diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1356 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Union
16
+
17
+ import PIL.Image
18
+ import torch
19
+ from packaging import version
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
+
22
+ from ...configuration_utils import FrozenDict
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
26
+ from ...models.lora import adjust_lora_scale_text_encoder
27
+ from ...schedulers import KarrasDiffusionSchedulers
28
+ from ...utils import (
29
+ USE_PEFT_BACKEND,
30
+ deprecate,
31
+ logging,
32
+ replace_example_docstring,
33
+ scale_lora_layers,
34
+ unscale_lora_layers,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
38
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
39
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
40
+ from .pag_utils import PAGMixin
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import AutoPipelineForInpainting
50
+
51
+ >>> pipe = AutoPipelineForInpainting.from_pretrained(
52
+ ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, enable_pag=True
53
+ ... )
54
+ >>> pipe = pipe.to("cuda")
55
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
56
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
57
+ >>> init_image = load_image(img_url).convert("RGB")
58
+ >>> mask_image = load_image(mask_url).convert("RGB")
59
+ >>> prompt = "A majestic tiger sitting on a bench"
60
+ >>> image = pipe(
61
+ ... prompt=prompt,
62
+ ... image=init_image,
63
+ ... mask_image=mask_image,
64
+ ... strength=0.8,
65
+ ... num_inference_steps=50,
66
+ ... guidance_scale=guidance_scale,
67
+ ... generator=generator,
68
+ ... pag_scale=pag_scale,
69
+ ... ).images[0]
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
75
+ def retrieve_latents(
76
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
77
+ ):
78
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
79
+ return encoder_output.latent_dist.sample(generator)
80
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
81
+ return encoder_output.latent_dist.mode()
82
+ elif hasattr(encoder_output, "latents"):
83
+ return encoder_output.latents
84
+ else:
85
+ raise AttributeError("Could not access latents of provided encoder_output")
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
89
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
90
+ r"""
91
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
92
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
93
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
94
+
95
+ Args:
96
+ noise_cfg (`torch.Tensor`):
97
+ The predicted noise tensor for the guided diffusion process.
98
+ noise_pred_text (`torch.Tensor`):
99
+ The predicted noise tensor for the text-guided diffusion process.
100
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
101
+ A rescale factor applied to the noise predictions.
102
+
103
+ Returns:
104
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
105
+ """
106
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
107
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
108
+ # rescale the results from guidance (fixes overexposure)
109
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
110
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
111
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
112
+ return noise_cfg
113
+
114
+
115
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
116
+ def retrieve_timesteps(
117
+ scheduler,
118
+ num_inference_steps: Optional[int] = None,
119
+ device: Optional[Union[str, torch.device]] = None,
120
+ timesteps: Optional[List[int]] = None,
121
+ sigmas: Optional[List[float]] = None,
122
+ **kwargs,
123
+ ):
124
+ r"""
125
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
126
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
127
+
128
+ Args:
129
+ scheduler (`SchedulerMixin`):
130
+ The scheduler to get timesteps from.
131
+ num_inference_steps (`int`):
132
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
133
+ must be `None`.
134
+ device (`str` or `torch.device`, *optional*):
135
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
136
+ timesteps (`List[int]`, *optional*):
137
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
138
+ `num_inference_steps` and `sigmas` must be `None`.
139
+ sigmas (`List[float]`, *optional*):
140
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
141
+ `num_inference_steps` and `timesteps` must be `None`.
142
+
143
+ Returns:
144
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
145
+ second element is the number of inference steps.
146
+ """
147
+ if timesteps is not None and sigmas is not None:
148
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
149
+ if timesteps is not None:
150
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
151
+ if not accepts_timesteps:
152
+ raise ValueError(
153
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
154
+ f" timestep schedules. Please check whether you are using the correct scheduler."
155
+ )
156
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
157
+ timesteps = scheduler.timesteps
158
+ num_inference_steps = len(timesteps)
159
+ elif sigmas is not None:
160
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
161
+ if not accept_sigmas:
162
+ raise ValueError(
163
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
164
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
165
+ )
166
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
167
+ timesteps = scheduler.timesteps
168
+ num_inference_steps = len(timesteps)
169
+ else:
170
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
171
+ timesteps = scheduler.timesteps
172
+ return timesteps, num_inference_steps
173
+
174
+
175
+ class StableDiffusionPAGInpaintPipeline(
176
+ DiffusionPipeline,
177
+ StableDiffusionMixin,
178
+ TextualInversionLoaderMixin,
179
+ StableDiffusionLoraLoaderMixin,
180
+ IPAdapterMixin,
181
+ FromSingleFileMixin,
182
+ PAGMixin,
183
+ ):
184
+ r"""
185
+ Pipeline for text-to-image generation using Stable Diffusion.
186
+
187
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
188
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
189
+
190
+ The pipeline also inherits the following loading methods:
191
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
192
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
193
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
194
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
195
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
196
+
197
+ Args:
198
+ vae ([`AutoencoderKL`]):
199
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
200
+ text_encoder ([`~transformers.CLIPTextModel`]):
201
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
202
+ tokenizer ([`~transformers.CLIPTokenizer`]):
203
+ A `CLIPTokenizer` to tokenize text.
204
+ unet ([`UNet2DConditionModel`]):
205
+ A `UNet2DConditionModel` to denoise the encoded image latents.
206
+ scheduler ([`SchedulerMixin`]):
207
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
208
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
209
+ safety_checker ([`StableDiffusionSafetyChecker`]):
210
+ Classification module that estimates whether generated images could be considered offensive or harmful.
211
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
212
+ about a model's potential harms.
213
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
214
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
215
+ """
216
+
217
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
218
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
219
+ _exclude_from_cpu_offload = ["safety_checker"]
220
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
221
+
222
+ def __init__(
223
+ self,
224
+ vae: AutoencoderKL,
225
+ text_encoder: CLIPTextModel,
226
+ tokenizer: CLIPTokenizer,
227
+ unet: UNet2DConditionModel,
228
+ scheduler: KarrasDiffusionSchedulers,
229
+ safety_checker: StableDiffusionSafetyChecker,
230
+ feature_extractor: CLIPImageProcessor,
231
+ image_encoder: CLIPVisionModelWithProjection = None,
232
+ requires_safety_checker: bool = True,
233
+ pag_applied_layers: Union[str, List[str]] = "mid",
234
+ ):
235
+ super().__init__()
236
+
237
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
238
+ deprecation_message = (
239
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
240
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
241
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
242
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
243
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
244
+ " file"
245
+ )
246
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
247
+ new_config = dict(scheduler.config)
248
+ new_config["steps_offset"] = 1
249
+ scheduler._internal_dict = FrozenDict(new_config)
250
+
251
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
252
+ deprecation_message = (
253
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
254
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
255
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
256
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
257
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
258
+ )
259
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
260
+ new_config = dict(scheduler.config)
261
+ new_config["clip_sample"] = False
262
+ scheduler._internal_dict = FrozenDict(new_config)
263
+
264
+ if safety_checker is None and requires_safety_checker:
265
+ logger.warning(
266
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
267
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
268
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
269
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
270
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
271
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
272
+ )
273
+
274
+ if safety_checker is not None and feature_extractor is None:
275
+ raise ValueError(
276
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
277
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
278
+ )
279
+
280
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
281
+ version.parse(unet.config._diffusers_version).base_version
282
+ ) < version.parse("0.9.0.dev0")
283
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
284
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
285
+ deprecation_message = (
286
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
287
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
288
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
289
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
290
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
291
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
292
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
293
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
294
+ " the `unet/config.json` file"
295
+ )
296
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
297
+ new_config = dict(unet.config)
298
+ new_config["sample_size"] = 64
299
+ unet._internal_dict = FrozenDict(new_config)
300
+
301
+ self.register_modules(
302
+ vae=vae,
303
+ text_encoder=text_encoder,
304
+ tokenizer=tokenizer,
305
+ unet=unet,
306
+ scheduler=scheduler,
307
+ safety_checker=safety_checker,
308
+ feature_extractor=feature_extractor,
309
+ image_encoder=image_encoder,
310
+ )
311
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
312
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
313
+ self.mask_processor = VaeImageProcessor(
314
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
315
+ )
316
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
317
+
318
+ self.set_pag_applied_layers(pag_applied_layers)
319
+
320
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
321
+ def encode_prompt(
322
+ self,
323
+ prompt,
324
+ device,
325
+ num_images_per_prompt,
326
+ do_classifier_free_guidance,
327
+ negative_prompt=None,
328
+ prompt_embeds: Optional[torch.Tensor] = None,
329
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
330
+ lora_scale: Optional[float] = None,
331
+ clip_skip: Optional[int] = None,
332
+ ):
333
+ r"""
334
+ Encodes the prompt into text encoder hidden states.
335
+
336
+ Args:
337
+ prompt (`str` or `List[str]`, *optional*):
338
+ prompt to be encoded
339
+ device: (`torch.device`):
340
+ torch device
341
+ num_images_per_prompt (`int`):
342
+ number of images that should be generated per prompt
343
+ do_classifier_free_guidance (`bool`):
344
+ whether to use classifier free guidance or not
345
+ negative_prompt (`str` or `List[str]`, *optional*):
346
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
347
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
348
+ less than `1`).
349
+ prompt_embeds (`torch.Tensor`, *optional*):
350
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
351
+ provided, text embeddings will be generated from `prompt` input argument.
352
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
353
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
354
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
355
+ argument.
356
+ lora_scale (`float`, *optional*):
357
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
358
+ clip_skip (`int`, *optional*):
359
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
360
+ the output of the pre-final layer will be used for computing the prompt embeddings.
361
+ """
362
+ # set lora scale so that monkey patched LoRA
363
+ # function of text encoder can correctly access it
364
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
365
+ self._lora_scale = lora_scale
366
+
367
+ # dynamically adjust the LoRA scale
368
+ if not USE_PEFT_BACKEND:
369
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
370
+ else:
371
+ scale_lora_layers(self.text_encoder, lora_scale)
372
+
373
+ if prompt is not None and isinstance(prompt, str):
374
+ batch_size = 1
375
+ elif prompt is not None and isinstance(prompt, list):
376
+ batch_size = len(prompt)
377
+ else:
378
+ batch_size = prompt_embeds.shape[0]
379
+
380
+ if prompt_embeds is None:
381
+ # textual inversion: process multi-vector tokens if necessary
382
+ if isinstance(self, TextualInversionLoaderMixin):
383
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
384
+
385
+ text_inputs = self.tokenizer(
386
+ prompt,
387
+ padding="max_length",
388
+ max_length=self.tokenizer.model_max_length,
389
+ truncation=True,
390
+ return_tensors="pt",
391
+ )
392
+ text_input_ids = text_inputs.input_ids
393
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
394
+
395
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
396
+ text_input_ids, untruncated_ids
397
+ ):
398
+ removed_text = self.tokenizer.batch_decode(
399
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
400
+ )
401
+ logger.warning(
402
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
403
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
404
+ )
405
+
406
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
407
+ attention_mask = text_inputs.attention_mask.to(device)
408
+ else:
409
+ attention_mask = None
410
+
411
+ if clip_skip is None:
412
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
413
+ prompt_embeds = prompt_embeds[0]
414
+ else:
415
+ prompt_embeds = self.text_encoder(
416
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
417
+ )
418
+ # Access the `hidden_states` first, that contains a tuple of
419
+ # all the hidden states from the encoder layers. Then index into
420
+ # the tuple to access the hidden states from the desired layer.
421
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
422
+ # We also need to apply the final LayerNorm here to not mess with the
423
+ # representations. The `last_hidden_states` that we typically use for
424
+ # obtaining the final prompt representations passes through the LayerNorm
425
+ # layer.
426
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
427
+
428
+ if self.text_encoder is not None:
429
+ prompt_embeds_dtype = self.text_encoder.dtype
430
+ elif self.unet is not None:
431
+ prompt_embeds_dtype = self.unet.dtype
432
+ else:
433
+ prompt_embeds_dtype = prompt_embeds.dtype
434
+
435
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
436
+
437
+ bs_embed, seq_len, _ = prompt_embeds.shape
438
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
439
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
440
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
441
+
442
+ # get unconditional embeddings for classifier free guidance
443
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
444
+ uncond_tokens: List[str]
445
+ if negative_prompt is None:
446
+ uncond_tokens = [""] * batch_size
447
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
448
+ raise TypeError(
449
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
450
+ f" {type(prompt)}."
451
+ )
452
+ elif isinstance(negative_prompt, str):
453
+ uncond_tokens = [negative_prompt]
454
+ elif batch_size != len(negative_prompt):
455
+ raise ValueError(
456
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
457
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
458
+ " the batch size of `prompt`."
459
+ )
460
+ else:
461
+ uncond_tokens = negative_prompt
462
+
463
+ # textual inversion: process multi-vector tokens if necessary
464
+ if isinstance(self, TextualInversionLoaderMixin):
465
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
466
+
467
+ max_length = prompt_embeds.shape[1]
468
+ uncond_input = self.tokenizer(
469
+ uncond_tokens,
470
+ padding="max_length",
471
+ max_length=max_length,
472
+ truncation=True,
473
+ return_tensors="pt",
474
+ )
475
+
476
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
477
+ attention_mask = uncond_input.attention_mask.to(device)
478
+ else:
479
+ attention_mask = None
480
+
481
+ negative_prompt_embeds = self.text_encoder(
482
+ uncond_input.input_ids.to(device),
483
+ attention_mask=attention_mask,
484
+ )
485
+ negative_prompt_embeds = negative_prompt_embeds[0]
486
+
487
+ if do_classifier_free_guidance:
488
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
489
+ seq_len = negative_prompt_embeds.shape[1]
490
+
491
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
492
+
493
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
494
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
495
+
496
+ if self.text_encoder is not None:
497
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
498
+ # Retrieve the original scale by scaling back the LoRA layers
499
+ unscale_lora_layers(self.text_encoder, lora_scale)
500
+
501
+ return prompt_embeds, negative_prompt_embeds
502
+
503
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
504
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
505
+ dtype = next(self.image_encoder.parameters()).dtype
506
+
507
+ if not isinstance(image, torch.Tensor):
508
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
509
+
510
+ image = image.to(device=device, dtype=dtype)
511
+ if output_hidden_states:
512
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
513
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
514
+ uncond_image_enc_hidden_states = self.image_encoder(
515
+ torch.zeros_like(image), output_hidden_states=True
516
+ ).hidden_states[-2]
517
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
518
+ num_images_per_prompt, dim=0
519
+ )
520
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
521
+ else:
522
+ image_embeds = self.image_encoder(image).image_embeds
523
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
524
+ uncond_image_embeds = torch.zeros_like(image_embeds)
525
+
526
+ return image_embeds, uncond_image_embeds
527
+
528
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
529
+ def prepare_ip_adapter_image_embeds(
530
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
531
+ ):
532
+ image_embeds = []
533
+ if do_classifier_free_guidance:
534
+ negative_image_embeds = []
535
+ if ip_adapter_image_embeds is None:
536
+ if not isinstance(ip_adapter_image, list):
537
+ ip_adapter_image = [ip_adapter_image]
538
+
539
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
540
+ raise ValueError(
541
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
542
+ )
543
+
544
+ for single_ip_adapter_image, image_proj_layer in zip(
545
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
546
+ ):
547
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
548
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
549
+ single_ip_adapter_image, device, 1, output_hidden_state
550
+ )
551
+
552
+ image_embeds.append(single_image_embeds[None, :])
553
+ if do_classifier_free_guidance:
554
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
555
+ else:
556
+ for single_image_embeds in ip_adapter_image_embeds:
557
+ if do_classifier_free_guidance:
558
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
559
+ negative_image_embeds.append(single_negative_image_embeds)
560
+ image_embeds.append(single_image_embeds)
561
+
562
+ ip_adapter_image_embeds = []
563
+ for i, single_image_embeds in enumerate(image_embeds):
564
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
565
+ if do_classifier_free_guidance:
566
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
567
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
568
+
569
+ single_image_embeds = single_image_embeds.to(device=device)
570
+ ip_adapter_image_embeds.append(single_image_embeds)
571
+
572
+ return ip_adapter_image_embeds
573
+
574
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
575
+ def run_safety_checker(self, image, device, dtype):
576
+ if self.safety_checker is None:
577
+ has_nsfw_concept = None
578
+ else:
579
+ if torch.is_tensor(image):
580
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
581
+ else:
582
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
583
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
584
+ image, has_nsfw_concept = self.safety_checker(
585
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
586
+ )
587
+ return image, has_nsfw_concept
588
+
589
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
590
+ def prepare_extra_step_kwargs(self, generator, eta):
591
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
592
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
593
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
594
+ # and should be between [0, 1]
595
+
596
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
597
+ extra_step_kwargs = {}
598
+ if accepts_eta:
599
+ extra_step_kwargs["eta"] = eta
600
+
601
+ # check if the scheduler accepts generator
602
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
603
+ if accepts_generator:
604
+ extra_step_kwargs["generator"] = generator
605
+ return extra_step_kwargs
606
+
607
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.check_inputs
608
+ def check_inputs(
609
+ self,
610
+ prompt,
611
+ image,
612
+ mask_image,
613
+ height,
614
+ width,
615
+ strength,
616
+ callback_steps,
617
+ output_type,
618
+ negative_prompt=None,
619
+ prompt_embeds=None,
620
+ negative_prompt_embeds=None,
621
+ ip_adapter_image=None,
622
+ ip_adapter_image_embeds=None,
623
+ callback_on_step_end_tensor_inputs=None,
624
+ padding_mask_crop=None,
625
+ ):
626
+ if strength < 0 or strength > 1:
627
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
628
+
629
+ if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
630
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
631
+
632
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
633
+ raise ValueError(
634
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
635
+ f" {type(callback_steps)}."
636
+ )
637
+
638
+ if callback_on_step_end_tensor_inputs is not None and not all(
639
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
640
+ ):
641
+ raise ValueError(
642
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
643
+ )
644
+
645
+ if prompt is not None and prompt_embeds is not None:
646
+ raise ValueError(
647
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
648
+ " only forward one of the two."
649
+ )
650
+ elif prompt is None and prompt_embeds is None:
651
+ raise ValueError(
652
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
653
+ )
654
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
655
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
656
+
657
+ if negative_prompt is not None and negative_prompt_embeds is not None:
658
+ raise ValueError(
659
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
660
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
661
+ )
662
+
663
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
664
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
665
+ raise ValueError(
666
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
667
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
668
+ f" {negative_prompt_embeds.shape}."
669
+ )
670
+ if padding_mask_crop is not None:
671
+ if not isinstance(image, PIL.Image.Image):
672
+ raise ValueError(
673
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
674
+ )
675
+ if not isinstance(mask_image, PIL.Image.Image):
676
+ raise ValueError(
677
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
678
+ f" {type(mask_image)}."
679
+ )
680
+ if output_type != "pil":
681
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
682
+
683
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
684
+ raise ValueError(
685
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
686
+ )
687
+
688
+ if ip_adapter_image_embeds is not None:
689
+ if not isinstance(ip_adapter_image_embeds, list):
690
+ raise ValueError(
691
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
692
+ )
693
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
694
+ raise ValueError(
695
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
696
+ )
697
+
698
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
699
+ def prepare_latents(
700
+ self,
701
+ batch_size,
702
+ num_channels_latents,
703
+ height,
704
+ width,
705
+ dtype,
706
+ device,
707
+ generator,
708
+ latents=None,
709
+ image=None,
710
+ timestep=None,
711
+ is_strength_max=True,
712
+ return_noise=False,
713
+ return_image_latents=False,
714
+ ):
715
+ shape = (
716
+ batch_size,
717
+ num_channels_latents,
718
+ int(height) // self.vae_scale_factor,
719
+ int(width) // self.vae_scale_factor,
720
+ )
721
+ if isinstance(generator, list) and len(generator) != batch_size:
722
+ raise ValueError(
723
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
724
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
725
+ )
726
+
727
+ if (image is None or timestep is None) and not is_strength_max:
728
+ raise ValueError(
729
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
730
+ "However, either the image or the noise timestep has not been provided."
731
+ )
732
+
733
+ if return_image_latents or (latents is None and not is_strength_max):
734
+ image = image.to(device=device, dtype=dtype)
735
+
736
+ if image.shape[1] == 4:
737
+ image_latents = image
738
+ else:
739
+ image_latents = self._encode_vae_image(image=image, generator=generator)
740
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
741
+
742
+ if latents is None:
743
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
744
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
745
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
746
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
747
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
748
+ else:
749
+ noise = latents.to(device)
750
+ latents = noise * self.scheduler.init_noise_sigma
751
+
752
+ outputs = (latents,)
753
+
754
+ if return_noise:
755
+ outputs += (noise,)
756
+
757
+ if return_image_latents:
758
+ outputs += (image_latents,)
759
+
760
+ return outputs
761
+
762
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
763
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
764
+ if isinstance(generator, list):
765
+ image_latents = [
766
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
767
+ for i in range(image.shape[0])
768
+ ]
769
+ image_latents = torch.cat(image_latents, dim=0)
770
+ else:
771
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
772
+
773
+ image_latents = self.vae.config.scaling_factor * image_latents
774
+
775
+ return image_latents
776
+
777
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
778
+ def prepare_mask_latents(
779
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
780
+ ):
781
+ # resize the mask to latents shape as we concatenate the mask to the latents
782
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
783
+ # and half precision
784
+ mask = torch.nn.functional.interpolate(
785
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
786
+ )
787
+ mask = mask.to(device=device, dtype=dtype)
788
+
789
+ masked_image = masked_image.to(device=device, dtype=dtype)
790
+
791
+ if masked_image.shape[1] == 4:
792
+ masked_image_latents = masked_image
793
+ else:
794
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
795
+
796
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
797
+ if mask.shape[0] < batch_size:
798
+ if not batch_size % mask.shape[0] == 0:
799
+ raise ValueError(
800
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
801
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
802
+ " of masks that you pass is divisible by the total requested batch size."
803
+ )
804
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
805
+ if masked_image_latents.shape[0] < batch_size:
806
+ if not batch_size % masked_image_latents.shape[0] == 0:
807
+ raise ValueError(
808
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
809
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
810
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
811
+ )
812
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
813
+
814
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
815
+ masked_image_latents = (
816
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
817
+ )
818
+
819
+ # aligning device to prevent device errors when concating it with the latent model input
820
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
821
+ return mask, masked_image_latents
822
+
823
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
824
+ def get_timesteps(self, num_inference_steps, strength, device):
825
+ # get the original timestep using init_timestep
826
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
827
+
828
+ t_start = max(num_inference_steps - init_timestep, 0)
829
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
830
+ if hasattr(self.scheduler, "set_begin_index"):
831
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
832
+
833
+ return timesteps, num_inference_steps - t_start
834
+
835
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
836
+ def get_guidance_scale_embedding(
837
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
838
+ ) -> torch.Tensor:
839
+ """
840
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
841
+
842
+ Args:
843
+ w (`torch.Tensor`):
844
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
845
+ embedding_dim (`int`, *optional*, defaults to 512):
846
+ Dimension of the embeddings to generate.
847
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
848
+ Data type of the generated embeddings.
849
+
850
+ Returns:
851
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
852
+ """
853
+ assert len(w.shape) == 1
854
+ w = w * 1000.0
855
+
856
+ half_dim = embedding_dim // 2
857
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
858
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
859
+ emb = w.to(dtype)[:, None] * emb[None, :]
860
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
861
+ if embedding_dim % 2 == 1: # zero pad
862
+ emb = torch.nn.functional.pad(emb, (0, 1))
863
+ assert emb.shape == (w.shape[0], embedding_dim)
864
+ return emb
865
+
866
+ @property
867
+ def guidance_scale(self):
868
+ return self._guidance_scale
869
+
870
+ @property
871
+ def guidance_rescale(self):
872
+ return self._guidance_rescale
873
+
874
+ @property
875
+ def clip_skip(self):
876
+ return self._clip_skip
877
+
878
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
879
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
880
+ # corresponds to doing no classifier free guidance.
881
+ @property
882
+ def do_classifier_free_guidance(self):
883
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
884
+
885
+ @property
886
+ def cross_attention_kwargs(self):
887
+ return self._cross_attention_kwargs
888
+
889
+ @property
890
+ def num_timesteps(self):
891
+ return self._num_timesteps
892
+
893
+ @property
894
+ def interrupt(self):
895
+ return self._interrupt
896
+
897
+ @torch.no_grad()
898
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
899
+ def __call__(
900
+ self,
901
+ prompt: Union[str, List[str]] = None,
902
+ image: PipelineImageInput = None,
903
+ mask_image: PipelineImageInput = None,
904
+ masked_image_latents: torch.Tensor = None,
905
+ height: Optional[int] = None,
906
+ width: Optional[int] = None,
907
+ padding_mask_crop: Optional[int] = None,
908
+ strength: float = 0.9999,
909
+ num_inference_steps: int = 50,
910
+ timesteps: List[int] = None,
911
+ sigmas: List[float] = None,
912
+ guidance_scale: float = 7.5,
913
+ negative_prompt: Optional[Union[str, List[str]]] = None,
914
+ num_images_per_prompt: Optional[int] = 1,
915
+ eta: float = 0.0,
916
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
917
+ latents: Optional[torch.Tensor] = None,
918
+ prompt_embeds: Optional[torch.Tensor] = None,
919
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
920
+ ip_adapter_image: Optional[PipelineImageInput] = None,
921
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
922
+ output_type: Optional[str] = "pil",
923
+ return_dict: bool = True,
924
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
925
+ guidance_rescale: float = 0.0,
926
+ clip_skip: Optional[int] = None,
927
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
928
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
929
+ pag_scale: float = 3.0,
930
+ pag_adaptive_scale: float = 0.0,
931
+ ):
932
+ r"""
933
+ The call function to the pipeline for generation.
934
+
935
+ Args:
936
+ prompt (`str` or `List[str]`, *optional*):
937
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
938
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
939
+ The height in pixels of the generated image.
940
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
941
+ The width in pixels of the generated image.
942
+ num_inference_steps (`int`, *optional*, defaults to 50):
943
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
944
+ expense of slower inference.
945
+ timesteps (`List[int]`, *optional*):
946
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
947
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
948
+ passed will be used. Must be in descending order.
949
+ sigmas (`List[float]`, *optional*):
950
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
951
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
952
+ will be used.
953
+ guidance_scale (`float`, *optional*, defaults to 7.5):
954
+ A higher guidance scale value encourages the model to generate images closely linked to the text
955
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
956
+ negative_prompt (`str` or `List[str]`, *optional*):
957
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
958
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
959
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
960
+ The number of images to generate per prompt.
961
+ eta (`float`, *optional*, defaults to 0.0):
962
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
963
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
964
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
965
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
966
+ generation deterministic.
967
+ latents (`torch.Tensor`, *optional*):
968
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
969
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
970
+ tensor is generated by sampling using the supplied random `generator`.
971
+ prompt_embeds (`torch.Tensor`, *optional*):
972
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
973
+ provided, text embeddings are generated from the `prompt` input argument.
974
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
975
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
976
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
977
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
978
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
979
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
980
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
981
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
982
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
983
+ output_type (`str`, *optional*, defaults to `"pil"`):
984
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
985
+ return_dict (`bool`, *optional*, defaults to `True`):
986
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
987
+ plain tuple.
988
+ cross_attention_kwargs (`dict`, *optional*):
989
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
990
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
991
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
992
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
993
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
994
+ using zero terminal SNR.
995
+ clip_skip (`int`, *optional*):
996
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
997
+ the output of the pre-final layer will be used for computing the prompt embeddings.
998
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
999
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1000
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1001
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1002
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1003
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1004
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1005
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1006
+ `._callback_tensor_inputs` attribute of your pipeline class.
1007
+ pag_scale (`float`, *optional*, defaults to 3.0):
1008
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
1009
+ guidance will not be used.
1010
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
1011
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
1012
+ used.
1013
+
1014
+ Examples:
1015
+
1016
+ Returns:
1017
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1018
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1019
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
1020
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
1021
+ "not-safe-for-work" (nsfw) content.
1022
+ """
1023
+
1024
+ # 0. Default height and width to unet
1025
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
1026
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
1027
+ # to deal with lora scaling and other possible forward hooks
1028
+
1029
+ # 1. Check inputs. Raise error if not correct
1030
+ self.check_inputs(
1031
+ prompt,
1032
+ image,
1033
+ mask_image,
1034
+ height,
1035
+ width,
1036
+ strength,
1037
+ None,
1038
+ None,
1039
+ negative_prompt,
1040
+ prompt_embeds,
1041
+ negative_prompt_embeds,
1042
+ ip_adapter_image,
1043
+ ip_adapter_image_embeds,
1044
+ callback_on_step_end_tensor_inputs,
1045
+ padding_mask_crop,
1046
+ )
1047
+
1048
+ self._guidance_scale = guidance_scale
1049
+ self._guidance_rescale = guidance_rescale
1050
+ self._clip_skip = clip_skip
1051
+ self._cross_attention_kwargs = cross_attention_kwargs
1052
+ self._interrupt = False
1053
+ self._pag_scale = pag_scale
1054
+ self._pag_adaptive_scale = pag_adaptive_scale
1055
+
1056
+ # 2. Define call parameters
1057
+ if prompt is not None and isinstance(prompt, str):
1058
+ batch_size = 1
1059
+ elif prompt is not None and isinstance(prompt, list):
1060
+ batch_size = len(prompt)
1061
+ else:
1062
+ batch_size = prompt_embeds.shape[0]
1063
+
1064
+ device = self._execution_device
1065
+
1066
+ # 3. Encode input prompt
1067
+ lora_scale = (
1068
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1069
+ )
1070
+
1071
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1072
+ prompt,
1073
+ device,
1074
+ num_images_per_prompt,
1075
+ self.do_classifier_free_guidance,
1076
+ negative_prompt,
1077
+ prompt_embeds=prompt_embeds,
1078
+ negative_prompt_embeds=negative_prompt_embeds,
1079
+ lora_scale=lora_scale,
1080
+ clip_skip=self.clip_skip,
1081
+ )
1082
+
1083
+ # 4. set timesteps
1084
+ timesteps, num_inference_steps = retrieve_timesteps(
1085
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1086
+ )
1087
+ timesteps, num_inference_steps = self.get_timesteps(
1088
+ num_inference_steps=num_inference_steps, strength=strength, device=device
1089
+ )
1090
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1091
+ if num_inference_steps < 1:
1092
+ raise ValueError(
1093
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1094
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1095
+ )
1096
+
1097
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1098
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1099
+ is_strength_max = strength == 1.0
1100
+
1101
+ # 5. Preprocess mask and image
1102
+ if padding_mask_crop is not None:
1103
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1104
+ resize_mode = "fill"
1105
+ else:
1106
+ crops_coords = None
1107
+ resize_mode = "default"
1108
+
1109
+ original_image = image
1110
+ init_image = self.image_processor.preprocess(
1111
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1112
+ )
1113
+ init_image = init_image.to(dtype=torch.float32)
1114
+
1115
+ # 6. Prepare latent variables
1116
+ num_channels_latents = self.vae.config.latent_channels
1117
+ num_channels_unet = self.unet.config.in_channels
1118
+ return_image_latents = num_channels_unet == 4
1119
+
1120
+ latents_outputs = self.prepare_latents(
1121
+ batch_size * num_images_per_prompt,
1122
+ num_channels_latents,
1123
+ height,
1124
+ width,
1125
+ prompt_embeds.dtype,
1126
+ device,
1127
+ generator,
1128
+ latents,
1129
+ image=init_image,
1130
+ timestep=latent_timestep,
1131
+ is_strength_max=is_strength_max,
1132
+ return_noise=True,
1133
+ return_image_latents=return_image_latents,
1134
+ )
1135
+
1136
+ if return_image_latents:
1137
+ latents, noise, image_latents = latents_outputs
1138
+ else:
1139
+ latents, noise = latents_outputs
1140
+
1141
+ # 7. Prepare mask latent variables
1142
+ mask_condition = self.mask_processor.preprocess(
1143
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1144
+ )
1145
+
1146
+ if masked_image_latents is None:
1147
+ masked_image = init_image * (mask_condition < 0.5)
1148
+ else:
1149
+ masked_image = masked_image_latents
1150
+
1151
+ mask, masked_image_latents = self.prepare_mask_latents(
1152
+ mask_condition,
1153
+ masked_image,
1154
+ batch_size * num_images_per_prompt,
1155
+ height,
1156
+ width,
1157
+ prompt_embeds.dtype,
1158
+ device,
1159
+ generator,
1160
+ self.do_classifier_free_guidance,
1161
+ )
1162
+ if self.do_perturbed_attention_guidance:
1163
+ if self.do_classifier_free_guidance:
1164
+ mask, _ = mask.chunk(2)
1165
+ masked_image_latents, _ = masked_image_latents.chunk(2)
1166
+ mask = self._prepare_perturbed_attention_guidance(mask, mask, self.do_classifier_free_guidance)
1167
+ masked_image_latents = self._prepare_perturbed_attention_guidance(
1168
+ masked_image_latents, masked_image_latents, self.do_classifier_free_guidance
1169
+ )
1170
+
1171
+ # 8. Check that sizes of mask, masked image and latents match
1172
+ if num_channels_unet == 9:
1173
+ # default case for runwayml/stable-diffusion-inpainting
1174
+ num_channels_mask = mask.shape[1]
1175
+ num_channels_masked_image = masked_image_latents.shape[1]
1176
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
1177
+ raise ValueError(
1178
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
1179
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1180
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1181
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1182
+ " `pipeline.unet` or your `mask_image` or `image` input."
1183
+ )
1184
+ elif num_channels_unet != 4:
1185
+ raise ValueError(
1186
+ f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
1187
+ )
1188
+ # 9 Prepare extra step kwargs.
1189
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1190
+
1191
+ # For classifier free guidance, we need to do two forward passes.
1192
+ # Here we concatenate the unconditional and text embeddings into a single batch
1193
+ # to avoid doing two forward passes
1194
+
1195
+ if self.do_perturbed_attention_guidance:
1196
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1197
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1198
+ )
1199
+ elif self.do_classifier_free_guidance:
1200
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1201
+
1202
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1203
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1204
+ ip_adapter_image,
1205
+ ip_adapter_image_embeds,
1206
+ device,
1207
+ batch_size * num_images_per_prompt,
1208
+ self.do_classifier_free_guidance,
1209
+ )
1210
+
1211
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1212
+ negative_image_embeds = None
1213
+ if self.do_classifier_free_guidance:
1214
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1215
+ if self.do_perturbed_attention_guidance:
1216
+ image_embeds = self._prepare_perturbed_attention_guidance(
1217
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1218
+ )
1219
+
1220
+ elif self.do_classifier_free_guidance:
1221
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1222
+ image_embeds = image_embeds.to(device)
1223
+ ip_adapter_image_embeds[i] = image_embeds
1224
+
1225
+ # 9.1 Add image embeds for IP-Adapter
1226
+ added_cond_kwargs = (
1227
+ {"image_embeds": ip_adapter_image_embeds}
1228
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
1229
+ else None
1230
+ )
1231
+
1232
+ # 9.2 Optionally get Guidance Scale Embedding
1233
+ timestep_cond = None
1234
+ if self.unet.config.time_cond_proj_dim is not None:
1235
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1236
+ timestep_cond = self.get_guidance_scale_embedding(
1237
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1238
+ ).to(device=device, dtype=latents.dtype)
1239
+
1240
+ # 10. Denoising loop
1241
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1242
+
1243
+ if self.do_perturbed_attention_guidance:
1244
+ original_attn_proc = self.unet.attn_processors
1245
+ self._set_pag_attn_processor(
1246
+ pag_applied_layers=self.pag_applied_layers,
1247
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1248
+ )
1249
+ self._num_timesteps = len(timesteps)
1250
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1251
+ for i, t in enumerate(timesteps):
1252
+ if self.interrupt:
1253
+ continue
1254
+
1255
+ # expand the latents if we are doing classifier free guidance
1256
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1257
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1258
+
1259
+ if num_channels_unet == 9:
1260
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1261
+
1262
+ # predict the noise residual
1263
+ noise_pred = self.unet(
1264
+ latent_model_input,
1265
+ t,
1266
+ encoder_hidden_states=prompt_embeds,
1267
+ timestep_cond=timestep_cond,
1268
+ cross_attention_kwargs=self.cross_attention_kwargs,
1269
+ added_cond_kwargs=added_cond_kwargs,
1270
+ return_dict=False,
1271
+ )[0]
1272
+
1273
+ # perform guidance
1274
+ if self.do_perturbed_attention_guidance:
1275
+ noise_pred = self._apply_perturbed_attention_guidance(
1276
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1277
+ )
1278
+
1279
+ elif self.do_classifier_free_guidance:
1280
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1281
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1282
+
1283
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1284
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1285
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1286
+
1287
+ # compute the previous noisy sample x_t -> x_t-1
1288
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1289
+
1290
+ if num_channels_unet == 4:
1291
+ init_latents_proper = image_latents
1292
+ if self.do_perturbed_attention_guidance:
1293
+ init_mask, *_ = mask.chunk(3) if self.do_classifier_free_guidance else mask.chunk(2)
1294
+ else:
1295
+ init_mask, *_ = mask.chunk(2) if self.do_classifier_free_guidance else mask
1296
+
1297
+ if i < len(timesteps) - 1:
1298
+ noise_timestep = timesteps[i + 1]
1299
+ init_latents_proper = self.scheduler.add_noise(
1300
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1301
+ )
1302
+
1303
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1304
+
1305
+ if callback_on_step_end is not None:
1306
+ callback_kwargs = {}
1307
+ for k in callback_on_step_end_tensor_inputs:
1308
+ callback_kwargs[k] = locals()[k]
1309
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1310
+
1311
+ latents = callback_outputs.pop("latents", latents)
1312
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1313
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1314
+ mask = callback_outputs.pop("mask", mask)
1315
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
1316
+
1317
+ # call the callback, if provided
1318
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1319
+ progress_bar.update()
1320
+
1321
+ if not output_type == "latent":
1322
+ condition_kwargs = {}
1323
+ if isinstance(self.vae, AsymmetricAutoencoderKL):
1324
+ init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
1325
+ init_image_condition = init_image.clone()
1326
+ init_image = self._encode_vae_image(init_image, generator=generator)
1327
+ mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
1328
+ condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
1329
+ image = self.vae.decode(
1330
+ latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
1331
+ )[0]
1332
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1333
+ else:
1334
+ image = latents
1335
+ has_nsfw_concept = None
1336
+
1337
+ if has_nsfw_concept is None:
1338
+ do_denormalize = [True] * image.shape[0]
1339
+ else:
1340
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1341
+
1342
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1343
+
1344
+ if padding_mask_crop is not None:
1345
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1346
+
1347
+ # Offload all models
1348
+ self.maybe_free_model_hooks()
1349
+
1350
+ if self.do_perturbed_attention_guidance:
1351
+ self.unet.set_attn_processor(original_attn_proc)
1352
+
1353
+ if not return_dict:
1354
+ return (image, has_nsfw_concept)
1355
+
1356
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)