diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1022 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
22
+
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models.autoencoders import AutoencoderKL
26
+ from ...models.transformers import FluxTransformer2DModel
27
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
28
+ from ...utils import (
29
+ USE_PEFT_BACKEND,
30
+ is_torch_xla_available,
31
+ logging,
32
+ replace_example_docstring,
33
+ scale_lora_layers,
34
+ unscale_lora_layers,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline
38
+ from .pipeline_output import FluxPipelineOutput
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import FluxInpaintPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
59
+ >>> pipe.to("cuda")
60
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
61
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
62
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
63
+ >>> source = load_image(img_url)
64
+ >>> mask = load_image(mask_url)
65
+ >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
66
+ >>> image.save("flux_inpainting.png")
67
+ ```
68
+ """
69
+
70
+
71
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
72
+ def calculate_shift(
73
+ image_seq_len,
74
+ base_seq_len: int = 256,
75
+ max_seq_len: int = 4096,
76
+ base_shift: float = 0.5,
77
+ max_shift: float = 1.16,
78
+ ):
79
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
80
+ b = base_shift - m * base_seq_len
81
+ mu = image_seq_len * m + b
82
+ return mu
83
+
84
+
85
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
86
+ def retrieve_latents(
87
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
88
+ ):
89
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
90
+ return encoder_output.latent_dist.sample(generator)
91
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
92
+ return encoder_output.latent_dist.mode()
93
+ elif hasattr(encoder_output, "latents"):
94
+ return encoder_output.latents
95
+ else:
96
+ raise AttributeError("Could not access latents of provided encoder_output")
97
+
98
+
99
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
100
+ def retrieve_timesteps(
101
+ scheduler,
102
+ num_inference_steps: Optional[int] = None,
103
+ device: Optional[Union[str, torch.device]] = None,
104
+ timesteps: Optional[List[int]] = None,
105
+ sigmas: Optional[List[float]] = None,
106
+ **kwargs,
107
+ ):
108
+ r"""
109
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
110
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
111
+
112
+ Args:
113
+ scheduler (`SchedulerMixin`):
114
+ The scheduler to get timesteps from.
115
+ num_inference_steps (`int`):
116
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
117
+ must be `None`.
118
+ device (`str` or `torch.device`, *optional*):
119
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
120
+ timesteps (`List[int]`, *optional*):
121
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
122
+ `num_inference_steps` and `sigmas` must be `None`.
123
+ sigmas (`List[float]`, *optional*):
124
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
125
+ `num_inference_steps` and `timesteps` must be `None`.
126
+
127
+ Returns:
128
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
129
+ second element is the number of inference steps.
130
+ """
131
+ if timesteps is not None and sigmas is not None:
132
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
133
+ if timesteps is not None:
134
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
135
+ if not accepts_timesteps:
136
+ raise ValueError(
137
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
138
+ f" timestep schedules. Please check whether you are using the correct scheduler."
139
+ )
140
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
141
+ timesteps = scheduler.timesteps
142
+ num_inference_steps = len(timesteps)
143
+ elif sigmas is not None:
144
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
145
+ if not accept_sigmas:
146
+ raise ValueError(
147
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
148
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
149
+ )
150
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
151
+ timesteps = scheduler.timesteps
152
+ num_inference_steps = len(timesteps)
153
+ else:
154
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
155
+ timesteps = scheduler.timesteps
156
+ return timesteps, num_inference_steps
157
+
158
+
159
+ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
160
+ r"""
161
+ The Flux pipeline for image inpainting.
162
+
163
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
164
+
165
+ Args:
166
+ transformer ([`FluxTransformer2DModel`]):
167
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
168
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
169
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
170
+ vae ([`AutoencoderKL`]):
171
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
172
+ text_encoder ([`CLIPTextModel`]):
173
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
174
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
175
+ text_encoder_2 ([`T5EncoderModel`]):
176
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
177
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer_2 (`T5TokenizerFast`):
182
+ Second Tokenizer of class
183
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
187
+ _optional_components = []
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKL,
194
+ text_encoder: CLIPTextModel,
195
+ tokenizer: CLIPTokenizer,
196
+ text_encoder_2: T5EncoderModel,
197
+ tokenizer_2: T5TokenizerFast,
198
+ transformer: FluxTransformer2DModel,
199
+ ):
200
+ super().__init__()
201
+
202
+ self.register_modules(
203
+ vae=vae,
204
+ text_encoder=text_encoder,
205
+ text_encoder_2=text_encoder_2,
206
+ tokenizer=tokenizer,
207
+ tokenizer_2=tokenizer_2,
208
+ transformer=transformer,
209
+ scheduler=scheduler,
210
+ )
211
+ self.vae_scale_factor = (
212
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
213
+ )
214
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
215
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
216
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
217
+ self.mask_processor = VaeImageProcessor(
218
+ vae_scale_factor=self.vae_scale_factor * 2,
219
+ vae_latent_channels=self.vae.config.latent_channels,
220
+ do_normalize=False,
221
+ do_binarize=True,
222
+ do_convert_grayscale=True,
223
+ )
224
+ self.tokenizer_max_length = (
225
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
226
+ )
227
+ self.default_sample_size = 128
228
+
229
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
230
+ def _get_t5_prompt_embeds(
231
+ self,
232
+ prompt: Union[str, List[str]] = None,
233
+ num_images_per_prompt: int = 1,
234
+ max_sequence_length: int = 512,
235
+ device: Optional[torch.device] = None,
236
+ dtype: Optional[torch.dtype] = None,
237
+ ):
238
+ device = device or self._execution_device
239
+ dtype = dtype or self.text_encoder.dtype
240
+
241
+ prompt = [prompt] if isinstance(prompt, str) else prompt
242
+ batch_size = len(prompt)
243
+
244
+ if isinstance(self, TextualInversionLoaderMixin):
245
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
246
+
247
+ text_inputs = self.tokenizer_2(
248
+ prompt,
249
+ padding="max_length",
250
+ max_length=max_sequence_length,
251
+ truncation=True,
252
+ return_length=False,
253
+ return_overflowing_tokens=False,
254
+ return_tensors="pt",
255
+ )
256
+ text_input_ids = text_inputs.input_ids
257
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
258
+
259
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
260
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
261
+ logger.warning(
262
+ "The following part of your input was truncated because `max_sequence_length` is set to "
263
+ f" {max_sequence_length} tokens: {removed_text}"
264
+ )
265
+
266
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
267
+
268
+ dtype = self.text_encoder_2.dtype
269
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
270
+
271
+ _, seq_len, _ = prompt_embeds.shape
272
+
273
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
274
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
275
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
276
+
277
+ return prompt_embeds
278
+
279
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
280
+ def _get_clip_prompt_embeds(
281
+ self,
282
+ prompt: Union[str, List[str]],
283
+ num_images_per_prompt: int = 1,
284
+ device: Optional[torch.device] = None,
285
+ ):
286
+ device = device or self._execution_device
287
+
288
+ prompt = [prompt] if isinstance(prompt, str) else prompt
289
+ batch_size = len(prompt)
290
+
291
+ if isinstance(self, TextualInversionLoaderMixin):
292
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
293
+
294
+ text_inputs = self.tokenizer(
295
+ prompt,
296
+ padding="max_length",
297
+ max_length=self.tokenizer_max_length,
298
+ truncation=True,
299
+ return_overflowing_tokens=False,
300
+ return_length=False,
301
+ return_tensors="pt",
302
+ )
303
+
304
+ text_input_ids = text_inputs.input_ids
305
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
306
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
307
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
308
+ logger.warning(
309
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
310
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
311
+ )
312
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
313
+
314
+ # Use pooled output of CLIPTextModel
315
+ prompt_embeds = prompt_embeds.pooler_output
316
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
317
+
318
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
320
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
321
+
322
+ return prompt_embeds
323
+
324
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
325
+ def encode_prompt(
326
+ self,
327
+ prompt: Union[str, List[str]],
328
+ prompt_2: Union[str, List[str]],
329
+ device: Optional[torch.device] = None,
330
+ num_images_per_prompt: int = 1,
331
+ prompt_embeds: Optional[torch.FloatTensor] = None,
332
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
333
+ max_sequence_length: int = 512,
334
+ lora_scale: Optional[float] = None,
335
+ ):
336
+ r"""
337
+
338
+ Args:
339
+ prompt (`str` or `List[str]`, *optional*):
340
+ prompt to be encoded
341
+ prompt_2 (`str` or `List[str]`, *optional*):
342
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
343
+ used in all text-encoders
344
+ device: (`torch.device`):
345
+ torch device
346
+ num_images_per_prompt (`int`):
347
+ number of images that should be generated per prompt
348
+ prompt_embeds (`torch.FloatTensor`, *optional*):
349
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
350
+ provided, text embeddings will be generated from `prompt` input argument.
351
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
352
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
353
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
354
+ lora_scale (`float`, *optional*):
355
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
356
+ """
357
+ device = device or self._execution_device
358
+
359
+ # set lora scale so that monkey patched LoRA
360
+ # function of text encoder can correctly access it
361
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
362
+ self._lora_scale = lora_scale
363
+
364
+ # dynamically adjust the LoRA scale
365
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
366
+ scale_lora_layers(self.text_encoder, lora_scale)
367
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
368
+ scale_lora_layers(self.text_encoder_2, lora_scale)
369
+
370
+ prompt = [prompt] if isinstance(prompt, str) else prompt
371
+
372
+ if prompt_embeds is None:
373
+ prompt_2 = prompt_2 or prompt
374
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
375
+
376
+ # We only use the pooled prompt output from the CLIPTextModel
377
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
378
+ prompt=prompt,
379
+ device=device,
380
+ num_images_per_prompt=num_images_per_prompt,
381
+ )
382
+ prompt_embeds = self._get_t5_prompt_embeds(
383
+ prompt=prompt_2,
384
+ num_images_per_prompt=num_images_per_prompt,
385
+ max_sequence_length=max_sequence_length,
386
+ device=device,
387
+ )
388
+
389
+ if self.text_encoder is not None:
390
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
391
+ # Retrieve the original scale by scaling back the LoRA layers
392
+ unscale_lora_layers(self.text_encoder, lora_scale)
393
+
394
+ if self.text_encoder_2 is not None:
395
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
396
+ # Retrieve the original scale by scaling back the LoRA layers
397
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
398
+
399
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
400
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
401
+
402
+ return prompt_embeds, pooled_prompt_embeds, text_ids
403
+
404
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
405
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
406
+ if isinstance(generator, list):
407
+ image_latents = [
408
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
409
+ for i in range(image.shape[0])
410
+ ]
411
+ image_latents = torch.cat(image_latents, dim=0)
412
+ else:
413
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
414
+
415
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
416
+
417
+ return image_latents
418
+
419
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
420
+ def get_timesteps(self, num_inference_steps, strength, device):
421
+ # get the original timestep using init_timestep
422
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
423
+
424
+ t_start = int(max(num_inference_steps - init_timestep, 0))
425
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
426
+ if hasattr(self.scheduler, "set_begin_index"):
427
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
428
+
429
+ return timesteps, num_inference_steps - t_start
430
+
431
+ def check_inputs(
432
+ self,
433
+ prompt,
434
+ prompt_2,
435
+ image,
436
+ mask_image,
437
+ strength,
438
+ height,
439
+ width,
440
+ output_type,
441
+ prompt_embeds=None,
442
+ pooled_prompt_embeds=None,
443
+ callback_on_step_end_tensor_inputs=None,
444
+ padding_mask_crop=None,
445
+ max_sequence_length=None,
446
+ ):
447
+ if strength < 0 or strength > 1:
448
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
449
+
450
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
451
+ logger.warning(
452
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
453
+ )
454
+
455
+ if callback_on_step_end_tensor_inputs is not None and not all(
456
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
457
+ ):
458
+ raise ValueError(
459
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
460
+ )
461
+
462
+ if prompt is not None and prompt_embeds is not None:
463
+ raise ValueError(
464
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
465
+ " only forward one of the two."
466
+ )
467
+ elif prompt_2 is not None and prompt_embeds is not None:
468
+ raise ValueError(
469
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
470
+ " only forward one of the two."
471
+ )
472
+ elif prompt is None and prompt_embeds is None:
473
+ raise ValueError(
474
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
475
+ )
476
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
477
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
478
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
479
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
480
+
481
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
482
+ raise ValueError(
483
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
484
+ )
485
+
486
+ if padding_mask_crop is not None:
487
+ if not isinstance(image, PIL.Image.Image):
488
+ raise ValueError(
489
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
490
+ )
491
+ if not isinstance(mask_image, PIL.Image.Image):
492
+ raise ValueError(
493
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
494
+ f" {type(mask_image)}."
495
+ )
496
+ if output_type != "pil":
497
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
498
+
499
+ if max_sequence_length is not None and max_sequence_length > 512:
500
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
501
+
502
+ @staticmethod
503
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
504
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
505
+ latent_image_ids = torch.zeros(height, width, 3)
506
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
507
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
508
+
509
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
510
+
511
+ latent_image_ids = latent_image_ids.reshape(
512
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
513
+ )
514
+
515
+ return latent_image_ids.to(device=device, dtype=dtype)
516
+
517
+ @staticmethod
518
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
519
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
520
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
521
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
522
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
523
+
524
+ return latents
525
+
526
+ @staticmethod
527
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
528
+ def _unpack_latents(latents, height, width, vae_scale_factor):
529
+ batch_size, num_patches, channels = latents.shape
530
+
531
+ # VAE applies 8x compression on images but we must also account for packing which requires
532
+ # latent height and width to be divisible by 2.
533
+ height = 2 * (int(height) // (vae_scale_factor * 2))
534
+ width = 2 * (int(width) // (vae_scale_factor * 2))
535
+
536
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
537
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
538
+
539
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
540
+
541
+ return latents
542
+
543
+ def prepare_latents(
544
+ self,
545
+ image,
546
+ timestep,
547
+ batch_size,
548
+ num_channels_latents,
549
+ height,
550
+ width,
551
+ dtype,
552
+ device,
553
+ generator,
554
+ latents=None,
555
+ ):
556
+ if isinstance(generator, list) and len(generator) != batch_size:
557
+ raise ValueError(
558
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
559
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
560
+ )
561
+
562
+ # VAE applies 8x compression on images but we must also account for packing which requires
563
+ # latent height and width to be divisible by 2.
564
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
565
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
566
+ shape = (batch_size, num_channels_latents, height, width)
567
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
568
+
569
+ image = image.to(device=device, dtype=dtype)
570
+ image_latents = self._encode_vae_image(image=image, generator=generator)
571
+
572
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
573
+ # expand init_latents for batch_size
574
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
575
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
576
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
577
+ raise ValueError(
578
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
579
+ )
580
+ else:
581
+ image_latents = torch.cat([image_latents], dim=0)
582
+
583
+ if latents is None:
584
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
585
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
586
+ else:
587
+ noise = latents.to(device)
588
+ latents = noise
589
+
590
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
591
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
592
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
593
+ return latents, noise, image_latents, latent_image_ids
594
+
595
+ def prepare_mask_latents(
596
+ self,
597
+ mask,
598
+ masked_image,
599
+ batch_size,
600
+ num_channels_latents,
601
+ num_images_per_prompt,
602
+ height,
603
+ width,
604
+ dtype,
605
+ device,
606
+ generator,
607
+ ):
608
+ # VAE applies 8x compression on images but we must also account for packing which requires
609
+ # latent height and width to be divisible by 2.
610
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
611
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
612
+ # resize the mask to latents shape as we concatenate the mask to the latents
613
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
614
+ # and half precision
615
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
616
+ mask = mask.to(device=device, dtype=dtype)
617
+
618
+ batch_size = batch_size * num_images_per_prompt
619
+
620
+ masked_image = masked_image.to(device=device, dtype=dtype)
621
+
622
+ if masked_image.shape[1] == 16:
623
+ masked_image_latents = masked_image
624
+ else:
625
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
626
+
627
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
628
+
629
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
630
+ if mask.shape[0] < batch_size:
631
+ if not batch_size % mask.shape[0] == 0:
632
+ raise ValueError(
633
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
634
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
635
+ " of masks that you pass is divisible by the total requested batch size."
636
+ )
637
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
638
+ if masked_image_latents.shape[0] < batch_size:
639
+ if not batch_size % masked_image_latents.shape[0] == 0:
640
+ raise ValueError(
641
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
642
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
643
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
644
+ )
645
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
646
+
647
+ # aligning device to prevent device errors when concating it with the latent model input
648
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
649
+ masked_image_latents = self._pack_latents(
650
+ masked_image_latents,
651
+ batch_size,
652
+ num_channels_latents,
653
+ height,
654
+ width,
655
+ )
656
+ mask = self._pack_latents(
657
+ mask.repeat(1, num_channels_latents, 1, 1),
658
+ batch_size,
659
+ num_channels_latents,
660
+ height,
661
+ width,
662
+ )
663
+
664
+ return mask, masked_image_latents
665
+
666
+ @property
667
+ def guidance_scale(self):
668
+ return self._guidance_scale
669
+
670
+ @property
671
+ def joint_attention_kwargs(self):
672
+ return self._joint_attention_kwargs
673
+
674
+ @property
675
+ def num_timesteps(self):
676
+ return self._num_timesteps
677
+
678
+ @property
679
+ def interrupt(self):
680
+ return self._interrupt
681
+
682
+ @torch.no_grad()
683
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
684
+ def __call__(
685
+ self,
686
+ prompt: Union[str, List[str]] = None,
687
+ prompt_2: Optional[Union[str, List[str]]] = None,
688
+ image: PipelineImageInput = None,
689
+ mask_image: PipelineImageInput = None,
690
+ masked_image_latents: PipelineImageInput = None,
691
+ height: Optional[int] = None,
692
+ width: Optional[int] = None,
693
+ padding_mask_crop: Optional[int] = None,
694
+ strength: float = 0.6,
695
+ num_inference_steps: int = 28,
696
+ sigmas: Optional[List[float]] = None,
697
+ guidance_scale: float = 7.0,
698
+ num_images_per_prompt: Optional[int] = 1,
699
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
700
+ latents: Optional[torch.FloatTensor] = None,
701
+ prompt_embeds: Optional[torch.FloatTensor] = None,
702
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
703
+ output_type: Optional[str] = "pil",
704
+ return_dict: bool = True,
705
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
706
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
707
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
708
+ max_sequence_length: int = 512,
709
+ ):
710
+ r"""
711
+ Function invoked when calling the pipeline for generation.
712
+
713
+ Args:
714
+ prompt (`str` or `List[str]`, *optional*):
715
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
716
+ instead.
717
+ prompt_2 (`str` or `List[str]`, *optional*):
718
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
719
+ will be used instead
720
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
721
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
722
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
723
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
724
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
725
+ latents as `image`, but if passing latents directly it is not encoded again.
726
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
727
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
728
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
729
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
730
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
731
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
732
+ 1)`, or `(H, W)`.
733
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
734
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
735
+ latents tensor will ge generated by `mask_image`.
736
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
737
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
738
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
739
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
740
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
741
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
742
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
743
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
744
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
745
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
746
+ the image is large and contain information irrelevant for inpainting, such as background.
747
+ strength (`float`, *optional*, defaults to 1.0):
748
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
749
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
750
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
751
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
752
+ essentially ignores `image`.
753
+ num_inference_steps (`int`, *optional*, defaults to 50):
754
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
755
+ expense of slower inference.
756
+ sigmas (`List[float]`, *optional*):
757
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
758
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
759
+ will be used.
760
+ guidance_scale (`float`, *optional*, defaults to 7.0):
761
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
762
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
763
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
764
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
765
+ usually at the expense of lower image quality.
766
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
767
+ The number of images to generate per prompt.
768
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
769
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
770
+ to make generation deterministic.
771
+ latents (`torch.FloatTensor`, *optional*):
772
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
773
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
774
+ tensor will ge generated by sampling using the supplied random `generator`.
775
+ prompt_embeds (`torch.FloatTensor`, *optional*):
776
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
777
+ provided, text embeddings will be generated from `prompt` input argument.
778
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
779
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
780
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
781
+ output_type (`str`, *optional*, defaults to `"pil"`):
782
+ The output format of the generate image. Choose between
783
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
784
+ return_dict (`bool`, *optional*, defaults to `True`):
785
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
786
+ joint_attention_kwargs (`dict`, *optional*):
787
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
788
+ `self.processor` in
789
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
790
+ callback_on_step_end (`Callable`, *optional*):
791
+ A function that calls at the end of each denoising steps during the inference. The function is called
792
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
793
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
794
+ `callback_on_step_end_tensor_inputs`.
795
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
796
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
797
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
798
+ `._callback_tensor_inputs` attribute of your pipeline class.
799
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
800
+
801
+ Examples:
802
+
803
+ Returns:
804
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
805
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
806
+ images.
807
+ """
808
+
809
+ height = height or self.default_sample_size * self.vae_scale_factor
810
+ width = width or self.default_sample_size * self.vae_scale_factor
811
+
812
+ # 1. Check inputs. Raise error if not correct
813
+ self.check_inputs(
814
+ prompt,
815
+ prompt_2,
816
+ image,
817
+ mask_image,
818
+ strength,
819
+ height,
820
+ width,
821
+ output_type=output_type,
822
+ prompt_embeds=prompt_embeds,
823
+ pooled_prompt_embeds=pooled_prompt_embeds,
824
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
825
+ padding_mask_crop=padding_mask_crop,
826
+ max_sequence_length=max_sequence_length,
827
+ )
828
+
829
+ self._guidance_scale = guidance_scale
830
+ self._joint_attention_kwargs = joint_attention_kwargs
831
+ self._interrupt = False
832
+
833
+ # 2. Preprocess mask and image
834
+ if padding_mask_crop is not None:
835
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
836
+ resize_mode = "fill"
837
+ else:
838
+ crops_coords = None
839
+ resize_mode = "default"
840
+
841
+ original_image = image
842
+ init_image = self.image_processor.preprocess(
843
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
844
+ )
845
+ init_image = init_image.to(dtype=torch.float32)
846
+
847
+ # 3. Define call parameters
848
+ if prompt is not None and isinstance(prompt, str):
849
+ batch_size = 1
850
+ elif prompt is not None and isinstance(prompt, list):
851
+ batch_size = len(prompt)
852
+ else:
853
+ batch_size = prompt_embeds.shape[0]
854
+
855
+ device = self._execution_device
856
+
857
+ lora_scale = (
858
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
859
+ )
860
+ (
861
+ prompt_embeds,
862
+ pooled_prompt_embeds,
863
+ text_ids,
864
+ ) = self.encode_prompt(
865
+ prompt=prompt,
866
+ prompt_2=prompt_2,
867
+ prompt_embeds=prompt_embeds,
868
+ pooled_prompt_embeds=pooled_prompt_embeds,
869
+ device=device,
870
+ num_images_per_prompt=num_images_per_prompt,
871
+ max_sequence_length=max_sequence_length,
872
+ lora_scale=lora_scale,
873
+ )
874
+
875
+ # 4.Prepare timesteps
876
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
877
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
878
+ mu = calculate_shift(
879
+ image_seq_len,
880
+ self.scheduler.config.base_image_seq_len,
881
+ self.scheduler.config.max_image_seq_len,
882
+ self.scheduler.config.base_shift,
883
+ self.scheduler.config.max_shift,
884
+ )
885
+ timesteps, num_inference_steps = retrieve_timesteps(
886
+ self.scheduler,
887
+ num_inference_steps,
888
+ device,
889
+ sigmas=sigmas,
890
+ mu=mu,
891
+ )
892
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
893
+
894
+ if num_inference_steps < 1:
895
+ raise ValueError(
896
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
897
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
898
+ )
899
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
900
+
901
+ # 5. Prepare latent variables
902
+ num_channels_latents = self.transformer.config.in_channels // 4
903
+ num_channels_transformer = self.transformer.config.in_channels
904
+
905
+ latents, noise, image_latents, latent_image_ids = self.prepare_latents(
906
+ init_image,
907
+ latent_timestep,
908
+ batch_size * num_images_per_prompt,
909
+ num_channels_latents,
910
+ height,
911
+ width,
912
+ prompt_embeds.dtype,
913
+ device,
914
+ generator,
915
+ latents,
916
+ )
917
+
918
+ mask_condition = self.mask_processor.preprocess(
919
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
920
+ )
921
+
922
+ if masked_image_latents is None:
923
+ masked_image = init_image * (mask_condition < 0.5)
924
+ else:
925
+ masked_image = masked_image_latents
926
+
927
+ mask, masked_image_latents = self.prepare_mask_latents(
928
+ mask_condition,
929
+ masked_image,
930
+ batch_size,
931
+ num_channels_latents,
932
+ num_images_per_prompt,
933
+ height,
934
+ width,
935
+ prompt_embeds.dtype,
936
+ device,
937
+ generator,
938
+ )
939
+
940
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
941
+ self._num_timesteps = len(timesteps)
942
+
943
+ # handle guidance
944
+ if self.transformer.config.guidance_embeds:
945
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
946
+ guidance = guidance.expand(latents.shape[0])
947
+ else:
948
+ guidance = None
949
+
950
+ # 6. Denoising loop
951
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
952
+ for i, t in enumerate(timesteps):
953
+ if self.interrupt:
954
+ continue
955
+
956
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
957
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
958
+ noise_pred = self.transformer(
959
+ hidden_states=latents,
960
+ timestep=timestep / 1000,
961
+ guidance=guidance,
962
+ pooled_projections=pooled_prompt_embeds,
963
+ encoder_hidden_states=prompt_embeds,
964
+ txt_ids=text_ids,
965
+ img_ids=latent_image_ids,
966
+ joint_attention_kwargs=self.joint_attention_kwargs,
967
+ return_dict=False,
968
+ )[0]
969
+
970
+ # compute the previous noisy sample x_t -> x_t-1
971
+ latents_dtype = latents.dtype
972
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
973
+
974
+ # for 64 channel transformer only.
975
+ init_latents_proper = image_latents
976
+ init_mask = mask
977
+
978
+ if i < len(timesteps) - 1:
979
+ noise_timestep = timesteps[i + 1]
980
+ init_latents_proper = self.scheduler.scale_noise(
981
+ init_latents_proper, torch.tensor([noise_timestep]), noise
982
+ )
983
+
984
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
985
+
986
+ if latents.dtype != latents_dtype:
987
+ if torch.backends.mps.is_available():
988
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
989
+ latents = latents.to(latents_dtype)
990
+
991
+ if callback_on_step_end is not None:
992
+ callback_kwargs = {}
993
+ for k in callback_on_step_end_tensor_inputs:
994
+ callback_kwargs[k] = locals()[k]
995
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
996
+
997
+ latents = callback_outputs.pop("latents", latents)
998
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
999
+
1000
+ # call the callback, if provided
1001
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1002
+ progress_bar.update()
1003
+
1004
+ if XLA_AVAILABLE:
1005
+ xm.mark_step()
1006
+
1007
+ if output_type == "latent":
1008
+ image = latents
1009
+
1010
+ else:
1011
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1012
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1013
+ image = self.vae.decode(latents, return_dict=False)[0]
1014
+ image = self.image_processor.postprocess(image, output_type=output_type)
1015
+
1016
+ # Offload all models
1017
+ self.maybe_free_model_hooks()
1018
+
1019
+ if not return_dict:
1020
+ return (image,)
1021
+
1022
+ return FluxPipelineOutput(images=image)