diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,998 @@
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import (
7
+ CLIPTextModel,
8
+ CLIPTokenizer,
9
+ T5EncoderModel,
10
+ T5TokenizerFast,
11
+ )
12
+
13
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
14
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
15
+ from ...models.autoencoders import AutoencoderKL
16
+ from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
17
+ from ...models.transformers import FluxTransformer2DModel
18
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
19
+ from ...utils import (
20
+ USE_PEFT_BACKEND,
21
+ is_torch_xla_available,
22
+ logging,
23
+ replace_example_docstring,
24
+ scale_lora_layers,
25
+ unscale_lora_layers,
26
+ )
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline
29
+ from .pipeline_output import FluxPipelineOutput
30
+
31
+
32
+ if is_torch_xla_available():
33
+ import torch_xla.core.xla_model as xm
34
+
35
+ XLA_AVAILABLE = True
36
+ else:
37
+ XLA_AVAILABLE = False
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+ EXAMPLE_DOC_STRING = """
42
+ Examples:
43
+ ```py
44
+ >>> import torch
45
+ >>> from diffusers import FluxControlNetImg2ImgPipeline, FluxControlNetModel
46
+ >>> from diffusers.utils import load_image
47
+
48
+ >>> device = "cuda" if torch.cuda.is_available() else "cpu"
49
+
50
+ >>> controlnet = FluxControlNetModel.from_pretrained(
51
+ ... "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
52
+ ... )
53
+
54
+ >>> pipe = FluxControlNetImg2ImgPipeline.from_pretrained(
55
+ ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16
56
+ ... )
57
+
58
+ >>> pipe.text_encoder.to(torch.float16)
59
+ >>> pipe.controlnet.to(torch.float16)
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
63
+ >>> init_image = load_image(
64
+ ... "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
65
+ ... )
66
+
67
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
68
+ >>> image = pipe(
69
+ ... prompt,
70
+ ... image=init_image,
71
+ ... control_image=control_image,
72
+ ... control_guidance_start=0.2,
73
+ ... control_guidance_end=0.8,
74
+ ... controlnet_conditioning_scale=1.0,
75
+ ... strength=0.7,
76
+ ... num_inference_steps=2,
77
+ ... guidance_scale=3.5,
78
+ ... ).images[0]
79
+ >>> image.save("flux_controlnet_img2img.png")
80
+ ```
81
+ """
82
+
83
+
84
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
85
+ def calculate_shift(
86
+ image_seq_len,
87
+ base_seq_len: int = 256,
88
+ max_seq_len: int = 4096,
89
+ base_shift: float = 0.5,
90
+ max_shift: float = 1.16,
91
+ ):
92
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
93
+ b = base_shift - m * base_seq_len
94
+ mu = image_seq_len * m + b
95
+ return mu
96
+
97
+
98
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
99
+ def retrieve_latents(
100
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
101
+ ):
102
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
103
+ return encoder_output.latent_dist.sample(generator)
104
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
105
+ return encoder_output.latent_dist.mode()
106
+ elif hasattr(encoder_output, "latents"):
107
+ return encoder_output.latents
108
+ else:
109
+ raise AttributeError("Could not access latents of provided encoder_output")
110
+
111
+
112
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
113
+ def retrieve_timesteps(
114
+ scheduler,
115
+ num_inference_steps: Optional[int] = None,
116
+ device: Optional[Union[str, torch.device]] = None,
117
+ timesteps: Optional[List[int]] = None,
118
+ sigmas: Optional[List[float]] = None,
119
+ **kwargs,
120
+ ):
121
+ r"""
122
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
123
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
124
+
125
+ Args:
126
+ scheduler (`SchedulerMixin`):
127
+ The scheduler to get timesteps from.
128
+ num_inference_steps (`int`):
129
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
130
+ must be `None`.
131
+ device (`str` or `torch.device`, *optional*):
132
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
133
+ timesteps (`List[int]`, *optional*):
134
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
135
+ `num_inference_steps` and `sigmas` must be `None`.
136
+ sigmas (`List[float]`, *optional*):
137
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
138
+ `num_inference_steps` and `timesteps` must be `None`.
139
+
140
+ Returns:
141
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
142
+ second element is the number of inference steps.
143
+ """
144
+ if timesteps is not None and sigmas is not None:
145
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
146
+ if timesteps is not None:
147
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accepts_timesteps:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" timestep schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ elif sigmas is not None:
157
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
158
+ if not accept_sigmas:
159
+ raise ValueError(
160
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
161
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
162
+ )
163
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
164
+ timesteps = scheduler.timesteps
165
+ num_inference_steps = len(timesteps)
166
+ else:
167
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
168
+ timesteps = scheduler.timesteps
169
+ return timesteps, num_inference_steps
170
+
171
+
172
+ class FluxControlNetImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
173
+ r"""
174
+ The Flux controlnet pipeline for image-to-image generation.
175
+
176
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
177
+
178
+ Args:
179
+ transformer ([`FluxTransformer2DModel`]):
180
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
181
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
182
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
183
+ vae ([`AutoencoderKL`]):
184
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
185
+ text_encoder ([`CLIPTextModel`]):
186
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
187
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
188
+ text_encoder_2 ([`T5EncoderModel`]):
189
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
190
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
191
+ tokenizer (`CLIPTokenizer`):
192
+ Tokenizer of class
193
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
194
+ tokenizer_2 (`T5TokenizerFast`):
195
+ Second Tokenizer of class
196
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
197
+ """
198
+
199
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
200
+ _optional_components = []
201
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
202
+
203
+ def __init__(
204
+ self,
205
+ scheduler: FlowMatchEulerDiscreteScheduler,
206
+ vae: AutoencoderKL,
207
+ text_encoder: CLIPTextModel,
208
+ tokenizer: CLIPTokenizer,
209
+ text_encoder_2: T5EncoderModel,
210
+ tokenizer_2: T5TokenizerFast,
211
+ transformer: FluxTransformer2DModel,
212
+ controlnet: Union[
213
+ FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
214
+ ],
215
+ ):
216
+ super().__init__()
217
+ if isinstance(controlnet, (list, tuple)):
218
+ controlnet = FluxMultiControlNetModel(controlnet)
219
+
220
+ self.register_modules(
221
+ vae=vae,
222
+ text_encoder=text_encoder,
223
+ text_encoder_2=text_encoder_2,
224
+ tokenizer=tokenizer,
225
+ tokenizer_2=tokenizer_2,
226
+ transformer=transformer,
227
+ scheduler=scheduler,
228
+ controlnet=controlnet,
229
+ )
230
+ self.vae_scale_factor = (
231
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
232
+ )
233
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
234
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
235
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
236
+ self.tokenizer_max_length = (
237
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
238
+ )
239
+ self.default_sample_size = 128
240
+
241
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
242
+ def _get_t5_prompt_embeds(
243
+ self,
244
+ prompt: Union[str, List[str]] = None,
245
+ num_images_per_prompt: int = 1,
246
+ max_sequence_length: int = 512,
247
+ device: Optional[torch.device] = None,
248
+ dtype: Optional[torch.dtype] = None,
249
+ ):
250
+ device = device or self._execution_device
251
+ dtype = dtype or self.text_encoder.dtype
252
+
253
+ prompt = [prompt] if isinstance(prompt, str) else prompt
254
+ batch_size = len(prompt)
255
+
256
+ if isinstance(self, TextualInversionLoaderMixin):
257
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
258
+
259
+ text_inputs = self.tokenizer_2(
260
+ prompt,
261
+ padding="max_length",
262
+ max_length=max_sequence_length,
263
+ truncation=True,
264
+ return_length=False,
265
+ return_overflowing_tokens=False,
266
+ return_tensors="pt",
267
+ )
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
270
+
271
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
272
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
273
+ logger.warning(
274
+ "The following part of your input was truncated because `max_sequence_length` is set to "
275
+ f" {max_sequence_length} tokens: {removed_text}"
276
+ )
277
+
278
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
279
+
280
+ dtype = self.text_encoder_2.dtype
281
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
282
+
283
+ _, seq_len, _ = prompt_embeds.shape
284
+
285
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
286
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
287
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
288
+
289
+ return prompt_embeds
290
+
291
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
292
+ def _get_clip_prompt_embeds(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ num_images_per_prompt: int = 1,
296
+ device: Optional[torch.device] = None,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ prompt = [prompt] if isinstance(prompt, str) else prompt
301
+ batch_size = len(prompt)
302
+
303
+ if isinstance(self, TextualInversionLoaderMixin):
304
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
305
+
306
+ text_inputs = self.tokenizer(
307
+ prompt,
308
+ padding="max_length",
309
+ max_length=self.tokenizer_max_length,
310
+ truncation=True,
311
+ return_overflowing_tokens=False,
312
+ return_length=False,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ text_input_ids = text_inputs.input_ids
317
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
318
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
319
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
320
+ logger.warning(
321
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
322
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
323
+ )
324
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
325
+
326
+ # Use pooled output of CLIPTextModel
327
+ prompt_embeds = prompt_embeds.pooler_output
328
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
329
+
330
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
331
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
332
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
333
+
334
+ return prompt_embeds
335
+
336
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
337
+ def encode_prompt(
338
+ self,
339
+ prompt: Union[str, List[str]],
340
+ prompt_2: Union[str, List[str]],
341
+ device: Optional[torch.device] = None,
342
+ num_images_per_prompt: int = 1,
343
+ prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
345
+ max_sequence_length: int = 512,
346
+ lora_scale: Optional[float] = None,
347
+ ):
348
+ r"""
349
+
350
+ Args:
351
+ prompt (`str` or `List[str]`, *optional*):
352
+ prompt to be encoded
353
+ prompt_2 (`str` or `List[str]`, *optional*):
354
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
355
+ used in all text-encoders
356
+ device: (`torch.device`):
357
+ torch device
358
+ num_images_per_prompt (`int`):
359
+ number of images that should be generated per prompt
360
+ prompt_embeds (`torch.FloatTensor`, *optional*):
361
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
362
+ provided, text embeddings will be generated from `prompt` input argument.
363
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
364
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
365
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
366
+ lora_scale (`float`, *optional*):
367
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
368
+ """
369
+ device = device or self._execution_device
370
+
371
+ # set lora scale so that monkey patched LoRA
372
+ # function of text encoder can correctly access it
373
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
374
+ self._lora_scale = lora_scale
375
+
376
+ # dynamically adjust the LoRA scale
377
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
378
+ scale_lora_layers(self.text_encoder, lora_scale)
379
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
380
+ scale_lora_layers(self.text_encoder_2, lora_scale)
381
+
382
+ prompt = [prompt] if isinstance(prompt, str) else prompt
383
+
384
+ if prompt_embeds is None:
385
+ prompt_2 = prompt_2 or prompt
386
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
387
+
388
+ # We only use the pooled prompt output from the CLIPTextModel
389
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
390
+ prompt=prompt,
391
+ device=device,
392
+ num_images_per_prompt=num_images_per_prompt,
393
+ )
394
+ prompt_embeds = self._get_t5_prompt_embeds(
395
+ prompt=prompt_2,
396
+ num_images_per_prompt=num_images_per_prompt,
397
+ max_sequence_length=max_sequence_length,
398
+ device=device,
399
+ )
400
+
401
+ if self.text_encoder is not None:
402
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
403
+ # Retrieve the original scale by scaling back the LoRA layers
404
+ unscale_lora_layers(self.text_encoder, lora_scale)
405
+
406
+ if self.text_encoder_2 is not None:
407
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
408
+ # Retrieve the original scale by scaling back the LoRA layers
409
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
410
+
411
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
412
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
413
+
414
+ return prompt_embeds, pooled_prompt_embeds, text_ids
415
+
416
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
417
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
418
+ if isinstance(generator, list):
419
+ image_latents = [
420
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
421
+ for i in range(image.shape[0])
422
+ ]
423
+ image_latents = torch.cat(image_latents, dim=0)
424
+ else:
425
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
426
+
427
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
428
+
429
+ return image_latents
430
+
431
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
432
+ def get_timesteps(self, num_inference_steps, strength, device):
433
+ # get the original timestep using init_timestep
434
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
435
+
436
+ t_start = int(max(num_inference_steps - init_timestep, 0))
437
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
438
+ if hasattr(self.scheduler, "set_begin_index"):
439
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
440
+
441
+ return timesteps, num_inference_steps - t_start
442
+
443
+ def check_inputs(
444
+ self,
445
+ prompt,
446
+ prompt_2,
447
+ strength,
448
+ height,
449
+ width,
450
+ callback_on_step_end_tensor_inputs,
451
+ prompt_embeds=None,
452
+ pooled_prompt_embeds=None,
453
+ max_sequence_length=None,
454
+ ):
455
+ if strength < 0 or strength > 1:
456
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
457
+
458
+ if height % self.vae_scale_factor * 2 != 0 or width % self.vae_scale_factor * 2 != 0:
459
+ logger.warning(
460
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
461
+ )
462
+
463
+ if callback_on_step_end_tensor_inputs is not None and not all(
464
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
465
+ ):
466
+ raise ValueError(
467
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
468
+ )
469
+
470
+ if prompt is not None and prompt_embeds is not None:
471
+ raise ValueError(
472
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
473
+ " only forward one of the two."
474
+ )
475
+ elif prompt_2 is not None and prompt_embeds is not None:
476
+ raise ValueError(
477
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
478
+ " only forward one of the two."
479
+ )
480
+ elif prompt is None and prompt_embeds is None:
481
+ raise ValueError(
482
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
483
+ )
484
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
485
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
486
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
487
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
488
+
489
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
490
+ raise ValueError(
491
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
492
+ )
493
+
494
+ if max_sequence_length is not None and max_sequence_length > 512:
495
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
496
+
497
+ @staticmethod
498
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
499
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
500
+ latent_image_ids = torch.zeros(height, width, 3)
501
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
502
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
503
+
504
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
505
+
506
+ latent_image_ids = latent_image_ids.reshape(
507
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
508
+ )
509
+
510
+ return latent_image_ids.to(device=device, dtype=dtype)
511
+
512
+ @staticmethod
513
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
514
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
515
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
516
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
517
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
518
+
519
+ return latents
520
+
521
+ @staticmethod
522
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
523
+ def _unpack_latents(latents, height, width, vae_scale_factor):
524
+ batch_size, num_patches, channels = latents.shape
525
+
526
+ # VAE applies 8x compression on images but we must also account for packing which requires
527
+ # latent height and width to be divisible by 2.
528
+ height = 2 * (int(height) // (vae_scale_factor * 2))
529
+ width = 2 * (int(width) // (vae_scale_factor * 2))
530
+
531
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
532
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
533
+
534
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
535
+
536
+ return latents
537
+
538
+ # Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.prepare_latents
539
+ def prepare_latents(
540
+ self,
541
+ image,
542
+ timestep,
543
+ batch_size,
544
+ num_channels_latents,
545
+ height,
546
+ width,
547
+ dtype,
548
+ device,
549
+ generator,
550
+ latents=None,
551
+ ):
552
+ if isinstance(generator, list) and len(generator) != batch_size:
553
+ raise ValueError(
554
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
555
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
556
+ )
557
+
558
+ # VAE applies 8x compression on images but we must also account for packing which requires
559
+ # latent height and width to be divisible by 2.
560
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
561
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
562
+ shape = (batch_size, num_channels_latents, height, width)
563
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
564
+
565
+ if latents is not None:
566
+ return latents.to(device=device, dtype=dtype), latent_image_ids
567
+
568
+ image = image.to(device=device, dtype=dtype)
569
+ image_latents = self._encode_vae_image(image=image, generator=generator)
570
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
571
+ # expand init_latents for batch_size
572
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
573
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
574
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
575
+ raise ValueError(
576
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
577
+ )
578
+ else:
579
+ image_latents = torch.cat([image_latents], dim=0)
580
+
581
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
582
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
583
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
584
+ return latents, latent_image_ids
585
+
586
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
587
+ def prepare_image(
588
+ self,
589
+ image,
590
+ width,
591
+ height,
592
+ batch_size,
593
+ num_images_per_prompt,
594
+ device,
595
+ dtype,
596
+ do_classifier_free_guidance=False,
597
+ guess_mode=False,
598
+ ):
599
+ if isinstance(image, torch.Tensor):
600
+ pass
601
+ else:
602
+ image = self.image_processor.preprocess(image, height=height, width=width)
603
+
604
+ image_batch_size = image.shape[0]
605
+
606
+ if image_batch_size == 1:
607
+ repeat_by = batch_size
608
+ else:
609
+ # image batch size is the same as prompt batch size
610
+ repeat_by = num_images_per_prompt
611
+
612
+ image = image.repeat_interleave(repeat_by, dim=0)
613
+
614
+ image = image.to(device=device, dtype=dtype)
615
+
616
+ if do_classifier_free_guidance and not guess_mode:
617
+ image = torch.cat([image] * 2)
618
+
619
+ return image
620
+
621
+ @property
622
+ def guidance_scale(self):
623
+ return self._guidance_scale
624
+
625
+ @property
626
+ def joint_attention_kwargs(self):
627
+ return self._joint_attention_kwargs
628
+
629
+ @property
630
+ def num_timesteps(self):
631
+ return self._num_timesteps
632
+
633
+ @property
634
+ def interrupt(self):
635
+ return self._interrupt
636
+
637
+ @torch.no_grad()
638
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
639
+ def __call__(
640
+ self,
641
+ prompt: Union[str, List[str]] = None,
642
+ prompt_2: Optional[Union[str, List[str]]] = None,
643
+ image: PipelineImageInput = None,
644
+ control_image: PipelineImageInput = None,
645
+ height: Optional[int] = None,
646
+ width: Optional[int] = None,
647
+ strength: float = 0.6,
648
+ num_inference_steps: int = 28,
649
+ sigmas: Optional[List[float]] = None,
650
+ guidance_scale: float = 7.0,
651
+ control_guidance_start: Union[float, List[float]] = 0.0,
652
+ control_guidance_end: Union[float, List[float]] = 1.0,
653
+ control_mode: Optional[Union[int, List[int]]] = None,
654
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
655
+ num_images_per_prompt: Optional[int] = 1,
656
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
657
+ latents: Optional[torch.FloatTensor] = None,
658
+ prompt_embeds: Optional[torch.FloatTensor] = None,
659
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
660
+ output_type: Optional[str] = "pil",
661
+ return_dict: bool = True,
662
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
663
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
664
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
665
+ max_sequence_length: int = 512,
666
+ ):
667
+ """
668
+ Function invoked when calling the pipeline for generation.
669
+
670
+ Args:
671
+ prompt (`str` or `List[str]`, *optional*):
672
+ The prompt or prompts to guide the image generation.
673
+ prompt_2 (`str` or `List[str]`, *optional*):
674
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
675
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
676
+ The image(s) to modify with the pipeline.
677
+ control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
678
+ The ControlNet input condition. Image to control the generation.
679
+ height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
680
+ The height in pixels of the generated image.
681
+ width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
682
+ The width in pixels of the generated image.
683
+ strength (`float`, *optional*, defaults to 0.6):
684
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
685
+ num_inference_steps (`int`, *optional*, defaults to 28):
686
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
687
+ expense of slower inference.
688
+ sigmas (`List[float]`, *optional*):
689
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
690
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
691
+ will be used.
692
+ guidance_scale (`float`, *optional*, defaults to 7.0):
693
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
694
+ control_mode (`int` or `List[int]`, *optional*):
695
+ The mode for the ControlNet. If multiple ControlNets are used, this should be a list.
696
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
697
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
698
+ to the residual in the original transformer.
699
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
700
+ The number of images to generate per prompt.
701
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
702
+ One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to
703
+ make generation deterministic.
704
+ latents (`torch.FloatTensor`, *optional*):
705
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
706
+ generation. Can be used to tweak the same generation with different prompts.
707
+ prompt_embeds (`torch.FloatTensor`, *optional*):
708
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
709
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
710
+ Pre-generated pooled text embeddings.
711
+ output_type (`str`, *optional*, defaults to `"pil"`):
712
+ The output format of the generate image. Choose between `PIL.Image` or `np.array`.
713
+ return_dict (`bool`, *optional*, defaults to `True`):
714
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
715
+ joint_attention_kwargs (`dict`, *optional*):
716
+ Additional keyword arguments to be passed to the joint attention mechanism.
717
+ callback_on_step_end (`Callable`, *optional*):
718
+ A function that calls at the end of each denoising step during the inference.
719
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
720
+ The list of tensor inputs for the `callback_on_step_end` function.
721
+ max_sequence_length (`int`, *optional*, defaults to 512):
722
+ The maximum length of the sequence to be generated.
723
+
724
+ Examples:
725
+
726
+ Returns:
727
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
728
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
729
+ images.
730
+ """
731
+ height = height or self.default_sample_size * self.vae_scale_factor
732
+ width = width or self.default_sample_size * self.vae_scale_factor
733
+
734
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
735
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
736
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
737
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
738
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
739
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
740
+ control_guidance_start, control_guidance_end = (
741
+ mult * [control_guidance_start],
742
+ mult * [control_guidance_end],
743
+ )
744
+
745
+ self.check_inputs(
746
+ prompt,
747
+ prompt_2,
748
+ strength,
749
+ height,
750
+ width,
751
+ callback_on_step_end_tensor_inputs,
752
+ prompt_embeds=prompt_embeds,
753
+ pooled_prompt_embeds=pooled_prompt_embeds,
754
+ max_sequence_length=max_sequence_length,
755
+ )
756
+
757
+ self._guidance_scale = guidance_scale
758
+ self._joint_attention_kwargs = joint_attention_kwargs
759
+ self._interrupt = False
760
+
761
+ if prompt is not None and isinstance(prompt, str):
762
+ batch_size = 1
763
+ elif prompt is not None and isinstance(prompt, list):
764
+ batch_size = len(prompt)
765
+ else:
766
+ batch_size = prompt_embeds.shape[0]
767
+
768
+ device = self._execution_device
769
+ dtype = self.transformer.dtype
770
+
771
+ lora_scale = (
772
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
773
+ )
774
+ (
775
+ prompt_embeds,
776
+ pooled_prompt_embeds,
777
+ text_ids,
778
+ ) = self.encode_prompt(
779
+ prompt=prompt,
780
+ prompt_2=prompt_2,
781
+ prompt_embeds=prompt_embeds,
782
+ pooled_prompt_embeds=pooled_prompt_embeds,
783
+ device=device,
784
+ num_images_per_prompt=num_images_per_prompt,
785
+ max_sequence_length=max_sequence_length,
786
+ lora_scale=lora_scale,
787
+ )
788
+
789
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
790
+ init_image = init_image.to(dtype=torch.float32)
791
+
792
+ num_channels_latents = self.transformer.config.in_channels // 4
793
+
794
+ if isinstance(self.controlnet, FluxControlNetModel):
795
+ control_image = self.prepare_image(
796
+ image=control_image,
797
+ width=width,
798
+ height=height,
799
+ batch_size=batch_size * num_images_per_prompt,
800
+ num_images_per_prompt=num_images_per_prompt,
801
+ device=device,
802
+ dtype=self.vae.dtype,
803
+ )
804
+ height, width = control_image.shape[-2:]
805
+
806
+ control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
807
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
808
+
809
+ height_control_image, width_control_image = control_image.shape[2:]
810
+ control_image = self._pack_latents(
811
+ control_image,
812
+ batch_size * num_images_per_prompt,
813
+ num_channels_latents,
814
+ height_control_image,
815
+ width_control_image,
816
+ )
817
+
818
+ if control_mode is not None:
819
+ control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
820
+ control_mode = control_mode.reshape([-1, 1])
821
+
822
+ elif isinstance(self.controlnet, FluxMultiControlNetModel):
823
+ control_images = []
824
+
825
+ for control_image_ in control_image:
826
+ control_image_ = self.prepare_image(
827
+ image=control_image_,
828
+ width=width,
829
+ height=height,
830
+ batch_size=batch_size * num_images_per_prompt,
831
+ num_images_per_prompt=num_images_per_prompt,
832
+ device=device,
833
+ dtype=self.vae.dtype,
834
+ )
835
+ height, width = control_image_.shape[-2:]
836
+
837
+ control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
838
+ control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
839
+
840
+ height_control_image, width_control_image = control_image_.shape[2:]
841
+ control_image_ = self._pack_latents(
842
+ control_image_,
843
+ batch_size * num_images_per_prompt,
844
+ num_channels_latents,
845
+ height_control_image,
846
+ width_control_image,
847
+ )
848
+
849
+ control_images.append(control_image_)
850
+
851
+ control_image = control_images
852
+
853
+ control_mode_ = []
854
+ if isinstance(control_mode, list):
855
+ for cmode in control_mode:
856
+ if cmode is None:
857
+ control_mode_.append(-1)
858
+ else:
859
+ control_mode_.append(cmode)
860
+ control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
861
+ control_mode = control_mode.reshape([-1, 1])
862
+
863
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
864
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
865
+ mu = calculate_shift(
866
+ image_seq_len,
867
+ self.scheduler.config.base_image_seq_len,
868
+ self.scheduler.config.max_image_seq_len,
869
+ self.scheduler.config.base_shift,
870
+ self.scheduler.config.max_shift,
871
+ )
872
+ timesteps, num_inference_steps = retrieve_timesteps(
873
+ self.scheduler,
874
+ num_inference_steps,
875
+ device,
876
+ sigmas=sigmas,
877
+ mu=mu,
878
+ )
879
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
880
+
881
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
882
+ latents, latent_image_ids = self.prepare_latents(
883
+ init_image,
884
+ latent_timestep,
885
+ batch_size * num_images_per_prompt,
886
+ num_channels_latents,
887
+ height,
888
+ width,
889
+ prompt_embeds.dtype,
890
+ device,
891
+ generator,
892
+ latents,
893
+ )
894
+
895
+ controlnet_keep = []
896
+ for i in range(len(timesteps)):
897
+ keeps = [
898
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
899
+ for s, e in zip(control_guidance_start, control_guidance_end)
900
+ ]
901
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
902
+
903
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
904
+ self._num_timesteps = len(timesteps)
905
+
906
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
907
+ for i, t in enumerate(timesteps):
908
+ if self.interrupt:
909
+ continue
910
+
911
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
912
+
913
+ if isinstance(self.controlnet, FluxMultiControlNetModel):
914
+ use_guidance = self.controlnet.nets[0].config.guidance_embeds
915
+ else:
916
+ use_guidance = self.controlnet.config.guidance_embeds
917
+
918
+ guidance = torch.tensor([guidance_scale], device=device) if use_guidance else None
919
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
920
+
921
+ if isinstance(controlnet_keep[i], list):
922
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
923
+ else:
924
+ controlnet_cond_scale = controlnet_conditioning_scale
925
+ if isinstance(controlnet_cond_scale, list):
926
+ controlnet_cond_scale = controlnet_cond_scale[0]
927
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
928
+
929
+ controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
930
+ hidden_states=latents,
931
+ controlnet_cond=control_image,
932
+ controlnet_mode=control_mode,
933
+ conditioning_scale=cond_scale,
934
+ timestep=timestep / 1000,
935
+ guidance=guidance,
936
+ pooled_projections=pooled_prompt_embeds,
937
+ encoder_hidden_states=prompt_embeds,
938
+ txt_ids=text_ids,
939
+ img_ids=latent_image_ids,
940
+ joint_attention_kwargs=self.joint_attention_kwargs,
941
+ return_dict=False,
942
+ )
943
+
944
+ guidance = (
945
+ torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
946
+ )
947
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
948
+
949
+ noise_pred = self.transformer(
950
+ hidden_states=latents,
951
+ timestep=timestep / 1000,
952
+ guidance=guidance,
953
+ pooled_projections=pooled_prompt_embeds,
954
+ encoder_hidden_states=prompt_embeds,
955
+ controlnet_block_samples=controlnet_block_samples,
956
+ controlnet_single_block_samples=controlnet_single_block_samples,
957
+ txt_ids=text_ids,
958
+ img_ids=latent_image_ids,
959
+ joint_attention_kwargs=self.joint_attention_kwargs,
960
+ return_dict=False,
961
+ )[0]
962
+
963
+ latents_dtype = latents.dtype
964
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
965
+
966
+ if latents.dtype != latents_dtype:
967
+ if torch.backends.mps.is_available():
968
+ latents = latents.to(latents_dtype)
969
+
970
+ if callback_on_step_end is not None:
971
+ callback_kwargs = {}
972
+ for k in callback_on_step_end_tensor_inputs:
973
+ callback_kwargs[k] = locals()[k]
974
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
975
+
976
+ latents = callback_outputs.pop("latents", latents)
977
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
978
+
979
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
980
+ progress_bar.update()
981
+
982
+ if XLA_AVAILABLE:
983
+ xm.mark_step()
984
+
985
+ if output_type == "latent":
986
+ image = latents
987
+ else:
988
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
989
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
990
+ image = self.vae.decode(latents, return_dict=False)[0]
991
+ image = self.image_processor.postprocess(image, output_type=output_type)
992
+
993
+ self.maybe_free_model_hooks()
994
+
995
+ if not return_dict:
996
+ return (image,)
997
+
998
+ return FluxPipelineOutput(images=image)