation_scale_t
254
+ if interpolation_scale_t is not None
255
+ else ((sample_frames - 1) // 16 + 1)
256
+ if sample_frames % 2 == 1
257
+ else sample_frames // 16
258
+ )
259
+ interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30
260
+ interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40
261
+
262
+ # 1. Patch embedding
263
+ self.pos_embed = PatchEmbed(
264
+ height=sample_height,
265
+ width=sample_width,
266
+ patch_size=patch_size,
267
+ in_channels=in_channels,
268
+ embed_dim=self.inner_dim,
269
+ pos_embed_type=None,
270
+ )
271
+
272
+ # 2. Transformer blocks
273
+ self.transformer_blocks = nn.ModuleList(
274
+ [
275
+ AllegroTransformerBlock(
276
+ self.inner_dim,
277
+ num_attention_heads,
278
+ attention_head_dim,
279
+ dropout=dropout,
280
+ cross_attention_dim=cross_attention_dim,
281
+ activation_fn=activation_fn,
282
+ attention_bias=attention_bias,
283
+ norm_elementwise_affine=norm_elementwise_affine,
284
+ norm_eps=norm_eps,
285
+ )
286
+ for _ in range(num_layers)
287
+ ]
288
+ )
289
+
290
+ # 3. Output projection & norm
291
+ self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
292
+ self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
293
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels)
294
+
295
+ # 4. Timestep embeddings
296
+ self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False)
297
+
298
+ # 5. Caption projection
299
+ self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim)
300
+
301
+ self.gradient_checkpointing = False
302
+
303
+ def _set_gradient_checkpointing(self, module, value=False):
304
+ self.gradient_checkpointing = value
305
+
306
+ def forward(
307
+ self,
308
+ hidden_states: torch.Tensor,
309
+ encoder_hidden_states: torch.Tensor,
310
+ timestep: torch.LongTensor,
311
+ attention_mask: Optional[torch.Tensor] = None,
312
+ encoder_attention_mask: Optional[torch.Tensor] = None,
313
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
314
+ return_dict: bool = True,
315
+ ):
316
+ batch_size, num_channels, num_frames, height, width = hidden_states.shape
317
+ p_t = self.config.patch_size_t
318
+ p = self.config.patch_size
319
+
320
+ post_patch_num_frames = num_frames // p_t
321
+ post_patch_height = height // p
322
+ post_patch_width = width // p
323
+
324
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
325
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
326
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
327
+ # expects mask of shape:
328
+ # [batch, key_tokens]
329
+ # adds singleton query_tokens dimension:
330
+ # [batch, 1, key_tokens]
331
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
332
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
333
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None
334
+ if attention_mask is not None and attention_mask.ndim == 4:
335
+ # assume that mask is expressed as:
336
+ # (1 = keep, 0 = discard)
337
+ # convert mask into a bias that can be added to attention scores:
338
+ # (keep = +0, discard = -10000.0)
339
+ # b, frame+use_image_num, h, w -> a video with images
340
+ # b, 1, h, w -> only images
341
+ attention_mask = attention_mask.to(hidden_states.dtype)
342
+ attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width]
343
+
344
+ if attention_mask.numel() > 0:
345
+ attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width]
346
+ attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p))
347
+ attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1)
348
+
349
+ attention_mask = (
350
+ (1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None
351
+ )
352
+
353
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
354
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
355
+ encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0
356
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
357
+
358
+ # 1. Timestep embeddings
359
+ timestep, embedded_timestep = self.adaln_single(
360
+ timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
361
+ )
362
+
363
+ # 2. Patch embeddings
364
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
365
+ hidden_states = self.pos_embed(hidden_states)
366
+ hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2)
367
+
368
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
369
+ encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1])
370
+
371
+ # 3. Transformer blocks
372
+ for i, block in enumerate(self.transformer_blocks):
373
+ # TODO(aryan): Implement gradient checkpointing
374
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
375
+
376
+ def create_custom_forward(module):
377
+ def custom_forward(*inputs):
378
+ return module(*inputs)
379
+
380
+ return custom_forward
381
+
382
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
383
+ hidden_states = torch.utils.checkpoint.checkpoint(
384
+ create_custom_forward(block),
385
+ hidden_states,
386
+ encoder_hidden_states,
387
+ timestep,
388
+ attention_mask,
389
+ encoder_attention_mask,
390
+ image_rotary_emb,
391
+ **ckpt_kwargs,
392
+ )
393
+ else:
394
+ hidden_states = block(
395
+ hidden_states=hidden_states,
396
+ encoder_hidden_states=encoder_hidden_states,
397
+ temb=timestep,
398
+ attention_mask=attention_mask,
399
+ encoder_attention_mask=encoder_attention_mask,
400
+ image_rotary_emb=image_rotary_emb,
401
+ )
402
+
403
+ # 4. Output normalization & projection
404
+ shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
405
+ hidden_states = self.norm_out(hidden_states)
406
+
407
+ # Modulation
408
+ hidden_states = hidden_states * (1 + scale) + shift
409
+ hidden_states = self.proj_out(hidden_states)
410
+ hidden_states = hidden_states.squeeze(1)
411
+
412
+ # 5. Unpatchify
413
+ hidden_states = hidden_states.reshape(
414
+ batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1
415
+ )
416
+ hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6)
417
+ output = hidden_states.reshape(batch_size, -1, num_frames, height, width)
418
+
419
+ if not return_dict:
420
+ return (output,)
421
+
422
+ return Transformer2DModelOutput(sample=output)