diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,938 @@
1
+ # Copyright 2024 The RhymesAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import html
17
+ import inspect
18
+ import math
19
+ import re
20
+ import urllib.parse as ul
21
+ from typing import Callable, Dict, List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ from transformers import T5EncoderModel, T5Tokenizer
25
+
26
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
27
+ from ...models import AllegroTransformer3DModel, AutoencoderKLAllegro
28
+ from ...models.embeddings import get_3d_rotary_pos_embed_allegro
29
+ from ...pipelines.pipeline_utils import DiffusionPipeline
30
+ from ...schedulers import KarrasDiffusionSchedulers
31
+ from ...utils import (
32
+ BACKENDS_MAPPING,
33
+ deprecate,
34
+ is_bs4_available,
35
+ is_ftfy_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ )
39
+ from ...utils.torch_utils import randn_tensor
40
+ from ...video_processor import VideoProcessor
41
+ from .pipeline_output import AllegroPipelineOutput
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+ if is_bs4_available():
47
+ from bs4 import BeautifulSoup
48
+
49
+ if is_ftfy_available():
50
+ import ftfy
51
+
52
+
53
+ EXAMPLE_DOC_STRING = """
54
+ Examples:
55
+ ```py
56
+ >>> import torch
57
+ >>> from diffusers import AutoencoderKLAllegro, AllegroPipeline
58
+ >>> from diffusers.utils import export_to_video
59
+
60
+ >>> vae = AutoencoderKLAllegro.from_pretrained("rhymes-ai/Allegro", subfolder="vae", torch_dtype=torch.float32)
61
+ >>> pipe = AllegroPipeline.from_pretrained("rhymes-ai/Allegro", vae=vae, torch_dtype=torch.bfloat16).to("cuda")
62
+ >>> pipe.enable_vae_tiling()
63
+
64
+ >>> prompt = (
65
+ ... "A seaside harbor with bright sunlight and sparkling seawater, with many boats in the water. From an aerial view, "
66
+ ... "the boats vary in size and color, some moving and some stationary. Fishing boats in the water suggest that this "
67
+ ... "location might be a popular spot for docking fishing boats."
68
+ ... )
69
+ >>> video = pipe(prompt, guidance_scale=7.5, max_sequence_length=512).frames[0]
70
+ >>> export_to_video(video, "output.mp4", fps=15)
71
+ ```
72
+ """
73
+
74
+
75
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
76
+ def retrieve_timesteps(
77
+ scheduler,
78
+ num_inference_steps: Optional[int] = None,
79
+ device: Optional[Union[str, torch.device]] = None,
80
+ timesteps: Optional[List[int]] = None,
81
+ sigmas: Optional[List[float]] = None,
82
+ **kwargs,
83
+ ):
84
+ r"""
85
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
86
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
87
+
88
+ Args:
89
+ scheduler (`SchedulerMixin`):
90
+ The scheduler to get timesteps from.
91
+ num_inference_steps (`int`):
92
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
93
+ must be `None`.
94
+ device (`str` or `torch.device`, *optional*):
95
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
96
+ timesteps (`List[int]`, *optional*):
97
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
98
+ `num_inference_steps` and `sigmas` must be `None`.
99
+ sigmas (`List[float]`, *optional*):
100
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
101
+ `num_inference_steps` and `timesteps` must be `None`.
102
+
103
+ Returns:
104
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
105
+ second element is the number of inference steps.
106
+ """
107
+ if timesteps is not None and sigmas is not None:
108
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
109
+ if timesteps is not None:
110
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
111
+ if not accepts_timesteps:
112
+ raise ValueError(
113
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
114
+ f" timestep schedules. Please check whether you are using the correct scheduler."
115
+ )
116
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
117
+ timesteps = scheduler.timesteps
118
+ num_inference_steps = len(timesteps)
119
+ elif sigmas is not None:
120
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
121
+ if not accept_sigmas:
122
+ raise ValueError(
123
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
124
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
125
+ )
126
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
127
+ timesteps = scheduler.timesteps
128
+ num_inference_steps = len(timesteps)
129
+ else:
130
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
131
+ timesteps = scheduler.timesteps
132
+ return timesteps, num_inference_steps
133
+
134
+
135
+ class AllegroPipeline(DiffusionPipeline):
136
+ r"""
137
+ Pipeline for text-to-video generation using Allegro.
138
+
139
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
140
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
141
+
142
+ Args:
143
+ vae ([`AllegroAutoEncoderKL3D`]):
144
+ Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
145
+ text_encoder ([`T5EncoderModel`]):
146
+ Frozen text-encoder. PixArt-Alpha uses
147
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
148
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
149
+ tokenizer (`T5Tokenizer`):
150
+ Tokenizer of class
151
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
152
+ transformer ([`AllegroTransformer3DModel`]):
153
+ A text conditioned `AllegroTransformer3DModel` to denoise the encoded video latents.
154
+ scheduler ([`SchedulerMixin`]):
155
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
156
+ """
157
+
158
+ bad_punct_regex = re.compile(
159
+ r"["
160
+ + "#®•©™&@·º½¾¿¡§~"
161
+ + r"\)"
162
+ + r"\("
163
+ + r"\]"
164
+ + r"\["
165
+ + r"\}"
166
+ + r"\{"
167
+ + r"\|"
168
+ + "\\"
169
+ + r"\/"
170
+ + r"\*"
171
+ + r"]{1,}"
172
+ ) # noqa
173
+
174
+ _optional_components = []
175
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
176
+
177
+ _callback_tensor_inputs = [
178
+ "latents",
179
+ "prompt_embeds",
180
+ "negative_prompt_embeds",
181
+ ]
182
+
183
+ def __init__(
184
+ self,
185
+ tokenizer: T5Tokenizer,
186
+ text_encoder: T5EncoderModel,
187
+ vae: AutoencoderKLAllegro,
188
+ transformer: AllegroTransformer3DModel,
189
+ scheduler: KarrasDiffusionSchedulers,
190
+ ):
191
+ super().__init__()
192
+
193
+ self.register_modules(
194
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
195
+ )
196
+ self.vae_scale_factor_spatial = (
197
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
198
+ )
199
+ self.vae_scale_factor_temporal = (
200
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
201
+ )
202
+
203
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
204
+
205
+ # Copied from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha.PixArtAlphaPipeline.encode_prompt with 120->512, num_images_per_prompt->num_videos_per_prompt
206
+ def encode_prompt(
207
+ self,
208
+ prompt: Union[str, List[str]],
209
+ do_classifier_free_guidance: bool = True,
210
+ negative_prompt: str = "",
211
+ num_videos_per_prompt: int = 1,
212
+ device: Optional[torch.device] = None,
213
+ prompt_embeds: Optional[torch.Tensor] = None,
214
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
215
+ prompt_attention_mask: Optional[torch.Tensor] = None,
216
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
217
+ clean_caption: bool = False,
218
+ max_sequence_length: int = 512,
219
+ **kwargs,
220
+ ):
221
+ r"""
222
+ Encodes the prompt into text encoder hidden states.
223
+
224
+ Args:
225
+ prompt (`str` or `List[str]`, *optional*):
226
+ prompt to be encoded
227
+ negative_prompt (`str` or `List[str]`, *optional*):
228
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
229
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
230
+ PixArt-Alpha, this should be "".
231
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
232
+ whether to use classifier free guidance or not
233
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
234
+ number of images that should be generated per prompt
235
+ device: (`torch.device`, *optional*):
236
+ torch device to place the resulting embeddings on
237
+ prompt_embeds (`torch.Tensor`, *optional*):
238
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
239
+ provided, text embeddings will be generated from `prompt` input argument.
240
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
241
+ Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
242
+ string.
243
+ clean_caption (`bool`, defaults to `False`):
244
+ If `True`, the function will preprocess and clean the provided caption before encoding.
245
+ max_sequence_length (`int`, defaults to 512): Maximum sequence length to use for the prompt.
246
+ """
247
+
248
+ if "mask_feature" in kwargs:
249
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
250
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
251
+
252
+ if device is None:
253
+ device = self._execution_device
254
+
255
+ # See Section 3.1. of the paper.
256
+ max_length = max_sequence_length
257
+
258
+ if prompt_embeds is None:
259
+ prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
260
+ text_inputs = self.tokenizer(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_length,
264
+ truncation=True,
265
+ add_special_tokens=True,
266
+ return_tensors="pt",
267
+ )
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
270
+
271
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
272
+ text_input_ids, untruncated_ids
273
+ ):
274
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
275
+ logger.warning(
276
+ "The following part of your input was truncated because T5 can only handle sequences up to"
277
+ f" {max_length} tokens: {removed_text}"
278
+ )
279
+
280
+ prompt_attention_mask = text_inputs.attention_mask
281
+ prompt_attention_mask = prompt_attention_mask.to(device)
282
+
283
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
284
+ prompt_embeds = prompt_embeds[0]
285
+
286
+ if self.text_encoder is not None:
287
+ dtype = self.text_encoder.dtype
288
+ elif self.transformer is not None:
289
+ dtype = self.transformer.dtype
290
+ else:
291
+ dtype = None
292
+
293
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
294
+
295
+ bs_embed, seq_len, _ = prompt_embeds.shape
296
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
297
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
298
+ prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
299
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
300
+ prompt_attention_mask = prompt_attention_mask.view(bs_embed * num_videos_per_prompt, -1)
301
+
302
+ # get unconditional embeddings for classifier free guidance
303
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
304
+ uncond_tokens = [negative_prompt] * bs_embed if isinstance(negative_prompt, str) else negative_prompt
305
+ uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
306
+ max_length = prompt_embeds.shape[1]
307
+ uncond_input = self.tokenizer(
308
+ uncond_tokens,
309
+ padding="max_length",
310
+ max_length=max_length,
311
+ truncation=True,
312
+ return_attention_mask=True,
313
+ add_special_tokens=True,
314
+ return_tensors="pt",
315
+ )
316
+ negative_prompt_attention_mask = uncond_input.attention_mask
317
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
318
+
319
+ negative_prompt_embeds = self.text_encoder(
320
+ uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask
321
+ )
322
+ negative_prompt_embeds = negative_prompt_embeds[0]
323
+
324
+ if do_classifier_free_guidance:
325
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
326
+ seq_len = negative_prompt_embeds.shape[1]
327
+
328
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
329
+
330
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
331
+ negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
332
+
333
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(1, num_videos_per_prompt)
334
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed * num_videos_per_prompt, -1)
335
+ else:
336
+ negative_prompt_embeds = None
337
+ negative_prompt_attention_mask = None
338
+
339
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
340
+
341
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
342
+ def prepare_extra_step_kwargs(self, generator, eta):
343
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
344
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
345
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
346
+ # and should be between [0, 1]
347
+
348
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
349
+ extra_step_kwargs = {}
350
+ if accepts_eta:
351
+ extra_step_kwargs["eta"] = eta
352
+
353
+ # check if the scheduler accepts generator
354
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
355
+ if accepts_generator:
356
+ extra_step_kwargs["generator"] = generator
357
+ return extra_step_kwargs
358
+
359
+ def check_inputs(
360
+ self,
361
+ prompt,
362
+ num_frames,
363
+ height,
364
+ width,
365
+ callback_on_step_end_tensor_inputs,
366
+ negative_prompt=None,
367
+ prompt_embeds=None,
368
+ negative_prompt_embeds=None,
369
+ prompt_attention_mask=None,
370
+ negative_prompt_attention_mask=None,
371
+ ):
372
+ if num_frames <= 0:
373
+ raise ValueError(f"`num_frames` have to be positive but is {num_frames}.")
374
+ if height % 8 != 0 or width % 8 != 0:
375
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
376
+
377
+ if callback_on_step_end_tensor_inputs is not None and not all(
378
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
379
+ ):
380
+ raise ValueError(
381
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
382
+ )
383
+
384
+ if prompt is not None and prompt_embeds is not None:
385
+ raise ValueError(
386
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
387
+ " only forward one of the two."
388
+ )
389
+ elif prompt is None and prompt_embeds is None:
390
+ raise ValueError(
391
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
392
+ )
393
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
394
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
395
+
396
+ if prompt is not None and negative_prompt_embeds is not None:
397
+ raise ValueError(
398
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
399
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
400
+ )
401
+
402
+ if negative_prompt is not None and negative_prompt_embeds is not None:
403
+ raise ValueError(
404
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
405
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
406
+ )
407
+
408
+ if prompt_embeds is not None and prompt_attention_mask is None:
409
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
410
+
411
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
412
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
413
+
414
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
415
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
416
+ raise ValueError(
417
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
418
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
419
+ f" {negative_prompt_embeds.shape}."
420
+ )
421
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
422
+ raise ValueError(
423
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
424
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
425
+ f" {negative_prompt_attention_mask.shape}."
426
+ )
427
+
428
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
429
+ def _text_preprocessing(self, text, clean_caption=False):
430
+ if clean_caption and not is_bs4_available():
431
+ logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
432
+ logger.warning("Setting `clean_caption` to False...")
433
+ clean_caption = False
434
+
435
+ if clean_caption and not is_ftfy_available():
436
+ logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
437
+ logger.warning("Setting `clean_caption` to False...")
438
+ clean_caption = False
439
+
440
+ if not isinstance(text, (tuple, list)):
441
+ text = [text]
442
+
443
+ def process(text: str):
444
+ if clean_caption:
445
+ text = self._clean_caption(text)
446
+ text = self._clean_caption(text)
447
+ else:
448
+ text = text.lower().strip()
449
+ return text
450
+
451
+ return [process(t) for t in text]
452
+
453
+ # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
454
+ def _clean_caption(self, caption):
455
+ caption = str(caption)
456
+ caption = ul.unquote_plus(caption)
457
+ caption = caption.strip().lower()
458
+ caption = re.sub("<person>", "person", caption)
459
+ # urls:
460
+ caption = re.sub(
461
+ r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
462
+ "",
463
+ caption,
464
+ ) # regex for urls
465
+ caption = re.sub(
466
+ r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
467
+ "",
468
+ caption,
469
+ ) # regex for urls
470
+ # html:
471
+ caption = BeautifulSoup(caption, features="html.parser").text
472
+
473
+ # @<nickname>
474
+ caption = re.sub(r"@[\w\d]+\b", "", caption)
475
+
476
+ # 31C0—31EF CJK Strokes
477
+ # 31F0—31FF Katakana Phonetic Extensions
478
+ # 3200—32FF Enclosed CJK Letters and Months
479
+ # 3300—33FF CJK Compatibility
480
+ # 3400—4DBF CJK Unified Ideographs Extension A
481
+ # 4DC0—4DFF Yijing Hexagram Symbols
482
+ # 4E00—9FFF CJK Unified Ideographs
483
+ caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
484
+ caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
485
+ caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
486
+ caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
487
+ caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
488
+ caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
489
+ caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
490
+ #######################################################
491
+
492
+ # все виды тире / all types of dash --> "-"
493
+ caption = re.sub(
494
+ r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
495
+ "-",
496
+ caption,
497
+ )
498
+
499
+ # кавычки к одному стандарту
500
+ caption = re.sub(r"[`´«»“”¨]", '"', caption)
501
+ caption = re.sub(r"[‘’]", "'", caption)
502
+
503
+ # &quot;
504
+ caption = re.sub(r"&quot;?", "", caption)
505
+ # &amp
506
+ caption = re.sub(r"&amp", "", caption)
507
+
508
+ # ip adresses:
509
+ caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
510
+
511
+ # article ids:
512
+ caption = re.sub(r"\d:\d\d\s+$", "", caption)
513
+
514
+ # \n
515
+ caption = re.sub(r"\\n", " ", caption)
516
+
517
+ # "#123"
518
+ caption = re.sub(r"#\d{1,3}\b", "", caption)
519
+ # "#12345.."
520
+ caption = re.sub(r"#\d{5,}\b", "", caption)
521
+ # "123456.."
522
+ caption = re.sub(r"\b\d{6,}\b", "", caption)
523
+ # filenames:
524
+ caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
525
+
526
+ #
527
+ caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
528
+ caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
529
+
530
+ caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
531
+ caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
532
+
533
+ # this-is-my-cute-cat / this_is_my_cute_cat
534
+ regex2 = re.compile(r"(?:\-|\_)")
535
+ if len(re.findall(regex2, caption)) > 3:
536
+ caption = re.sub(regex2, " ", caption)
537
+
538
+ caption = ftfy.fix_text(caption)
539
+ caption = html.unescape(html.unescape(caption))
540
+
541
+ caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
542
+ caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
543
+ caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
544
+
545
+ caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
546
+ caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
547
+ caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
548
+ caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
549
+ caption = re.sub(r"\bpage\s+\d+\b", "", caption)
550
+
551
+ caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
552
+
553
+ caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
554
+
555
+ caption = re.sub(r"\b\s+\:\s+", r": ", caption)
556
+ caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
557
+ caption = re.sub(r"\s+", " ", caption)
558
+
559
+ caption.strip()
560
+
561
+ caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
562
+ caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
563
+ caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
564
+ caption = re.sub(r"^\.\S+$", "", caption)
565
+
566
+ return caption.strip()
567
+
568
+ def prepare_latents(
569
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
570
+ ):
571
+ if isinstance(generator, list) and len(generator) != batch_size:
572
+ raise ValueError(
573
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
574
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
575
+ )
576
+
577
+ if num_frames % 2 == 0:
578
+ num_frames = math.ceil(num_frames / self.vae_scale_factor_temporal)
579
+ else:
580
+ num_frames = math.ceil((num_frames - 1) / self.vae_scale_factor_temporal) + 1
581
+
582
+ shape = (
583
+ batch_size,
584
+ num_channels_latents,
585
+ num_frames,
586
+ height // self.vae_scale_factor_spatial,
587
+ width // self.vae_scale_factor_spatial,
588
+ )
589
+
590
+ if latents is None:
591
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
592
+ else:
593
+ latents = latents.to(device)
594
+
595
+ # scale the initial noise by the standard deviation required by the scheduler
596
+ latents = latents * self.scheduler.init_noise_sigma
597
+ return latents
598
+
599
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
600
+ latents = 1 / self.vae.config.scaling_factor * latents
601
+ frames = self.vae.decode(latents).sample
602
+ frames = frames.permute(0, 2, 1, 3, 4) # [batch_size, channels, num_frames, height, width]
603
+ return frames
604
+
605
+ def _prepare_rotary_positional_embeddings(
606
+ self,
607
+ batch_size: int,
608
+ height: int,
609
+ width: int,
610
+ num_frames: int,
611
+ device: torch.device,
612
+ ):
613
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
614
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
615
+
616
+ start, stop = (0, 0), (grid_height, grid_width)
617
+ freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w = get_3d_rotary_pos_embed_allegro(
618
+ embed_dim=self.transformer.config.attention_head_dim,
619
+ crops_coords=(start, stop),
620
+ grid_size=(grid_height, grid_width),
621
+ temporal_size=num_frames,
622
+ interpolation_scale=(
623
+ self.transformer.config.interpolation_scale_t,
624
+ self.transformer.config.interpolation_scale_h,
625
+ self.transformer.config.interpolation_scale_w,
626
+ ),
627
+ device=device,
628
+ )
629
+
630
+ grid_t = grid_t.to(dtype=torch.long)
631
+ grid_h = grid_h.to(dtype=torch.long)
632
+ grid_w = grid_w.to(dtype=torch.long)
633
+
634
+ pos = torch.cartesian_prod(grid_t, grid_h, grid_w)
635
+ pos = pos.reshape(-1, 3).transpose(0, 1).reshape(3, 1, -1).contiguous()
636
+ grid_t, grid_h, grid_w = pos
637
+
638
+ return (freqs_t, freqs_h, freqs_w), (grid_t, grid_h, grid_w)
639
+
640
+ def enable_vae_slicing(self):
641
+ r"""
642
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
643
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
644
+ """
645
+ self.vae.enable_slicing()
646
+
647
+ def disable_vae_slicing(self):
648
+ r"""
649
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
650
+ computing decoding in one step.
651
+ """
652
+ self.vae.disable_slicing()
653
+
654
+ def enable_vae_tiling(self):
655
+ r"""
656
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
657
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
658
+ processing larger images.
659
+ """
660
+ self.vae.enable_tiling()
661
+
662
+ def disable_vae_tiling(self):
663
+ r"""
664
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
665
+ computing decoding in one step.
666
+ """
667
+ self.vae.disable_tiling()
668
+
669
+ @property
670
+ def guidance_scale(self):
671
+ return self._guidance_scale
672
+
673
+ @property
674
+ def num_timesteps(self):
675
+ return self._num_timesteps
676
+
677
+ @property
678
+ def interrupt(self):
679
+ return self._interrupt
680
+
681
+ @torch.no_grad()
682
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
683
+ def __call__(
684
+ self,
685
+ prompt: Union[str, List[str]] = None,
686
+ negative_prompt: str = "",
687
+ num_inference_steps: int = 100,
688
+ timesteps: List[int] = None,
689
+ guidance_scale: float = 7.5,
690
+ num_frames: Optional[int] = None,
691
+ height: Optional[int] = None,
692
+ width: Optional[int] = None,
693
+ num_videos_per_prompt: int = 1,
694
+ eta: float = 0.0,
695
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
696
+ latents: Optional[torch.Tensor] = None,
697
+ prompt_embeds: Optional[torch.Tensor] = None,
698
+ prompt_attention_mask: Optional[torch.Tensor] = None,
699
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
700
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
701
+ output_type: Optional[str] = "pil",
702
+ return_dict: bool = True,
703
+ callback_on_step_end: Optional[
704
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
705
+ ] = None,
706
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
707
+ clean_caption: bool = True,
708
+ max_sequence_length: int = 512,
709
+ ) -> Union[AllegroPipelineOutput, Tuple]:
710
+ """
711
+ Function invoked when calling the pipeline for generation.
712
+
713
+ Args:
714
+ prompt (`str` or `List[str]`, *optional*):
715
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
716
+ instead.
717
+ negative_prompt (`str` or `List[str]`, *optional*):
718
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
719
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
720
+ less than `1`).
721
+ num_inference_steps (`int`, *optional*, defaults to 100):
722
+ The number of denoising steps. More denoising steps usually lead to a higher quality video at the
723
+ expense of slower inference.
724
+ timesteps (`List[int]`, *optional*):
725
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
726
+ timesteps are used. Must be in descending order.
727
+ guidance_scale (`float`, *optional*, defaults to 7.5):
728
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
729
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
730
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
731
+ 1`. Higher guidance scale encourages to generate videos that are closely linked to the text `prompt`,
732
+ usually at the expense of lower video quality.
733
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
734
+ The number of videos to generate per prompt.
735
+ num_frames: (`int`, *optional*, defaults to 88):
736
+ The number controls the generated video frames.
737
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
738
+ The height in pixels of the generated video.
739
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
740
+ The width in pixels of the generated video.
741
+ eta (`float`, *optional*, defaults to 0.0):
742
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
743
+ [`schedulers.DDIMScheduler`], will be ignored for others.
744
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
745
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
746
+ to make generation deterministic.
747
+ latents (`torch.Tensor`, *optional*):
748
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
749
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
750
+ tensor will ge generated by sampling using the supplied random `generator`.
751
+ prompt_embeds (`torch.Tensor`, *optional*):
752
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
753
+ provided, text embeddings will be generated from `prompt` input argument.
754
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
755
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
756
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
757
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
758
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
759
+ Pre-generated attention mask for negative text embeddings.
760
+ output_type (`str`, *optional*, defaults to `"pil"`):
761
+ The output format of the generate video. Choose between
762
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
763
+ return_dict (`bool`, *optional*, defaults to `True`):
764
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
765
+ callback (`Callable`, *optional*):
766
+ A function that will be called every `callback_steps` steps during inference. The function will be
767
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
768
+ callback_steps (`int`, *optional*, defaults to 1):
769
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
770
+ called at every step.
771
+ clean_caption (`bool`, *optional*, defaults to `True`):
772
+ Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
773
+ be installed. If the dependencies are not installed, the embeddings will be created from the raw
774
+ prompt.
775
+ max_sequence_length (`int` defaults to `512`):
776
+ Maximum sequence length to use with the `prompt`.
777
+
778
+ Examples:
779
+
780
+ Returns:
781
+ [`~pipelines.allegro.pipeline_output.AllegroPipelineOutput`] or `tuple`:
782
+ If `return_dict` is `True`, [`~pipelines.allegro.pipeline_output.AllegroPipelineOutput`] is returned,
783
+ otherwise a `tuple` is returned where the first element is a list with the generated videos.
784
+ """
785
+
786
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
787
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
788
+
789
+ num_videos_per_prompt = 1
790
+
791
+ # 1. Check inputs. Raise error if not correct
792
+ num_frames = num_frames or self.transformer.config.sample_frames * self.vae_scale_factor_temporal
793
+ height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
794
+ width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
795
+
796
+ self.check_inputs(
797
+ prompt,
798
+ num_frames,
799
+ height,
800
+ width,
801
+ callback_on_step_end_tensor_inputs,
802
+ negative_prompt,
803
+ prompt_embeds,
804
+ negative_prompt_embeds,
805
+ prompt_attention_mask,
806
+ negative_prompt_attention_mask,
807
+ )
808
+ self._guidance_scale = guidance_scale
809
+ self._interrupt = False
810
+
811
+ # 2. Default height and width to transformer
812
+ if prompt is not None and isinstance(prompt, str):
813
+ batch_size = 1
814
+ elif prompt is not None and isinstance(prompt, list):
815
+ batch_size = len(prompt)
816
+ else:
817
+ batch_size = prompt_embeds.shape[0]
818
+
819
+ device = self._execution_device
820
+
821
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
822
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
823
+ # corresponds to doing no classifier free guidance.
824
+ do_classifier_free_guidance = guidance_scale > 1.0
825
+
826
+ # 3. Encode input prompt
827
+ (
828
+ prompt_embeds,
829
+ prompt_attention_mask,
830
+ negative_prompt_embeds,
831
+ negative_prompt_attention_mask,
832
+ ) = self.encode_prompt(
833
+ prompt,
834
+ do_classifier_free_guidance,
835
+ negative_prompt=negative_prompt,
836
+ num_videos_per_prompt=num_videos_per_prompt,
837
+ device=device,
838
+ prompt_embeds=prompt_embeds,
839
+ negative_prompt_embeds=negative_prompt_embeds,
840
+ prompt_attention_mask=prompt_attention_mask,
841
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
842
+ clean_caption=clean_caption,
843
+ max_sequence_length=max_sequence_length,
844
+ )
845
+ if do_classifier_free_guidance:
846
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
847
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
848
+ if prompt_embeds.ndim == 3:
849
+ prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d
850
+
851
+ # 4. Prepare timesteps
852
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
853
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
854
+
855
+ # 5. Prepare latents.
856
+ latent_channels = self.transformer.config.in_channels
857
+ latents = self.prepare_latents(
858
+ batch_size * num_videos_per_prompt,
859
+ latent_channels,
860
+ num_frames,
861
+ height,
862
+ width,
863
+ prompt_embeds.dtype,
864
+ device,
865
+ generator,
866
+ latents,
867
+ )
868
+
869
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
870
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
871
+
872
+ # 7. Prepare rotary embeddings
873
+ image_rotary_emb = self._prepare_rotary_positional_embeddings(
874
+ batch_size, height, width, latents.size(2), device
875
+ )
876
+
877
+ # 8. Denoising loop
878
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
879
+ self._num_timesteps = len(timesteps)
880
+
881
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
882
+ for i, t in enumerate(timesteps):
883
+ if self.interrupt:
884
+ continue
885
+
886
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
887
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
888
+
889
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
890
+ timestep = t.expand(latent_model_input.shape[0])
891
+
892
+ # predict noise model_output
893
+ noise_pred = self.transformer(
894
+ hidden_states=latent_model_input,
895
+ encoder_hidden_states=prompt_embeds,
896
+ encoder_attention_mask=prompt_attention_mask,
897
+ timestep=timestep,
898
+ image_rotary_emb=image_rotary_emb,
899
+ return_dict=False,
900
+ )[0]
901
+
902
+ # perform guidance
903
+ if do_classifier_free_guidance:
904
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
905
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
906
+
907
+ # compute previous image: x_t -> x_t-1
908
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
909
+
910
+ # call the callback, if provided
911
+ if callback_on_step_end is not None:
912
+ callback_kwargs = {}
913
+ for k in callback_on_step_end_tensor_inputs:
914
+ callback_kwargs[k] = locals()[k]
915
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
916
+
917
+ latents = callback_outputs.pop("latents", latents)
918
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
919
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
920
+
921
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
922
+ progress_bar.update()
923
+
924
+ if not output_type == "latent":
925
+ latents = latents.to(self.vae.dtype)
926
+ video = self.decode_latents(latents)
927
+ video = video[:, :, :num_frames, :height, :width]
928
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
929
+ else:
930
+ video = latents
931
+
932
+ # Offload all models
933
+ self.maybe_free_model_hooks()
934
+
935
+ if not return_dict:
936
+ return (video,)
937
+
938
+ return AllegroPipelineOutput(frames=video)