diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,789 @@
1
+ # Copyright 2024 Lightricks and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
23
+ from ...loaders import FromSingleFileMixin, LTXVideoLoraLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKLLTXVideo
25
+ from ...models.transformers import LTXVideoTransformer3DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from ...utils.torch_utils import randn_tensor
29
+ from ...video_processor import VideoProcessor
30
+ from ..pipeline_utils import DiffusionPipeline
31
+ from .pipeline_output import LTXPipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+ EXAMPLE_DOC_STRING = """
44
+ Examples:
45
+ ```py
46
+ >>> import torch
47
+ >>> from diffusers import LTXPipeline
48
+ >>> from diffusers.utils import export_to_video
49
+
50
+ >>> pipe = LTXPipeline.from_pretrained("Lightricks/LTX-Video", torch_dtype=torch.bfloat16)
51
+ >>> pipe.to("cuda")
52
+
53
+ >>> prompt = "A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage"
54
+ >>> negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
55
+
56
+ >>> video = pipe(
57
+ ... prompt=prompt,
58
+ ... negative_prompt=negative_prompt,
59
+ ... width=704,
60
+ ... height=480,
61
+ ... num_frames=161,
62
+ ... num_inference_steps=50,
63
+ ... ).frames[0]
64
+ >>> export_to_video(video, "output.mp4", fps=24)
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
70
+ def calculate_shift(
71
+ image_seq_len,
72
+ base_seq_len: int = 256,
73
+ max_seq_len: int = 4096,
74
+ base_shift: float = 0.5,
75
+ max_shift: float = 1.16,
76
+ ):
77
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
78
+ b = base_shift - m * base_seq_len
79
+ mu = image_seq_len * m + b
80
+ return mu
81
+
82
+
83
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
84
+ def retrieve_timesteps(
85
+ scheduler,
86
+ num_inference_steps: Optional[int] = None,
87
+ device: Optional[Union[str, torch.device]] = None,
88
+ timesteps: Optional[List[int]] = None,
89
+ sigmas: Optional[List[float]] = None,
90
+ **kwargs,
91
+ ):
92
+ r"""
93
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
94
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
95
+
96
+ Args:
97
+ scheduler (`SchedulerMixin`):
98
+ The scheduler to get timesteps from.
99
+ num_inference_steps (`int`):
100
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
101
+ must be `None`.
102
+ device (`str` or `torch.device`, *optional*):
103
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
104
+ timesteps (`List[int]`, *optional*):
105
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
106
+ `num_inference_steps` and `sigmas` must be `None`.
107
+ sigmas (`List[float]`, *optional*):
108
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
109
+ `num_inference_steps` and `timesteps` must be `None`.
110
+
111
+ Returns:
112
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
113
+ second element is the number of inference steps.
114
+ """
115
+ if timesteps is not None and sigmas is not None:
116
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
117
+ if timesteps is not None:
118
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
119
+ if not accepts_timesteps:
120
+ raise ValueError(
121
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
122
+ f" timestep schedules. Please check whether you are using the correct scheduler."
123
+ )
124
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
125
+ timesteps = scheduler.timesteps
126
+ num_inference_steps = len(timesteps)
127
+ elif sigmas is not None:
128
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
129
+ if not accept_sigmas:
130
+ raise ValueError(
131
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
132
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
133
+ )
134
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ num_inference_steps = len(timesteps)
137
+ else:
138
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ return timesteps, num_inference_steps
141
+
142
+
143
+ class LTXPipeline(DiffusionPipeline, FromSingleFileMixin, LTXVideoLoraLoaderMixin):
144
+ r"""
145
+ Pipeline for text-to-video generation.
146
+
147
+ Reference: https://github.com/Lightricks/LTX-Video
148
+
149
+ Args:
150
+ transformer ([`LTXVideoTransformer3DModel`]):
151
+ Conditional Transformer architecture to denoise the encoded video latents.
152
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
153
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
154
+ vae ([`AutoencoderKLLTXVideo`]):
155
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
156
+ text_encoder ([`T5EncoderModel`]):
157
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
158
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
159
+ tokenizer (`CLIPTokenizer`):
160
+ Tokenizer of class
161
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
162
+ tokenizer (`T5TokenizerFast`):
163
+ Second Tokenizer of class
164
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
165
+ """
166
+
167
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
168
+ _optional_components = []
169
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
170
+
171
+ def __init__(
172
+ self,
173
+ scheduler: FlowMatchEulerDiscreteScheduler,
174
+ vae: AutoencoderKLLTXVideo,
175
+ text_encoder: T5EncoderModel,
176
+ tokenizer: T5TokenizerFast,
177
+ transformer: LTXVideoTransformer3DModel,
178
+ ):
179
+ super().__init__()
180
+
181
+ self.register_modules(
182
+ vae=vae,
183
+ text_encoder=text_encoder,
184
+ tokenizer=tokenizer,
185
+ transformer=transformer,
186
+ scheduler=scheduler,
187
+ )
188
+
189
+ self.vae_spatial_compression_ratio = self.vae.spatial_compression_ratio if hasattr(self, "vae") else 32
190
+ self.vae_temporal_compression_ratio = self.vae.temporal_compression_ratio if hasattr(self, "vae") else 8
191
+ self.transformer_spatial_patch_size = self.transformer.config.patch_size if hasattr(self, "transformer") else 1
192
+ self.transformer_temporal_patch_size = (
193
+ self.transformer.config.patch_size_t if hasattr(self, "transformer") else 1
194
+ )
195
+
196
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
197
+ self.tokenizer_max_length = (
198
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 128
199
+ )
200
+
201
+ def _get_t5_prompt_embeds(
202
+ self,
203
+ prompt: Union[str, List[str]] = None,
204
+ num_videos_per_prompt: int = 1,
205
+ max_sequence_length: int = 128,
206
+ device: Optional[torch.device] = None,
207
+ dtype: Optional[torch.dtype] = None,
208
+ ):
209
+ device = device or self._execution_device
210
+ dtype = dtype or self.text_encoder.dtype
211
+
212
+ prompt = [prompt] if isinstance(prompt, str) else prompt
213
+ batch_size = len(prompt)
214
+
215
+ text_inputs = self.tokenizer(
216
+ prompt,
217
+ padding="max_length",
218
+ max_length=max_sequence_length,
219
+ truncation=True,
220
+ add_special_tokens=True,
221
+ return_tensors="pt",
222
+ )
223
+ text_input_ids = text_inputs.input_ids
224
+ prompt_attention_mask = text_inputs.attention_mask
225
+ prompt_attention_mask = prompt_attention_mask.bool().to(device)
226
+
227
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
228
+
229
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
230
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
231
+ logger.warning(
232
+ "The following part of your input was truncated because `max_sequence_length` is set to "
233
+ f" {max_sequence_length} tokens: {removed_text}"
234
+ )
235
+
236
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
237
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
238
+
239
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
240
+ _, seq_len, _ = prompt_embeds.shape
241
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
242
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
243
+
244
+ prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
245
+ prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
246
+
247
+ return prompt_embeds, prompt_attention_mask
248
+
249
+ # Copied from diffusers.pipelines.mochi.pipeline_mochi.MochiPipeline.encode_prompt with 256->128
250
+ def encode_prompt(
251
+ self,
252
+ prompt: Union[str, List[str]],
253
+ negative_prompt: Optional[Union[str, List[str]]] = None,
254
+ do_classifier_free_guidance: bool = True,
255
+ num_videos_per_prompt: int = 1,
256
+ prompt_embeds: Optional[torch.Tensor] = None,
257
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
258
+ prompt_attention_mask: Optional[torch.Tensor] = None,
259
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
260
+ max_sequence_length: int = 128,
261
+ device: Optional[torch.device] = None,
262
+ dtype: Optional[torch.dtype] = None,
263
+ ):
264
+ r"""
265
+ Encodes the prompt into text encoder hidden states.
266
+
267
+ Args:
268
+ prompt (`str` or `List[str]`, *optional*):
269
+ prompt to be encoded
270
+ negative_prompt (`str` or `List[str]`, *optional*):
271
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
272
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
273
+ less than `1`).
274
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
275
+ Whether to use classifier free guidance or not.
276
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
277
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
278
+ prompt_embeds (`torch.Tensor`, *optional*):
279
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
280
+ provided, text embeddings will be generated from `prompt` input argument.
281
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
282
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
283
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
284
+ argument.
285
+ device: (`torch.device`, *optional*):
286
+ torch device
287
+ dtype: (`torch.dtype`, *optional*):
288
+ torch dtype
289
+ """
290
+ device = device or self._execution_device
291
+
292
+ prompt = [prompt] if isinstance(prompt, str) else prompt
293
+ if prompt is not None:
294
+ batch_size = len(prompt)
295
+ else:
296
+ batch_size = prompt_embeds.shape[0]
297
+
298
+ if prompt_embeds is None:
299
+ prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
300
+ prompt=prompt,
301
+ num_videos_per_prompt=num_videos_per_prompt,
302
+ max_sequence_length=max_sequence_length,
303
+ device=device,
304
+ dtype=dtype,
305
+ )
306
+
307
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
308
+ negative_prompt = negative_prompt or ""
309
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
310
+
311
+ if prompt is not None and type(prompt) is not type(negative_prompt):
312
+ raise TypeError(
313
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
314
+ f" {type(prompt)}."
315
+ )
316
+ elif batch_size != len(negative_prompt):
317
+ raise ValueError(
318
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
319
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
320
+ " the batch size of `prompt`."
321
+ )
322
+
323
+ negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
324
+ prompt=negative_prompt,
325
+ num_videos_per_prompt=num_videos_per_prompt,
326
+ max_sequence_length=max_sequence_length,
327
+ device=device,
328
+ dtype=dtype,
329
+ )
330
+
331
+ return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
332
+
333
+ def check_inputs(
334
+ self,
335
+ prompt,
336
+ height,
337
+ width,
338
+ callback_on_step_end_tensor_inputs=None,
339
+ prompt_embeds=None,
340
+ negative_prompt_embeds=None,
341
+ prompt_attention_mask=None,
342
+ negative_prompt_attention_mask=None,
343
+ ):
344
+ if height % 32 != 0 or width % 32 != 0:
345
+ raise ValueError(f"`height` and `width` have to be divisible by 32 but are {height} and {width}.")
346
+
347
+ if callback_on_step_end_tensor_inputs is not None and not all(
348
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
349
+ ):
350
+ raise ValueError(
351
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
352
+ )
353
+
354
+ if prompt is not None and prompt_embeds is not None:
355
+ raise ValueError(
356
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
357
+ " only forward one of the two."
358
+ )
359
+ elif prompt is None and prompt_embeds is None:
360
+ raise ValueError(
361
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
362
+ )
363
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
364
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
365
+
366
+ if prompt_embeds is not None and prompt_attention_mask is None:
367
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
368
+
369
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
370
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
371
+
372
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
373
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
374
+ raise ValueError(
375
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
376
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
377
+ f" {negative_prompt_embeds.shape}."
378
+ )
379
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
380
+ raise ValueError(
381
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
382
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
383
+ f" {negative_prompt_attention_mask.shape}."
384
+ )
385
+
386
+ @staticmethod
387
+ def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
388
+ # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
389
+ # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
390
+ # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
391
+ # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
392
+ batch_size, num_channels, num_frames, height, width = latents.shape
393
+ post_patch_num_frames = num_frames // patch_size_t
394
+ post_patch_height = height // patch_size
395
+ post_patch_width = width // patch_size
396
+ latents = latents.reshape(
397
+ batch_size,
398
+ -1,
399
+ post_patch_num_frames,
400
+ patch_size_t,
401
+ post_patch_height,
402
+ patch_size,
403
+ post_patch_width,
404
+ patch_size,
405
+ )
406
+ latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
407
+ return latents
408
+
409
+ @staticmethod
410
+ def _unpack_latents(
411
+ latents: torch.Tensor, num_frames: int, height: int, width: int, patch_size: int = 1, patch_size_t: int = 1
412
+ ) -> torch.Tensor:
413
+ # Packed latents of shape [B, S, D] (S is the effective video sequence length, D is the effective feature dimensions)
414
+ # are unpacked and reshaped into a video tensor of shape [B, C, F, H, W]. This is the inverse operation of
415
+ # what happens in the `_pack_latents` method.
416
+ batch_size = latents.size(0)
417
+ latents = latents.reshape(batch_size, num_frames, height, width, -1, patch_size_t, patch_size, patch_size)
418
+ latents = latents.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(2, 3)
419
+ return latents
420
+
421
+ @staticmethod
422
+ def _normalize_latents(
423
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
424
+ ) -> torch.Tensor:
425
+ # Normalize latents across the channel dimension [B, C, F, H, W]
426
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
427
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
428
+ latents = (latents - latents_mean) * scaling_factor / latents_std
429
+ return latents
430
+
431
+ @staticmethod
432
+ def _denormalize_latents(
433
+ latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
434
+ ) -> torch.Tensor:
435
+ # Denormalize latents across the channel dimension [B, C, F, H, W]
436
+ latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
437
+ latents_std = latents_std.view(1, -1, 1, 1, 1).to(latents.device, latents.dtype)
438
+ latents = latents * latents_std / scaling_factor + latents_mean
439
+ return latents
440
+
441
+ def prepare_latents(
442
+ self,
443
+ batch_size: int = 1,
444
+ num_channels_latents: int = 128,
445
+ height: int = 512,
446
+ width: int = 704,
447
+ num_frames: int = 161,
448
+ dtype: Optional[torch.dtype] = None,
449
+ device: Optional[torch.device] = None,
450
+ generator: Optional[torch.Generator] = None,
451
+ latents: Optional[torch.Tensor] = None,
452
+ ) -> torch.Tensor:
453
+ if latents is not None:
454
+ return latents.to(device=device, dtype=dtype)
455
+
456
+ height = height // self.vae_spatial_compression_ratio
457
+ width = width // self.vae_spatial_compression_ratio
458
+ num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
459
+
460
+ shape = (batch_size, num_channels_latents, num_frames, height, width)
461
+
462
+ if isinstance(generator, list) and len(generator) != batch_size:
463
+ raise ValueError(
464
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
465
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
466
+ )
467
+
468
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
469
+ latents = self._pack_latents(
470
+ latents, self.transformer_spatial_patch_size, self.transformer_temporal_patch_size
471
+ )
472
+ return latents
473
+
474
+ @property
475
+ def guidance_scale(self):
476
+ return self._guidance_scale
477
+
478
+ @property
479
+ def do_classifier_free_guidance(self):
480
+ return self._guidance_scale > 1.0
481
+
482
+ @property
483
+ def num_timesteps(self):
484
+ return self._num_timesteps
485
+
486
+ @property
487
+ def attention_kwargs(self):
488
+ return self._attention_kwargs
489
+
490
+ @property
491
+ def interrupt(self):
492
+ return self._interrupt
493
+
494
+ @torch.no_grad()
495
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
496
+ def __call__(
497
+ self,
498
+ prompt: Union[str, List[str]] = None,
499
+ negative_prompt: Optional[Union[str, List[str]]] = None,
500
+ height: int = 512,
501
+ width: int = 704,
502
+ num_frames: int = 161,
503
+ frame_rate: int = 25,
504
+ num_inference_steps: int = 50,
505
+ timesteps: List[int] = None,
506
+ guidance_scale: float = 3,
507
+ num_videos_per_prompt: Optional[int] = 1,
508
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
509
+ latents: Optional[torch.Tensor] = None,
510
+ prompt_embeds: Optional[torch.Tensor] = None,
511
+ prompt_attention_mask: Optional[torch.Tensor] = None,
512
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
513
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
514
+ decode_timestep: Union[float, List[float]] = 0.0,
515
+ decode_noise_scale: Optional[Union[float, List[float]]] = None,
516
+ output_type: Optional[str] = "pil",
517
+ return_dict: bool = True,
518
+ attention_kwargs: Optional[Dict[str, Any]] = None,
519
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
520
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
521
+ max_sequence_length: int = 128,
522
+ ):
523
+ r"""
524
+ Function invoked when calling the pipeline for generation.
525
+
526
+ Args:
527
+ prompt (`str` or `List[str]`, *optional*):
528
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
529
+ instead.
530
+ height (`int`, defaults to `512`):
531
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
532
+ width (`int`, defaults to `704`):
533
+ The width in pixels of the generated image. This is set to 848 by default for the best results.
534
+ num_frames (`int`, defaults to `161`):
535
+ The number of video frames to generate
536
+ num_inference_steps (`int`, *optional*, defaults to 50):
537
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
538
+ expense of slower inference.
539
+ timesteps (`List[int]`, *optional*):
540
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
541
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
542
+ passed will be used. Must be in descending order.
543
+ guidance_scale (`float`, defaults to `3 `):
544
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
545
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
546
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
547
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
548
+ usually at the expense of lower image quality.
549
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
550
+ The number of videos to generate per prompt.
551
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
552
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
553
+ to make generation deterministic.
554
+ latents (`torch.Tensor`, *optional*):
555
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
556
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
557
+ tensor will ge generated by sampling using the supplied random `generator`.
558
+ prompt_embeds (`torch.Tensor`, *optional*):
559
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
560
+ provided, text embeddings will be generated from `prompt` input argument.
561
+ prompt_attention_mask (`torch.Tensor`, *optional*):
562
+ Pre-generated attention mask for text embeddings.
563
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
564
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
565
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
566
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
567
+ Pre-generated attention mask for negative text embeddings.
568
+ decode_timestep (`float`, defaults to `0.0`):
569
+ The timestep at which generated video is decoded.
570
+ decode_noise_scale (`float`, defaults to `None`):
571
+ The interpolation factor between random noise and denoised latents at the decode timestep.
572
+ output_type (`str`, *optional*, defaults to `"pil"`):
573
+ The output format of the generate image. Choose between
574
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
575
+ return_dict (`bool`, *optional*, defaults to `True`):
576
+ Whether or not to return a [`~pipelines.ltx.LTXPipelineOutput`] instead of a plain tuple.
577
+ attention_kwargs (`dict`, *optional*):
578
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
579
+ `self.processor` in
580
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
581
+ callback_on_step_end (`Callable`, *optional*):
582
+ A function that calls at the end of each denoising steps during the inference. The function is called
583
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
584
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
585
+ `callback_on_step_end_tensor_inputs`.
586
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
587
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
588
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
589
+ `._callback_tensor_inputs` attribute of your pipeline class.
590
+ max_sequence_length (`int` defaults to `128 `):
591
+ Maximum sequence length to use with the `prompt`.
592
+
593
+ Examples:
594
+
595
+ Returns:
596
+ [`~pipelines.ltx.LTXPipelineOutput`] or `tuple`:
597
+ If `return_dict` is `True`, [`~pipelines.ltx.LTXPipelineOutput`] is returned, otherwise a `tuple` is
598
+ returned where the first element is a list with the generated images.
599
+ """
600
+
601
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
602
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
603
+
604
+ # 1. Check inputs. Raise error if not correct
605
+ self.check_inputs(
606
+ prompt=prompt,
607
+ height=height,
608
+ width=width,
609
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
610
+ prompt_embeds=prompt_embeds,
611
+ negative_prompt_embeds=negative_prompt_embeds,
612
+ prompt_attention_mask=prompt_attention_mask,
613
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
614
+ )
615
+
616
+ self._guidance_scale = guidance_scale
617
+ self._attention_kwargs = attention_kwargs
618
+ self._interrupt = False
619
+
620
+ # 2. Define call parameters
621
+ if prompt is not None and isinstance(prompt, str):
622
+ batch_size = 1
623
+ elif prompt is not None and isinstance(prompt, list):
624
+ batch_size = len(prompt)
625
+ else:
626
+ batch_size = prompt_embeds.shape[0]
627
+
628
+ device = self._execution_device
629
+
630
+ # 3. Prepare text embeddings
631
+ (
632
+ prompt_embeds,
633
+ prompt_attention_mask,
634
+ negative_prompt_embeds,
635
+ negative_prompt_attention_mask,
636
+ ) = self.encode_prompt(
637
+ prompt=prompt,
638
+ negative_prompt=negative_prompt,
639
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
640
+ num_videos_per_prompt=num_videos_per_prompt,
641
+ prompt_embeds=prompt_embeds,
642
+ negative_prompt_embeds=negative_prompt_embeds,
643
+ prompt_attention_mask=prompt_attention_mask,
644
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
645
+ max_sequence_length=max_sequence_length,
646
+ device=device,
647
+ )
648
+ if self.do_classifier_free_guidance:
649
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
650
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
651
+
652
+ # 4. Prepare latent variables
653
+ num_channels_latents = self.transformer.config.in_channels
654
+ latents = self.prepare_latents(
655
+ batch_size * num_videos_per_prompt,
656
+ num_channels_latents,
657
+ height,
658
+ width,
659
+ num_frames,
660
+ torch.float32,
661
+ device,
662
+ generator,
663
+ latents,
664
+ )
665
+
666
+ # 5. Prepare timesteps
667
+ latent_num_frames = (num_frames - 1) // self.vae_temporal_compression_ratio + 1
668
+ latent_height = height // self.vae_spatial_compression_ratio
669
+ latent_width = width // self.vae_spatial_compression_ratio
670
+ video_sequence_length = latent_num_frames * latent_height * latent_width
671
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
672
+ mu = calculate_shift(
673
+ video_sequence_length,
674
+ self.scheduler.config.base_image_seq_len,
675
+ self.scheduler.config.max_image_seq_len,
676
+ self.scheduler.config.base_shift,
677
+ self.scheduler.config.max_shift,
678
+ )
679
+ timesteps, num_inference_steps = retrieve_timesteps(
680
+ self.scheduler,
681
+ num_inference_steps,
682
+ device,
683
+ timesteps,
684
+ sigmas=sigmas,
685
+ mu=mu,
686
+ )
687
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
688
+ self._num_timesteps = len(timesteps)
689
+
690
+ # 6. Prepare micro-conditions
691
+ latent_frame_rate = frame_rate / self.vae_temporal_compression_ratio
692
+ rope_interpolation_scale = (
693
+ 1 / latent_frame_rate,
694
+ self.vae_spatial_compression_ratio,
695
+ self.vae_spatial_compression_ratio,
696
+ )
697
+
698
+ # 7. Denoising loop
699
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
700
+ for i, t in enumerate(timesteps):
701
+ if self.interrupt:
702
+ continue
703
+
704
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
705
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
706
+
707
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
708
+ timestep = t.expand(latent_model_input.shape[0])
709
+
710
+ noise_pred = self.transformer(
711
+ hidden_states=latent_model_input,
712
+ encoder_hidden_states=prompt_embeds,
713
+ timestep=timestep,
714
+ encoder_attention_mask=prompt_attention_mask,
715
+ num_frames=latent_num_frames,
716
+ height=latent_height,
717
+ width=latent_width,
718
+ rope_interpolation_scale=rope_interpolation_scale,
719
+ attention_kwargs=attention_kwargs,
720
+ return_dict=False,
721
+ )[0]
722
+ noise_pred = noise_pred.float()
723
+
724
+ if self.do_classifier_free_guidance:
725
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
726
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
727
+
728
+ # compute the previous noisy sample x_t -> x_t-1
729
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
730
+
731
+ if callback_on_step_end is not None:
732
+ callback_kwargs = {}
733
+ for k in callback_on_step_end_tensor_inputs:
734
+ callback_kwargs[k] = locals()[k]
735
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
736
+
737
+ latents = callback_outputs.pop("latents", latents)
738
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
739
+
740
+ # call the callback, if provided
741
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
742
+ progress_bar.update()
743
+
744
+ if XLA_AVAILABLE:
745
+ xm.mark_step()
746
+
747
+ if output_type == "latent":
748
+ video = latents
749
+ else:
750
+ latents = self._unpack_latents(
751
+ latents,
752
+ latent_num_frames,
753
+ latent_height,
754
+ latent_width,
755
+ self.transformer_spatial_patch_size,
756
+ self.transformer_temporal_patch_size,
757
+ )
758
+ latents = self._denormalize_latents(
759
+ latents, self.vae.latents_mean, self.vae.latents_std, self.vae.config.scaling_factor
760
+ )
761
+ latents = latents.to(prompt_embeds.dtype)
762
+
763
+ if not self.vae.config.timestep_conditioning:
764
+ timestep = None
765
+ else:
766
+ noise = torch.randn(latents.shape, generator=generator, device=device, dtype=latents.dtype)
767
+ if not isinstance(decode_timestep, list):
768
+ decode_timestep = [decode_timestep] * batch_size
769
+ if decode_noise_scale is None:
770
+ decode_noise_scale = decode_timestep
771
+ elif not isinstance(decode_noise_scale, list):
772
+ decode_noise_scale = [decode_noise_scale] * batch_size
773
+
774
+ timestep = torch.tensor(decode_timestep, device=device, dtype=latents.dtype)
775
+ decode_noise_scale = torch.tensor(decode_noise_scale, device=device, dtype=latents.dtype)[
776
+ :, None, None, None, None
777
+ ]
778
+ latents = (1 - decode_noise_scale) * latents + decode_noise_scale * noise
779
+
780
+ video = self.vae.decode(latents, timestep, return_dict=False)[0]
781
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
782
+
783
+ # Offload all models
784
+ self.maybe_free_model_hooks()
785
+
786
+ if not return_dict:
787
+ return (video,)
788
+
789
+ return LTXPipelineOutput(frames=video)