diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- diffusers/__init__.py +97 -4
- diffusers/callbacks.py +56 -3
- diffusers/configuration_utils.py +13 -1
- diffusers/image_processor.py +282 -71
- diffusers/loaders/__init__.py +24 -3
- diffusers/loaders/ip_adapter.py +543 -16
- diffusers/loaders/lora_base.py +138 -125
- diffusers/loaders/lora_conversion_utils.py +647 -0
- diffusers/loaders/lora_pipeline.py +2216 -230
- diffusers/loaders/peft.py +380 -0
- diffusers/loaders/single_file_model.py +71 -4
- diffusers/loaders/single_file_utils.py +597 -10
- diffusers/loaders/textual_inversion.py +5 -3
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +56 -12
- diffusers/models/__init__.py +49 -12
- diffusers/models/activations.py +22 -9
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +98 -13
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +2160 -346
- diffusers/models/autoencoders/__init__.py +5 -0
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +73 -12
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/vae.py +18 -5
- diffusers/models/controlnet.py +47 -802
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +26 -376
- diffusers/models/controlnet_sparsectrl.py +46 -719
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/embeddings.py +996 -92
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +264 -14
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +334 -51
- diffusers/models/normalization.py +157 -13
- diffusers/models/transformers/__init__.py +6 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
- diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
- diffusers/models/transformers/dit_transformer_2d.py +1 -1
- diffusers/models/transformers/latte_transformer_3d.py +4 -4
- diffusers/models/transformers/pixart_transformer_2d.py +10 -2
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +1 -1
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +189 -51
- diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +112 -18
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +8 -1
- diffusers/models/unets/unet_2d_blocks.py +88 -21
- diffusers/models/unets/unet_2d_condition.py +9 -9
- diffusers/models/unets/unet_3d_blocks.py +9 -7
- diffusers/models/unets/unet_motion_model.py +46 -68
- diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
- diffusers/models/unets/unet_stable_cascade.py +2 -2
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +14 -6
- diffusers/pipelines/__init__.py +69 -6
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/animatediff/__init__.py +2 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
- diffusers/pipelines/auto_pipeline.py +88 -10
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/cogvideo/__init__.py +2 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
- diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
- diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
- diffusers/pipelines/flux/__init__.py +23 -1
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +256 -48
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +16 -0
- diffusers/pipelines/free_noise_utils.py +365 -5
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
- diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
- diffusers/pipelines/kolors/text_encoder.py +2 -2
- diffusers/pipelines/kolors/tokenizer.py +4 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/latte/pipeline_latte.py +2 -2
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/pag/__init__.py +13 -0
- diffusers/pipelines/pag/pag_utils.py +8 -2
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
- diffusers/pipelines/pia/pipeline_pia.py +2 -0
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +250 -31
- diffusers/pipelines/pipeline_utils.py +158 -186
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
- diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
- diffusers/quantizers/__init__.py +16 -0
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
- diffusers/schedulers/scheduling_ddim.py +4 -1
- diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
- diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
- diffusers/schedulers/scheduling_ddpm.py +6 -7
- diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
- diffusers/schedulers/scheduling_deis_multistep.py +102 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
- diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
- diffusers/schedulers/scheduling_edm_euler.py +8 -6
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
- diffusers/schedulers/scheduling_euler_discrete.py +92 -7
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
- diffusers/schedulers/scheduling_heun_discrete.py +114 -8
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
- diffusers/schedulers/scheduling_lcm.py +2 -6
- diffusers/schedulers/scheduling_lms_discrete.py +76 -1
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +102 -6
- diffusers/schedulers/scheduling_tcd.py +2 -6
- diffusers/schedulers/scheduling_unclip.py +4 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
- diffusers/training_utils.py +63 -19
- diffusers/utils/__init__.py +7 -1
- diffusers/utils/constants.py +1 -0
- diffusers/utils/dummy_pt_objects.py +240 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
- diffusers/utils/dynamic_modules_utils.py +3 -3
- diffusers/utils/hub_utils.py +44 -40
- diffusers/utils/import_utils.py +98 -8
- diffusers/utils/loading_utils.py +28 -4
- diffusers/utils/peft_utils.py +6 -3
- diffusers/utils/testing_utils.py +115 -1
- diffusers/utils/torch_utils.py +3 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,885 @@
|
|
1
|
+
# Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import inspect
|
16
|
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
from transformers import T5EncoderModel, T5TokenizerFast
|
21
|
+
|
22
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
23
|
+
from ...image_processor import PipelineImageInput
|
24
|
+
from ...loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
|
25
|
+
from ...models.autoencoders import AutoencoderKLLTXVideo
|
26
|
+
from ...models.transformers import LTXVideoTransformer3DModel
|
27
|
+
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
28
|
+
from ...utils import is_torch_xla_available, logging, replace_example_docstring
|
29
|
+
from ...utils.torch_utils import randn_tensor
|
30
|
+
from ...video_processor import VideoProcessor
|
31
|
+
from ..pipeline_utils import DiffusionPipeline
|
32
|
+
from .pipeline_output import LTXPipelineOutput
|
33
|
+
|
34
|
+
|
35
|
+
if is_torch_xla_available():
|
36
|
+
import torch_xla.core.xla_model as xm
|
37
|
+
|
38
|
+
XLA_AVAILABLE = True
|
39
|
+
else:
|
40
|
+
XLA_AVAILABLE = False
|
41
|
+
|
42
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43
|
+
|
44
|
+
EXAMPLE_DOC_STRING = """
|
45
|
+
Examples:
|
46
|
+
```py
|
47
|
+
>>> import torch
|
48
|
+
>>> from diffusers import LTXImageToVideoPipeline
|
49
|
+
>>> from diffusers.utils import export_to_video, load_image
|
50
|
+
|
51
|
+
>>> pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
|
52
|
+
>>> pipe.to("cuda")
|
53
|
+
|
54
|
+
>>> image = load_image(
|
55
|
+
... "https://huggingface.co/datasets/a-r-r-o-w/tiny-meme-dataset-captioned/resolve/main/images/8.png"
|
56
|
+
... )
|
57
|
+
>>> prompt = "A young girl stands calmly in the foreground, looking directly at the camera, as a house fire rages in the background. Flames engulf the structure, with smoke billowing into the air. Firefighters in protective gear rush to the scene, a fire truck labeled '38' visible behind them. The girl's neutral expression contrasts sharply with the chaos of the fire, creating a poignant and emotionally charged scene."
|
58
|
+
>>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
|
59
|
+
|
60
|
+
>>> video = pipe(
|
61
|
+
... image=image,
|
62
|
+
... prompt=prompt,
|
63
|
+
... negative_prompt=negative_prompt,
|
64
|
+
... width=704,
|
65
|
+
... height=480,
|
66
|
+
... num_frames=161,
|
67
|
+
... num_inference_steps=50,
|
68
|
+
... ).frames[0]
|
69
|
+
>>> export_to_video(video, "output.mp4", fps=24)
|
70
|
+
```
|
71
|
+
"""
|
72
|
+
|
73
|
+
|
74
|
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
75
|
+
def calculate_shift(
|
76
|
+
image_seq_len,
|
77
|
+
base_seq_len: int = 256,
|
78
|
+
max_seq_len: int = 4096,
|
79
|
+
base_shift: float = 0.5,
|
80
|
+
max_shift: float = 1.16,
|
81
|
+
):
|
82
|
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
83
|
+
b = base_shift - m * base_seq_len
|
84
|
+
mu = image_seq_len * m + b
|
85
|
+
return mu
|
86
|
+
|
87
|
+
|
88
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
89
|
+
def retrieve_timesteps(
|
90
|
+
scheduler,
|
91
|
+
num_inference_steps: Optional[int] = None,
|
92
|
+
device: Optional[Union[str, torch.device]] = None,
|
93
|
+
timesteps: Optional[List[int]] = None,
|
94
|
+
sigmas: Optional[List[float]] = None,
|
95
|
+
**kwargs,
|
96
|
+
):
|
97
|
+
r"""
|
98
|
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
99
|
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
100
|
+
|
101
|
+
Args:
|
102
|
+
scheduler (`SchedulerMixin`):
|
103
|
+
The scheduler to get timesteps from.
|
104
|
+
num_inference_steps (`int`):
|
105
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
106
|
+
must be `None`.
|
107
|
+
device (`str` or `torch.device`, *optional*):
|
108
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
109
|
+
timesteps (`List[int]`, *optional*):
|
110
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
111
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
112
|
+
sigmas (`List[float]`, *optional*):
|
113
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
114
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
115
|
+
|
116
|
+
Returns:
|
117
|
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
118
|
+
second element is the number of inference steps.
|
119
|
+
"""
|
120
|
+
if timesteps is not None and sigmas is not None:
|
121
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
122
|
+
if timesteps is not None:
|
123
|
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
124
|
+
if not accepts_timesteps:
|
125
|
+
raise ValueError(
|
126
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
127
|
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
128
|
+
)
|
129
|
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
130
|
+
timesteps = scheduler.timesteps
|
131
|
+
num_inference_steps = len(timesteps)
|
132
|
+
elif sigmas is not None:
|
133
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
134
|
+
if not accept_sigmas:
|
135
|
+
raise ValueError(
|
136
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
137
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
138
|
+
)
|
139
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
140
|
+
timesteps = scheduler.timesteps
|
141
|
+
num_inference_steps = len(timesteps)
|
142
|
+
else:
|
143
|
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
144
|
+
timesteps = scheduler.timesteps
|
145
|
+
return timesteps, num_inference_steps
|
146
|
+
|
147
|
+
|
148
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
149
|
+
def retrieve_latents(
|
150
|
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
151
|
+
):
|
152
|
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
153
|
+
return encoder_output.latent_dist.sample(generator)
|
154
|
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
155
|
+
return encoder_output.latent_dist.mode()
|
156
|
+
elif hasattr(encoder_output, "latents"):
|
157
|
+
return encoder_output.latents
|
158
|
+
else:
|
159
|
+
raise AttributeError("Could not access latents of provided encoder_output")
|
160
|
+
|
161
|
+
|
162
|
+
class LTXImageToVideoPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
|
163
|
+
r"""
|
164
|
+
Pipeline for image-to-video generation.
|
165
|
+
|
166
|
+
Reference: https://github.com/Lightricks/LTX-Video
|
167
|
+
|
168
|
+
Args:
|
169
|
+
transformer ([`LTXVideoTransformer3DModel`]):
|
170
|
+
Conditional Transformer architecture to denoise the encoded video latents.
|
171
|
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
172
|
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
173
|
+
vae ([`AutoencoderKLLTXVideo`]):
|
174
|
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
175
|
+
text_encoder ([`T5EncoderModel`]):
|
176
|
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
177
|
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
178
|
+
tokenizer (`CLIPTokenizer`):
|
179
|
+
Tokenizer of class
|
180
|
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
181
|
+
tokenizer (`T5TokenizerFast`):
|
182
|
+
Second Tokenizer of class
|
183
|
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
184
|
+
"""
|
185
|
+
|
186
|
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
187
|
+
_optional_components = []
|
188
|
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
189
|
+
|
190
|
+
def __init__(
|
191
|
+
self,
|
192
|
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
193
|
+
vae: AutoencoderKLLTXVideo,
|
194
|
+
text_encoder: T5EncoderModel,
|
195
|
+
tokenizer: T5TokenizerFast,
|
196
|
+
transformer: LTXVideoTransformer3DModel,
|
197
|
+
):
|
198
|
+
super().__init__()
|
199
|
+
|
200
|
+
self.register_modules(
|
201
|
+
vae=vae,
|
202
|
+
text_encoder=text_encoder,
|
203
|
+
tokenizer=tokenizer,
|
204
|
+
transformer=transformer,
|
205
|
+
scheduler=scheduler,
|
206
|
+
)
|
207
|
+
|
208
|
+
self.vae_spatial_compression_ratio = self.vae.spatial_compression_ratio if hasattr(self, "vae") else 32
|
209
|
+
self.vae_temporal_compression_ratio = self.vae.temporal_compression_ratio if hasattr(self, "vae") else 8
|
210
|
+
self.transformer_spatial_patch_size = self.transformer.config.patch_size if hasattr(self, "transformer") else 1
|
211
|
+
self.transformer_temporal_patch_size = (
|
212
|
+
self.transformer.config.patch_size_t if hasattr(self, "transformer") else 1
|
213
|
+
)
|
214
|
+
|
215
|
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
|
216
|
+
self.tokenizer_max_length = (
|
217
|
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128
|
218
|
+
)
|
219
|
+
|
220
|
+
self.default_height = 512
|
221
|
+
self.default_width = 704
|
222
|
+
self.default_frames = 121
|
223
|
+
|
224
|
+
def _get_t5_prompt_embeds(
|
225
|
+
self,
|
226
|
+
prompt: Union[str, List[str]] = None,
|
227
|
+
num_videos_per_prompt: int = 1,
|
228
|
+
max_sequence_length: int = 128,
|
229
|
+
device: Optional[torch.device] = None,
|
230
|
+
dtype: Optional[torch.dtype] = None,
|
231
|
+
):
|
232
|
+
device = device or self._execution_device
|
233
|
+
dtype = dtype or self.text_encoder.dtype
|
234
|
+
|
235
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
236
|
+
batch_size = len(prompt)
|
237
|
+
|
238
|
+
text_inputs = self.tokenizer(
|
239
|
+
prompt,
|
240
|
+
padding="max_length",
|
241
|
+
max_length=max_sequence_length,
|
242
|
+
truncation=True,
|
243
|
+
add_special_tokens=True,
|
244
|
+
return_tensors="pt",
|
245
|
+
)
|
246
|
+
text_input_ids = text_inputs.input_ids
|
247
|
+
prompt_attention_mask = text_inputs.attention_mask
|
248
|
+
prompt_attention_mask = prompt_attention_mask.bool().to(device)
|
249
|
+
|
250
|
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
251
|
+
|
252
|
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
253
|
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
254
|
+
logger.warning(
|
255
|
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
256
|
+
f" {max_sequence_length} tokens: {removed_text}"
|
257
|
+
)
|
258
|
+
|
259
|
+
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
|
260
|
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
261
|
+
|
262
|
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
263
|
+
_, seq_len, _ = prompt_embeds.shape
|
264
|
+
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
265
|
+
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
266
|
+
|
267
|
+
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
268
|
+
prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
|
269
|
+
|
270
|
+
return prompt_embeds, prompt_attention_mask
|
271
|
+
|
272
|
+
# Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128
|
273
|
+
def encode_prompt(
|
274
|
+
self,
|
275
|
+
prompt: Union[str, List[str]],
|
276
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
277
|
+
do_classifier_free_guidance: bool = True,
|
278
|
+
num_videos_per_prompt: int = 1,
|
279
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
280
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
281
|
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
282
|
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
283
|
+
max_sequence_length: int = 128,
|
284
|
+
device: Optional[torch.device] = None,
|
285
|
+
dtype: Optional[torch.dtype] = None,
|
286
|
+
):
|
287
|
+
r"""
|
288
|
+
Encodes the prompt into text encoder hidden states.
|
289
|
+
|
290
|
+
Args:
|
291
|
+
prompt (`str` or `List[str]`, *optional*):
|
292
|
+
prompt to be encoded
|
293
|
+
negative_prompt (`str` or `List[str]`, *optional*):
|
294
|
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
295
|
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
296
|
+
less than `1`).
|
297
|
+
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
298
|
+
Whether to use classifier free guidance or not.
|
299
|
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
300
|
+
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
301
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
302
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
303
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
304
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
305
|
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
306
|
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
307
|
+
argument.
|
308
|
+
device: (`torch.device`, *optional*):
|
309
|
+
torch device
|
310
|
+
dtype: (`torch.dtype`, *optional*):
|
311
|
+
torch dtype
|
312
|
+
"""
|
313
|
+
device = device or self._execution_device
|
314
|
+
|
315
|
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
316
|
+
if prompt is not None:
|
317
|
+
batch_size = len(prompt)
|
318
|
+
else:
|
319
|
+
batch_size = prompt_embeds.shape[0]
|
320
|
+
|
321
|
+
if prompt_embeds is None:
|
322
|
+
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
|
323
|
+
prompt=prompt,
|
324
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
325
|
+
max_sequence_length=max_sequence_length,
|
326
|
+
device=device,
|
327
|
+
dtype=dtype,
|
328
|
+
)
|
329
|
+
|
330
|
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
331
|
+
negative_prompt = negative_prompt or ""
|
332
|
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
333
|
+
|
334
|
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
335
|
+
raise TypeError(
|
336
|
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
337
|
+
f" {type(prompt)}."
|
338
|
+
)
|
339
|
+
elif batch_size != len(negative_prompt):
|
340
|
+
raise ValueError(
|
341
|
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
342
|
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
343
|
+
" the batch size of `prompt`."
|
344
|
+
)
|
345
|
+
|
346
|
+
negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
|
347
|
+
prompt=negative_prompt,
|
348
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
349
|
+
max_sequence_length=max_sequence_length,
|
350
|
+
device=device,
|
351
|
+
dtype=dtype,
|
352
|
+
)
|
353
|
+
|
354
|
+
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
355
|
+
|
356
|
+
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline.check_inputs
|
357
|
+
def check_inputs(
|
358
|
+
self,
|
359
|
+
prompt,
|
360
|
+
height,
|
361
|
+
width,
|
362
|
+
callback_on_step_end_tensor_inputs=None,
|
363
|
+
prompt_embeds=None,
|
364
|
+
negative_prompt_embeds=None,
|
365
|
+
prompt_attention_mask=None,
|
366
|
+
negative_prompt_attention_mask=None,
|
367
|
+
):
|
368
|
+
if height % 32 != 0 or width % 32 != 0:
|
369
|
+
raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
|
370
|
+
|
371
|
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
372
|
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
373
|
+
):
|
374
|
+
raise ValueError(
|
375
|
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
376
|
+
)
|
377
|
+
|
378
|
+
if prompt is not None and prompt_embeds is not None:
|
379
|
+
raise ValueError(
|
380
|
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
381
|
+
" only forward one of the two."
|
382
|
+
)
|
383
|
+
elif prompt is None and prompt_embeds is None:
|
384
|
+
raise ValueError(
|
385
|
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
386
|
+
)
|
387
|
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
388
|
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
389
|
+
|
390
|
+
if prompt_embeds is not None and prompt_attention_mask is None:
|
391
|
+
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
392
|
+
|
393
|
+
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
394
|
+
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
395
|
+
|
396
|
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
397
|
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
398
|
+
raise ValueError(
|
399
|
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
400
|
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
401
|
+
f" {negative_prompt_embeds.shape}."
|
402
|
+
)
|
403
|
+
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
404
|
+
raise ValueError(
|
405
|
+
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
406
|
+
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
407
|
+
f" {negative_prompt_attention_mask.shape}."
|
408
|
+
)
|
409
|
+
|
410
|
+
@staticmethod
|
411
|
+
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._pack_latents
|
412
|
+
def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
|
413
|
+
# Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
|
414
|
+
# The patch dimensions are then permuted and collapsed into the channel dimension of shape:
|
415
|
+
# [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
|
416
|
+
# dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
|
417
|
+
batch_size, num_channels, num_frames, height, width = latents.shape
|
418
|
+
post_patch_num_frames = num_frames // patch_size_t
|
419
|
+
post_patch_height = height // patch_size
|
420
|
+
post_patch_width = width // patch_size
|
421
|
+
latents = latents.reshape(
|
422
|
+
batch_size,
|
423
|
+
-1,
|
424
|
+
post_patch_num_frames,
|
425
|
+
patch_size_t,
|
426
|
+
post_patch_height,
|
427
|
+
patch_size,
|
428
|
+
post_patch_width,
|
429
|
+
patch_size,
|
430
|
+
)
|
431
|
+
latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
|
432
|
+
return latents
|
433
|
+
|
434
|
+
@staticmethod
|
435
|
+
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._unpack_latents
|
436
|
+
def _unpack_latents(
|
437
|
+
latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
|
438
|
+
) -> torch.Tensor:
|
439
|
+
# Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
|
440
|
+
# are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
|
441
|
+
# what happens in the `_pack_latents` method.
|
442
|
+
batch_size = latents.size(0)
|
443
|
+
latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
|
444
|
+
latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
445
|
+
return latents
|
446
|
+
|
447
|
+
@staticmethod
|
448
|
+
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._normalize_latents
|
449
|
+
def _normalize_latents(
|
450
|
+
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
|
451
|
+
) -> torch.Tensor:
|
452
|
+
# Normalize latents across the channel dimension [B, C, F, H, W]
|
453
|
+
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
454
|
+
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
455
|
+
latents = (latents - latents_mean) * scaling_factor / latents_std
|
456
|
+
return latents
|
457
|
+
|
458
|
+
@staticmethod
|
459
|
+
# Copied from diffusers.pipelines.ltx.pipeline_ltx.LTXPipeline._denormalize_latents
|
460
|
+
def _denormalize_latents(
|
461
|
+
latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
|
462
|
+
) -> torch.Tensor:
|
463
|
+
# Denormalize latents across the channel dimension [B, C, F, H, W]
|
464
|
+
latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
465
|
+
latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
|
466
|
+
latents = latents * latents_std / scaling_factor + latents_mean
|
467
|
+
return latents
|
468
|
+
|
469
|
+
def prepare_latents(
|
470
|
+
self,
|
471
|
+
image: Optional[torch.Tensor] = None,
|
472
|
+
batch_size: int = 1,
|
473
|
+
num_channels_latents: int = 128,
|
474
|
+
height: int = 512,
|
475
|
+
width: int = 704,
|
476
|
+
num_frames: int = 161,
|
477
|
+
dtype: Optional[torch.dtype] = None,
|
478
|
+
device: Optional[torch.device] = None,
|
479
|
+
generator: Optional[torch.Generator] = None,
|
480
|
+
latents: Optional[torch.Tensor] = None,
|
481
|
+
) -> torch.Tensor:
|
482
|
+
height = height // self.vae_spatial_compression_ratio
|
483
|
+
width = width // self.vae_spatial_compression_ratio
|
484
|
+
num_frames = (
|
485
|
+
(num_frames - 1) // self.vae_temporal_compression_ratio + 1 if latents is None else latents.size(2)
|
486
|
+
)
|
487
|
+
|
488
|
+
shape = (batch_size, num_channels_latents, num_frames, height, width)
|
489
|
+
mask_shape = (batch_size, 1, num_frames, height, width)
|
490
|
+
|
491
|
+
if latents is not None:
|
492
|
+
conditioning_mask = latents.new_zeros(shape)
|
493
|
+
conditioning_mask[:, :, 0] = 1.0
|
494
|
+
conditioning_mask = self._pack_latents(
|
495
|
+
conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
496
|
+
)
|
497
|
+
return latents.to(device=device, dtype=dtype), conditioning_mask
|
498
|
+
|
499
|
+
if isinstance(generator, list):
|
500
|
+
if len(generator) != batch_size:
|
501
|
+
raise ValueError(
|
502
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
503
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
504
|
+
)
|
505
|
+
|
506
|
+
init_latents = [
|
507
|
+
retrieve_latents(self.vae.encode(image[i].unsqueeze(0).unsqueeze(2)), generator[i])
|
508
|
+
for i in range(batch_size)
|
509
|
+
]
|
510
|
+
else:
|
511
|
+
init_latents = [
|
512
|
+
retrieve_latents(self.vae.encode(img.unsqueeze(0).unsqueeze(2)), generator) for img in image
|
513
|
+
]
|
514
|
+
|
515
|
+
init_latents = torch.cat(init_latents, dim=0).to(dtype)
|
516
|
+
init_latents = self._normalize_latents(init_latents, self.vae.latents_mean, self.vae.latents_std)
|
517
|
+
init_latents = init_latents.repeat(1, 1, num_frames, 1, 1)
|
518
|
+
conditioning_mask = torch.zeros(mask_shape, device=device, dtype=dtype)
|
519
|
+
conditioning_mask[:, :, 0] = 1.0
|
520
|
+
|
521
|
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
522
|
+
latents = init_latents * conditioning_mask + noise * (1 - conditioning_mask)
|
523
|
+
|
524
|
+
conditioning_mask = self._pack_latents(
|
525
|
+
conditioning_mask, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
526
|
+
).squeeze(-1)
|
527
|
+
latents = self._pack_latents(
|
528
|
+
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
529
|
+
)
|
530
|
+
|
531
|
+
return latents, conditioning_mask
|
532
|
+
|
533
|
+
@property
|
534
|
+
def guidance_scale(self):
|
535
|
+
return self._guidance_scale
|
536
|
+
|
537
|
+
@property
|
538
|
+
def do_classifier_free_guidance(self):
|
539
|
+
return self._guidance_scale > 1.0
|
540
|
+
|
541
|
+
@property
|
542
|
+
def num_timesteps(self):
|
543
|
+
return self._num_timesteps
|
544
|
+
|
545
|
+
@property
|
546
|
+
def attention_kwargs(self):
|
547
|
+
return self._attention_kwargs
|
548
|
+
|
549
|
+
@property
|
550
|
+
def interrupt(self):
|
551
|
+
return self._interrupt
|
552
|
+
|
553
|
+
@torch.no_grad()
|
554
|
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
555
|
+
def __call__(
|
556
|
+
self,
|
557
|
+
image: PipelineImageInput = None,
|
558
|
+
prompt: Union[str, List[str]] = None,
|
559
|
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
560
|
+
height: int = 512,
|
561
|
+
width: int = 704,
|
562
|
+
num_frames: int = 161,
|
563
|
+
frame_rate: int = 25,
|
564
|
+
num_inference_steps: int = 50,
|
565
|
+
timesteps: List[int] = None,
|
566
|
+
guidance_scale: float = 3,
|
567
|
+
num_videos_per_prompt: Optional[int] = 1,
|
568
|
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
569
|
+
latents: Optional[torch.Tensor] = None,
|
570
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
571
|
+
prompt_attention_mask: Optional[torch.Tensor] = None,
|
572
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
573
|
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
574
|
+
decode_timestep: Union[float, List[float]] = 0.0,
|
575
|
+
decode_noise_scale: Optional[Union[float, List[float]]] = None,
|
576
|
+
output_type: Optional[str] = "pil",
|
577
|
+
return_dict: bool = True,
|
578
|
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
579
|
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
580
|
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
581
|
+
max_sequence_length: int = 128,
|
582
|
+
):
|
583
|
+
r"""
|
584
|
+
Function invoked when calling the pipeline for generation.
|
585
|
+
|
586
|
+
Args:
|
587
|
+
image (`PipelineImageInput`):
|
588
|
+
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
|
589
|
+
prompt (`str` or `List[str]`, *optional*):
|
590
|
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
591
|
+
instead.
|
592
|
+
height (`int`, defaults to `512`):
|
593
|
+
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
594
|
+
width (`int`, defaults to `704`):
|
595
|
+
The width in pixels of the generated image. This is set to 848 by default for the best results.
|
596
|
+
num_frames (`int`, defaults to `161`):
|
597
|
+
The number of video frames to generate
|
598
|
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
599
|
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
600
|
+
expense of slower inference.
|
601
|
+
timesteps (`List[int]`, *optional*):
|
602
|
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
603
|
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
604
|
+
passed will be used. Must be in descending order.
|
605
|
+
guidance_scale (`float`, defaults to `3 `):
|
606
|
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
607
|
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
608
|
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
609
|
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
610
|
+
usually at the expense of lower image quality.
|
611
|
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
612
|
+
The number of videos to generate per prompt.
|
613
|
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
614
|
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
615
|
+
to make generation deterministic.
|
616
|
+
latents (`torch.Tensor`, *optional*):
|
617
|
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
618
|
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
619
|
+
tensor will ge generated by sampling using the supplied random `generator`.
|
620
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
621
|
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
622
|
+
provided, text embeddings will be generated from `prompt` input argument.
|
623
|
+
prompt_attention_mask (`torch.Tensor`, *optional*):
|
624
|
+
Pre-generated attention mask for text embeddings.
|
625
|
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
626
|
+
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
627
|
+
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
628
|
+
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
629
|
+
Pre-generated attention mask for negative text embeddings.
|
630
|
+
decode_timestep (`float`, defaults to `0.0`):
|
631
|
+
The timestep at which generated video is decoded.
|
632
|
+
decode_noise_scale (`float`, defaults to `None`):
|
633
|
+
The interpolation factor between random noise and denoised latents at the decode timestep.
|
634
|
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
635
|
+
The output format of the generate image. Choose between
|
636
|
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
637
|
+
return_dict (`bool`, *optional*, defaults to `True`):
|
638
|
+
Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
|
639
|
+
attention_kwargs (`dict`, *optional*):
|
640
|
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
641
|
+
`self.processor` in
|
642
|
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
643
|
+
callback_on_step_end (`Callable`, *optional*):
|
644
|
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
645
|
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
646
|
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
647
|
+
`callback_on_step_end_tensor_inputs`.
|
648
|
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
649
|
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
650
|
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
651
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
652
|
+
max_sequence_length (`int` defaults to `128 `):
|
653
|
+
Maximum sequence length to use with the `prompt`.
|
654
|
+
|
655
|
+
Examples:
|
656
|
+
|
657
|
+
Returns:
|
658
|
+
[`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
|
659
|
+
If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
|
660
|
+
returned where the first element is a list with the generated images.
|
661
|
+
"""
|
662
|
+
|
663
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
664
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
665
|
+
|
666
|
+
# 1. Check inputs. Raise error if not correct
|
667
|
+
self.check_inputs(
|
668
|
+
prompt=prompt,
|
669
|
+
height=height,
|
670
|
+
width=width,
|
671
|
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
672
|
+
prompt_embeds=prompt_embeds,
|
673
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
674
|
+
prompt_attention_mask=prompt_attention_mask,
|
675
|
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
676
|
+
)
|
677
|
+
|
678
|
+
self._guidance_scale = guidance_scale
|
679
|
+
self._attention_kwargs = attention_kwargs
|
680
|
+
self._interrupt = False
|
681
|
+
|
682
|
+
# 2. Define call parameters
|
683
|
+
if prompt is not None and isinstance(prompt, str):
|
684
|
+
batch_size = 1
|
685
|
+
elif prompt is not None and isinstance(prompt, list):
|
686
|
+
batch_size = len(prompt)
|
687
|
+
else:
|
688
|
+
batch_size = prompt_embeds.shape[0]
|
689
|
+
|
690
|
+
device = self._execution_device
|
691
|
+
|
692
|
+
# 3. Prepare text embeddings
|
693
|
+
(
|
694
|
+
prompt_embeds,
|
695
|
+
prompt_attention_mask,
|
696
|
+
negative_prompt_embeds,
|
697
|
+
negative_prompt_attention_mask,
|
698
|
+
) = self.encode_prompt(
|
699
|
+
prompt=prompt,
|
700
|
+
negative_prompt=negative_prompt,
|
701
|
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
702
|
+
num_videos_per_prompt=num_videos_per_prompt,
|
703
|
+
prompt_embeds=prompt_embeds,
|
704
|
+
negative_prompt_embeds=negative_prompt_embeds,
|
705
|
+
prompt_attention_mask=prompt_attention_mask,
|
706
|
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
707
|
+
max_sequence_length=max_sequence_length,
|
708
|
+
device=device,
|
709
|
+
)
|
710
|
+
if self.do_classifier_free_guidance:
|
711
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
712
|
+
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
713
|
+
|
714
|
+
# 4. Prepare latent variables
|
715
|
+
if latents is None:
|
716
|
+
image = self.video_processor.preprocess(image, height=height, width=width)
|
717
|
+
image = image.to(device=device, dtype=prompt_embeds.dtype)
|
718
|
+
|
719
|
+
num_channels_latents = self.transformer.config.in_channels
|
720
|
+
latents, conditioning_mask = self.prepare_latents(
|
721
|
+
image,
|
722
|
+
batch_size * num_videos_per_prompt,
|
723
|
+
num_channels_latents,
|
724
|
+
height,
|
725
|
+
width,
|
726
|
+
num_frames,
|
727
|
+
torch.float32,
|
728
|
+
device,
|
729
|
+
generator,
|
730
|
+
latents,
|
731
|
+
)
|
732
|
+
|
733
|
+
if self.do_classifier_free_guidance:
|
734
|
+
conditioning_mask = torch.cat([conditioning_mask, conditioning_mask])
|
735
|
+
|
736
|
+
# 5. Prepare timesteps
|
737
|
+
latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
|
738
|
+
latent_height = height // self.vae_spatial_compression_ratio
|
739
|
+
latent_width = width // self.vae_spatial_compression_ratio
|
740
|
+
video_sequence_length = latent_num_frames * latent_height * latent_width
|
741
|
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
742
|
+
mu = calculate_shift(
|
743
|
+
video_sequence_length,
|
744
|
+
self.scheduler.config.base_image_seq_len,
|
745
|
+
self.scheduler.config.max_image_seq_len,
|
746
|
+
self.scheduler.config.base_shift,
|
747
|
+
self.scheduler.config.max_shift,
|
748
|
+
)
|
749
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
750
|
+
self.scheduler,
|
751
|
+
num_inference_steps,
|
752
|
+
device,
|
753
|
+
timesteps,
|
754
|
+
sigmas=sigmas,
|
755
|
+
mu=mu,
|
756
|
+
)
|
757
|
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
758
|
+
self._num_timesteps = len(timesteps)
|
759
|
+
|
760
|
+
# 6. Prepare micro-conditions
|
761
|
+
latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
|
762
|
+
rope_interpolation_scale = (
|
763
|
+
1 / latent_frame_rate,
|
764
|
+
self.vae_spatial_compression_ratio,
|
765
|
+
self.vae_spatial_compression_ratio,
|
766
|
+
)
|
767
|
+
|
768
|
+
# 7. Denoising loop
|
769
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
770
|
+
for i, t in enumerate(timesteps):
|
771
|
+
if self.interrupt:
|
772
|
+
continue
|
773
|
+
|
774
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
775
|
+
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
776
|
+
|
777
|
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
778
|
+
timestep = t.expand(latent_model_input.shape[0])
|
779
|
+
timestep = timestep.unsqueeze(-1) * (1 - conditioning_mask)
|
780
|
+
|
781
|
+
noise_pred = self.transformer(
|
782
|
+
hidden_states=latent_model_input,
|
783
|
+
encoder_hidden_states=prompt_embeds,
|
784
|
+
timestep=timestep,
|
785
|
+
encoder_attention_mask=prompt_attention_mask,
|
786
|
+
num_frames=latent_num_frames,
|
787
|
+
height=latent_height,
|
788
|
+
width=latent_width,
|
789
|
+
rope_interpolation_scale=rope_interpolation_scale,
|
790
|
+
attention_kwargs=attention_kwargs,
|
791
|
+
return_dict=False,
|
792
|
+
)[0]
|
793
|
+
noise_pred = noise_pred.float()
|
794
|
+
|
795
|
+
if self.do_classifier_free_guidance:
|
796
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
797
|
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
798
|
+
timestep, _ = timestep.chunk(2)
|
799
|
+
|
800
|
+
# compute the previous noisy sample x_t -> x_t-1
|
801
|
+
noise_pred = self._unpack_latents(
|
802
|
+
noise_pred,
|
803
|
+
latent_num_frames,
|
804
|
+
latent_height,
|
805
|
+
latent_width,
|
806
|
+
self.transformer_spatial_patch_size,
|
807
|
+
self.transformer_temporal_patch_size,
|
808
|
+
)
|
809
|
+
latents = self._unpack_latents(
|
810
|
+
latents,
|
811
|
+
latent_num_frames,
|
812
|
+
latent_height,
|
813
|
+
latent_width,
|
814
|
+
self.transformer_spatial_patch_size,
|
815
|
+
self.transformer_temporal_patch_size,
|
816
|
+
)
|
817
|
+
|
818
|
+
noise_pred = noise_pred[:, :, 1:]
|
819
|
+
noise_latents = latents[:, :, 1:]
|
820
|
+
pred_latents = self.scheduler.step(noise_pred, t, noise_latents, return_dict=False)[0]
|
821
|
+
|
822
|
+
latents = torch.cat([latents[:, :, :1], pred_latents], dim=2)
|
823
|
+
latents = self._pack_latents(
|
824
|
+
latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
|
825
|
+
)
|
826
|
+
|
827
|
+
if callback_on_step_end is not None:
|
828
|
+
callback_kwargs = {}
|
829
|
+
for k in callback_on_step_end_tensor_inputs:
|
830
|
+
callback_kwargs[k] = locals()[k]
|
831
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
832
|
+
|
833
|
+
latents = callback_outputs.pop("latents", latents)
|
834
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
835
|
+
|
836
|
+
# call the callback, if provided
|
837
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
838
|
+
progress_bar.update()
|
839
|
+
|
840
|
+
if XLA_AVAILABLE:
|
841
|
+
xm.mark_step()
|
842
|
+
|
843
|
+
if output_type == "latent":
|
844
|
+
video = latents
|
845
|
+
else:
|
846
|
+
latents = self._unpack_latents(
|
847
|
+
latents,
|
848
|
+
latent_num_frames,
|
849
|
+
latent_height,
|
850
|
+
latent_width,
|
851
|
+
self.transformer_spatial_patch_size,
|
852
|
+
self.transformer_temporal_patch_size,
|
853
|
+
)
|
854
|
+
latents = self._denormalize_latents(
|
855
|
+
latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
|
856
|
+
)
|
857
|
+
latents = latents.to(prompt_embeds.dtype)
|
858
|
+
|
859
|
+
if not self.vae.config.timestep_conditioning:
|
860
|
+
timestep = None
|
861
|
+
else:
|
862
|
+
noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
|
863
|
+
if not isinstance(decode_timestep, list):
|
864
|
+
decode_timestep = [decode_timestep] * batch_size
|
865
|
+
if decode_noise_scale is None:
|
866
|
+
decode_noise_scale = decode_timestep
|
867
|
+
elif not isinstance(decode_noise_scale, list):
|
868
|
+
decode_noise_scale = [decode_noise_scale] * batch_size
|
869
|
+
|
870
|
+
timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
|
871
|
+
decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
|
872
|
+
:, None, None, None, None
|
873
|
+
]
|
874
|
+
latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
|
875
|
+
|
876
|
+
video = self.vae.decode(latents, timestep, return_dict=False)[0]
|
877
|
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
878
|
+
|
879
|
+
# Offload all models
|
880
|
+
self.maybe_free_model_hooks()
|
881
|
+
|
882
|
+
if not return_dict:
|
883
|
+
return (video,)
|
884
|
+
|
885
|
+
return LTXPipelineOutput(frames=video)
|