diffusers 0.30.3__py3-none-any.whl → 0.32.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (268) hide show
  1. diffusers/__init__.py +97 -4
  2. diffusers/callbacks.py +56 -3
  3. diffusers/configuration_utils.py +13 -1
  4. diffusers/image_processor.py +282 -71
  5. diffusers/loaders/__init__.py +24 -3
  6. diffusers/loaders/ip_adapter.py +543 -16
  7. diffusers/loaders/lora_base.py +138 -125
  8. diffusers/loaders/lora_conversion_utils.py +647 -0
  9. diffusers/loaders/lora_pipeline.py +2216 -230
  10. diffusers/loaders/peft.py +380 -0
  11. diffusers/loaders/single_file_model.py +71 -4
  12. diffusers/loaders/single_file_utils.py +597 -10
  13. diffusers/loaders/textual_inversion.py +5 -3
  14. diffusers/loaders/transformer_flux.py +181 -0
  15. diffusers/loaders/transformer_sd3.py +89 -0
  16. diffusers/loaders/unet.py +56 -12
  17. diffusers/models/__init__.py +49 -12
  18. diffusers/models/activations.py +22 -9
  19. diffusers/models/adapter.py +53 -53
  20. diffusers/models/attention.py +98 -13
  21. diffusers/models/attention_flax.py +1 -1
  22. diffusers/models/attention_processor.py +2160 -346
  23. diffusers/models/autoencoders/__init__.py +5 -0
  24. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  25. diffusers/models/autoencoders/autoencoder_kl.py +73 -12
  26. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  27. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +213 -105
  28. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  29. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  30. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  31. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +3 -10
  32. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  33. diffusers/models/autoencoders/vae.py +18 -5
  34. diffusers/models/controlnet.py +47 -802
  35. diffusers/models/controlnet_flux.py +70 -0
  36. diffusers/models/controlnet_sd3.py +26 -376
  37. diffusers/models/controlnet_sparsectrl.py +46 -719
  38. diffusers/models/controlnets/__init__.py +23 -0
  39. diffusers/models/controlnets/controlnet.py +872 -0
  40. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +5 -5
  41. diffusers/models/controlnets/controlnet_flux.py +536 -0
  42. diffusers/models/{controlnet_hunyuan.py → controlnets/controlnet_hunyuan.py} +7 -7
  43. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  44. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  45. diffusers/models/controlnets/controlnet_union.py +832 -0
  46. diffusers/models/{controlnet_xs.py → controlnets/controlnet_xs.py} +14 -13
  47. diffusers/models/controlnets/multicontrolnet.py +183 -0
  48. diffusers/models/embeddings.py +996 -92
  49. diffusers/models/embeddings_flax.py +23 -9
  50. diffusers/models/model_loading_utils.py +264 -14
  51. diffusers/models/modeling_flax_utils.py +1 -1
  52. diffusers/models/modeling_utils.py +334 -51
  53. diffusers/models/normalization.py +157 -13
  54. diffusers/models/transformers/__init__.py +6 -0
  55. diffusers/models/transformers/auraflow_transformer_2d.py +3 -2
  56. diffusers/models/transformers/cogvideox_transformer_3d.py +69 -13
  57. diffusers/models/transformers/dit_transformer_2d.py +1 -1
  58. diffusers/models/transformers/latte_transformer_3d.py +4 -4
  59. diffusers/models/transformers/pixart_transformer_2d.py +10 -2
  60. diffusers/models/transformers/sana_transformer.py +488 -0
  61. diffusers/models/transformers/stable_audio_transformer.py +1 -1
  62. diffusers/models/transformers/transformer_2d.py +1 -1
  63. diffusers/models/transformers/transformer_allegro.py +422 -0
  64. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  65. diffusers/models/transformers/transformer_flux.py +189 -51
  66. diffusers/models/transformers/transformer_hunyuan_video.py +789 -0
  67. diffusers/models/transformers/transformer_ltx.py +469 -0
  68. diffusers/models/transformers/transformer_mochi.py +499 -0
  69. diffusers/models/transformers/transformer_sd3.py +112 -18
  70. diffusers/models/transformers/transformer_temporal.py +1 -1
  71. diffusers/models/unets/unet_1d_blocks.py +1 -1
  72. diffusers/models/unets/unet_2d.py +8 -1
  73. diffusers/models/unets/unet_2d_blocks.py +88 -21
  74. diffusers/models/unets/unet_2d_condition.py +9 -9
  75. diffusers/models/unets/unet_3d_blocks.py +9 -7
  76. diffusers/models/unets/unet_motion_model.py +46 -68
  77. diffusers/models/unets/unet_spatio_temporal_condition.py +23 -0
  78. diffusers/models/unets/unet_stable_cascade.py +2 -2
  79. diffusers/models/unets/uvit_2d.py +1 -1
  80. diffusers/models/upsampling.py +14 -6
  81. diffusers/pipelines/__init__.py +69 -6
  82. diffusers/pipelines/allegro/__init__.py +48 -0
  83. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  84. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  85. diffusers/pipelines/animatediff/__init__.py +2 -0
  86. diffusers/pipelines/animatediff/pipeline_animatediff.py +45 -21
  87. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +52 -22
  88. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +18 -4
  89. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +3 -1
  90. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +104 -72
  91. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  92. diffusers/pipelines/audioldm2/modeling_audioldm2.py +3 -3
  93. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +2 -9
  94. diffusers/pipelines/auto_pipeline.py +88 -10
  95. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  96. diffusers/pipelines/cogvideo/__init__.py +2 -0
  97. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +80 -39
  98. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  99. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +108 -50
  100. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +89 -50
  101. diffusers/pipelines/cogview3/__init__.py +47 -0
  102. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  103. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  104. diffusers/pipelines/controlnet/__init__.py +86 -80
  105. diffusers/pipelines/controlnet/multicontrolnet.py +7 -178
  106. diffusers/pipelines/controlnet/pipeline_controlnet.py +20 -3
  107. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +9 -2
  108. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +9 -2
  109. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +37 -15
  110. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +12 -4
  111. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +9 -4
  112. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  113. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  114. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  115. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +22 -4
  116. diffusers/pipelines/controlnet_sd3/__init__.py +4 -0
  117. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +56 -20
  118. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  119. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  120. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  121. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +16 -4
  122. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +1 -1
  123. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +32 -9
  124. diffusers/pipelines/flux/__init__.py +23 -1
  125. diffusers/pipelines/flux/modeling_flux.py +47 -0
  126. diffusers/pipelines/flux/pipeline_flux.py +256 -48
  127. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  128. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  129. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  130. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  131. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  132. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  133. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  134. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  135. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  136. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  137. diffusers/pipelines/flux/pipeline_output.py +16 -0
  138. diffusers/pipelines/free_noise_utils.py +365 -5
  139. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  140. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  141. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  142. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +20 -4
  143. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +9 -9
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +2 -2
  145. diffusers/pipelines/kolors/pipeline_kolors.py +1 -1
  146. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +14 -11
  147. diffusers/pipelines/kolors/text_encoder.py +2 -2
  148. diffusers/pipelines/kolors/tokenizer.py +4 -0
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +1 -1
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +1 -1
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/latte/pipeline_latte.py +2 -2
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +15 -3
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +15 -3
  155. diffusers/pipelines/ltx/__init__.py +50 -0
  156. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  157. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  158. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  159. diffusers/pipelines/lumina/pipeline_lumina.py +3 -10
  160. diffusers/pipelines/mochi/__init__.py +48 -0
  161. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  162. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  163. diffusers/pipelines/pag/__init__.py +13 -0
  164. diffusers/pipelines/pag/pag_utils.py +8 -2
  165. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +2 -3
  166. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  167. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +3 -5
  168. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  169. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +22 -6
  170. diffusers/pipelines/pag/pipeline_pag_kolors.py +1 -1
  171. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +7 -14
  172. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  173. diffusers/pipelines/pag/pipeline_pag_sd.py +18 -6
  174. diffusers/pipelines/pag/pipeline_pag_sd_3.py +18 -9
  175. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  176. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +5 -1
  177. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  178. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  179. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +18 -6
  180. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +31 -16
  181. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +42 -19
  182. diffusers/pipelines/pia/pipeline_pia.py +2 -0
  183. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  184. diffusers/pipelines/pipeline_loading_utils.py +250 -31
  185. diffusers/pipelines/pipeline_utils.py +158 -186
  186. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +7 -14
  187. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +7 -14
  188. diffusers/pipelines/sana/__init__.py +47 -0
  189. diffusers/pipelines/sana/pipeline_output.py +21 -0
  190. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  191. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +12 -1
  192. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +35 -3
  193. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +2 -2
  194. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +46 -9
  195. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +1 -1
  196. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +1 -1
  197. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +241 -81
  198. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +228 -23
  199. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +82 -13
  200. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +60 -11
  201. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +11 -1
  202. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +1 -1
  203. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +16 -4
  204. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +16 -4
  205. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +16 -12
  206. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +29 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +29 -22
  208. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +1 -1
  209. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +1 -1
  210. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +16 -4
  211. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +15 -3
  212. diffusers/pipelines/unidiffuser/modeling_uvit.py +2 -2
  213. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +1 -1
  214. diffusers/quantizers/__init__.py +16 -0
  215. diffusers/quantizers/auto.py +139 -0
  216. diffusers/quantizers/base.py +233 -0
  217. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  218. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  219. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  220. diffusers/quantizers/gguf/__init__.py +1 -0
  221. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  222. diffusers/quantizers/gguf/utils.py +456 -0
  223. diffusers/quantizers/quantization_config.py +669 -0
  224. diffusers/quantizers/torchao/__init__.py +15 -0
  225. diffusers/quantizers/torchao/torchao_quantizer.py +285 -0
  226. diffusers/schedulers/scheduling_ddim.py +4 -1
  227. diffusers/schedulers/scheduling_ddim_cogvideox.py +4 -1
  228. diffusers/schedulers/scheduling_ddim_parallel.py +4 -1
  229. diffusers/schedulers/scheduling_ddpm.py +6 -7
  230. diffusers/schedulers/scheduling_ddpm_parallel.py +6 -7
  231. diffusers/schedulers/scheduling_deis_multistep.py +102 -6
  232. diffusers/schedulers/scheduling_dpmsolver_multistep.py +113 -6
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +111 -5
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +125 -10
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +126 -7
  236. diffusers/schedulers/scheduling_edm_euler.py +8 -6
  237. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +4 -1
  238. diffusers/schedulers/scheduling_euler_discrete.py +92 -7
  239. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +153 -6
  240. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +4 -5
  241. diffusers/schedulers/scheduling_heun_discrete.py +114 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +116 -11
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +110 -8
  244. diffusers/schedulers/scheduling_lcm.py +2 -6
  245. diffusers/schedulers/scheduling_lms_discrete.py +76 -1
  246. diffusers/schedulers/scheduling_repaint.py +1 -1
  247. diffusers/schedulers/scheduling_sasolver.py +102 -6
  248. diffusers/schedulers/scheduling_tcd.py +2 -6
  249. diffusers/schedulers/scheduling_unclip.py +4 -1
  250. diffusers/schedulers/scheduling_unipc_multistep.py +127 -5
  251. diffusers/training_utils.py +63 -19
  252. diffusers/utils/__init__.py +7 -1
  253. diffusers/utils/constants.py +1 -0
  254. diffusers/utils/dummy_pt_objects.py +240 -0
  255. diffusers/utils/dummy_torch_and_transformers_objects.py +435 -0
  256. diffusers/utils/dynamic_modules_utils.py +3 -3
  257. diffusers/utils/hub_utils.py +44 -40
  258. diffusers/utils/import_utils.py +98 -8
  259. diffusers/utils/loading_utils.py +28 -4
  260. diffusers/utils/peft_utils.py +6 -3
  261. diffusers/utils/testing_utils.py +115 -1
  262. diffusers/utils/torch_utils.py +3 -0
  263. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/METADATA +73 -72
  264. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/RECORD +268 -193
  265. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/WHEEL +1 -1
  266. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/LICENSE +0 -0
  267. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/entry_points.txt +0 -0
  268. {diffusers-0.30.3.dist-info → diffusers-0.32.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,832 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Dict, List, Optional, Tuple, Union
15
+
16
+ import torch
17
+ from torch import nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders.single_file_model import FromOriginalModelMixin
21
+ from ...utils import logging
22
+ from ..attention_processor import (
23
+ ADDED_KV_ATTENTION_PROCESSORS,
24
+ CROSS_ATTENTION_PROCESSORS,
25
+ AttentionProcessor,
26
+ AttnAddedKVProcessor,
27
+ AttnProcessor,
28
+ )
29
+ from ..embeddings import TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
30
+ from ..modeling_utils import ModelMixin
31
+ from ..unets.unet_2d_blocks import (
32
+ CrossAttnDownBlock2D,
33
+ DownBlock2D,
34
+ UNetMidBlock2DCrossAttn,
35
+ get_down_block,
36
+ )
37
+ from ..unets.unet_2d_condition import UNet2DConditionModel
38
+ from .controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ class QuickGELU(nn.Module):
45
+ """
46
+ Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
47
+ """
48
+
49
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
50
+ return input * torch.sigmoid(1.702 * input)
51
+
52
+
53
+ class ResidualAttentionMlp(nn.Module):
54
+ def __init__(self, d_model: int):
55
+ super().__init__()
56
+ self.c_fc = nn.Linear(d_model, d_model * 4)
57
+ self.gelu = QuickGELU()
58
+ self.c_proj = nn.Linear(d_model * 4, d_model)
59
+
60
+ def forward(self, x: torch.Tensor):
61
+ x = self.c_fc(x)
62
+ x = self.gelu(x)
63
+ x = self.c_proj(x)
64
+ return x
65
+
66
+
67
+ class ResidualAttentionBlock(nn.Module):
68
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
69
+ super().__init__()
70
+ self.attn = nn.MultiheadAttention(d_model, n_head)
71
+ self.ln_1 = nn.LayerNorm(d_model)
72
+ self.mlp = ResidualAttentionMlp(d_model)
73
+ self.ln_2 = nn.LayerNorm(d_model)
74
+ self.attn_mask = attn_mask
75
+
76
+ def attention(self, x: torch.Tensor):
77
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
78
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
79
+
80
+ def forward(self, x: torch.Tensor):
81
+ x = x + self.attention(self.ln_1(x))
82
+ x = x + self.mlp(self.ln_2(x))
83
+ return x
84
+
85
+
86
+ class ControlNetUnionModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
87
+ """
88
+ A ControlNetUnion model.
89
+
90
+ Args:
91
+ in_channels (`int`, defaults to 4):
92
+ The number of channels in the input sample.
93
+ flip_sin_to_cos (`bool`, defaults to `True`):
94
+ Whether to flip the sin to cos in the time embedding.
95
+ freq_shift (`int`, defaults to 0):
96
+ The frequency shift to apply to the time embedding.
97
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
98
+ The tuple of downsample blocks to use.
99
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
100
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
101
+ The tuple of output channels for each block.
102
+ layers_per_block (`int`, defaults to 2):
103
+ The number of layers per block.
104
+ downsample_padding (`int`, defaults to 1):
105
+ The padding to use for the downsampling convolution.
106
+ mid_block_scale_factor (`float`, defaults to 1):
107
+ The scale factor to use for the mid block.
108
+ act_fn (`str`, defaults to "silu"):
109
+ The activation function to use.
110
+ norm_num_groups (`int`, *optional*, defaults to 32):
111
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
112
+ in post-processing.
113
+ norm_eps (`float`, defaults to 1e-5):
114
+ The epsilon to use for the normalization.
115
+ cross_attention_dim (`int`, defaults to 1280):
116
+ The dimension of the cross attention features.
117
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
118
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
119
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
120
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
121
+ encoder_hid_dim (`int`, *optional*, defaults to None):
122
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
123
+ dimension to `cross_attention_dim`.
124
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
125
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
126
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
127
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
128
+ The dimension of the attention heads.
129
+ use_linear_projection (`bool`, defaults to `False`):
130
+ class_embed_type (`str`, *optional*, defaults to `None`):
131
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
132
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
133
+ addition_embed_type (`str`, *optional*, defaults to `None`):
134
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
135
+ "text". "text" will use the `TextTimeEmbedding` layer.
136
+ num_class_embeds (`int`, *optional*, defaults to 0):
137
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
138
+ class conditioning with `class_embed_type` equal to `None`.
139
+ upcast_attention (`bool`, defaults to `False`):
140
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
141
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
142
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
143
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
144
+ `class_embed_type="projection"`.
145
+ controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
146
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
147
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(48, 96, 192, 384)`):
148
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
149
+ global_pool_conditions (`bool`, defaults to `False`):
150
+ """
151
+
152
+ _supports_gradient_checkpointing = True
153
+
154
+ @register_to_config
155
+ def __init__(
156
+ self,
157
+ in_channels: int = 4,
158
+ conditioning_channels: int = 3,
159
+ flip_sin_to_cos: bool = True,
160
+ freq_shift: int = 0,
161
+ down_block_types: Tuple[str, ...] = (
162
+ "CrossAttnDownBlock2D",
163
+ "CrossAttnDownBlock2D",
164
+ "CrossAttnDownBlock2D",
165
+ "DownBlock2D",
166
+ ),
167
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
168
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
169
+ layers_per_block: int = 2,
170
+ downsample_padding: int = 1,
171
+ mid_block_scale_factor: float = 1,
172
+ act_fn: str = "silu",
173
+ norm_num_groups: Optional[int] = 32,
174
+ norm_eps: float = 1e-5,
175
+ cross_attention_dim: int = 1280,
176
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
177
+ encoder_hid_dim: Optional[int] = None,
178
+ encoder_hid_dim_type: Optional[str] = None,
179
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
180
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
181
+ use_linear_projection: bool = False,
182
+ class_embed_type: Optional[str] = None,
183
+ addition_embed_type: Optional[str] = None,
184
+ addition_time_embed_dim: Optional[int] = None,
185
+ num_class_embeds: Optional[int] = None,
186
+ upcast_attention: bool = False,
187
+ resnet_time_scale_shift: str = "default",
188
+ projection_class_embeddings_input_dim: Optional[int] = None,
189
+ controlnet_conditioning_channel_order: str = "rgb",
190
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (48, 96, 192, 384),
191
+ global_pool_conditions: bool = False,
192
+ addition_embed_type_num_heads: int = 64,
193
+ num_control_type: int = 6,
194
+ num_trans_channel: int = 320,
195
+ num_trans_head: int = 8,
196
+ num_trans_layer: int = 1,
197
+ num_proj_channel: int = 320,
198
+ ):
199
+ super().__init__()
200
+
201
+ # If `num_attention_heads` is not defined (which is the case for most models)
202
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
203
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
204
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
205
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
206
+ # which is why we correct for the naming here.
207
+ num_attention_heads = num_attention_heads or attention_head_dim
208
+
209
+ # Check inputs
210
+ if len(block_out_channels) != len(down_block_types):
211
+ raise ValueError(
212
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
213
+ )
214
+
215
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
216
+ raise ValueError(
217
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
218
+ )
219
+
220
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
221
+ raise ValueError(
222
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
223
+ )
224
+
225
+ if isinstance(transformer_layers_per_block, int):
226
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
227
+
228
+ # input
229
+ conv_in_kernel = 3
230
+ conv_in_padding = (conv_in_kernel - 1) // 2
231
+ self.conv_in = nn.Conv2d(
232
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
233
+ )
234
+
235
+ # time
236
+ time_embed_dim = block_out_channels[0] * 4
237
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
238
+ timestep_input_dim = block_out_channels[0]
239
+ self.time_embedding = TimestepEmbedding(
240
+ timestep_input_dim,
241
+ time_embed_dim,
242
+ act_fn=act_fn,
243
+ )
244
+
245
+ if encoder_hid_dim_type is not None:
246
+ raise ValueError(f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None.")
247
+ else:
248
+ self.encoder_hid_proj = None
249
+
250
+ # class embedding
251
+ if class_embed_type is None and num_class_embeds is not None:
252
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
253
+ elif class_embed_type == "timestep":
254
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
255
+ elif class_embed_type == "identity":
256
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
257
+ elif class_embed_type == "projection":
258
+ if projection_class_embeddings_input_dim is None:
259
+ raise ValueError(
260
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
261
+ )
262
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
263
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
264
+ # 2. it projects from an arbitrary input dimension.
265
+ #
266
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
267
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
268
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
269
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
270
+ else:
271
+ self.class_embedding = None
272
+
273
+ if addition_embed_type == "text":
274
+ if encoder_hid_dim is not None:
275
+ text_time_embedding_from_dim = encoder_hid_dim
276
+ else:
277
+ text_time_embedding_from_dim = cross_attention_dim
278
+
279
+ self.add_embedding = TextTimeEmbedding(
280
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
281
+ )
282
+ elif addition_embed_type == "text_image":
283
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
284
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
285
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
286
+ self.add_embedding = TextImageTimeEmbedding(
287
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
288
+ )
289
+ elif addition_embed_type == "text_time":
290
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
291
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
292
+
293
+ elif addition_embed_type is not None:
294
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
295
+
296
+ # control net conditioning embedding
297
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
298
+ conditioning_embedding_channels=block_out_channels[0],
299
+ block_out_channels=conditioning_embedding_out_channels,
300
+ conditioning_channels=conditioning_channels,
301
+ )
302
+
303
+ task_scale_factor = num_trans_channel**0.5
304
+ self.task_embedding = nn.Parameter(task_scale_factor * torch.randn(num_control_type, num_trans_channel))
305
+ self.transformer_layes = nn.ModuleList(
306
+ [ResidualAttentionBlock(num_trans_channel, num_trans_head) for _ in range(num_trans_layer)]
307
+ )
308
+ self.spatial_ch_projs = zero_module(nn.Linear(num_trans_channel, num_proj_channel))
309
+ self.control_type_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
310
+ self.control_add_embedding = TimestepEmbedding(addition_time_embed_dim * num_control_type, time_embed_dim)
311
+
312
+ self.down_blocks = nn.ModuleList([])
313
+ self.controlnet_down_blocks = nn.ModuleList([])
314
+
315
+ if isinstance(only_cross_attention, bool):
316
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
317
+
318
+ if isinstance(attention_head_dim, int):
319
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
320
+
321
+ if isinstance(num_attention_heads, int):
322
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
323
+
324
+ # down
325
+ output_channel = block_out_channels[0]
326
+
327
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
328
+ controlnet_block = zero_module(controlnet_block)
329
+ self.controlnet_down_blocks.append(controlnet_block)
330
+
331
+ for i, down_block_type in enumerate(down_block_types):
332
+ input_channel = output_channel
333
+ output_channel = block_out_channels[i]
334
+ is_final_block = i == len(block_out_channels) - 1
335
+
336
+ down_block = get_down_block(
337
+ down_block_type,
338
+ num_layers=layers_per_block,
339
+ transformer_layers_per_block=transformer_layers_per_block[i],
340
+ in_channels=input_channel,
341
+ out_channels=output_channel,
342
+ temb_channels=time_embed_dim,
343
+ add_downsample=not is_final_block,
344
+ resnet_eps=norm_eps,
345
+ resnet_act_fn=act_fn,
346
+ resnet_groups=norm_num_groups,
347
+ cross_attention_dim=cross_attention_dim,
348
+ num_attention_heads=num_attention_heads[i],
349
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
350
+ downsample_padding=downsample_padding,
351
+ use_linear_projection=use_linear_projection,
352
+ only_cross_attention=only_cross_attention[i],
353
+ upcast_attention=upcast_attention,
354
+ resnet_time_scale_shift=resnet_time_scale_shift,
355
+ )
356
+ self.down_blocks.append(down_block)
357
+
358
+ for _ in range(layers_per_block):
359
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
360
+ controlnet_block = zero_module(controlnet_block)
361
+ self.controlnet_down_blocks.append(controlnet_block)
362
+
363
+ if not is_final_block:
364
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
365
+ controlnet_block = zero_module(controlnet_block)
366
+ self.controlnet_down_blocks.append(controlnet_block)
367
+
368
+ # mid
369
+ mid_block_channel = block_out_channels[-1]
370
+
371
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
372
+ controlnet_block = zero_module(controlnet_block)
373
+ self.controlnet_mid_block = controlnet_block
374
+
375
+ self.mid_block = UNetMidBlock2DCrossAttn(
376
+ transformer_layers_per_block=transformer_layers_per_block[-1],
377
+ in_channels=mid_block_channel,
378
+ temb_channels=time_embed_dim,
379
+ resnet_eps=norm_eps,
380
+ resnet_act_fn=act_fn,
381
+ output_scale_factor=mid_block_scale_factor,
382
+ resnet_time_scale_shift=resnet_time_scale_shift,
383
+ cross_attention_dim=cross_attention_dim,
384
+ num_attention_heads=num_attention_heads[-1],
385
+ resnet_groups=norm_num_groups,
386
+ use_linear_projection=use_linear_projection,
387
+ upcast_attention=upcast_attention,
388
+ )
389
+
390
+ @classmethod
391
+ def from_unet(
392
+ cls,
393
+ unet: UNet2DConditionModel,
394
+ controlnet_conditioning_channel_order: str = "rgb",
395
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
396
+ load_weights_from_unet: bool = True,
397
+ ):
398
+ r"""
399
+ Instantiate a [`ControlNetUnionModel`] from [`UNet2DConditionModel`].
400
+
401
+ Parameters:
402
+ unet (`UNet2DConditionModel`):
403
+ The UNet model weights to copy to the [`ControlNetUnionModel`]. All configuration options are also
404
+ copied where applicable.
405
+ """
406
+ transformer_layers_per_block = (
407
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
408
+ )
409
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
410
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
411
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
412
+ addition_time_embed_dim = (
413
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
414
+ )
415
+
416
+ controlnet = cls(
417
+ encoder_hid_dim=encoder_hid_dim,
418
+ encoder_hid_dim_type=encoder_hid_dim_type,
419
+ addition_embed_type=addition_embed_type,
420
+ addition_time_embed_dim=addition_time_embed_dim,
421
+ transformer_layers_per_block=transformer_layers_per_block,
422
+ in_channels=unet.config.in_channels,
423
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
424
+ freq_shift=unet.config.freq_shift,
425
+ down_block_types=unet.config.down_block_types,
426
+ only_cross_attention=unet.config.only_cross_attention,
427
+ block_out_channels=unet.config.block_out_channels,
428
+ layers_per_block=unet.config.layers_per_block,
429
+ downsample_padding=unet.config.downsample_padding,
430
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
431
+ act_fn=unet.config.act_fn,
432
+ norm_num_groups=unet.config.norm_num_groups,
433
+ norm_eps=unet.config.norm_eps,
434
+ cross_attention_dim=unet.config.cross_attention_dim,
435
+ attention_head_dim=unet.config.attention_head_dim,
436
+ num_attention_heads=unet.config.num_attention_heads,
437
+ use_linear_projection=unet.config.use_linear_projection,
438
+ class_embed_type=unet.config.class_embed_type,
439
+ num_class_embeds=unet.config.num_class_embeds,
440
+ upcast_attention=unet.config.upcast_attention,
441
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
442
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
443
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
444
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
445
+ )
446
+
447
+ if load_weights_from_unet:
448
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
449
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
450
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
451
+
452
+ if controlnet.class_embedding:
453
+ controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
454
+
455
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
456
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
457
+
458
+ return controlnet
459
+
460
+ @property
461
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
462
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
463
+ r"""
464
+ Returns:
465
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
466
+ indexed by its weight name.
467
+ """
468
+ # set recursively
469
+ processors = {}
470
+
471
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
472
+ if hasattr(module, "get_processor"):
473
+ processors[f"{name}.processor"] = module.get_processor()
474
+
475
+ for sub_name, child in module.named_children():
476
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
477
+
478
+ return processors
479
+
480
+ for name, module in self.named_children():
481
+ fn_recursive_add_processors(name, module, processors)
482
+
483
+ return processors
484
+
485
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
486
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
487
+ r"""
488
+ Sets the attention processor to use to compute attention.
489
+
490
+ Parameters:
491
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
492
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
493
+ for **all** `Attention` layers.
494
+
495
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
496
+ processor. This is strongly recommended when setting trainable attention processors.
497
+
498
+ """
499
+ count = len(self.attn_processors.keys())
500
+
501
+ if isinstance(processor, dict) and len(processor) != count:
502
+ raise ValueError(
503
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
504
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
505
+ )
506
+
507
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
508
+ if hasattr(module, "set_processor"):
509
+ if not isinstance(processor, dict):
510
+ module.set_processor(processor)
511
+ else:
512
+ module.set_processor(processor.pop(f"{name}.processor"))
513
+
514
+ for sub_name, child in module.named_children():
515
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
516
+
517
+ for name, module in self.named_children():
518
+ fn_recursive_attn_processor(name, module, processor)
519
+
520
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
521
+ def set_default_attn_processor(self):
522
+ """
523
+ Disables custom attention processors and sets the default attention implementation.
524
+ """
525
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
526
+ processor = AttnAddedKVProcessor()
527
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
528
+ processor = AttnProcessor()
529
+ else:
530
+ raise ValueError(
531
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
532
+ )
533
+
534
+ self.set_attn_processor(processor)
535
+
536
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
537
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
538
+ r"""
539
+ Enable sliced attention computation.
540
+
541
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
542
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
543
+
544
+ Args:
545
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
546
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
547
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
548
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
549
+ must be a multiple of `slice_size`.
550
+ """
551
+ sliceable_head_dims = []
552
+
553
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
554
+ if hasattr(module, "set_attention_slice"):
555
+ sliceable_head_dims.append(module.sliceable_head_dim)
556
+
557
+ for child in module.children():
558
+ fn_recursive_retrieve_sliceable_dims(child)
559
+
560
+ # retrieve number of attention layers
561
+ for module in self.children():
562
+ fn_recursive_retrieve_sliceable_dims(module)
563
+
564
+ num_sliceable_layers = len(sliceable_head_dims)
565
+
566
+ if slice_size == "auto":
567
+ # half the attention head size is usually a good trade-off between
568
+ # speed and memory
569
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
570
+ elif slice_size == "max":
571
+ # make smallest slice possible
572
+ slice_size = num_sliceable_layers * [1]
573
+
574
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
575
+
576
+ if len(slice_size) != len(sliceable_head_dims):
577
+ raise ValueError(
578
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
579
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
580
+ )
581
+
582
+ for i in range(len(slice_size)):
583
+ size = slice_size[i]
584
+ dim = sliceable_head_dims[i]
585
+ if size is not None and size > dim:
586
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
587
+
588
+ # Recursively walk through all the children.
589
+ # Any children which exposes the set_attention_slice method
590
+ # gets the message
591
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
592
+ if hasattr(module, "set_attention_slice"):
593
+ module.set_attention_slice(slice_size.pop())
594
+
595
+ for child in module.children():
596
+ fn_recursive_set_attention_slice(child, slice_size)
597
+
598
+ reversed_slice_size = list(reversed(slice_size))
599
+ for module in self.children():
600
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
601
+
602
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
603
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
604
+ module.gradient_checkpointing = value
605
+
606
+ def forward(
607
+ self,
608
+ sample: torch.Tensor,
609
+ timestep: Union[torch.Tensor, float, int],
610
+ encoder_hidden_states: torch.Tensor,
611
+ controlnet_cond: List[torch.Tensor],
612
+ control_type: torch.Tensor,
613
+ control_type_idx: List[int],
614
+ conditioning_scale: float = 1.0,
615
+ class_labels: Optional[torch.Tensor] = None,
616
+ timestep_cond: Optional[torch.Tensor] = None,
617
+ attention_mask: Optional[torch.Tensor] = None,
618
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
619
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
620
+ guess_mode: bool = False,
621
+ return_dict: bool = True,
622
+ ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
623
+ """
624
+ The [`ControlNetUnionModel`] forward method.
625
+
626
+ Args:
627
+ sample (`torch.Tensor`):
628
+ The noisy input tensor.
629
+ timestep (`Union[torch.Tensor, float, int]`):
630
+ The number of timesteps to denoise an input.
631
+ encoder_hidden_states (`torch.Tensor`):
632
+ The encoder hidden states.
633
+ controlnet_cond (`List[torch.Tensor]`):
634
+ The conditional input tensors.
635
+ control_type (`torch.Tensor`):
636
+ A tensor of shape `(batch, num_control_type)` with values `0` or `1` depending on whether the control
637
+ type is used.
638
+ control_type_idx (`List[int]`):
639
+ The indices of `control_type`.
640
+ conditioning_scale (`float`, defaults to `1.0`):
641
+ The scale factor for ControlNet outputs.
642
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
643
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
644
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
645
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
646
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
647
+ embeddings.
648
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
649
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
650
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
651
+ negative values to the attention scores corresponding to "discard" tokens.
652
+ added_cond_kwargs (`dict`):
653
+ Additional conditions for the Stable Diffusion XL UNet.
654
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
655
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
656
+ guess_mode (`bool`, defaults to `False`):
657
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
658
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
659
+ return_dict (`bool`, defaults to `True`):
660
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
661
+
662
+ Returns:
663
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
664
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
665
+ returned where the first element is the sample tensor.
666
+ """
667
+ # check channel order
668
+ channel_order = self.config.controlnet_conditioning_channel_order
669
+
670
+ if channel_order != "rgb":
671
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
672
+
673
+ # prepare attention_mask
674
+ if attention_mask is not None:
675
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
676
+ attention_mask = attention_mask.unsqueeze(1)
677
+
678
+ # 1. time
679
+ timesteps = timestep
680
+ if not torch.is_tensor(timesteps):
681
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
682
+ # This would be a good case for the `match` statement (Python 3.10+)
683
+ is_mps = sample.device.type == "mps"
684
+ if isinstance(timestep, float):
685
+ dtype = torch.float32 if is_mps else torch.float64
686
+ else:
687
+ dtype = torch.int32 if is_mps else torch.int64
688
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
689
+ elif len(timesteps.shape) == 0:
690
+ timesteps = timesteps[None].to(sample.device)
691
+
692
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
693
+ timesteps = timesteps.expand(sample.shape[0])
694
+
695
+ t_emb = self.time_proj(timesteps)
696
+
697
+ # timesteps does not contain any weights and will always return f32 tensors
698
+ # but time_embedding might actually be running in fp16. so we need to cast here.
699
+ # there might be better ways to encapsulate this.
700
+ t_emb = t_emb.to(dtype=sample.dtype)
701
+
702
+ emb = self.time_embedding(t_emb, timestep_cond)
703
+ aug_emb = None
704
+
705
+ if self.class_embedding is not None:
706
+ if class_labels is None:
707
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
708
+
709
+ if self.config.class_embed_type == "timestep":
710
+ class_labels = self.time_proj(class_labels)
711
+
712
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
713
+ emb = emb + class_emb
714
+
715
+ if self.config.addition_embed_type is not None:
716
+ if self.config.addition_embed_type == "text":
717
+ aug_emb = self.add_embedding(encoder_hidden_states)
718
+
719
+ elif self.config.addition_embed_type == "text_time":
720
+ if "text_embeds" not in added_cond_kwargs:
721
+ raise ValueError(
722
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
723
+ )
724
+ text_embeds = added_cond_kwargs.get("text_embeds")
725
+ if "time_ids" not in added_cond_kwargs:
726
+ raise ValueError(
727
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
728
+ )
729
+ time_ids = added_cond_kwargs.get("time_ids")
730
+ time_embeds = self.add_time_proj(time_ids.flatten())
731
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
732
+
733
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
734
+ add_embeds = add_embeds.to(emb.dtype)
735
+ aug_emb = self.add_embedding(add_embeds)
736
+
737
+ control_embeds = self.control_type_proj(control_type.flatten())
738
+ control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
739
+ control_embeds = control_embeds.to(emb.dtype)
740
+ control_emb = self.control_add_embedding(control_embeds)
741
+ emb = emb + control_emb
742
+ emb = emb + aug_emb if aug_emb is not None else emb
743
+
744
+ # 2. pre-process
745
+ sample = self.conv_in(sample)
746
+
747
+ inputs = []
748
+ condition_list = []
749
+
750
+ for cond, control_idx in zip(controlnet_cond, control_type_idx):
751
+ condition = self.controlnet_cond_embedding(cond)
752
+ feat_seq = torch.mean(condition, dim=(2, 3))
753
+ feat_seq = feat_seq + self.task_embedding[control_idx]
754
+ inputs.append(feat_seq.unsqueeze(1))
755
+ condition_list.append(condition)
756
+
757
+ condition = sample
758
+ feat_seq = torch.mean(condition, dim=(2, 3))
759
+ inputs.append(feat_seq.unsqueeze(1))
760
+ condition_list.append(condition)
761
+
762
+ x = torch.cat(inputs, dim=1)
763
+ for layer in self.transformer_layes:
764
+ x = layer(x)
765
+
766
+ controlnet_cond_fuser = sample * 0.0
767
+ for idx, condition in enumerate(condition_list[:-1]):
768
+ alpha = self.spatial_ch_projs(x[:, idx])
769
+ alpha = alpha.unsqueeze(-1).unsqueeze(-1)
770
+ controlnet_cond_fuser += condition + alpha
771
+
772
+ sample = sample + controlnet_cond_fuser
773
+
774
+ # 3. down
775
+ down_block_res_samples = (sample,)
776
+ for downsample_block in self.down_blocks:
777
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
778
+ sample, res_samples = downsample_block(
779
+ hidden_states=sample,
780
+ temb=emb,
781
+ encoder_hidden_states=encoder_hidden_states,
782
+ attention_mask=attention_mask,
783
+ cross_attention_kwargs=cross_attention_kwargs,
784
+ )
785
+ else:
786
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
787
+
788
+ down_block_res_samples += res_samples
789
+
790
+ # 4. mid
791
+ if self.mid_block is not None:
792
+ sample = self.mid_block(
793
+ sample,
794
+ emb,
795
+ encoder_hidden_states=encoder_hidden_states,
796
+ attention_mask=attention_mask,
797
+ cross_attention_kwargs=cross_attention_kwargs,
798
+ )
799
+
800
+ # 5. Control net blocks
801
+ controlnet_down_block_res_samples = ()
802
+
803
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
804
+ down_block_res_sample = controlnet_block(down_block_res_sample)
805
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
806
+
807
+ down_block_res_samples = controlnet_down_block_res_samples
808
+
809
+ mid_block_res_sample = self.controlnet_mid_block(sample)
810
+
811
+ # 6. scaling
812
+ if guess_mode and not self.config.global_pool_conditions:
813
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
814
+ scales = scales * conditioning_scale
815
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
816
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
817
+ else:
818
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
819
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
820
+
821
+ if self.config.global_pool_conditions:
822
+ down_block_res_samples = [
823
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
824
+ ]
825
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
826
+
827
+ if not return_dict:
828
+ return (down_block_res_samples, mid_block_res_sample)
829
+
830
+ return ControlNetOutput(
831
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
832
+ )