diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,856 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
21
+
22
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
23
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
24
+ from ...models.autoencoders import AutoencoderKL
25
+ from ...models.transformers import FluxTransformer2DModel
26
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
27
+ from ...utils import (
28
+ USE_PEFT_BACKEND,
29
+ is_torch_xla_available,
30
+ logging,
31
+ replace_example_docstring,
32
+ scale_lora_layers,
33
+ unscale_lora_layers,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+ from .pipeline_output import FluxPipelineOutput
38
+
39
+
40
+ if is_torch_xla_available():
41
+ import torch_xla.core.xla_model as xm
42
+
43
+ XLA_AVAILABLE = True
44
+ else:
45
+ XLA_AVAILABLE = False
46
+
47
+
48
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
+
50
+ EXAMPLE_DOC_STRING = """
51
+ Examples:
52
+ ```py
53
+ >>> import torch
54
+
55
+ >>> from diffusers import FluxImg2ImgPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> device = "cuda"
59
+ >>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
60
+ >>> pipe = pipe.to(device)
61
+
62
+ >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
63
+ >>> init_image = load_image(url).resize((1024, 1024))
64
+
65
+ >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
66
+
67
+ >>> images = pipe(
68
+ ... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0
69
+ ... ).images[0]
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
75
+ def calculate_shift(
76
+ image_seq_len,
77
+ base_seq_len: int = 256,
78
+ max_seq_len: int = 4096,
79
+ base_shift: float = 0.5,
80
+ max_shift: float = 1.16,
81
+ ):
82
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
83
+ b = base_shift - m * base_seq_len
84
+ mu = image_seq_len * m + b
85
+ return mu
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
89
+ def retrieve_latents(
90
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
91
+ ):
92
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
93
+ return encoder_output.latent_dist.sample(generator)
94
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
95
+ return encoder_output.latent_dist.mode()
96
+ elif hasattr(encoder_output, "latents"):
97
+ return encoder_output.latents
98
+ else:
99
+ raise AttributeError("Could not access latents of provided encoder_output")
100
+
101
+
102
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
103
+ def retrieve_timesteps(
104
+ scheduler,
105
+ num_inference_steps: Optional[int] = None,
106
+ device: Optional[Union[str, torch.device]] = None,
107
+ timesteps: Optional[List[int]] = None,
108
+ sigmas: Optional[List[float]] = None,
109
+ **kwargs,
110
+ ):
111
+ r"""
112
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
113
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
114
+
115
+ Args:
116
+ scheduler (`SchedulerMixin`):
117
+ The scheduler to get timesteps from.
118
+ num_inference_steps (`int`):
119
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
120
+ must be `None`.
121
+ device (`str` or `torch.device`, *optional*):
122
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
123
+ timesteps (`List[int]`, *optional*):
124
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
125
+ `num_inference_steps` and `sigmas` must be `None`.
126
+ sigmas (`List[float]`, *optional*):
127
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
128
+ `num_inference_steps` and `timesteps` must be `None`.
129
+
130
+ Returns:
131
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
132
+ second element is the number of inference steps.
133
+ """
134
+ if timesteps is not None and sigmas is not None:
135
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
136
+ if timesteps is not None:
137
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
138
+ if not accepts_timesteps:
139
+ raise ValueError(
140
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
141
+ f" timestep schedules. Please check whether you are using the correct scheduler."
142
+ )
143
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
144
+ timesteps = scheduler.timesteps
145
+ num_inference_steps = len(timesteps)
146
+ elif sigmas is not None:
147
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accept_sigmas:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ else:
157
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
158
+ timesteps = scheduler.timesteps
159
+ return timesteps, num_inference_steps
160
+
161
+
162
+ class FluxImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
163
+ r"""
164
+ The Flux pipeline for image inpainting.
165
+
166
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
167
+
168
+ Args:
169
+ transformer ([`FluxTransformer2DModel`]):
170
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
171
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
172
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
173
+ vae ([`AutoencoderKL`]):
174
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
175
+ text_encoder ([`CLIPTextModel`]):
176
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
177
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
178
+ text_encoder_2 ([`T5EncoderModel`]):
179
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
180
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
181
+ tokenizer (`CLIPTokenizer`):
182
+ Tokenizer of class
183
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
184
+ tokenizer_2 (`T5TokenizerFast`):
185
+ Second Tokenizer of class
186
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
187
+ """
188
+
189
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
190
+ _optional_components = []
191
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
192
+
193
+ def __init__(
194
+ self,
195
+ scheduler: FlowMatchEulerDiscreteScheduler,
196
+ vae: AutoencoderKL,
197
+ text_encoder: CLIPTextModel,
198
+ tokenizer: CLIPTokenizer,
199
+ text_encoder_2: T5EncoderModel,
200
+ tokenizer_2: T5TokenizerFast,
201
+ transformer: FluxTransformer2DModel,
202
+ ):
203
+ super().__init__()
204
+
205
+ self.register_modules(
206
+ vae=vae,
207
+ text_encoder=text_encoder,
208
+ text_encoder_2=text_encoder_2,
209
+ tokenizer=tokenizer,
210
+ tokenizer_2=tokenizer_2,
211
+ transformer=transformer,
212
+ scheduler=scheduler,
213
+ )
214
+ self.vae_scale_factor = (
215
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
216
+ )
217
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
218
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
219
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
220
+ self.tokenizer_max_length = (
221
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
222
+ )
223
+ self.default_sample_size = 128
224
+
225
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
226
+ def _get_t5_prompt_embeds(
227
+ self,
228
+ prompt: Union[str, List[str]] = None,
229
+ num_images_per_prompt: int = 1,
230
+ max_sequence_length: int = 512,
231
+ device: Optional[torch.device] = None,
232
+ dtype: Optional[torch.dtype] = None,
233
+ ):
234
+ device = device or self._execution_device
235
+ dtype = dtype or self.text_encoder.dtype
236
+
237
+ prompt = [prompt] if isinstance(prompt, str) else prompt
238
+ batch_size = len(prompt)
239
+
240
+ if isinstance(self, TextualInversionLoaderMixin):
241
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
242
+
243
+ text_inputs = self.tokenizer_2(
244
+ prompt,
245
+ padding="max_length",
246
+ max_length=max_sequence_length,
247
+ truncation=True,
248
+ return_length=False,
249
+ return_overflowing_tokens=False,
250
+ return_tensors="pt",
251
+ )
252
+ text_input_ids = text_inputs.input_ids
253
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
254
+
255
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
256
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
257
+ logger.warning(
258
+ "The following part of your input was truncated because `max_sequence_length` is set to "
259
+ f" {max_sequence_length} tokens: {removed_text}"
260
+ )
261
+
262
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
263
+
264
+ dtype = self.text_encoder_2.dtype
265
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
266
+
267
+ _, seq_len, _ = prompt_embeds.shape
268
+
269
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
270
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
271
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
272
+
273
+ return prompt_embeds
274
+
275
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
276
+ def _get_clip_prompt_embeds(
277
+ self,
278
+ prompt: Union[str, List[str]],
279
+ num_images_per_prompt: int = 1,
280
+ device: Optional[torch.device] = None,
281
+ ):
282
+ device = device or self._execution_device
283
+
284
+ prompt = [prompt] if isinstance(prompt, str) else prompt
285
+ batch_size = len(prompt)
286
+
287
+ if isinstance(self, TextualInversionLoaderMixin):
288
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
289
+
290
+ text_inputs = self.tokenizer(
291
+ prompt,
292
+ padding="max_length",
293
+ max_length=self.tokenizer_max_length,
294
+ truncation=True,
295
+ return_overflowing_tokens=False,
296
+ return_length=False,
297
+ return_tensors="pt",
298
+ )
299
+
300
+ text_input_ids = text_inputs.input_ids
301
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
302
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
303
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
304
+ logger.warning(
305
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
306
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
307
+ )
308
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
309
+
310
+ # Use pooled output of CLIPTextModel
311
+ prompt_embeds = prompt_embeds.pooler_output
312
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
313
+
314
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
315
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
316
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
317
+
318
+ return prompt_embeds
319
+
320
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
321
+ def encode_prompt(
322
+ self,
323
+ prompt: Union[str, List[str]],
324
+ prompt_2: Union[str, List[str]],
325
+ device: Optional[torch.device] = None,
326
+ num_images_per_prompt: int = 1,
327
+ prompt_embeds: Optional[torch.FloatTensor] = None,
328
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
329
+ max_sequence_length: int = 512,
330
+ lora_scale: Optional[float] = None,
331
+ ):
332
+ r"""
333
+
334
+ Args:
335
+ prompt (`str` or `List[str]`, *optional*):
336
+ prompt to be encoded
337
+ prompt_2 (`str` or `List[str]`, *optional*):
338
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
339
+ used in all text-encoders
340
+ device: (`torch.device`):
341
+ torch device
342
+ num_images_per_prompt (`int`):
343
+ number of images that should be generated per prompt
344
+ prompt_embeds (`torch.FloatTensor`, *optional*):
345
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
346
+ provided, text embeddings will be generated from `prompt` input argument.
347
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
348
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
349
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
350
+ lora_scale (`float`, *optional*):
351
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
352
+ """
353
+ device = device or self._execution_device
354
+
355
+ # set lora scale so that monkey patched LoRA
356
+ # function of text encoder can correctly access it
357
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
358
+ self._lora_scale = lora_scale
359
+
360
+ # dynamically adjust the LoRA scale
361
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
362
+ scale_lora_layers(self.text_encoder, lora_scale)
363
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
364
+ scale_lora_layers(self.text_encoder_2, lora_scale)
365
+
366
+ prompt = [prompt] if isinstance(prompt, str) else prompt
367
+
368
+ if prompt_embeds is None:
369
+ prompt_2 = prompt_2 or prompt
370
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
371
+
372
+ # We only use the pooled prompt output from the CLIPTextModel
373
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
374
+ prompt=prompt,
375
+ device=device,
376
+ num_images_per_prompt=num_images_per_prompt,
377
+ )
378
+ prompt_embeds = self._get_t5_prompt_embeds(
379
+ prompt=prompt_2,
380
+ num_images_per_prompt=num_images_per_prompt,
381
+ max_sequence_length=max_sequence_length,
382
+ device=device,
383
+ )
384
+
385
+ if self.text_encoder is not None:
386
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
387
+ # Retrieve the original scale by scaling back the LoRA layers
388
+ unscale_lora_layers(self.text_encoder, lora_scale)
389
+
390
+ if self.text_encoder_2 is not None:
391
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
392
+ # Retrieve the original scale by scaling back the LoRA layers
393
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
394
+
395
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
396
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
397
+
398
+ return prompt_embeds, pooled_prompt_embeds, text_ids
399
+
400
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
401
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
402
+ if isinstance(generator, list):
403
+ image_latents = [
404
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
405
+ for i in range(image.shape[0])
406
+ ]
407
+ image_latents = torch.cat(image_latents, dim=0)
408
+ else:
409
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
410
+
411
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
412
+
413
+ return image_latents
414
+
415
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
416
+ def get_timesteps(self, num_inference_steps, strength, device):
417
+ # get the original timestep using init_timestep
418
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
419
+
420
+ t_start = int(max(num_inference_steps - init_timestep, 0))
421
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
422
+ if hasattr(self.scheduler, "set_begin_index"):
423
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
424
+
425
+ return timesteps, num_inference_steps - t_start
426
+
427
+ def check_inputs(
428
+ self,
429
+ prompt,
430
+ prompt_2,
431
+ strength,
432
+ height,
433
+ width,
434
+ prompt_embeds=None,
435
+ pooled_prompt_embeds=None,
436
+ callback_on_step_end_tensor_inputs=None,
437
+ max_sequence_length=None,
438
+ ):
439
+ if strength < 0 or strength > 1:
440
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
441
+
442
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
443
+ logger.warning(
444
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
445
+ )
446
+
447
+ if callback_on_step_end_tensor_inputs is not None and not all(
448
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
449
+ ):
450
+ raise ValueError(
451
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
452
+ )
453
+
454
+ if prompt is not None and prompt_embeds is not None:
455
+ raise ValueError(
456
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
457
+ " only forward one of the two."
458
+ )
459
+ elif prompt_2 is not None and prompt_embeds is not None:
460
+ raise ValueError(
461
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
462
+ " only forward one of the two."
463
+ )
464
+ elif prompt is None and prompt_embeds is None:
465
+ raise ValueError(
466
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
467
+ )
468
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
469
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
470
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
471
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
472
+
473
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
474
+ raise ValueError(
475
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
476
+ )
477
+
478
+ if max_sequence_length is not None and max_sequence_length > 512:
479
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
480
+
481
+ @staticmethod
482
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
483
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
484
+ latent_image_ids = torch.zeros(height, width, 3)
485
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
486
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
487
+
488
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
489
+
490
+ latent_image_ids = latent_image_ids.reshape(
491
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
492
+ )
493
+
494
+ return latent_image_ids.to(device=device, dtype=dtype)
495
+
496
+ @staticmethod
497
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
498
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
499
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
500
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
501
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
502
+
503
+ return latents
504
+
505
+ @staticmethod
506
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
507
+ def _unpack_latents(latents, height, width, vae_scale_factor):
508
+ batch_size, num_patches, channels = latents.shape
509
+
510
+ # VAE applies 8x compression on images but we must also account for packing which requires
511
+ # latent height and width to be divisible by 2.
512
+ height = 2 * (int(height) // (vae_scale_factor * 2))
513
+ width = 2 * (int(width) // (vae_scale_factor * 2))
514
+
515
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
516
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
517
+
518
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
519
+
520
+ return latents
521
+
522
+ def prepare_latents(
523
+ self,
524
+ image,
525
+ timestep,
526
+ batch_size,
527
+ num_channels_latents,
528
+ height,
529
+ width,
530
+ dtype,
531
+ device,
532
+ generator,
533
+ latents=None,
534
+ ):
535
+ if isinstance(generator, list) and len(generator) != batch_size:
536
+ raise ValueError(
537
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
538
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
539
+ )
540
+
541
+ # VAE applies 8x compression on images but we must also account for packing which requires
542
+ # latent height and width to be divisible by 2.
543
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
544
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
545
+ shape = (batch_size, num_channels_latents, height, width)
546
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
547
+
548
+ if latents is not None:
549
+ return latents.to(device=device, dtype=dtype), latent_image_ids
550
+
551
+ image = image.to(device=device, dtype=dtype)
552
+ image_latents = self._encode_vae_image(image=image, generator=generator)
553
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
554
+ # expand init_latents for batch_size
555
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
556
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
557
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
558
+ raise ValueError(
559
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
560
+ )
561
+ else:
562
+ image_latents = torch.cat([image_latents], dim=0)
563
+
564
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
565
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
566
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
567
+ return latents, latent_image_ids
568
+
569
+ @property
570
+ def guidance_scale(self):
571
+ return self._guidance_scale
572
+
573
+ @property
574
+ def joint_attention_kwargs(self):
575
+ return self._joint_attention_kwargs
576
+
577
+ @property
578
+ def num_timesteps(self):
579
+ return self._num_timesteps
580
+
581
+ @property
582
+ def interrupt(self):
583
+ return self._interrupt
584
+
585
+ @torch.no_grad()
586
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
587
+ def __call__(
588
+ self,
589
+ prompt: Union[str, List[str]] = None,
590
+ prompt_2: Optional[Union[str, List[str]]] = None,
591
+ image: PipelineImageInput = None,
592
+ height: Optional[int] = None,
593
+ width: Optional[int] = None,
594
+ strength: float = 0.6,
595
+ num_inference_steps: int = 28,
596
+ sigmas: Optional[List[float]] = None,
597
+ guidance_scale: float = 7.0,
598
+ num_images_per_prompt: Optional[int] = 1,
599
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
600
+ latents: Optional[torch.FloatTensor] = None,
601
+ prompt_embeds: Optional[torch.FloatTensor] = None,
602
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
603
+ output_type: Optional[str] = "pil",
604
+ return_dict: bool = True,
605
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
606
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
607
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
608
+ max_sequence_length: int = 512,
609
+ ):
610
+ r"""
611
+ Function invoked when calling the pipeline for generation.
612
+
613
+ Args:
614
+ prompt (`str` or `List[str]`, *optional*):
615
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
616
+ instead.
617
+ prompt_2 (`str` or `List[str]`, *optional*):
618
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
619
+ will be used instead
620
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
621
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
622
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
623
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
624
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
625
+ latents as `image`, but if passing latents directly it is not encoded again.
626
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
627
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
628
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
629
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
630
+ strength (`float`, *optional*, defaults to 1.0):
631
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
632
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
633
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
634
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
635
+ essentially ignores `image`.
636
+ num_inference_steps (`int`, *optional*, defaults to 50):
637
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
638
+ expense of slower inference.
639
+ sigmas (`List[float]`, *optional*):
640
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
641
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
642
+ will be used.
643
+ guidance_scale (`float`, *optional*, defaults to 7.0):
644
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
645
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
646
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
647
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
648
+ usually at the expense of lower image quality.
649
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
650
+ The number of images to generate per prompt.
651
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
652
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
653
+ to make generation deterministic.
654
+ latents (`torch.FloatTensor`, *optional*):
655
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
656
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
657
+ tensor will ge generated by sampling using the supplied random `generator`.
658
+ prompt_embeds (`torch.FloatTensor`, *optional*):
659
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
660
+ provided, text embeddings will be generated from `prompt` input argument.
661
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
662
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
663
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
664
+ output_type (`str`, *optional*, defaults to `"pil"`):
665
+ The output format of the generate image. Choose between
666
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
667
+ return_dict (`bool`, *optional*, defaults to `True`):
668
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
669
+ joint_attention_kwargs (`dict`, *optional*):
670
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
671
+ `self.processor` in
672
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
673
+ callback_on_step_end (`Callable`, *optional*):
674
+ A function that calls at the end of each denoising steps during the inference. The function is called
675
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
676
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
677
+ `callback_on_step_end_tensor_inputs`.
678
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
679
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
680
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
681
+ `._callback_tensor_inputs` attribute of your pipeline class.
682
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
683
+
684
+ Examples:
685
+
686
+ Returns:
687
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
688
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
689
+ images.
690
+ """
691
+
692
+ height = height or self.default_sample_size * self.vae_scale_factor
693
+ width = width or self.default_sample_size * self.vae_scale_factor
694
+
695
+ # 1. Check inputs. Raise error if not correct
696
+ self.check_inputs(
697
+ prompt,
698
+ prompt_2,
699
+ strength,
700
+ height,
701
+ width,
702
+ prompt_embeds=prompt_embeds,
703
+ pooled_prompt_embeds=pooled_prompt_embeds,
704
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
705
+ max_sequence_length=max_sequence_length,
706
+ )
707
+
708
+ self._guidance_scale = guidance_scale
709
+ self._joint_attention_kwargs = joint_attention_kwargs
710
+ self._interrupt = False
711
+
712
+ # 2. Preprocess image
713
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
714
+ init_image = init_image.to(dtype=torch.float32)
715
+
716
+ # 3. Define call parameters
717
+ if prompt is not None and isinstance(prompt, str):
718
+ batch_size = 1
719
+ elif prompt is not None and isinstance(prompt, list):
720
+ batch_size = len(prompt)
721
+ else:
722
+ batch_size = prompt_embeds.shape[0]
723
+
724
+ device = self._execution_device
725
+
726
+ lora_scale = (
727
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
728
+ )
729
+ (
730
+ prompt_embeds,
731
+ pooled_prompt_embeds,
732
+ text_ids,
733
+ ) = self.encode_prompt(
734
+ prompt=prompt,
735
+ prompt_2=prompt_2,
736
+ prompt_embeds=prompt_embeds,
737
+ pooled_prompt_embeds=pooled_prompt_embeds,
738
+ device=device,
739
+ num_images_per_prompt=num_images_per_prompt,
740
+ max_sequence_length=max_sequence_length,
741
+ lora_scale=lora_scale,
742
+ )
743
+
744
+ # 4.Prepare timesteps
745
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
746
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
747
+ mu = calculate_shift(
748
+ image_seq_len,
749
+ self.scheduler.config.base_image_seq_len,
750
+ self.scheduler.config.max_image_seq_len,
751
+ self.scheduler.config.base_shift,
752
+ self.scheduler.config.max_shift,
753
+ )
754
+ timesteps, num_inference_steps = retrieve_timesteps(
755
+ self.scheduler,
756
+ num_inference_steps,
757
+ device,
758
+ sigmas=sigmas,
759
+ mu=mu,
760
+ )
761
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
762
+
763
+ if num_inference_steps < 1:
764
+ raise ValueError(
765
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
766
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
767
+ )
768
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
769
+
770
+ # 5. Prepare latent variables
771
+ num_channels_latents = self.transformer.config.in_channels // 4
772
+
773
+ latents, latent_image_ids = self.prepare_latents(
774
+ init_image,
775
+ latent_timestep,
776
+ batch_size * num_images_per_prompt,
777
+ num_channels_latents,
778
+ height,
779
+ width,
780
+ prompt_embeds.dtype,
781
+ device,
782
+ generator,
783
+ latents,
784
+ )
785
+
786
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
787
+ self._num_timesteps = len(timesteps)
788
+
789
+ # handle guidance
790
+ if self.transformer.config.guidance_embeds:
791
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
792
+ guidance = guidance.expand(latents.shape[0])
793
+ else:
794
+ guidance = None
795
+
796
+ # 6. Denoising loop
797
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
798
+ for i, t in enumerate(timesteps):
799
+ if self.interrupt:
800
+ continue
801
+
802
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
803
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
804
+ noise_pred = self.transformer(
805
+ hidden_states=latents,
806
+ timestep=timestep / 1000,
807
+ guidance=guidance,
808
+ pooled_projections=pooled_prompt_embeds,
809
+ encoder_hidden_states=prompt_embeds,
810
+ txt_ids=text_ids,
811
+ img_ids=latent_image_ids,
812
+ joint_attention_kwargs=self.joint_attention_kwargs,
813
+ return_dict=False,
814
+ )[0]
815
+
816
+ # compute the previous noisy sample x_t -> x_t-1
817
+ latents_dtype = latents.dtype
818
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
819
+
820
+ if latents.dtype != latents_dtype:
821
+ if torch.backends.mps.is_available():
822
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
823
+ latents = latents.to(latents_dtype)
824
+
825
+ if callback_on_step_end is not None:
826
+ callback_kwargs = {}
827
+ for k in callback_on_step_end_tensor_inputs:
828
+ callback_kwargs[k] = locals()[k]
829
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
830
+
831
+ latents = callback_outputs.pop("latents", latents)
832
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
833
+
834
+ # call the callback, if provided
835
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
836
+ progress_bar.update()
837
+
838
+ if XLA_AVAILABLE:
839
+ xm.mark_step()
840
+
841
+ if output_type == "latent":
842
+ image = latents
843
+
844
+ else:
845
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
846
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
847
+ image = self.vae.decode(latents, return_dict=False)[0]
848
+ image = self.image_processor.postprocess(image, output_type=output_type)
849
+
850
+ # Offload all models
851
+ self.maybe_free_model_hooks()
852
+
853
+ if not return_dict:
854
+ return (image,)
855
+
856
+ return FluxPipelineOutput(images=image)