diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1006 @@
1
+ # Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import (
21
+ CLIPTextModel,
22
+ CLIPTokenizer,
23
+ T5EncoderModel,
24
+ T5TokenizerFast,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
28
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
29
+ from ...models.autoencoders import AutoencoderKL
30
+ from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
31
+ from ...models.transformers import FluxTransformer2DModel
32
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
33
+ from ...utils import (
34
+ USE_PEFT_BACKEND,
35
+ is_torch_xla_available,
36
+ logging,
37
+ replace_example_docstring,
38
+ scale_lora_layers,
39
+ unscale_lora_layers,
40
+ )
41
+ from ...utils.torch_utils import randn_tensor
42
+ from ..pipeline_utils import DiffusionPipeline
43
+ from .pipeline_output import FluxPipelineOutput
44
+
45
+
46
+ if is_torch_xla_available():
47
+ import torch_xla.core.xla_model as xm
48
+
49
+ XLA_AVAILABLE = True
50
+ else:
51
+ XLA_AVAILABLE = False
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+ EXAMPLE_DOC_STRING = """
57
+ Examples:
58
+ ```py
59
+ >>> import torch
60
+ >>> from diffusers.utils import load_image
61
+ >>> from diffusers import FluxControlNetPipeline
62
+ >>> from diffusers import FluxControlNetModel
63
+
64
+ >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
65
+ >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
66
+ >>> pipe = FluxControlNetPipeline.from_pretrained(
67
+ ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
68
+ ... )
69
+ >>> pipe.to("cuda")
70
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
71
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
72
+ >>> image = pipe(
73
+ ... prompt,
74
+ ... control_image=control_image,
75
+ ... control_guidance_start=0.2,
76
+ ... control_guidance_end=0.8,
77
+ ... controlnet_conditioning_scale=1.0,
78
+ ... num_inference_steps=28,
79
+ ... guidance_scale=3.5,
80
+ ... ).images[0]
81
+ >>> image.save("flux.png")
82
+ ```
83
+ """
84
+
85
+
86
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
87
+ def calculate_shift(
88
+ image_seq_len,
89
+ base_seq_len: int = 256,
90
+ max_seq_len: int = 4096,
91
+ base_shift: float = 0.5,
92
+ max_shift: float = 1.16,
93
+ ):
94
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
95
+ b = base_shift - m * base_seq_len
96
+ mu = image_seq_len * m + b
97
+ return mu
98
+
99
+
100
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
101
+ def retrieve_latents(
102
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
103
+ ):
104
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
105
+ return encoder_output.latent_dist.sample(generator)
106
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
107
+ return encoder_output.latent_dist.mode()
108
+ elif hasattr(encoder_output, "latents"):
109
+ return encoder_output.latents
110
+ else:
111
+ raise AttributeError("Could not access latents of provided encoder_output")
112
+
113
+
114
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
115
+ def retrieve_timesteps(
116
+ scheduler,
117
+ num_inference_steps: Optional[int] = None,
118
+ device: Optional[Union[str, torch.device]] = None,
119
+ timesteps: Optional[List[int]] = None,
120
+ sigmas: Optional[List[float]] = None,
121
+ **kwargs,
122
+ ):
123
+ r"""
124
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
125
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
126
+
127
+ Args:
128
+ scheduler (`SchedulerMixin`):
129
+ The scheduler to get timesteps from.
130
+ num_inference_steps (`int`):
131
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
132
+ must be `None`.
133
+ device (`str` or `torch.device`, *optional*):
134
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
135
+ timesteps (`List[int]`, *optional*):
136
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
137
+ `num_inference_steps` and `sigmas` must be `None`.
138
+ sigmas (`List[float]`, *optional*):
139
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
140
+ `num_inference_steps` and `timesteps` must be `None`.
141
+
142
+ Returns:
143
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
+ second element is the number of inference steps.
145
+ """
146
+ if timesteps is not None and sigmas is not None:
147
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
148
+ if timesteps is not None:
149
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
150
+ if not accepts_timesteps:
151
+ raise ValueError(
152
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
+ f" timestep schedules. Please check whether you are using the correct scheduler."
154
+ )
155
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ num_inference_steps = len(timesteps)
158
+ elif sigmas is not None:
159
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
160
+ if not accept_sigmas:
161
+ raise ValueError(
162
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
163
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
164
+ )
165
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
166
+ timesteps = scheduler.timesteps
167
+ num_inference_steps = len(timesteps)
168
+ else:
169
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
170
+ timesteps = scheduler.timesteps
171
+ return timesteps, num_inference_steps
172
+
173
+
174
+ class FluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
175
+ r"""
176
+ The Flux pipeline for text-to-image generation.
177
+
178
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
179
+
180
+ Args:
181
+ transformer ([`FluxTransformer2DModel`]):
182
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
183
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
184
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
185
+ vae ([`AutoencoderKL`]):
186
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
187
+ text_encoder ([`CLIPTextModel`]):
188
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
189
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
190
+ text_encoder_2 ([`T5EncoderModel`]):
191
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
192
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
193
+ tokenizer (`CLIPTokenizer`):
194
+ Tokenizer of class
195
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
196
+ tokenizer_2 (`T5TokenizerFast`):
197
+ Second Tokenizer of class
198
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
199
+ """
200
+
201
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
202
+ _optional_components = []
203
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
204
+
205
+ def __init__(
206
+ self,
207
+ scheduler: FlowMatchEulerDiscreteScheduler,
208
+ vae: AutoencoderKL,
209
+ text_encoder: CLIPTextModel,
210
+ tokenizer: CLIPTokenizer,
211
+ text_encoder_2: T5EncoderModel,
212
+ tokenizer_2: T5TokenizerFast,
213
+ transformer: FluxTransformer2DModel,
214
+ controlnet: Union[
215
+ FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
216
+ ],
217
+ ):
218
+ super().__init__()
219
+ if isinstance(controlnet, (list, tuple)):
220
+ controlnet = FluxMultiControlNetModel(controlnet)
221
+
222
+ self.register_modules(
223
+ vae=vae,
224
+ text_encoder=text_encoder,
225
+ text_encoder_2=text_encoder_2,
226
+ tokenizer=tokenizer,
227
+ tokenizer_2=tokenizer_2,
228
+ transformer=transformer,
229
+ scheduler=scheduler,
230
+ controlnet=controlnet,
231
+ )
232
+ self.vae_scale_factor = (
233
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
234
+ )
235
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
236
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
237
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
238
+ self.tokenizer_max_length = (
239
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
240
+ )
241
+ self.default_sample_size = 128
242
+
243
+ def _get_t5_prompt_embeds(
244
+ self,
245
+ prompt: Union[str, List[str]] = None,
246
+ num_images_per_prompt: int = 1,
247
+ max_sequence_length: int = 512,
248
+ device: Optional[torch.device] = None,
249
+ dtype: Optional[torch.dtype] = None,
250
+ ):
251
+ device = device or self._execution_device
252
+ dtype = dtype or self.text_encoder.dtype
253
+
254
+ prompt = [prompt] if isinstance(prompt, str) else prompt
255
+ batch_size = len(prompt)
256
+
257
+ if isinstance(self, TextualInversionLoaderMixin):
258
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
259
+
260
+ text_inputs = self.tokenizer_2(
261
+ prompt,
262
+ padding="max_length",
263
+ max_length=max_sequence_length,
264
+ truncation=True,
265
+ return_length=False,
266
+ return_overflowing_tokens=False,
267
+ return_tensors="pt",
268
+ )
269
+ text_input_ids = text_inputs.input_ids
270
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
271
+
272
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
273
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
274
+ logger.warning(
275
+ "The following part of your input was truncated because `max_sequence_length` is set to "
276
+ f" {max_sequence_length} tokens: {removed_text}"
277
+ )
278
+
279
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
280
+
281
+ dtype = self.text_encoder_2.dtype
282
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
283
+
284
+ _, seq_len, _ = prompt_embeds.shape
285
+
286
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
287
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
288
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
289
+
290
+ return prompt_embeds
291
+
292
+ def _get_clip_prompt_embeds(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ num_images_per_prompt: int = 1,
296
+ device: Optional[torch.device] = None,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ prompt = [prompt] if isinstance(prompt, str) else prompt
301
+ batch_size = len(prompt)
302
+
303
+ if isinstance(self, TextualInversionLoaderMixin):
304
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
305
+
306
+ text_inputs = self.tokenizer(
307
+ prompt,
308
+ padding="max_length",
309
+ max_length=self.tokenizer_max_length,
310
+ truncation=True,
311
+ return_overflowing_tokens=False,
312
+ return_length=False,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ text_input_ids = text_inputs.input_ids
317
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
318
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
319
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
320
+ logger.warning(
321
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
322
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
323
+ )
324
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
325
+
326
+ # Use pooled output of CLIPTextModel
327
+ prompt_embeds = prompt_embeds.pooler_output
328
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
329
+
330
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
331
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
332
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
333
+
334
+ return prompt_embeds
335
+
336
+ def encode_prompt(
337
+ self,
338
+ prompt: Union[str, List[str]],
339
+ prompt_2: Union[str, List[str]],
340
+ device: Optional[torch.device] = None,
341
+ num_images_per_prompt: int = 1,
342
+ prompt_embeds: Optional[torch.FloatTensor] = None,
343
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ max_sequence_length: int = 512,
345
+ lora_scale: Optional[float] = None,
346
+ ):
347
+ r"""
348
+
349
+ Args:
350
+ prompt (`str` or `List[str]`, *optional*):
351
+ prompt to be encoded
352
+ prompt_2 (`str` or `List[str]`, *optional*):
353
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
354
+ used in all text-encoders
355
+ device: (`torch.device`):
356
+ torch device
357
+ num_images_per_prompt (`int`):
358
+ number of images that should be generated per prompt
359
+ prompt_embeds (`torch.FloatTensor`, *optional*):
360
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
361
+ provided, text embeddings will be generated from `prompt` input argument.
362
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
363
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
364
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
365
+ clip_skip (`int`, *optional*):
366
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
367
+ the output of the pre-final layer will be used for computing the prompt embeddings.
368
+ lora_scale (`float`, *optional*):
369
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
370
+ """
371
+ device = device or self._execution_device
372
+
373
+ # set lora scale so that monkey patched LoRA
374
+ # function of text encoder can correctly access it
375
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
376
+ self._lora_scale = lora_scale
377
+
378
+ # dynamically adjust the LoRA scale
379
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
380
+ scale_lora_layers(self.text_encoder, lora_scale)
381
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
382
+ scale_lora_layers(self.text_encoder_2, lora_scale)
383
+
384
+ prompt = [prompt] if isinstance(prompt, str) else prompt
385
+
386
+ if prompt_embeds is None:
387
+ prompt_2 = prompt_2 or prompt
388
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
389
+
390
+ # We only use the pooled prompt output from the CLIPTextModel
391
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
392
+ prompt=prompt,
393
+ device=device,
394
+ num_images_per_prompt=num_images_per_prompt,
395
+ )
396
+ prompt_embeds = self._get_t5_prompt_embeds(
397
+ prompt=prompt_2,
398
+ num_images_per_prompt=num_images_per_prompt,
399
+ max_sequence_length=max_sequence_length,
400
+ device=device,
401
+ )
402
+
403
+ if self.text_encoder is not None:
404
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
405
+ # Retrieve the original scale by scaling back the LoRA layers
406
+ unscale_lora_layers(self.text_encoder, lora_scale)
407
+
408
+ if self.text_encoder_2 is not None:
409
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
410
+ # Retrieve the original scale by scaling back the LoRA layers
411
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
412
+
413
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
414
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
415
+
416
+ return prompt_embeds, pooled_prompt_embeds, text_ids
417
+
418
+ def check_inputs(
419
+ self,
420
+ prompt,
421
+ prompt_2,
422
+ height,
423
+ width,
424
+ prompt_embeds=None,
425
+ pooled_prompt_embeds=None,
426
+ callback_on_step_end_tensor_inputs=None,
427
+ max_sequence_length=None,
428
+ ):
429
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
430
+ logger.warning(
431
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
432
+ )
433
+
434
+ if callback_on_step_end_tensor_inputs is not None and not all(
435
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
436
+ ):
437
+ raise ValueError(
438
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
439
+ )
440
+
441
+ if prompt is not None and prompt_embeds is not None:
442
+ raise ValueError(
443
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
444
+ " only forward one of the two."
445
+ )
446
+ elif prompt_2 is not None and prompt_embeds is not None:
447
+ raise ValueError(
448
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
449
+ " only forward one of the two."
450
+ )
451
+ elif prompt is None and prompt_embeds is None:
452
+ raise ValueError(
453
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
454
+ )
455
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
456
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
457
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
458
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
459
+
460
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
461
+ raise ValueError(
462
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
463
+ )
464
+
465
+ if max_sequence_length is not None and max_sequence_length > 512:
466
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
467
+
468
+ @staticmethod
469
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
470
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
471
+ latent_image_ids = torch.zeros(height, width, 3)
472
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
473
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
474
+
475
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
476
+
477
+ latent_image_ids = latent_image_ids.reshape(
478
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
479
+ )
480
+
481
+ return latent_image_ids.to(device=device, dtype=dtype)
482
+
483
+ @staticmethod
484
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
485
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
486
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
487
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
488
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
489
+
490
+ return latents
491
+
492
+ @staticmethod
493
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
494
+ def _unpack_latents(latents, height, width, vae_scale_factor):
495
+ batch_size, num_patches, channels = latents.shape
496
+
497
+ # VAE applies 8x compression on images but we must also account for packing which requires
498
+ # latent height and width to be divisible by 2.
499
+ height = 2 * (int(height) // (vae_scale_factor * 2))
500
+ width = 2 * (int(width) // (vae_scale_factor * 2))
501
+
502
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
503
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
504
+
505
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
506
+
507
+ return latents
508
+
509
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
510
+ def prepare_latents(
511
+ self,
512
+ batch_size,
513
+ num_channels_latents,
514
+ height,
515
+ width,
516
+ dtype,
517
+ device,
518
+ generator,
519
+ latents=None,
520
+ ):
521
+ # VAE applies 8x compression on images but we must also account for packing which requires
522
+ # latent height and width to be divisible by 2.
523
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
524
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
525
+
526
+ shape = (batch_size, num_channels_latents, height, width)
527
+
528
+ if latents is not None:
529
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
530
+ return latents.to(device=device, dtype=dtype), latent_image_ids
531
+
532
+ if isinstance(generator, list) and len(generator) != batch_size:
533
+ raise ValueError(
534
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
535
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
536
+ )
537
+
538
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
539
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
540
+
541
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
542
+
543
+ return latents, latent_image_ids
544
+
545
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
546
+ def prepare_image(
547
+ self,
548
+ image,
549
+ width,
550
+ height,
551
+ batch_size,
552
+ num_images_per_prompt,
553
+ device,
554
+ dtype,
555
+ do_classifier_free_guidance=False,
556
+ guess_mode=False,
557
+ ):
558
+ if isinstance(image, torch.Tensor):
559
+ pass
560
+ else:
561
+ image = self.image_processor.preprocess(image, height=height, width=width)
562
+
563
+ image_batch_size = image.shape[0]
564
+
565
+ if image_batch_size == 1:
566
+ repeat_by = batch_size
567
+ else:
568
+ # image batch size is the same as prompt batch size
569
+ repeat_by = num_images_per_prompt
570
+
571
+ image = image.repeat_interleave(repeat_by, dim=0)
572
+
573
+ image = image.to(device=device, dtype=dtype)
574
+
575
+ if do_classifier_free_guidance and not guess_mode:
576
+ image = torch.cat([image] * 2)
577
+
578
+ return image
579
+
580
+ @property
581
+ def guidance_scale(self):
582
+ return self._guidance_scale
583
+
584
+ @property
585
+ def joint_attention_kwargs(self):
586
+ return self._joint_attention_kwargs
587
+
588
+ @property
589
+ def num_timesteps(self):
590
+ return self._num_timesteps
591
+
592
+ @property
593
+ def interrupt(self):
594
+ return self._interrupt
595
+
596
+ @torch.no_grad()
597
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
598
+ def __call__(
599
+ self,
600
+ prompt: Union[str, List[str]] = None,
601
+ prompt_2: Optional[Union[str, List[str]]] = None,
602
+ height: Optional[int] = None,
603
+ width: Optional[int] = None,
604
+ num_inference_steps: int = 28,
605
+ sigmas: Optional[List[float]] = None,
606
+ guidance_scale: float = 7.0,
607
+ control_guidance_start: Union[float, List[float]] = 0.0,
608
+ control_guidance_end: Union[float, List[float]] = 1.0,
609
+ control_image: PipelineImageInput = None,
610
+ control_mode: Optional[Union[int, List[int]]] = None,
611
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
612
+ num_images_per_prompt: Optional[int] = 1,
613
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
614
+ latents: Optional[torch.FloatTensor] = None,
615
+ prompt_embeds: Optional[torch.FloatTensor] = None,
616
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
617
+ output_type: Optional[str] = "pil",
618
+ return_dict: bool = True,
619
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
620
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
621
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
622
+ max_sequence_length: int = 512,
623
+ ):
624
+ r"""
625
+ Function invoked when calling the pipeline for generation.
626
+
627
+ Args:
628
+ prompt (`str` or `List[str]`, *optional*):
629
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
630
+ instead.
631
+ prompt_2 (`str` or `List[str]`, *optional*):
632
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
633
+ will be used instead
634
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
635
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
636
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
637
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
638
+ num_inference_steps (`int`, *optional*, defaults to 50):
639
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
640
+ expense of slower inference.
641
+ sigmas (`List[float]`, *optional*):
642
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
643
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
644
+ will be used.
645
+ guidance_scale (`float`, *optional*, defaults to 7.0):
646
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
647
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
648
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
649
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
650
+ usually at the expense of lower image quality.
651
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
652
+ The percentage of total steps at which the ControlNet starts applying.
653
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
654
+ The percentage of total steps at which the ControlNet stops applying.
655
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
656
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
657
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
658
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
659
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
660
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
661
+ images must be passed as a list such that each element of the list can be correctly batched for input
662
+ to a single ControlNet.
663
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
664
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
665
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
666
+ the corresponding scale as a list.
667
+ control_mode (`int` or `List[int]`,, *optional*, defaults to None):
668
+ The control mode when applying ControlNet-Union.
669
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
670
+ The number of images to generate per prompt.
671
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
672
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
673
+ to make generation deterministic.
674
+ latents (`torch.FloatTensor`, *optional*):
675
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
676
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
677
+ tensor will ge generated by sampling using the supplied random `generator`.
678
+ prompt_embeds (`torch.FloatTensor`, *optional*):
679
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
680
+ provided, text embeddings will be generated from `prompt` input argument.
681
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
682
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
683
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
684
+ output_type (`str`, *optional*, defaults to `"pil"`):
685
+ The output format of the generate image. Choose between
686
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
687
+ return_dict (`bool`, *optional*, defaults to `True`):
688
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
689
+ joint_attention_kwargs (`dict`, *optional*):
690
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
691
+ `self.processor` in
692
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
693
+ callback_on_step_end (`Callable`, *optional*):
694
+ A function that calls at the end of each denoising steps during the inference. The function is called
695
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
696
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
697
+ `callback_on_step_end_tensor_inputs`.
698
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
699
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
700
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
701
+ `._callback_tensor_inputs` attribute of your pipeline class.
702
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
703
+
704
+ Examples:
705
+
706
+ Returns:
707
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
708
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
709
+ images.
710
+ """
711
+
712
+ height = height or self.default_sample_size * self.vae_scale_factor
713
+ width = width or self.default_sample_size * self.vae_scale_factor
714
+
715
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
716
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
717
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
718
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
719
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
720
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
721
+ control_guidance_start, control_guidance_end = (
722
+ mult * [control_guidance_start],
723
+ mult * [control_guidance_end],
724
+ )
725
+
726
+ # 1. Check inputs. Raise error if not correct
727
+ self.check_inputs(
728
+ prompt,
729
+ prompt_2,
730
+ height,
731
+ width,
732
+ prompt_embeds=prompt_embeds,
733
+ pooled_prompt_embeds=pooled_prompt_embeds,
734
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
735
+ max_sequence_length=max_sequence_length,
736
+ )
737
+
738
+ self._guidance_scale = guidance_scale
739
+ self._joint_attention_kwargs = joint_attention_kwargs
740
+ self._interrupt = False
741
+
742
+ # 2. Define call parameters
743
+ if prompt is not None and isinstance(prompt, str):
744
+ batch_size = 1
745
+ elif prompt is not None and isinstance(prompt, list):
746
+ batch_size = len(prompt)
747
+ else:
748
+ batch_size = prompt_embeds.shape[0]
749
+
750
+ device = self._execution_device
751
+ dtype = self.transformer.dtype
752
+
753
+ # 3. Prepare text embeddings
754
+ lora_scale = (
755
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
756
+ )
757
+ (
758
+ prompt_embeds,
759
+ pooled_prompt_embeds,
760
+ text_ids,
761
+ ) = self.encode_prompt(
762
+ prompt=prompt,
763
+ prompt_2=prompt_2,
764
+ prompt_embeds=prompt_embeds,
765
+ pooled_prompt_embeds=pooled_prompt_embeds,
766
+ device=device,
767
+ num_images_per_prompt=num_images_per_prompt,
768
+ max_sequence_length=max_sequence_length,
769
+ lora_scale=lora_scale,
770
+ )
771
+
772
+ # 3. Prepare control image
773
+ num_channels_latents = self.transformer.config.in_channels // 4
774
+ if isinstance(self.controlnet, FluxControlNetModel):
775
+ control_image = self.prepare_image(
776
+ image=control_image,
777
+ width=width,
778
+ height=height,
779
+ batch_size=batch_size * num_images_per_prompt,
780
+ num_images_per_prompt=num_images_per_prompt,
781
+ device=device,
782
+ dtype=self.vae.dtype,
783
+ )
784
+ height, width = control_image.shape[-2:]
785
+
786
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
787
+ controlnet_blocks_repeat = False if self.controlnet.input_hint_block is None else True
788
+ if self.controlnet.input_hint_block is None:
789
+ # vae encode
790
+ control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
791
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
792
+
793
+ # pack
794
+ height_control_image, width_control_image = control_image.shape[2:]
795
+ control_image = self._pack_latents(
796
+ control_image,
797
+ batch_size * num_images_per_prompt,
798
+ num_channels_latents,
799
+ height_control_image,
800
+ width_control_image,
801
+ )
802
+
803
+ # Here we ensure that `control_mode` has the same length as the control_image.
804
+ if control_mode is not None:
805
+ if not isinstance(control_mode, int):
806
+ raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
807
+ control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
808
+ control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
809
+
810
+ elif isinstance(self.controlnet, FluxMultiControlNetModel):
811
+ control_images = []
812
+ # xlab controlnet has a input_hint_block and instantx controlnet does not
813
+ controlnet_blocks_repeat = False if self.controlnet.nets[0].input_hint_block is None else True
814
+ for i, control_image_ in enumerate(control_image):
815
+ control_image_ = self.prepare_image(
816
+ image=control_image_,
817
+ width=width,
818
+ height=height,
819
+ batch_size=batch_size * num_images_per_prompt,
820
+ num_images_per_prompt=num_images_per_prompt,
821
+ device=device,
822
+ dtype=self.vae.dtype,
823
+ )
824
+ height, width = control_image_.shape[-2:]
825
+
826
+ if self.controlnet.nets[0].input_hint_block is None:
827
+ # vae encode
828
+ control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
829
+ control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
830
+
831
+ # pack
832
+ height_control_image, width_control_image = control_image_.shape[2:]
833
+ control_image_ = self._pack_latents(
834
+ control_image_,
835
+ batch_size * num_images_per_prompt,
836
+ num_channels_latents,
837
+ height_control_image,
838
+ width_control_image,
839
+ )
840
+ control_images.append(control_image_)
841
+
842
+ control_image = control_images
843
+
844
+ # Here we ensure that `control_mode` has the same length as the control_image.
845
+ if isinstance(control_mode, list) and len(control_mode) != len(control_image):
846
+ raise ValueError(
847
+ "For Multi-ControlNet, `control_mode` must be a list of the same "
848
+ + " length as the number of controlnets (control images) specified"
849
+ )
850
+ if not isinstance(control_mode, list):
851
+ control_mode = [control_mode] * len(control_image)
852
+ # set control mode
853
+ control_modes = []
854
+ for cmode in control_mode:
855
+ if cmode is None:
856
+ cmode = -1
857
+ control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
858
+ control_modes.append(control_mode)
859
+ control_mode = control_modes
860
+
861
+ # 4. Prepare latent variables
862
+ num_channels_latents = self.transformer.config.in_channels // 4
863
+ latents, latent_image_ids = self.prepare_latents(
864
+ batch_size * num_images_per_prompt,
865
+ num_channels_latents,
866
+ height,
867
+ width,
868
+ prompt_embeds.dtype,
869
+ device,
870
+ generator,
871
+ latents,
872
+ )
873
+
874
+ # 5. Prepare timesteps
875
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
876
+ image_seq_len = latents.shape[1]
877
+ mu = calculate_shift(
878
+ image_seq_len,
879
+ self.scheduler.config.base_image_seq_len,
880
+ self.scheduler.config.max_image_seq_len,
881
+ self.scheduler.config.base_shift,
882
+ self.scheduler.config.max_shift,
883
+ )
884
+ timesteps, num_inference_steps = retrieve_timesteps(
885
+ self.scheduler,
886
+ num_inference_steps,
887
+ device,
888
+ sigmas=sigmas,
889
+ mu=mu,
890
+ )
891
+
892
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
893
+ self._num_timesteps = len(timesteps)
894
+
895
+ # 6. Create tensor stating which controlnets to keep
896
+ controlnet_keep = []
897
+ for i in range(len(timesteps)):
898
+ keeps = [
899
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
900
+ for s, e in zip(control_guidance_start, control_guidance_end)
901
+ ]
902
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
903
+
904
+ # 7. Denoising loop
905
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
906
+ for i, t in enumerate(timesteps):
907
+ if self.interrupt:
908
+ continue
909
+
910
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
911
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
912
+
913
+ if isinstance(self.controlnet, FluxMultiControlNetModel):
914
+ use_guidance = self.controlnet.nets[0].config.guidance_embeds
915
+ else:
916
+ use_guidance = self.controlnet.config.guidance_embeds
917
+
918
+ guidance = torch.tensor([guidance_scale], device=device) if use_guidance else None
919
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
920
+
921
+ if isinstance(controlnet_keep[i], list):
922
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
923
+ else:
924
+ controlnet_cond_scale = controlnet_conditioning_scale
925
+ if isinstance(controlnet_cond_scale, list):
926
+ controlnet_cond_scale = controlnet_cond_scale[0]
927
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
928
+
929
+ # controlnet
930
+ controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
931
+ hidden_states=latents,
932
+ controlnet_cond=control_image,
933
+ controlnet_mode=control_mode,
934
+ conditioning_scale=cond_scale,
935
+ timestep=timestep / 1000,
936
+ guidance=guidance,
937
+ pooled_projections=pooled_prompt_embeds,
938
+ encoder_hidden_states=prompt_embeds,
939
+ txt_ids=text_ids,
940
+ img_ids=latent_image_ids,
941
+ joint_attention_kwargs=self.joint_attention_kwargs,
942
+ return_dict=False,
943
+ )
944
+
945
+ guidance = (
946
+ torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
947
+ )
948
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
949
+
950
+ noise_pred = self.transformer(
951
+ hidden_states=latents,
952
+ timestep=timestep / 1000,
953
+ guidance=guidance,
954
+ pooled_projections=pooled_prompt_embeds,
955
+ encoder_hidden_states=prompt_embeds,
956
+ controlnet_block_samples=controlnet_block_samples,
957
+ controlnet_single_block_samples=controlnet_single_block_samples,
958
+ txt_ids=text_ids,
959
+ img_ids=latent_image_ids,
960
+ joint_attention_kwargs=self.joint_attention_kwargs,
961
+ return_dict=False,
962
+ controlnet_blocks_repeat=controlnet_blocks_repeat,
963
+ )[0]
964
+
965
+ # compute the previous noisy sample x_t -> x_t-1
966
+ latents_dtype = latents.dtype
967
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
968
+
969
+ if latents.dtype != latents_dtype:
970
+ if torch.backends.mps.is_available():
971
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
972
+ latents = latents.to(latents_dtype)
973
+
974
+ if callback_on_step_end is not None:
975
+ callback_kwargs = {}
976
+ for k in callback_on_step_end_tensor_inputs:
977
+ callback_kwargs[k] = locals()[k]
978
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
979
+
980
+ latents = callback_outputs.pop("latents", latents)
981
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
982
+
983
+ # call the callback, if provided
984
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
985
+ progress_bar.update()
986
+
987
+ if XLA_AVAILABLE:
988
+ xm.mark_step()
989
+
990
+ if output_type == "latent":
991
+ image = latents
992
+
993
+ else:
994
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
995
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
996
+
997
+ image = self.vae.decode(latents, return_dict=False)[0]
998
+ image = self.image_processor.postprocess(image, output_type=output_type)
999
+
1000
+ # Offload all models
1001
+ self.maybe_free_model_hooks()
1002
+
1003
+ if not return_dict:
1004
+ return (image,)
1005
+
1006
+ return FluxPipelineOutput(images=image)