ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/zhg.html DELETED
@@ -1,201 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>COMPLEX*16 or DOUBLE COMPLEX routines for upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular matrix) matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>COMPLEX*16 or DOUBLE COMPLEX routines for upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a triangular matrix) matrix</H1>
8
- <UL>
9
- <LI><A HREF="#zhgeqz">zhgeqz</A></LI>
10
- </UL>
11
-
12
- <A NAME="zhgeqz"></A>
13
- <H2>zhgeqz</H2>
14
- <PRE>
15
- USAGE:
16
- alpha, beta, work, info, h, t, q, z = NumRu::Lapack.zhgeqz( job, compq, compz, ilo, ihi, h, t, q, z, [:lwork => lwork, :usage => usage, :help => help])
17
-
18
-
19
- FORTRAN MANUAL
20
- SUBROUTINE ZHGEQZ( JOB, COMPQ, COMPZ, N, ILO, IHI, H, LDH, T, LDT, ALPHA, BETA, Q, LDQ, Z, LDZ, WORK, LWORK, RWORK, INFO )
21
-
22
- * Purpose
23
- * =======
24
- *
25
- * ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T),
26
- * where H is an upper Hessenberg matrix and T is upper triangular,
27
- * using the single-shift QZ method.
28
- * Matrix pairs of this type are produced by the reduction to
29
- * generalized upper Hessenberg form of a complex matrix pair (A,B):
30
- *
31
- * A = Q1*H*Z1**H, B = Q1*T*Z1**H,
32
- *
33
- * as computed by ZGGHRD.
34
- *
35
- * If JOB='S', then the Hessenberg-triangular pair (H,T) is
36
- * also reduced to generalized Schur form,
37
- *
38
- * H = Q*S*Z**H, T = Q*P*Z**H,
39
- *
40
- * where Q and Z are unitary matrices and S and P are upper triangular.
41
- *
42
- * Optionally, the unitary matrix Q from the generalized Schur
43
- * factorization may be postmultiplied into an input matrix Q1, and the
44
- * unitary matrix Z may be postmultiplied into an input matrix Z1.
45
- * If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced
46
- * the matrix pair (A,B) to generalized Hessenberg form, then the output
47
- * matrices Q1*Q and Z1*Z are the unitary factors from the generalized
48
- * Schur factorization of (A,B):
49
- *
50
- * A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H.
51
- *
52
- * To avoid overflow, eigenvalues of the matrix pair (H,T)
53
- * (equivalently, of (A,B)) are computed as a pair of complex values
54
- * (alpha,beta). If beta is nonzero, lambda = alpha / beta is an
55
- * eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP)
56
- * A*x = lambda*B*x
57
- * and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
58
- * alternate form of the GNEP
59
- * mu*A*y = B*y.
60
- * The values of alpha and beta for the i-th eigenvalue can be read
61
- * directly from the generalized Schur form: alpha = S(i,i),
62
- * beta = P(i,i).
63
- *
64
- * Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
65
- * Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
66
- * pp. 241--256.
67
- *
68
-
69
- * Arguments
70
- * =========
71
- *
72
- * JOB (input) CHARACTER*1
73
- * = 'E': Compute eigenvalues only;
74
- * = 'S': Computer eigenvalues and the Schur form.
75
- *
76
- * COMPQ (input) CHARACTER*1
77
- * = 'N': Left Schur vectors (Q) are not computed;
78
- * = 'I': Q is initialized to the unit matrix and the matrix Q
79
- * of left Schur vectors of (H,T) is returned;
80
- * = 'V': Q must contain a unitary matrix Q1 on entry and
81
- * the product Q1*Q is returned.
82
- *
83
- * COMPZ (input) CHARACTER*1
84
- * = 'N': Right Schur vectors (Z) are not computed;
85
- * = 'I': Q is initialized to the unit matrix and the matrix Z
86
- * of right Schur vectors of (H,T) is returned;
87
- * = 'V': Z must contain a unitary matrix Z1 on entry and
88
- * the product Z1*Z is returned.
89
- *
90
- * N (input) INTEGER
91
- * The order of the matrices H, T, Q, and Z. N >= 0.
92
- *
93
- * ILO (input) INTEGER
94
- * IHI (input) INTEGER
95
- * ILO and IHI mark the rows and columns of H which are in
96
- * Hessenberg form. It is assumed that A is already upper
97
- * triangular in rows and columns 1:ILO-1 and IHI+1:N.
98
- * If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
99
- *
100
- * H (input/output) COMPLEX*16 array, dimension (LDH, N)
101
- * On entry, the N-by-N upper Hessenberg matrix H.
102
- * On exit, if JOB = 'S', H contains the upper triangular
103
- * matrix S from the generalized Schur factorization.
104
- * If JOB = 'E', the diagonal of H matches that of S, but
105
- * the rest of H is unspecified.
106
- *
107
- * LDH (input) INTEGER
108
- * The leading dimension of the array H. LDH >= max( 1, N ).
109
- *
110
- * T (input/output) COMPLEX*16 array, dimension (LDT, N)
111
- * On entry, the N-by-N upper triangular matrix T.
112
- * On exit, if JOB = 'S', T contains the upper triangular
113
- * matrix P from the generalized Schur factorization.
114
- * If JOB = 'E', the diagonal of T matches that of P, but
115
- * the rest of T is unspecified.
116
- *
117
- * LDT (input) INTEGER
118
- * The leading dimension of the array T. LDT >= max( 1, N ).
119
- *
120
- * ALPHA (output) COMPLEX*16 array, dimension (N)
121
- * The complex scalars alpha that define the eigenvalues of
122
- * GNEP. ALPHA(i) = S(i,i) in the generalized Schur
123
- * factorization.
124
- *
125
- * BETA (output) COMPLEX*16 array, dimension (N)
126
- * The real non-negative scalars beta that define the
127
- * eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized
128
- * Schur factorization.
129
- *
130
- * Together, the quantities alpha = ALPHA(j) and beta = BETA(j)
131
- * represent the j-th eigenvalue of the matrix pair (A,B), in
132
- * one of the forms lambda = alpha/beta or mu = beta/alpha.
133
- * Since either lambda or mu may overflow, they should not,
134
- * in general, be computed.
135
- *
136
- * Q (input/output) COMPLEX*16 array, dimension (LDQ, N)
137
- * On entry, if COMPZ = 'V', the unitary matrix Q1 used in the
138
- * reduction of (A,B) to generalized Hessenberg form.
139
- * On exit, if COMPZ = 'I', the unitary matrix of left Schur
140
- * vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
141
- * left Schur vectors of (A,B).
142
- * Not referenced if COMPZ = 'N'.
143
- *
144
- * LDQ (input) INTEGER
145
- * The leading dimension of the array Q. LDQ >= 1.
146
- * If COMPQ='V' or 'I', then LDQ >= N.
147
- *
148
- * Z (input/output) COMPLEX*16 array, dimension (LDZ, N)
149
- * On entry, if COMPZ = 'V', the unitary matrix Z1 used in the
150
- * reduction of (A,B) to generalized Hessenberg form.
151
- * On exit, if COMPZ = 'I', the unitary matrix of right Schur
152
- * vectors of (H,T), and if COMPZ = 'V', the unitary matrix of
153
- * right Schur vectors of (A,B).
154
- * Not referenced if COMPZ = 'N'.
155
- *
156
- * LDZ (input) INTEGER
157
- * The leading dimension of the array Z. LDZ >= 1.
158
- * If COMPZ='V' or 'I', then LDZ >= N.
159
- *
160
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
161
- * On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
162
- *
163
- * LWORK (input) INTEGER
164
- * The dimension of the array WORK. LWORK >= max(1,N).
165
- *
166
- * If LWORK = -1, then a workspace query is assumed; the routine
167
- * only calculates the optimal size of the WORK array, returns
168
- * this value as the first entry of the WORK array, and no error
169
- * message related to LWORK is issued by XERBLA.
170
- *
171
- * RWORK (workspace) DOUBLE PRECISION array, dimension (N)
172
- *
173
- * INFO (output) INTEGER
174
- * = 0: successful exit
175
- * < 0: if INFO = -i, the i-th argument had an illegal value
176
- * = 1,...,N: the QZ iteration did not converge. (H,T) is not
177
- * in Schur form, but ALPHA(i) and BETA(i),
178
- * i=INFO+1,...,N should be correct.
179
- * = N+1,...,2*N: the shift calculation failed. (H,T) is not
180
- * in Schur form, but ALPHA(i) and BETA(i),
181
- * i=INFO-N+1,...,N should be correct.
182
- *
183
-
184
- * Further Details
185
- * ===============
186
- *
187
- * We assume that complex ABS works as long as its value is less than
188
- * overflow.
189
- *
190
- * =====================================================================
191
- *
192
-
193
-
194
- </PRE>
195
- <A HREF="#top">go to the page top</A>
196
-
197
- <HR />
198
- <A HREF="z.html">back to matrix types</A><BR>
199
- <A HREF="z.html">back to data types</A>
200
- </BODY>
201
- </HTML>
data/doc/zhp.html DELETED
@@ -1,1697 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>COMPLEX*16 or DOUBLE COMPLEX routines for (complex) Hermitian, packed storage matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>COMPLEX*16 or DOUBLE COMPLEX routines for (complex) Hermitian, packed storage matrix</H1>
8
- <UL>
9
- <LI><A HREF="#zhpcon">zhpcon</A></LI>
10
- <LI><A HREF="#zhpev">zhpev</A></LI>
11
- <LI><A HREF="#zhpevd">zhpevd</A></LI>
12
- <LI><A HREF="#zhpevx">zhpevx</A></LI>
13
- <LI><A HREF="#zhpgst">zhpgst</A></LI>
14
- <LI><A HREF="#zhpgv">zhpgv</A></LI>
15
- <LI><A HREF="#zhpgvd">zhpgvd</A></LI>
16
- <LI><A HREF="#zhpgvx">zhpgvx</A></LI>
17
- <LI><A HREF="#zhprfs">zhprfs</A></LI>
18
- <LI><A HREF="#zhpsv">zhpsv</A></LI>
19
- <LI><A HREF="#zhpsvx">zhpsvx</A></LI>
20
- <LI><A HREF="#zhptrd">zhptrd</A></LI>
21
- <LI><A HREF="#zhptrf">zhptrf</A></LI>
22
- <LI><A HREF="#zhptri">zhptri</A></LI>
23
- <LI><A HREF="#zhptrs">zhptrs</A></LI>
24
- </UL>
25
-
26
- <A NAME="zhpcon"></A>
27
- <H2>zhpcon</H2>
28
- <PRE>
29
- USAGE:
30
- rcond, info = NumRu::Lapack.zhpcon( uplo, ap, ipiv, anorm, [:usage => usage, :help => help])
31
-
32
-
33
- FORTRAN MANUAL
34
- SUBROUTINE ZHPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO )
35
-
36
- * Purpose
37
- * =======
38
- *
39
- * ZHPCON estimates the reciprocal of the condition number of a complex
40
- * Hermitian packed matrix A using the factorization A = U*D*U**H or
41
- * A = L*D*L**H computed by ZHPTRF.
42
- *
43
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
44
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
45
- *
46
-
47
- * Arguments
48
- * =========
49
- *
50
- * UPLO (input) CHARACTER*1
51
- * Specifies whether the details of the factorization are stored
52
- * as an upper or lower triangular matrix.
53
- * = 'U': Upper triangular, form is A = U*D*U**H;
54
- * = 'L': Lower triangular, form is A = L*D*L**H.
55
- *
56
- * N (input) INTEGER
57
- * The order of the matrix A. N >= 0.
58
- *
59
- * AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
60
- * The block diagonal matrix D and the multipliers used to
61
- * obtain the factor U or L as computed by ZHPTRF, stored as a
62
- * packed triangular matrix.
63
- *
64
- * IPIV (input) INTEGER array, dimension (N)
65
- * Details of the interchanges and the block structure of D
66
- * as determined by ZHPTRF.
67
- *
68
- * ANORM (input) DOUBLE PRECISION
69
- * The 1-norm of the original matrix A.
70
- *
71
- * RCOND (output) DOUBLE PRECISION
72
- * The reciprocal of the condition number of the matrix A,
73
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
74
- * estimate of the 1-norm of inv(A) computed in this routine.
75
- *
76
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
77
- *
78
- * INFO (output) INTEGER
79
- * = 0: successful exit
80
- * < 0: if INFO = -i, the i-th argument had an illegal value
81
- *
82
-
83
- * =====================================================================
84
- *
85
-
86
-
87
- </PRE>
88
- <A HREF="#top">go to the page top</A>
89
-
90
- <A NAME="zhpev"></A>
91
- <H2>zhpev</H2>
92
- <PRE>
93
- USAGE:
94
- w, z, info, ap = NumRu::Lapack.zhpev( jobz, uplo, ap, [:usage => usage, :help => help])
95
-
96
-
97
- FORTRAN MANUAL
98
- SUBROUTINE ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
99
-
100
- * Purpose
101
- * =======
102
- *
103
- * ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a
104
- * complex Hermitian matrix in packed storage.
105
- *
106
-
107
- * Arguments
108
- * =========
109
- *
110
- * JOBZ (input) CHARACTER*1
111
- * = 'N': Compute eigenvalues only;
112
- * = 'V': Compute eigenvalues and eigenvectors.
113
- *
114
- * UPLO (input) CHARACTER*1
115
- * = 'U': Upper triangle of A is stored;
116
- * = 'L': Lower triangle of A is stored.
117
- *
118
- * N (input) INTEGER
119
- * The order of the matrix A. N >= 0.
120
- *
121
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
122
- * On entry, the upper or lower triangle of the Hermitian matrix
123
- * A, packed columnwise in a linear array. The j-th column of A
124
- * is stored in the array AP as follows:
125
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
126
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
127
- *
128
- * On exit, AP is overwritten by values generated during the
129
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
130
- * and first superdiagonal of the tridiagonal matrix T overwrite
131
- * the corresponding elements of A, and if UPLO = 'L', the
132
- * diagonal and first subdiagonal of T overwrite the
133
- * corresponding elements of A.
134
- *
135
- * W (output) DOUBLE PRECISION array, dimension (N)
136
- * If INFO = 0, the eigenvalues in ascending order.
137
- *
138
- * Z (output) COMPLEX*16 array, dimension (LDZ, N)
139
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
140
- * eigenvectors of the matrix A, with the i-th column of Z
141
- * holding the eigenvector associated with W(i).
142
- * If JOBZ = 'N', then Z is not referenced.
143
- *
144
- * LDZ (input) INTEGER
145
- * The leading dimension of the array Z. LDZ >= 1, and if
146
- * JOBZ = 'V', LDZ >= max(1,N).
147
- *
148
- * WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
149
- *
150
- * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
151
- *
152
- * INFO (output) INTEGER
153
- * = 0: successful exit.
154
- * < 0: if INFO = -i, the i-th argument had an illegal value.
155
- * > 0: if INFO = i, the algorithm failed to converge; i
156
- * off-diagonal elements of an intermediate tridiagonal
157
- * form did not converge to zero.
158
- *
159
-
160
- * =====================================================================
161
- *
162
-
163
-
164
- </PRE>
165
- <A HREF="#top">go to the page top</A>
166
-
167
- <A NAME="zhpevd"></A>
168
- <H2>zhpevd</H2>
169
- <PRE>
170
- USAGE:
171
- w, z, work, rwork, iwork, info, ap = NumRu::Lapack.zhpevd( jobz, uplo, ap, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])
172
-
173
-
174
- FORTRAN MANUAL
175
- SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
176
-
177
- * Purpose
178
- * =======
179
- *
180
- * ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
181
- * a complex Hermitian matrix A in packed storage. If eigenvectors are
182
- * desired, it uses a divide and conquer algorithm.
183
- *
184
- * The divide and conquer algorithm makes very mild assumptions about
185
- * floating point arithmetic. It will work on machines with a guard
186
- * digit in add/subtract, or on those binary machines without guard
187
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
188
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
189
- * without guard digits, but we know of none.
190
- *
191
-
192
- * Arguments
193
- * =========
194
- *
195
- * JOBZ (input) CHARACTER*1
196
- * = 'N': Compute eigenvalues only;
197
- * = 'V': Compute eigenvalues and eigenvectors.
198
- *
199
- * UPLO (input) CHARACTER*1
200
- * = 'U': Upper triangle of A is stored;
201
- * = 'L': Lower triangle of A is stored.
202
- *
203
- * N (input) INTEGER
204
- * The order of the matrix A. N >= 0.
205
- *
206
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
207
- * On entry, the upper or lower triangle of the Hermitian matrix
208
- * A, packed columnwise in a linear array. The j-th column of A
209
- * is stored in the array AP as follows:
210
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
211
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
212
- *
213
- * On exit, AP is overwritten by values generated during the
214
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
215
- * and first superdiagonal of the tridiagonal matrix T overwrite
216
- * the corresponding elements of A, and if UPLO = 'L', the
217
- * diagonal and first subdiagonal of T overwrite the
218
- * corresponding elements of A.
219
- *
220
- * W (output) DOUBLE PRECISION array, dimension (N)
221
- * If INFO = 0, the eigenvalues in ascending order.
222
- *
223
- * Z (output) COMPLEX*16 array, dimension (LDZ, N)
224
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
225
- * eigenvectors of the matrix A, with the i-th column of Z
226
- * holding the eigenvector associated with W(i).
227
- * If JOBZ = 'N', then Z is not referenced.
228
- *
229
- * LDZ (input) INTEGER
230
- * The leading dimension of the array Z. LDZ >= 1, and if
231
- * JOBZ = 'V', LDZ >= max(1,N).
232
- *
233
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
234
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
235
- *
236
- * LWORK (input) INTEGER
237
- * The dimension of array WORK.
238
- * If N <= 1, LWORK must be at least 1.
239
- * If JOBZ = 'N' and N > 1, LWORK must be at least N.
240
- * If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
241
- *
242
- * If LWORK = -1, then a workspace query is assumed; the routine
243
- * only calculates the required sizes of the WORK, RWORK and
244
- * IWORK arrays, returns these values as the first entries of
245
- * the WORK, RWORK and IWORK arrays, and no error message
246
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
247
- *
248
- * RWORK (workspace/output) DOUBLE PRECISION array,
249
- * dimension (LRWORK)
250
- * On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
251
- *
252
- * LRWORK (input) INTEGER
253
- * The dimension of array RWORK.
254
- * If N <= 1, LRWORK must be at least 1.
255
- * If JOBZ = 'N' and N > 1, LRWORK must be at least N.
256
- * If JOBZ = 'V' and N > 1, LRWORK must be at least
257
- * 1 + 5*N + 2*N**2.
258
- *
259
- * If LRWORK = -1, then a workspace query is assumed; the
260
- * routine only calculates the required sizes of the WORK, RWORK
261
- * and IWORK arrays, returns these values as the first entries
262
- * of the WORK, RWORK and IWORK arrays, and no error message
263
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
264
- *
265
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
266
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
267
- *
268
- * LIWORK (input) INTEGER
269
- * The dimension of array IWORK.
270
- * If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
271
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
272
- *
273
- * If LIWORK = -1, then a workspace query is assumed; the
274
- * routine only calculates the required sizes of the WORK, RWORK
275
- * and IWORK arrays, returns these values as the first entries
276
- * of the WORK, RWORK and IWORK arrays, and no error message
277
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
278
- *
279
- * INFO (output) INTEGER
280
- * = 0: successful exit
281
- * < 0: if INFO = -i, the i-th argument had an illegal value.
282
- * > 0: if INFO = i, the algorithm failed to converge; i
283
- * off-diagonal elements of an intermediate tridiagonal
284
- * form did not converge to zero.
285
- *
286
-
287
- * =====================================================================
288
- *
289
-
290
-
291
- </PRE>
292
- <A HREF="#top">go to the page top</A>
293
-
294
- <A NAME="zhpevx"></A>
295
- <H2>zhpevx</H2>
296
- <PRE>
297
- USAGE:
298
- m, w, z, ifail, info, ap = NumRu::Lapack.zhpevx( jobz, range, uplo, ap, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
299
-
300
-
301
- FORTRAN MANUAL
302
- SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
303
-
304
- * Purpose
305
- * =======
306
- *
307
- * ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
308
- * of a complex Hermitian matrix A in packed storage.
309
- * Eigenvalues/vectors can be selected by specifying either a range of
310
- * values or a range of indices for the desired eigenvalues.
311
- *
312
-
313
- * Arguments
314
- * =========
315
- *
316
- * JOBZ (input) CHARACTER*1
317
- * = 'N': Compute eigenvalues only;
318
- * = 'V': Compute eigenvalues and eigenvectors.
319
- *
320
- * RANGE (input) CHARACTER*1
321
- * = 'A': all eigenvalues will be found;
322
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
323
- * will be found;
324
- * = 'I': the IL-th through IU-th eigenvalues will be found.
325
- *
326
- * UPLO (input) CHARACTER*1
327
- * = 'U': Upper triangle of A is stored;
328
- * = 'L': Lower triangle of A is stored.
329
- *
330
- * N (input) INTEGER
331
- * The order of the matrix A. N >= 0.
332
- *
333
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
334
- * On entry, the upper or lower triangle of the Hermitian matrix
335
- * A, packed columnwise in a linear array. The j-th column of A
336
- * is stored in the array AP as follows:
337
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
338
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
339
- *
340
- * On exit, AP is overwritten by values generated during the
341
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
342
- * and first superdiagonal of the tridiagonal matrix T overwrite
343
- * the corresponding elements of A, and if UPLO = 'L', the
344
- * diagonal and first subdiagonal of T overwrite the
345
- * corresponding elements of A.
346
- *
347
- * VL (input) DOUBLE PRECISION
348
- * VU (input) DOUBLE PRECISION
349
- * If RANGE='V', the lower and upper bounds of the interval to
350
- * be searched for eigenvalues. VL < VU.
351
- * Not referenced if RANGE = 'A' or 'I'.
352
- *
353
- * IL (input) INTEGER
354
- * IU (input) INTEGER
355
- * If RANGE='I', the indices (in ascending order) of the
356
- * smallest and largest eigenvalues to be returned.
357
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
358
- * Not referenced if RANGE = 'A' or 'V'.
359
- *
360
- * ABSTOL (input) DOUBLE PRECISION
361
- * The absolute error tolerance for the eigenvalues.
362
- * An approximate eigenvalue is accepted as converged
363
- * when it is determined to lie in an interval [a,b]
364
- * of width less than or equal to
365
- *
366
- * ABSTOL + EPS * max( |a|,|b| ) ,
367
- *
368
- * where EPS is the machine precision. If ABSTOL is less than
369
- * or equal to zero, then EPS*|T| will be used in its place,
370
- * where |T| is the 1-norm of the tridiagonal matrix obtained
371
- * by reducing AP to tridiagonal form.
372
- *
373
- * Eigenvalues will be computed most accurately when ABSTOL is
374
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
375
- * If this routine returns with INFO>0, indicating that some
376
- * eigenvectors did not converge, try setting ABSTOL to
377
- * 2*DLAMCH('S').
378
- *
379
- * See "Computing Small Singular Values of Bidiagonal Matrices
380
- * with Guaranteed High Relative Accuracy," by Demmel and
381
- * Kahan, LAPACK Working Note #3.
382
- *
383
- * M (output) INTEGER
384
- * The total number of eigenvalues found. 0 <= M <= N.
385
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
386
- *
387
- * W (output) DOUBLE PRECISION array, dimension (N)
388
- * If INFO = 0, the selected eigenvalues in ascending order.
389
- *
390
- * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
391
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
392
- * contain the orthonormal eigenvectors of the matrix A
393
- * corresponding to the selected eigenvalues, with the i-th
394
- * column of Z holding the eigenvector associated with W(i).
395
- * If an eigenvector fails to converge, then that column of Z
396
- * contains the latest approximation to the eigenvector, and
397
- * the index of the eigenvector is returned in IFAIL.
398
- * If JOBZ = 'N', then Z is not referenced.
399
- * Note: the user must ensure that at least max(1,M) columns are
400
- * supplied in the array Z; if RANGE = 'V', the exact value of M
401
- * is not known in advance and an upper bound must be used.
402
- *
403
- * LDZ (input) INTEGER
404
- * The leading dimension of the array Z. LDZ >= 1, and if
405
- * JOBZ = 'V', LDZ >= max(1,N).
406
- *
407
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
408
- *
409
- * RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
410
- *
411
- * IWORK (workspace) INTEGER array, dimension (5*N)
412
- *
413
- * IFAIL (output) INTEGER array, dimension (N)
414
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
415
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
416
- * indices of the eigenvectors that failed to converge.
417
- * If JOBZ = 'N', then IFAIL is not referenced.
418
- *
419
- * INFO (output) INTEGER
420
- * = 0: successful exit
421
- * < 0: if INFO = -i, the i-th argument had an illegal value
422
- * > 0: if INFO = i, then i eigenvectors failed to converge.
423
- * Their indices are stored in array IFAIL.
424
- *
425
-
426
- * =====================================================================
427
- *
428
-
429
-
430
- </PRE>
431
- <A HREF="#top">go to the page top</A>
432
-
433
- <A NAME="zhpgst"></A>
434
- <H2>zhpgst</H2>
435
- <PRE>
436
- USAGE:
437
- info, ap = NumRu::Lapack.zhpgst( itype, uplo, n, ap, bp, [:usage => usage, :help => help])
438
-
439
-
440
- FORTRAN MANUAL
441
- SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
442
-
443
- * Purpose
444
- * =======
445
- *
446
- * ZHPGST reduces a complex Hermitian-definite generalized
447
- * eigenproblem to standard form, using packed storage.
448
- *
449
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
450
- * and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
451
- *
452
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
453
- * B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
454
- *
455
- * B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
456
- *
457
-
458
- * Arguments
459
- * =========
460
- *
461
- * ITYPE (input) INTEGER
462
- * = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
463
- * = 2 or 3: compute U*A*U**H or L**H*A*L.
464
- *
465
- * UPLO (input) CHARACTER*1
466
- * = 'U': Upper triangle of A is stored and B is factored as
467
- * U**H*U;
468
- * = 'L': Lower triangle of A is stored and B is factored as
469
- * L*L**H.
470
- *
471
- * N (input) INTEGER
472
- * The order of the matrices A and B. N >= 0.
473
- *
474
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
475
- * On entry, the upper or lower triangle of the Hermitian matrix
476
- * A, packed columnwise in a linear array. The j-th column of A
477
- * is stored in the array AP as follows:
478
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
479
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
480
- *
481
- * On exit, if INFO = 0, the transformed matrix, stored in the
482
- * same format as A.
483
- *
484
- * BP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
485
- * The triangular factor from the Cholesky factorization of B,
486
- * stored in the same format as A, as returned by ZPPTRF.
487
- *
488
- * INFO (output) INTEGER
489
- * = 0: successful exit
490
- * < 0: if INFO = -i, the i-th argument had an illegal value
491
- *
492
-
493
- * =====================================================================
494
- *
495
-
496
-
497
- </PRE>
498
- <A HREF="#top">go to the page top</A>
499
-
500
- <A NAME="zhpgv"></A>
501
- <H2>zhpgv</H2>
502
- <PRE>
503
- USAGE:
504
- w, z, info, ap, bp = NumRu::Lapack.zhpgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])
505
-
506
-
507
- FORTRAN MANUAL
508
- SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO )
509
-
510
- * Purpose
511
- * =======
512
- *
513
- * ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
514
- * of a complex generalized Hermitian-definite eigenproblem, of the form
515
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
516
- * Here A and B are assumed to be Hermitian, stored in packed format,
517
- * and B is also positive definite.
518
- *
519
-
520
- * Arguments
521
- * =========
522
- *
523
- * ITYPE (input) INTEGER
524
- * Specifies the problem type to be solved:
525
- * = 1: A*x = (lambda)*B*x
526
- * = 2: A*B*x = (lambda)*x
527
- * = 3: B*A*x = (lambda)*x
528
- *
529
- * JOBZ (input) CHARACTER*1
530
- * = 'N': Compute eigenvalues only;
531
- * = 'V': Compute eigenvalues and eigenvectors.
532
- *
533
- * UPLO (input) CHARACTER*1
534
- * = 'U': Upper triangles of A and B are stored;
535
- * = 'L': Lower triangles of A and B are stored.
536
- *
537
- * N (input) INTEGER
538
- * The order of the matrices A and B. N >= 0.
539
- *
540
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
541
- * On entry, the upper or lower triangle of the Hermitian matrix
542
- * A, packed columnwise in a linear array. The j-th column of A
543
- * is stored in the array AP as follows:
544
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
545
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
546
- *
547
- * On exit, the contents of AP are destroyed.
548
- *
549
- * BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
550
- * On entry, the upper or lower triangle of the Hermitian matrix
551
- * B, packed columnwise in a linear array. The j-th column of B
552
- * is stored in the array BP as follows:
553
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
554
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
555
- *
556
- * On exit, the triangular factor U or L from the Cholesky
557
- * factorization B = U**H*U or B = L*L**H, in the same storage
558
- * format as B.
559
- *
560
- * W (output) DOUBLE PRECISION array, dimension (N)
561
- * If INFO = 0, the eigenvalues in ascending order.
562
- *
563
- * Z (output) COMPLEX*16 array, dimension (LDZ, N)
564
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
565
- * eigenvectors. The eigenvectors are normalized as follows:
566
- * if ITYPE = 1 or 2, Z**H*B*Z = I;
567
- * if ITYPE = 3, Z**H*inv(B)*Z = I.
568
- * If JOBZ = 'N', then Z is not referenced.
569
- *
570
- * LDZ (input) INTEGER
571
- * The leading dimension of the array Z. LDZ >= 1, and if
572
- * JOBZ = 'V', LDZ >= max(1,N).
573
- *
574
- * WORK (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
575
- *
576
- * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
577
- *
578
- * INFO (output) INTEGER
579
- * = 0: successful exit
580
- * < 0: if INFO = -i, the i-th argument had an illegal value
581
- * > 0: ZPPTRF or ZHPEV returned an error code:
582
- * <= N: if INFO = i, ZHPEV failed to converge;
583
- * i off-diagonal elements of an intermediate
584
- * tridiagonal form did not convergeto zero;
585
- * > N: if INFO = N + i, for 1 <= i <= n, then the leading
586
- * minor of order i of B is not positive definite.
587
- * The factorization of B could not be completed and
588
- * no eigenvalues or eigenvectors were computed.
589
- *
590
-
591
- * =====================================================================
592
- *
593
- * .. Local Scalars ..
594
- LOGICAL UPPER, WANTZ
595
- CHARACTER TRANS
596
- INTEGER J, NEIG
597
- * ..
598
- * .. External Functions ..
599
- LOGICAL LSAME
600
- EXTERNAL LSAME
601
- * ..
602
- * .. External Subroutines ..
603
- EXTERNAL XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
604
- * ..
605
-
606
-
607
- </PRE>
608
- <A HREF="#top">go to the page top</A>
609
-
610
- <A NAME="zhpgvd"></A>
611
- <H2>zhpgvd</H2>
612
- <PRE>
613
- USAGE:
614
- w, z, iwork, info, ap, bp = NumRu::Lapack.zhpgvd( itype, jobz, uplo, ap, bp, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])
615
-
616
-
617
- FORTRAN MANUAL
618
- SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
619
-
620
- * Purpose
621
- * =======
622
- *
623
- * ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
624
- * of a complex generalized Hermitian-definite eigenproblem, of the form
625
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
626
- * B are assumed to be Hermitian, stored in packed format, and B is also
627
- * positive definite.
628
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
629
- *
630
- * The divide and conquer algorithm makes very mild assumptions about
631
- * floating point arithmetic. It will work on machines with a guard
632
- * digit in add/subtract, or on those binary machines without guard
633
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
634
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
635
- * without guard digits, but we know of none.
636
- *
637
-
638
- * Arguments
639
- * =========
640
- *
641
- * ITYPE (input) INTEGER
642
- * Specifies the problem type to be solved:
643
- * = 1: A*x = (lambda)*B*x
644
- * = 2: A*B*x = (lambda)*x
645
- * = 3: B*A*x = (lambda)*x
646
- *
647
- * JOBZ (input) CHARACTER*1
648
- * = 'N': Compute eigenvalues only;
649
- * = 'V': Compute eigenvalues and eigenvectors.
650
- *
651
- * UPLO (input) CHARACTER*1
652
- * = 'U': Upper triangles of A and B are stored;
653
- * = 'L': Lower triangles of A and B are stored.
654
- *
655
- * N (input) INTEGER
656
- * The order of the matrices A and B. N >= 0.
657
- *
658
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
659
- * On entry, the upper or lower triangle of the Hermitian matrix
660
- * A, packed columnwise in a linear array. The j-th column of A
661
- * is stored in the array AP as follows:
662
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
663
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
664
- *
665
- * On exit, the contents of AP are destroyed.
666
- *
667
- * BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
668
- * On entry, the upper or lower triangle of the Hermitian matrix
669
- * B, packed columnwise in a linear array. The j-th column of B
670
- * is stored in the array BP as follows:
671
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
672
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
673
- *
674
- * On exit, the triangular factor U or L from the Cholesky
675
- * factorization B = U**H*U or B = L*L**H, in the same storage
676
- * format as B.
677
- *
678
- * W (output) DOUBLE PRECISION array, dimension (N)
679
- * If INFO = 0, the eigenvalues in ascending order.
680
- *
681
- * Z (output) COMPLEX*16 array, dimension (LDZ, N)
682
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
683
- * eigenvectors. The eigenvectors are normalized as follows:
684
- * if ITYPE = 1 or 2, Z**H*B*Z = I;
685
- * if ITYPE = 3, Z**H*inv(B)*Z = I.
686
- * If JOBZ = 'N', then Z is not referenced.
687
- *
688
- * LDZ (input) INTEGER
689
- * The leading dimension of the array Z. LDZ >= 1, and if
690
- * JOBZ = 'V', LDZ >= max(1,N).
691
- *
692
- * WORK (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
693
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
694
- *
695
- * LWORK (input) INTEGER
696
- * The dimension of array WORK.
697
- * If N <= 1, LWORK >= 1.
698
- * If JOBZ = 'N' and N > 1, LWORK >= N.
699
- * If JOBZ = 'V' and N > 1, LWORK >= 2*N.
700
- *
701
- * If LWORK = -1, then a workspace query is assumed; the routine
702
- * only calculates the required sizes of the WORK, RWORK and
703
- * IWORK arrays, returns these values as the first entries of
704
- * the WORK, RWORK and IWORK arrays, and no error message
705
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
706
- *
707
- * RWORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
708
- * On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
709
- *
710
- * LRWORK (input) INTEGER
711
- * The dimension of array RWORK.
712
- * If N <= 1, LRWORK >= 1.
713
- * If JOBZ = 'N' and N > 1, LRWORK >= N.
714
- * If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
715
- *
716
- * If LRWORK = -1, then a workspace query is assumed; the
717
- * routine only calculates the required sizes of the WORK, RWORK
718
- * and IWORK arrays, returns these values as the first entries
719
- * of the WORK, RWORK and IWORK arrays, and no error message
720
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
721
- *
722
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
723
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
724
- *
725
- * LIWORK (input) INTEGER
726
- * The dimension of array IWORK.
727
- * If JOBZ = 'N' or N <= 1, LIWORK >= 1.
728
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
729
- *
730
- * If LIWORK = -1, then a workspace query is assumed; the
731
- * routine only calculates the required sizes of the WORK, RWORK
732
- * and IWORK arrays, returns these values as the first entries
733
- * of the WORK, RWORK and IWORK arrays, and no error message
734
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
735
- *
736
- * INFO (output) INTEGER
737
- * = 0: successful exit
738
- * < 0: if INFO = -i, the i-th argument had an illegal value
739
- * > 0: ZPPTRF or ZHPEVD returned an error code:
740
- * <= N: if INFO = i, ZHPEVD failed to converge;
741
- * i off-diagonal elements of an intermediate
742
- * tridiagonal form did not convergeto zero;
743
- * > N: if INFO = N + i, for 1 <= i <= n, then the leading
744
- * minor of order i of B is not positive definite.
745
- * The factorization of B could not be completed and
746
- * no eigenvalues or eigenvectors were computed.
747
- *
748
-
749
- * Further Details
750
- * ===============
751
- *
752
- * Based on contributions by
753
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
754
- *
755
- * =====================================================================
756
- *
757
- * .. Local Scalars ..
758
- LOGICAL LQUERY, UPPER, WANTZ
759
- CHARACTER TRANS
760
- INTEGER J, LIWMIN, LRWMIN, LWMIN, NEIG
761
- * ..
762
- * .. External Functions ..
763
- LOGICAL LSAME
764
- EXTERNAL LSAME
765
- * ..
766
- * .. External Subroutines ..
767
- EXTERNAL XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
768
- * ..
769
- * .. Intrinsic Functions ..
770
- INTRINSIC DBLE, MAX
771
- * ..
772
-
773
-
774
- </PRE>
775
- <A HREF="#top">go to the page top</A>
776
-
777
- <A NAME="zhpgvx"></A>
778
- <H2>zhpgvx</H2>
779
- <PRE>
780
- USAGE:
781
- m, w, z, ifail, info, ap, bp = NumRu::Lapack.zhpgvx( itype, jobz, range, uplo, ap, bp, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
782
-
783
-
784
- FORTRAN MANUAL
785
- SUBROUTINE ZHPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK, IFAIL, INFO )
786
-
787
- * Purpose
788
- * =======
789
- *
790
- * ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
791
- * of a complex generalized Hermitian-definite eigenproblem, of the form
792
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
793
- * B are assumed to be Hermitian, stored in packed format, and B is also
794
- * positive definite. Eigenvalues and eigenvectors can be selected by
795
- * specifying either a range of values or a range of indices for the
796
- * desired eigenvalues.
797
- *
798
-
799
- * Arguments
800
- * =========
801
- *
802
- * ITYPE (input) INTEGER
803
- * Specifies the problem type to be solved:
804
- * = 1: A*x = (lambda)*B*x
805
- * = 2: A*B*x = (lambda)*x
806
- * = 3: B*A*x = (lambda)*x
807
- *
808
- * JOBZ (input) CHARACTER*1
809
- * = 'N': Compute eigenvalues only;
810
- * = 'V': Compute eigenvalues and eigenvectors.
811
- *
812
- * RANGE (input) CHARACTER*1
813
- * = 'A': all eigenvalues will be found;
814
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
815
- * will be found;
816
- * = 'I': the IL-th through IU-th eigenvalues will be found.
817
- *
818
- * UPLO (input) CHARACTER*1
819
- * = 'U': Upper triangles of A and B are stored;
820
- * = 'L': Lower triangles of A and B are stored.
821
- *
822
- * N (input) INTEGER
823
- * The order of the matrices A and B. N >= 0.
824
- *
825
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
826
- * On entry, the upper or lower triangle of the Hermitian matrix
827
- * A, packed columnwise in a linear array. The j-th column of A
828
- * is stored in the array AP as follows:
829
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
830
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
831
- *
832
- * On exit, the contents of AP are destroyed.
833
- *
834
- * BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
835
- * On entry, the upper or lower triangle of the Hermitian matrix
836
- * B, packed columnwise in a linear array. The j-th column of B
837
- * is stored in the array BP as follows:
838
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
839
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
840
- *
841
- * On exit, the triangular factor U or L from the Cholesky
842
- * factorization B = U**H*U or B = L*L**H, in the same storage
843
- * format as B.
844
- *
845
- * VL (input) DOUBLE PRECISION
846
- * VU (input) DOUBLE PRECISION
847
- * If RANGE='V', the lower and upper bounds of the interval to
848
- * be searched for eigenvalues. VL < VU.
849
- * Not referenced if RANGE = 'A' or 'I'.
850
- *
851
- * IL (input) INTEGER
852
- * IU (input) INTEGER
853
- * If RANGE='I', the indices (in ascending order) of the
854
- * smallest and largest eigenvalues to be returned.
855
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
856
- * Not referenced if RANGE = 'A' or 'V'.
857
- *
858
- * ABSTOL (input) DOUBLE PRECISION
859
- * The absolute error tolerance for the eigenvalues.
860
- * An approximate eigenvalue is accepted as converged
861
- * when it is determined to lie in an interval [a,b]
862
- * of width less than or equal to
863
- *
864
- * ABSTOL + EPS * max( |a|,|b| ) ,
865
- *
866
- * where EPS is the machine precision. If ABSTOL is less than
867
- * or equal to zero, then EPS*|T| will be used in its place,
868
- * where |T| is the 1-norm of the tridiagonal matrix obtained
869
- * by reducing AP to tridiagonal form.
870
- *
871
- * Eigenvalues will be computed most accurately when ABSTOL is
872
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
873
- * If this routine returns with INFO>0, indicating that some
874
- * eigenvectors did not converge, try setting ABSTOL to
875
- * 2*DLAMCH('S').
876
- *
877
- * M (output) INTEGER
878
- * The total number of eigenvalues found. 0 <= M <= N.
879
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
880
- *
881
- * W (output) DOUBLE PRECISION array, dimension (N)
882
- * On normal exit, the first M elements contain the selected
883
- * eigenvalues in ascending order.
884
- *
885
- * Z (output) COMPLEX*16 array, dimension (LDZ, N)
886
- * If JOBZ = 'N', then Z is not referenced.
887
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
888
- * contain the orthonormal eigenvectors of the matrix A
889
- * corresponding to the selected eigenvalues, with the i-th
890
- * column of Z holding the eigenvector associated with W(i).
891
- * The eigenvectors are normalized as follows:
892
- * if ITYPE = 1 or 2, Z**H*B*Z = I;
893
- * if ITYPE = 3, Z**H*inv(B)*Z = I.
894
- *
895
- * If an eigenvector fails to converge, then that column of Z
896
- * contains the latest approximation to the eigenvector, and the
897
- * index of the eigenvector is returned in IFAIL.
898
- * Note: the user must ensure that at least max(1,M) columns are
899
- * supplied in the array Z; if RANGE = 'V', the exact value of M
900
- * is not known in advance and an upper bound must be used.
901
- *
902
- * LDZ (input) INTEGER
903
- * The leading dimension of the array Z. LDZ >= 1, and if
904
- * JOBZ = 'V', LDZ >= max(1,N).
905
- *
906
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
907
- *
908
- * RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
909
- *
910
- * IWORK (workspace) INTEGER array, dimension (5*N)
911
- *
912
- * IFAIL (output) INTEGER array, dimension (N)
913
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
914
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
915
- * indices of the eigenvectors that failed to converge.
916
- * If JOBZ = 'N', then IFAIL is not referenced.
917
- *
918
- * INFO (output) INTEGER
919
- * = 0: successful exit
920
- * < 0: if INFO = -i, the i-th argument had an illegal value
921
- * > 0: ZPPTRF or ZHPEVX returned an error code:
922
- * <= N: if INFO = i, ZHPEVX failed to converge;
923
- * i eigenvectors failed to converge. Their indices
924
- * are stored in array IFAIL.
925
- * > N: if INFO = N + i, for 1 <= i <= n, then the leading
926
- * minor of order i of B is not positive definite.
927
- * The factorization of B could not be completed and
928
- * no eigenvalues or eigenvectors were computed.
929
- *
930
-
931
- * Further Details
932
- * ===============
933
- *
934
- * Based on contributions by
935
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
936
- *
937
- * =====================================================================
938
- *
939
- * .. Local Scalars ..
940
- LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
941
- CHARACTER TRANS
942
- INTEGER J
943
- * ..
944
- * .. External Functions ..
945
- LOGICAL LSAME
946
- EXTERNAL LSAME
947
- * ..
948
- * .. External Subroutines ..
949
- EXTERNAL XERBLA, ZHPEVX, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
950
- * ..
951
- * .. Intrinsic Functions ..
952
- INTRINSIC MIN
953
- * ..
954
-
955
-
956
- </PRE>
957
- <A HREF="#top">go to the page top</A>
958
-
959
- <A NAME="zhprfs"></A>
960
- <H2>zhprfs</H2>
961
- <PRE>
962
- USAGE:
963
- ferr, berr, info, x = NumRu::Lapack.zhprfs( uplo, ap, afp, ipiv, b, x, [:usage => usage, :help => help])
964
-
965
-
966
- FORTRAN MANUAL
967
- SUBROUTINE ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
968
-
969
- * Purpose
970
- * =======
971
- *
972
- * ZHPRFS improves the computed solution to a system of linear
973
- * equations when the coefficient matrix is Hermitian indefinite
974
- * and packed, and provides error bounds and backward error estimates
975
- * for the solution.
976
- *
977
-
978
- * Arguments
979
- * =========
980
- *
981
- * UPLO (input) CHARACTER*1
982
- * = 'U': Upper triangle of A is stored;
983
- * = 'L': Lower triangle of A is stored.
984
- *
985
- * N (input) INTEGER
986
- * The order of the matrix A. N >= 0.
987
- *
988
- * NRHS (input) INTEGER
989
- * The number of right hand sides, i.e., the number of columns
990
- * of the matrices B and X. NRHS >= 0.
991
- *
992
- * AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
993
- * The upper or lower triangle of the Hermitian matrix A, packed
994
- * columnwise in a linear array. The j-th column of A is stored
995
- * in the array AP as follows:
996
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
997
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
998
- *
999
- * AFP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
1000
- * The factored form of the matrix A. AFP contains the block
1001
- * diagonal matrix D and the multipliers used to obtain the
1002
- * factor U or L from the factorization A = U*D*U**H or
1003
- * A = L*D*L**H as computed by ZHPTRF, stored as a packed
1004
- * triangular matrix.
1005
- *
1006
- * IPIV (input) INTEGER array, dimension (N)
1007
- * Details of the interchanges and the block structure of D
1008
- * as determined by ZHPTRF.
1009
- *
1010
- * B (input) COMPLEX*16 array, dimension (LDB,NRHS)
1011
- * The right hand side matrix B.
1012
- *
1013
- * LDB (input) INTEGER
1014
- * The leading dimension of the array B. LDB >= max(1,N).
1015
- *
1016
- * X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
1017
- * On entry, the solution matrix X, as computed by ZHPTRS.
1018
- * On exit, the improved solution matrix X.
1019
- *
1020
- * LDX (input) INTEGER
1021
- * The leading dimension of the array X. LDX >= max(1,N).
1022
- *
1023
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1024
- * The estimated forward error bound for each solution vector
1025
- * X(j) (the j-th column of the solution matrix X).
1026
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1027
- * is an estimated upper bound for the magnitude of the largest
1028
- * element in (X(j) - XTRUE) divided by the magnitude of the
1029
- * largest element in X(j). The estimate is as reliable as
1030
- * the estimate for RCOND, and is almost always a slight
1031
- * overestimate of the true error.
1032
- *
1033
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1034
- * The componentwise relative backward error of each solution
1035
- * vector X(j) (i.e., the smallest relative change in
1036
- * any element of A or B that makes X(j) an exact solution).
1037
- *
1038
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
1039
- *
1040
- * RWORK (workspace) DOUBLE PRECISION array, dimension (N)
1041
- *
1042
- * INFO (output) INTEGER
1043
- * = 0: successful exit
1044
- * < 0: if INFO = -i, the i-th argument had an illegal value
1045
- *
1046
- * Internal Parameters
1047
- * ===================
1048
- *
1049
- * ITMAX is the maximum number of steps of iterative refinement.
1050
- *
1051
-
1052
- * =====================================================================
1053
- *
1054
-
1055
-
1056
- </PRE>
1057
- <A HREF="#top">go to the page top</A>
1058
-
1059
- <A NAME="zhpsv"></A>
1060
- <H2>zhpsv</H2>
1061
- <PRE>
1062
- USAGE:
1063
- ipiv, info, ap, b = NumRu::Lapack.zhpsv( uplo, ap, b, [:usage => usage, :help => help])
1064
-
1065
-
1066
- FORTRAN MANUAL
1067
- SUBROUTINE ZHPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1068
-
1069
- * Purpose
1070
- * =======
1071
- *
1072
- * ZHPSV computes the solution to a complex system of linear equations
1073
- * A * X = B,
1074
- * where A is an N-by-N Hermitian matrix stored in packed format and X
1075
- * and B are N-by-NRHS matrices.
1076
- *
1077
- * The diagonal pivoting method is used to factor A as
1078
- * A = U * D * U**H, if UPLO = 'U', or
1079
- * A = L * D * L**H, if UPLO = 'L',
1080
- * where U (or L) is a product of permutation and unit upper (lower)
1081
- * triangular matrices, D is Hermitian and block diagonal with 1-by-1
1082
- * and 2-by-2 diagonal blocks. The factored form of A is then used to
1083
- * solve the system of equations A * X = B.
1084
- *
1085
-
1086
- * Arguments
1087
- * =========
1088
- *
1089
- * UPLO (input) CHARACTER*1
1090
- * = 'U': Upper triangle of A is stored;
1091
- * = 'L': Lower triangle of A is stored.
1092
- *
1093
- * N (input) INTEGER
1094
- * The number of linear equations, i.e., the order of the
1095
- * matrix A. N >= 0.
1096
- *
1097
- * NRHS (input) INTEGER
1098
- * The number of right hand sides, i.e., the number of columns
1099
- * of the matrix B. NRHS >= 0.
1100
- *
1101
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
1102
- * On entry, the upper or lower triangle of the Hermitian matrix
1103
- * A, packed columnwise in a linear array. The j-th column of A
1104
- * is stored in the array AP as follows:
1105
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1106
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1107
- * See below for further details.
1108
- *
1109
- * On exit, the block diagonal matrix D and the multipliers used
1110
- * to obtain the factor U or L from the factorization
1111
- * A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
1112
- * a packed triangular matrix in the same storage format as A.
1113
- *
1114
- * IPIV (output) INTEGER array, dimension (N)
1115
- * Details of the interchanges and the block structure of D, as
1116
- * determined by ZHPTRF. If IPIV(k) > 0, then rows and columns
1117
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1118
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1119
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1120
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1121
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1122
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1123
- * diagonal block.
1124
- *
1125
- * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
1126
- * On entry, the N-by-NRHS right hand side matrix B.
1127
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1128
- *
1129
- * LDB (input) INTEGER
1130
- * The leading dimension of the array B. LDB >= max(1,N).
1131
- *
1132
- * INFO (output) INTEGER
1133
- * = 0: successful exit
1134
- * < 0: if INFO = -i, the i-th argument had an illegal value
1135
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1136
- * has been completed, but the block diagonal matrix D is
1137
- * exactly singular, so the solution could not be
1138
- * computed.
1139
- *
1140
-
1141
- * Further Details
1142
- * ===============
1143
- *
1144
- * The packed storage scheme is illustrated by the following example
1145
- * when N = 4, UPLO = 'U':
1146
- *
1147
- * Two-dimensional storage of the Hermitian matrix A:
1148
- *
1149
- * a11 a12 a13 a14
1150
- * a22 a23 a24
1151
- * a33 a34 (aij = conjg(aji))
1152
- * a44
1153
- *
1154
- * Packed storage of the upper triangle of A:
1155
- *
1156
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1157
- *
1158
- * =====================================================================
1159
- *
1160
- * .. External Functions ..
1161
- LOGICAL LSAME
1162
- EXTERNAL LSAME
1163
- * ..
1164
- * .. External Subroutines ..
1165
- EXTERNAL XERBLA, ZHPTRF, ZHPTRS
1166
- * ..
1167
- * .. Intrinsic Functions ..
1168
- INTRINSIC MAX
1169
- * ..
1170
-
1171
-
1172
- </PRE>
1173
- <A HREF="#top">go to the page top</A>
1174
-
1175
- <A NAME="zhpsvx"></A>
1176
- <H2>zhpsvx</H2>
1177
- <PRE>
1178
- USAGE:
1179
- x, rcond, ferr, berr, info, afp, ipiv = NumRu::Lapack.zhpsvx( fact, uplo, ap, afp, ipiv, b, [:usage => usage, :help => help])
1180
-
1181
-
1182
- FORTRAN MANUAL
1183
- SUBROUTINE ZHPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
1184
-
1185
- * Purpose
1186
- * =======
1187
- *
1188
- * ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
1189
- * A = L*D*L**H to compute the solution to a complex system of linear
1190
- * equations A * X = B, where A is an N-by-N Hermitian matrix stored
1191
- * in packed format and X and B are N-by-NRHS matrices.
1192
- *
1193
- * Error bounds on the solution and a condition estimate are also
1194
- * provided.
1195
- *
1196
- * Description
1197
- * ===========
1198
- *
1199
- * The following steps are performed:
1200
- *
1201
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
1202
- * A = U * D * U**H, if UPLO = 'U', or
1203
- * A = L * D * L**H, if UPLO = 'L',
1204
- * where U (or L) is a product of permutation and unit upper (lower)
1205
- * triangular matrices and D is Hermitian and block diagonal with
1206
- * 1-by-1 and 2-by-2 diagonal blocks.
1207
- *
1208
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1209
- * returns with INFO = i. Otherwise, the factored form of A is used
1210
- * to estimate the condition number of the matrix A. If the
1211
- * reciprocal of the condition number is less than machine precision,
1212
- * INFO = N+1 is returned as a warning, but the routine still goes on
1213
- * to solve for X and compute error bounds as described below.
1214
- *
1215
- * 3. The system of equations is solved for X using the factored form
1216
- * of A.
1217
- *
1218
- * 4. Iterative refinement is applied to improve the computed solution
1219
- * matrix and calculate error bounds and backward error estimates
1220
- * for it.
1221
- *
1222
-
1223
- * Arguments
1224
- * =========
1225
- *
1226
- * FACT (input) CHARACTER*1
1227
- * Specifies whether or not the factored form of A has been
1228
- * supplied on entry.
1229
- * = 'F': On entry, AFP and IPIV contain the factored form of
1230
- * A. AFP and IPIV will not be modified.
1231
- * = 'N': The matrix A will be copied to AFP and factored.
1232
- *
1233
- * UPLO (input) CHARACTER*1
1234
- * = 'U': Upper triangle of A is stored;
1235
- * = 'L': Lower triangle of A is stored.
1236
- *
1237
- * N (input) INTEGER
1238
- * The number of linear equations, i.e., the order of the
1239
- * matrix A. N >= 0.
1240
- *
1241
- * NRHS (input) INTEGER
1242
- * The number of right hand sides, i.e., the number of columns
1243
- * of the matrices B and X. NRHS >= 0.
1244
- *
1245
- * AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
1246
- * The upper or lower triangle of the Hermitian matrix A, packed
1247
- * columnwise in a linear array. The j-th column of A is stored
1248
- * in the array AP as follows:
1249
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1250
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1251
- * See below for further details.
1252
- *
1253
- * AFP (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
1254
- * If FACT = 'F', then AFP is an input argument and on entry
1255
- * contains the block diagonal matrix D and the multipliers used
1256
- * to obtain the factor U or L from the factorization
1257
- * A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
1258
- * a packed triangular matrix in the same storage format as A.
1259
- *
1260
- * If FACT = 'N', then AFP is an output argument and on exit
1261
- * contains the block diagonal matrix D and the multipliers used
1262
- * to obtain the factor U or L from the factorization
1263
- * A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
1264
- * a packed triangular matrix in the same storage format as A.
1265
- *
1266
- * IPIV (input or output) INTEGER array, dimension (N)
1267
- * If FACT = 'F', then IPIV is an input argument and on entry
1268
- * contains details of the interchanges and the block structure
1269
- * of D, as determined by ZHPTRF.
1270
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1271
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1272
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1273
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1274
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1275
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1276
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1277
- *
1278
- * If FACT = 'N', then IPIV is an output argument and on exit
1279
- * contains details of the interchanges and the block structure
1280
- * of D, as determined by ZHPTRF.
1281
- *
1282
- * B (input) COMPLEX*16 array, dimension (LDB,NRHS)
1283
- * The N-by-NRHS right hand side matrix B.
1284
- *
1285
- * LDB (input) INTEGER
1286
- * The leading dimension of the array B. LDB >= max(1,N).
1287
- *
1288
- * X (output) COMPLEX*16 array, dimension (LDX,NRHS)
1289
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
1290
- *
1291
- * LDX (input) INTEGER
1292
- * The leading dimension of the array X. LDX >= max(1,N).
1293
- *
1294
- * RCOND (output) DOUBLE PRECISION
1295
- * The estimate of the reciprocal condition number of the matrix
1296
- * A. If RCOND is less than the machine precision (in
1297
- * particular, if RCOND = 0), the matrix is singular to working
1298
- * precision. This condition is indicated by a return code of
1299
- * INFO > 0.
1300
- *
1301
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1302
- * The estimated forward error bound for each solution vector
1303
- * X(j) (the j-th column of the solution matrix X).
1304
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1305
- * is an estimated upper bound for the magnitude of the largest
1306
- * element in (X(j) - XTRUE) divided by the magnitude of the
1307
- * largest element in X(j). The estimate is as reliable as
1308
- * the estimate for RCOND, and is almost always a slight
1309
- * overestimate of the true error.
1310
- *
1311
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1312
- * The componentwise relative backward error of each solution
1313
- * vector X(j) (i.e., the smallest relative change in
1314
- * any element of A or B that makes X(j) an exact solution).
1315
- *
1316
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
1317
- *
1318
- * RWORK (workspace) DOUBLE PRECISION array, dimension (N)
1319
- *
1320
- * INFO (output) INTEGER
1321
- * = 0: successful exit
1322
- * < 0: if INFO = -i, the i-th argument had an illegal value
1323
- * > 0: if INFO = i, and i is
1324
- * <= N: D(i,i) is exactly zero. The factorization
1325
- * has been completed but the factor D is exactly
1326
- * singular, so the solution and error bounds could
1327
- * not be computed. RCOND = 0 is returned.
1328
- * = N+1: D is nonsingular, but RCOND is less than machine
1329
- * precision, meaning that the matrix is singular
1330
- * to working precision. Nevertheless, the
1331
- * solution and error bounds are computed because
1332
- * there are a number of situations where the
1333
- * computed solution can be more accurate than the
1334
- * value of RCOND would suggest.
1335
- *
1336
-
1337
- * Further Details
1338
- * ===============
1339
- *
1340
- * The packed storage scheme is illustrated by the following example
1341
- * when N = 4, UPLO = 'U':
1342
- *
1343
- * Two-dimensional storage of the Hermitian matrix A:
1344
- *
1345
- * a11 a12 a13 a14
1346
- * a22 a23 a24
1347
- * a33 a34 (aij = conjg(aji))
1348
- * a44
1349
- *
1350
- * Packed storage of the upper triangle of A:
1351
- *
1352
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1353
- *
1354
- * =====================================================================
1355
- *
1356
-
1357
-
1358
- </PRE>
1359
- <A HREF="#top">go to the page top</A>
1360
-
1361
- <A NAME="zhptrd"></A>
1362
- <H2>zhptrd</H2>
1363
- <PRE>
1364
- USAGE:
1365
- d, e, tau, info, ap = NumRu::Lapack.zhptrd( uplo, ap, [:usage => usage, :help => help])
1366
-
1367
-
1368
- FORTRAN MANUAL
1369
- SUBROUTINE ZHPTRD( UPLO, N, AP, D, E, TAU, INFO )
1370
-
1371
- * Purpose
1372
- * =======
1373
- *
1374
- * ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
1375
- * real symmetric tridiagonal form T by a unitary similarity
1376
- * transformation: Q**H * A * Q = T.
1377
- *
1378
-
1379
- * Arguments
1380
- * =========
1381
- *
1382
- * UPLO (input) CHARACTER*1
1383
- * = 'U': Upper triangle of A is stored;
1384
- * = 'L': Lower triangle of A is stored.
1385
- *
1386
- * N (input) INTEGER
1387
- * The order of the matrix A. N >= 0.
1388
- *
1389
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
1390
- * On entry, the upper or lower triangle of the Hermitian matrix
1391
- * A, packed columnwise in a linear array. The j-th column of A
1392
- * is stored in the array AP as follows:
1393
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1394
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1395
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
1396
- * of A are overwritten by the corresponding elements of the
1397
- * tridiagonal matrix T, and the elements above the first
1398
- * superdiagonal, with the array TAU, represent the unitary
1399
- * matrix Q as a product of elementary reflectors; if UPLO
1400
- * = 'L', the diagonal and first subdiagonal of A are over-
1401
- * written by the corresponding elements of the tridiagonal
1402
- * matrix T, and the elements below the first subdiagonal, with
1403
- * the array TAU, represent the unitary matrix Q as a product
1404
- * of elementary reflectors. See Further Details.
1405
- *
1406
- * D (output) DOUBLE PRECISION array, dimension (N)
1407
- * The diagonal elements of the tridiagonal matrix T:
1408
- * D(i) = A(i,i).
1409
- *
1410
- * E (output) DOUBLE PRECISION array, dimension (N-1)
1411
- * The off-diagonal elements of the tridiagonal matrix T:
1412
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
1413
- *
1414
- * TAU (output) COMPLEX*16 array, dimension (N-1)
1415
- * The scalar factors of the elementary reflectors (see Further
1416
- * Details).
1417
- *
1418
- * INFO (output) INTEGER
1419
- * = 0: successful exit
1420
- * < 0: if INFO = -i, the i-th argument had an illegal value
1421
- *
1422
-
1423
- * Further Details
1424
- * ===============
1425
- *
1426
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
1427
- * reflectors
1428
- *
1429
- * Q = H(n-1) . . . H(2) H(1).
1430
- *
1431
- * Each H(i) has the form
1432
- *
1433
- * H(i) = I - tau * v * v'
1434
- *
1435
- * where tau is a complex scalar, and v is a complex vector with
1436
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
1437
- * overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
1438
- *
1439
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
1440
- * reflectors
1441
- *
1442
- * Q = H(1) H(2) . . . H(n-1).
1443
- *
1444
- * Each H(i) has the form
1445
- *
1446
- * H(i) = I - tau * v * v'
1447
- *
1448
- * where tau is a complex scalar, and v is a complex vector with
1449
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
1450
- * overwriting A(i+2:n,i), and tau is stored in TAU(i).
1451
- *
1452
- * =====================================================================
1453
- *
1454
-
1455
-
1456
- </PRE>
1457
- <A HREF="#top">go to the page top</A>
1458
-
1459
- <A NAME="zhptrf"></A>
1460
- <H2>zhptrf</H2>
1461
- <PRE>
1462
- USAGE:
1463
- ipiv, info, ap = NumRu::Lapack.zhptrf( uplo, ap, [:usage => usage, :help => help])
1464
-
1465
-
1466
- FORTRAN MANUAL
1467
- SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
1468
-
1469
- * Purpose
1470
- * =======
1471
- *
1472
- * ZHPTRF computes the factorization of a complex Hermitian packed
1473
- * matrix A using the Bunch-Kaufman diagonal pivoting method:
1474
- *
1475
- * A = U*D*U**H or A = L*D*L**H
1476
- *
1477
- * where U (or L) is a product of permutation and unit upper (lower)
1478
- * triangular matrices, and D is Hermitian and block diagonal with
1479
- * 1-by-1 and 2-by-2 diagonal blocks.
1480
- *
1481
-
1482
- * Arguments
1483
- * =========
1484
- *
1485
- * UPLO (input) CHARACTER*1
1486
- * = 'U': Upper triangle of A is stored;
1487
- * = 'L': Lower triangle of A is stored.
1488
- *
1489
- * N (input) INTEGER
1490
- * The order of the matrix A. N >= 0.
1491
- *
1492
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
1493
- * On entry, the upper or lower triangle of the Hermitian matrix
1494
- * A, packed columnwise in a linear array. The j-th column of A
1495
- * is stored in the array AP as follows:
1496
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1497
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1498
- *
1499
- * On exit, the block diagonal matrix D and the multipliers used
1500
- * to obtain the factor U or L, stored as a packed triangular
1501
- * matrix overwriting A (see below for further details).
1502
- *
1503
- * IPIV (output) INTEGER array, dimension (N)
1504
- * Details of the interchanges and the block structure of D.
1505
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1506
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1507
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1508
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1509
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1510
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1511
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1512
- *
1513
- * INFO (output) INTEGER
1514
- * = 0: successful exit
1515
- * < 0: if INFO = -i, the i-th argument had an illegal value
1516
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1517
- * has been completed, but the block diagonal matrix D is
1518
- * exactly singular, and division by zero will occur if it
1519
- * is used to solve a system of equations.
1520
- *
1521
-
1522
- * Further Details
1523
- * ===============
1524
- *
1525
- * 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
1526
- * Company
1527
- *
1528
- * If UPLO = 'U', then A = U*D*U', where
1529
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
1530
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1531
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1532
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1533
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
1534
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1535
- *
1536
- * ( I v 0 ) k-s
1537
- * U(k) = ( 0 I 0 ) s
1538
- * ( 0 0 I ) n-k
1539
- * k-s s n-k
1540
- *
1541
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
1542
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
1543
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
1544
- *
1545
- * If UPLO = 'L', then A = L*D*L', where
1546
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
1547
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
1548
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1549
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1550
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
1551
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1552
- *
1553
- * ( I 0 0 ) k-1
1554
- * L(k) = ( 0 I 0 ) s
1555
- * ( 0 v I ) n-k-s+1
1556
- * k-1 s n-k-s+1
1557
- *
1558
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
1559
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
1560
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
1561
- *
1562
- * =====================================================================
1563
- *
1564
-
1565
-
1566
- </PRE>
1567
- <A HREF="#top">go to the page top</A>
1568
-
1569
- <A NAME="zhptri"></A>
1570
- <H2>zhptri</H2>
1571
- <PRE>
1572
- USAGE:
1573
- info, ap = NumRu::Lapack.zhptri( uplo, ap, ipiv, [:usage => usage, :help => help])
1574
-
1575
-
1576
- FORTRAN MANUAL
1577
- SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
1578
-
1579
- * Purpose
1580
- * =======
1581
- *
1582
- * ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
1583
- * A in packed storage using the factorization A = U*D*U**H or
1584
- * A = L*D*L**H computed by ZHPTRF.
1585
- *
1586
-
1587
- * Arguments
1588
- * =========
1589
- *
1590
- * UPLO (input) CHARACTER*1
1591
- * Specifies whether the details of the factorization are stored
1592
- * as an upper or lower triangular matrix.
1593
- * = 'U': Upper triangular, form is A = U*D*U**H;
1594
- * = 'L': Lower triangular, form is A = L*D*L**H.
1595
- *
1596
- * N (input) INTEGER
1597
- * The order of the matrix A. N >= 0.
1598
- *
1599
- * AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
1600
- * On entry, the block diagonal matrix D and the multipliers
1601
- * used to obtain the factor U or L as computed by ZHPTRF,
1602
- * stored as a packed triangular matrix.
1603
- *
1604
- * On exit, if INFO = 0, the (Hermitian) inverse of the original
1605
- * matrix, stored as a packed triangular matrix. The j-th column
1606
- * of inv(A) is stored in the array AP as follows:
1607
- * if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
1608
- * if UPLO = 'L',
1609
- * AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
1610
- *
1611
- * IPIV (input) INTEGER array, dimension (N)
1612
- * Details of the interchanges and the block structure of D
1613
- * as determined by ZHPTRF.
1614
- *
1615
- * WORK (workspace) COMPLEX*16 array, dimension (N)
1616
- *
1617
- * INFO (output) INTEGER
1618
- * = 0: successful exit
1619
- * < 0: if INFO = -i, the i-th argument had an illegal value
1620
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
1621
- * inverse could not be computed.
1622
- *
1623
-
1624
- * =====================================================================
1625
- *
1626
-
1627
-
1628
- </PRE>
1629
- <A HREF="#top">go to the page top</A>
1630
-
1631
- <A NAME="zhptrs"></A>
1632
- <H2>zhptrs</H2>
1633
- <PRE>
1634
- USAGE:
1635
- info, b = NumRu::Lapack.zhptrs( uplo, ap, ipiv, b, [:usage => usage, :help => help])
1636
-
1637
-
1638
- FORTRAN MANUAL
1639
- SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1640
-
1641
- * Purpose
1642
- * =======
1643
- *
1644
- * ZHPTRS solves a system of linear equations A*X = B with a complex
1645
- * Hermitian matrix A stored in packed format using the factorization
1646
- * A = U*D*U**H or A = L*D*L**H computed by ZHPTRF.
1647
- *
1648
-
1649
- * Arguments
1650
- * =========
1651
- *
1652
- * UPLO (input) CHARACTER*1
1653
- * Specifies whether the details of the factorization are stored
1654
- * as an upper or lower triangular matrix.
1655
- * = 'U': Upper triangular, form is A = U*D*U**H;
1656
- * = 'L': Lower triangular, form is A = L*D*L**H.
1657
- *
1658
- * N (input) INTEGER
1659
- * The order of the matrix A. N >= 0.
1660
- *
1661
- * NRHS (input) INTEGER
1662
- * The number of right hand sides, i.e., the number of columns
1663
- * of the matrix B. NRHS >= 0.
1664
- *
1665
- * AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
1666
- * The block diagonal matrix D and the multipliers used to
1667
- * obtain the factor U or L as computed by ZHPTRF, stored as a
1668
- * packed triangular matrix.
1669
- *
1670
- * IPIV (input) INTEGER array, dimension (N)
1671
- * Details of the interchanges and the block structure of D
1672
- * as determined by ZHPTRF.
1673
- *
1674
- * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
1675
- * On entry, the right hand side matrix B.
1676
- * On exit, the solution matrix X.
1677
- *
1678
- * LDB (input) INTEGER
1679
- * The leading dimension of the array B. LDB >= max(1,N).
1680
- *
1681
- * INFO (output) INTEGER
1682
- * = 0: successful exit
1683
- * < 0: if INFO = -i, the i-th argument had an illegal value
1684
- *
1685
-
1686
- * =====================================================================
1687
- *
1688
-
1689
-
1690
- </PRE>
1691
- <A HREF="#top">go to the page top</A>
1692
-
1693
- <HR />
1694
- <A HREF="z.html">back to matrix types</A><BR>
1695
- <A HREF="z.html">back to data types</A>
1696
- </BODY>
1697
- </HTML>