ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/zhe.html DELETED
@@ -1,3162 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>COMPLEX*16 or DOUBLE COMPLEX routines for (complex) Hermitian matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>COMPLEX*16 or DOUBLE COMPLEX routines for (complex) Hermitian matrix</H1>
8
- <UL>
9
- <LI><A HREF="#zhecon">zhecon</A></LI>
10
- <LI><A HREF="#zheequb">zheequb</A></LI>
11
- <LI><A HREF="#zheev">zheev</A></LI>
12
- <LI><A HREF="#zheevd">zheevd</A></LI>
13
- <LI><A HREF="#zheevr">zheevr</A></LI>
14
- <LI><A HREF="#zheevx">zheevx</A></LI>
15
- <LI><A HREF="#zhegs2">zhegs2</A></LI>
16
- <LI><A HREF="#zhegst">zhegst</A></LI>
17
- <LI><A HREF="#zhegv">zhegv</A></LI>
18
- <LI><A HREF="#zhegvd">zhegvd</A></LI>
19
- <LI><A HREF="#zhegvx">zhegvx</A></LI>
20
- <LI><A HREF="#zherfs">zherfs</A></LI>
21
- <LI><A HREF="#zherfsx">zherfsx</A></LI>
22
- <LI><A HREF="#zhesv">zhesv</A></LI>
23
- <LI><A HREF="#zhesvx">zhesvx</A></LI>
24
- <LI><A HREF="#zhesvxx">zhesvxx</A></LI>
25
- <LI><A HREF="#zhetd2">zhetd2</A></LI>
26
- <LI><A HREF="#zhetf2">zhetf2</A></LI>
27
- <LI><A HREF="#zhetrd">zhetrd</A></LI>
28
- <LI><A HREF="#zhetrf">zhetrf</A></LI>
29
- <LI><A HREF="#zhetri">zhetri</A></LI>
30
- <LI><A HREF="#zhetrs">zhetrs</A></LI>
31
- <LI><A HREF="#zhetrs2">zhetrs2</A></LI>
32
- </UL>
33
-
34
- <A NAME="zhecon"></A>
35
- <H2>zhecon</H2>
36
- <PRE>
37
- USAGE:
38
- rcond, info = NumRu::Lapack.zhecon( uplo, a, ipiv, anorm, [:usage => usage, :help => help])
39
-
40
-
41
- FORTRAN MANUAL
42
- SUBROUTINE ZHECON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO )
43
-
44
- * Purpose
45
- * =======
46
- *
47
- * ZHECON estimates the reciprocal of the condition number of a complex
48
- * Hermitian matrix A using the factorization A = U*D*U**H or
49
- * A = L*D*L**H computed by ZHETRF.
50
- *
51
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
52
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
53
- *
54
-
55
- * Arguments
56
- * =========
57
- *
58
- * UPLO (input) CHARACTER*1
59
- * Specifies whether the details of the factorization are stored
60
- * as an upper or lower triangular matrix.
61
- * = 'U': Upper triangular, form is A = U*D*U**H;
62
- * = 'L': Lower triangular, form is A = L*D*L**H.
63
- *
64
- * N (input) INTEGER
65
- * The order of the matrix A. N >= 0.
66
- *
67
- * A (input) COMPLEX*16 array, dimension (LDA,N)
68
- * The block diagonal matrix D and the multipliers used to
69
- * obtain the factor U or L as computed by ZHETRF.
70
- *
71
- * LDA (input) INTEGER
72
- * The leading dimension of the array A. LDA >= max(1,N).
73
- *
74
- * IPIV (input) INTEGER array, dimension (N)
75
- * Details of the interchanges and the block structure of D
76
- * as determined by ZHETRF.
77
- *
78
- * ANORM (input) DOUBLE PRECISION
79
- * The 1-norm of the original matrix A.
80
- *
81
- * RCOND (output) DOUBLE PRECISION
82
- * The reciprocal of the condition number of the matrix A,
83
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
84
- * estimate of the 1-norm of inv(A) computed in this routine.
85
- *
86
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
87
- *
88
- * INFO (output) INTEGER
89
- * = 0: successful exit
90
- * < 0: if INFO = -i, the i-th argument had an illegal value
91
- *
92
-
93
- * =====================================================================
94
- *
95
-
96
-
97
- </PRE>
98
- <A HREF="#top">go to the page top</A>
99
-
100
- <A NAME="zheequb"></A>
101
- <H2>zheequb</H2>
102
- <PRE>
103
- USAGE:
104
- s, scond, amax, info = NumRu::Lapack.zheequb( uplo, a, [:usage => usage, :help => help])
105
-
106
-
107
- FORTRAN MANUAL
108
- SUBROUTINE ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
109
-
110
- * Purpose
111
- * =======
112
- *
113
- * ZSYEQUB computes row and column scalings intended to equilibrate a
114
- * symmetric matrix A and reduce its condition number
115
- * (with respect to the two-norm). S contains the scale factors,
116
- * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
117
- * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
118
- * choice of S puts the condition number of B within a factor N of the
119
- * smallest possible condition number over all possible diagonal
120
- * scalings.
121
- *
122
-
123
- * Arguments
124
- * =========
125
- *
126
- * N (input) INTEGER
127
- * The order of the matrix A. N >= 0.
128
- *
129
- * A (input) COMPLEX*16 array, dimension (LDA,N)
130
- * The N-by-N symmetric matrix whose scaling
131
- * factors are to be computed. Only the diagonal elements of A
132
- * are referenced.
133
- *
134
- * LDA (input) INTEGER
135
- * The leading dimension of the array A. LDA >= max(1,N).
136
- *
137
- * S (output) DOUBLE PRECISION array, dimension (N)
138
- * If INFO = 0, S contains the scale factors for A.
139
- *
140
- * SCOND (output) DOUBLE PRECISION
141
- * If INFO = 0, S contains the ratio of the smallest S(i) to
142
- * the largest S(i). If SCOND >= 0.1 and AMAX is neither too
143
- * large nor too small, it is not worth scaling by S.
144
- *
145
- * AMAX (output) DOUBLE PRECISION
146
- * Absolute value of largest matrix element. If AMAX is very
147
- * close to overflow or very close to underflow, the matrix
148
- * should be scaled.
149
- * INFO (output) INTEGER
150
- * = 0: successful exit
151
- * < 0: if INFO = -i, the i-th argument had an illegal value
152
- * > 0: if INFO = i, the i-th diagonal element is nonpositive.
153
- *
154
-
155
- * =====================================================================
156
- *
157
-
158
-
159
- </PRE>
160
- <A HREF="#top">go to the page top</A>
161
-
162
- <A NAME="zheev"></A>
163
- <H2>zheev</H2>
164
- <PRE>
165
- USAGE:
166
- w, work, info, a = NumRu::Lapack.zheev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])
167
-
168
-
169
- FORTRAN MANUAL
170
- SUBROUTINE ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
171
-
172
- * Purpose
173
- * =======
174
- *
175
- * ZHEEV computes all eigenvalues and, optionally, eigenvectors of a
176
- * complex Hermitian matrix A.
177
- *
178
-
179
- * Arguments
180
- * =========
181
- *
182
- * JOBZ (input) CHARACTER*1
183
- * = 'N': Compute eigenvalues only;
184
- * = 'V': Compute eigenvalues and eigenvectors.
185
- *
186
- * UPLO (input) CHARACTER*1
187
- * = 'U': Upper triangle of A is stored;
188
- * = 'L': Lower triangle of A is stored.
189
- *
190
- * N (input) INTEGER
191
- * The order of the matrix A. N >= 0.
192
- *
193
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
194
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
195
- * leading N-by-N upper triangular part of A contains the
196
- * upper triangular part of the matrix A. If UPLO = 'L',
197
- * the leading N-by-N lower triangular part of A contains
198
- * the lower triangular part of the matrix A.
199
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
200
- * orthonormal eigenvectors of the matrix A.
201
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
202
- * or the upper triangle (if UPLO='U') of A, including the
203
- * diagonal, is destroyed.
204
- *
205
- * LDA (input) INTEGER
206
- * The leading dimension of the array A. LDA >= max(1,N).
207
- *
208
- * W (output) DOUBLE PRECISION array, dimension (N)
209
- * If INFO = 0, the eigenvalues in ascending order.
210
- *
211
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
212
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
213
- *
214
- * LWORK (input) INTEGER
215
- * The length of the array WORK. LWORK >= max(1,2*N-1).
216
- * For optimal efficiency, LWORK >= (NB+1)*N,
217
- * where NB is the blocksize for ZHETRD returned by ILAENV.
218
- *
219
- * If LWORK = -1, then a workspace query is assumed; the routine
220
- * only calculates the optimal size of the WORK array, returns
221
- * this value as the first entry of the WORK array, and no error
222
- * message related to LWORK is issued by XERBLA.
223
- *
224
- * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
225
- *
226
- * INFO (output) INTEGER
227
- * = 0: successful exit
228
- * < 0: if INFO = -i, the i-th argument had an illegal value
229
- * > 0: if INFO = i, the algorithm failed to converge; i
230
- * off-diagonal elements of an intermediate tridiagonal
231
- * form did not converge to zero.
232
- *
233
-
234
- * =====================================================================
235
- *
236
-
237
-
238
- </PRE>
239
- <A HREF="#top">go to the page top</A>
240
-
241
- <A NAME="zheevd"></A>
242
- <H2>zheevd</H2>
243
- <PRE>
244
- USAGE:
245
- w, work, rwork, iwork, info, a = NumRu::Lapack.zheevd( jobz, uplo, a, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])
246
-
247
-
248
- FORTRAN MANUAL
249
- SUBROUTINE ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
250
-
251
- * Purpose
252
- * =======
253
- *
254
- * ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
255
- * complex Hermitian matrix A. If eigenvectors are desired, it uses a
256
- * divide and conquer algorithm.
257
- *
258
- * The divide and conquer algorithm makes very mild assumptions about
259
- * floating point arithmetic. It will work on machines with a guard
260
- * digit in add/subtract, or on those binary machines without guard
261
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
262
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
263
- * without guard digits, but we know of none.
264
- *
265
-
266
- * Arguments
267
- * =========
268
- *
269
- * JOBZ (input) CHARACTER*1
270
- * = 'N': Compute eigenvalues only;
271
- * = 'V': Compute eigenvalues and eigenvectors.
272
- *
273
- * UPLO (input) CHARACTER*1
274
- * = 'U': Upper triangle of A is stored;
275
- * = 'L': Lower triangle of A is stored.
276
- *
277
- * N (input) INTEGER
278
- * The order of the matrix A. N >= 0.
279
- *
280
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
281
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
282
- * leading N-by-N upper triangular part of A contains the
283
- * upper triangular part of the matrix A. If UPLO = 'L',
284
- * the leading N-by-N lower triangular part of A contains
285
- * the lower triangular part of the matrix A.
286
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
287
- * orthonormal eigenvectors of the matrix A.
288
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
289
- * or the upper triangle (if UPLO='U') of A, including the
290
- * diagonal, is destroyed.
291
- *
292
- * LDA (input) INTEGER
293
- * The leading dimension of the array A. LDA >= max(1,N).
294
- *
295
- * W (output) DOUBLE PRECISION array, dimension (N)
296
- * If INFO = 0, the eigenvalues in ascending order.
297
- *
298
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
299
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
300
- *
301
- * LWORK (input) INTEGER
302
- * The length of the array WORK.
303
- * If N <= 1, LWORK must be at least 1.
304
- * If JOBZ = 'N' and N > 1, LWORK must be at least N + 1.
305
- * If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2.
306
- *
307
- * If LWORK = -1, then a workspace query is assumed; the routine
308
- * only calculates the optimal sizes of the WORK, RWORK and
309
- * IWORK arrays, returns these values as the first entries of
310
- * the WORK, RWORK and IWORK arrays, and no error message
311
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
312
- *
313
- * RWORK (workspace/output) DOUBLE PRECISION array,
314
- * dimension (LRWORK)
315
- * On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
316
- *
317
- * LRWORK (input) INTEGER
318
- * The dimension of the array RWORK.
319
- * If N <= 1, LRWORK must be at least 1.
320
- * If JOBZ = 'N' and N > 1, LRWORK must be at least N.
321
- * If JOBZ = 'V' and N > 1, LRWORK must be at least
322
- * 1 + 5*N + 2*N**2.
323
- *
324
- * If LRWORK = -1, then a workspace query is assumed; the
325
- * routine only calculates the optimal sizes of the WORK, RWORK
326
- * and IWORK arrays, returns these values as the first entries
327
- * of the WORK, RWORK and IWORK arrays, and no error message
328
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
329
- *
330
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
331
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
332
- *
333
- * LIWORK (input) INTEGER
334
- * The dimension of the array IWORK.
335
- * If N <= 1, LIWORK must be at least 1.
336
- * If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
337
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
338
- *
339
- * If LIWORK = -1, then a workspace query is assumed; the
340
- * routine only calculates the optimal sizes of the WORK, RWORK
341
- * and IWORK arrays, returns these values as the first entries
342
- * of the WORK, RWORK and IWORK arrays, and no error message
343
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
344
- *
345
- * INFO (output) INTEGER
346
- * = 0: successful exit
347
- * < 0: if INFO = -i, the i-th argument had an illegal value
348
- * > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
349
- * to converge; i off-diagonal elements of an intermediate
350
- * tridiagonal form did not converge to zero;
351
- * if INFO = i and JOBZ = 'V', then the algorithm failed
352
- * to compute an eigenvalue while working on the submatrix
353
- * lying in rows and columns INFO/(N+1) through
354
- * mod(INFO,N+1).
355
- *
356
-
357
- * Further Details
358
- * ===============
359
- *
360
- * Based on contributions by
361
- * Jeff Rutter, Computer Science Division, University of California
362
- * at Berkeley, USA
363
- *
364
- * Modified description of INFO. Sven, 16 Feb 05.
365
- * =====================================================================
366
- *
367
-
368
-
369
- </PRE>
370
- <A HREF="#top">go to the page top</A>
371
-
372
- <A NAME="zheevr"></A>
373
- <H2>zheevr</H2>
374
- <PRE>
375
- USAGE:
376
- m, w, z, isuppz, work, rwork, iwork, info, a = NumRu::Lapack.zheevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])
377
-
378
-
379
- FORTRAN MANUAL
380
- SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
381
-
382
- * Purpose
383
- * =======
384
- *
385
- * ZHEEVR computes selected eigenvalues and, optionally, eigenvectors
386
- * of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
387
- * be selected by specifying either a range of values or a range of
388
- * indices for the desired eigenvalues.
389
- *
390
- * ZHEEVR first reduces the matrix A to tridiagonal form T with a call
391
- * to ZHETRD. Then, whenever possible, ZHEEVR calls ZSTEMR to compute
392
- * eigenspectrum using Relatively Robust Representations. ZSTEMR
393
- * computes eigenvalues by the dqds algorithm, while orthogonal
394
- * eigenvectors are computed from various "good" L D L^T representations
395
- * (also known as Relatively Robust Representations). Gram-Schmidt
396
- * orthogonalization is avoided as far as possible. More specifically,
397
- * the various steps of the algorithm are as follows.
398
- *
399
- * For each unreduced block (submatrix) of T,
400
- * (a) Compute T - sigma I = L D L^T, so that L and D
401
- * define all the wanted eigenvalues to high relative accuracy.
402
- * This means that small relative changes in the entries of D and L
403
- * cause only small relative changes in the eigenvalues and
404
- * eigenvectors. The standard (unfactored) representation of the
405
- * tridiagonal matrix T does not have this property in general.
406
- * (b) Compute the eigenvalues to suitable accuracy.
407
- * If the eigenvectors are desired, the algorithm attains full
408
- * accuracy of the computed eigenvalues only right before
409
- * the corresponding vectors have to be computed, see steps c) and d).
410
- * (c) For each cluster of close eigenvalues, select a new
411
- * shift close to the cluster, find a new factorization, and refine
412
- * the shifted eigenvalues to suitable accuracy.
413
- * (d) For each eigenvalue with a large enough relative separation compute
414
- * the corresponding eigenvector by forming a rank revealing twisted
415
- * factorization. Go back to (c) for any clusters that remain.
416
- *
417
- * The desired accuracy of the output can be specified by the input
418
- * parameter ABSTOL.
419
- *
420
- * For more details, see DSTEMR's documentation and:
421
- * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
422
- * to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
423
- * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
424
- * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
425
- * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
426
- * 2004. Also LAPACK Working Note 154.
427
- * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
428
- * tridiagonal eigenvalue/eigenvector problem",
429
- * Computer Science Division Technical Report No. UCB/CSD-97-971,
430
- * UC Berkeley, May 1997.
431
- *
432
- *
433
- * Note 1 : ZHEEVR calls ZSTEMR when the full spectrum is requested
434
- * on machines which conform to the ieee-754 floating point standard.
435
- * ZHEEVR calls DSTEBZ and ZSTEIN on non-ieee machines and
436
- * when partial spectrum requests are made.
437
- *
438
- * Normal execution of ZSTEMR may create NaNs and infinities and
439
- * hence may abort due to a floating point exception in environments
440
- * which do not handle NaNs and infinities in the ieee standard default
441
- * manner.
442
- *
443
-
444
- * Arguments
445
- * =========
446
- *
447
- * JOBZ (input) CHARACTER*1
448
- * = 'N': Compute eigenvalues only;
449
- * = 'V': Compute eigenvalues and eigenvectors.
450
- *
451
- * RANGE (input) CHARACTER*1
452
- * = 'A': all eigenvalues will be found.
453
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
454
- * will be found.
455
- * = 'I': the IL-th through IU-th eigenvalues will be found.
456
- ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
457
- ********** ZSTEIN are called
458
- *
459
- * UPLO (input) CHARACTER*1
460
- * = 'U': Upper triangle of A is stored;
461
- * = 'L': Lower triangle of A is stored.
462
- *
463
- * N (input) INTEGER
464
- * The order of the matrix A. N >= 0.
465
- *
466
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
467
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
468
- * leading N-by-N upper triangular part of A contains the
469
- * upper triangular part of the matrix A. If UPLO = 'L',
470
- * the leading N-by-N lower triangular part of A contains
471
- * the lower triangular part of the matrix A.
472
- * On exit, the lower triangle (if UPLO='L') or the upper
473
- * triangle (if UPLO='U') of A, including the diagonal, is
474
- * destroyed.
475
- *
476
- * LDA (input) INTEGER
477
- * The leading dimension of the array A. LDA >= max(1,N).
478
- *
479
- * VL (input) DOUBLE PRECISION
480
- * VU (input) DOUBLE PRECISION
481
- * If RANGE='V', the lower and upper bounds of the interval to
482
- * be searched for eigenvalues. VL < VU.
483
- * Not referenced if RANGE = 'A' or 'I'.
484
- *
485
- * IL (input) INTEGER
486
- * IU (input) INTEGER
487
- * If RANGE='I', the indices (in ascending order) of the
488
- * smallest and largest eigenvalues to be returned.
489
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
490
- * Not referenced if RANGE = 'A' or 'V'.
491
- *
492
- * ABSTOL (input) DOUBLE PRECISION
493
- * The absolute error tolerance for the eigenvalues.
494
- * An approximate eigenvalue is accepted as converged
495
- * when it is determined to lie in an interval [a,b]
496
- * of width less than or equal to
497
- *
498
- * ABSTOL + EPS * max( |a|,|b| ) ,
499
- *
500
- * where EPS is the machine precision. If ABSTOL is less than
501
- * or equal to zero, then EPS*|T| will be used in its place,
502
- * where |T| is the 1-norm of the tridiagonal matrix obtained
503
- * by reducing A to tridiagonal form.
504
- *
505
- * See "Computing Small Singular Values of Bidiagonal Matrices
506
- * with Guaranteed High Relative Accuracy," by Demmel and
507
- * Kahan, LAPACK Working Note #3.
508
- *
509
- * If high relative accuracy is important, set ABSTOL to
510
- * DLAMCH( 'Safe minimum' ). Doing so will guarantee that
511
- * eigenvalues are computed to high relative accuracy when
512
- * possible in future releases. The current code does not
513
- * make any guarantees about high relative accuracy, but
514
- * furutre releases will. See J. Barlow and J. Demmel,
515
- * "Computing Accurate Eigensystems of Scaled Diagonally
516
- * Dominant Matrices", LAPACK Working Note #7, for a discussion
517
- * of which matrices define their eigenvalues to high relative
518
- * accuracy.
519
- *
520
- * M (output) INTEGER
521
- * The total number of eigenvalues found. 0 <= M <= N.
522
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
523
- *
524
- * W (output) DOUBLE PRECISION array, dimension (N)
525
- * The first M elements contain the selected eigenvalues in
526
- * ascending order.
527
- *
528
- * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
529
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
530
- * contain the orthonormal eigenvectors of the matrix A
531
- * corresponding to the selected eigenvalues, with the i-th
532
- * column of Z holding the eigenvector associated with W(i).
533
- * If JOBZ = 'N', then Z is not referenced.
534
- * Note: the user must ensure that at least max(1,M) columns are
535
- * supplied in the array Z; if RANGE = 'V', the exact value of M
536
- * is not known in advance and an upper bound must be used.
537
- *
538
- * LDZ (input) INTEGER
539
- * The leading dimension of the array Z. LDZ >= 1, and if
540
- * JOBZ = 'V', LDZ >= max(1,N).
541
- *
542
- * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
543
- * The support of the eigenvectors in Z, i.e., the indices
544
- * indicating the nonzero elements in Z. The i-th eigenvector
545
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
546
- * ISUPPZ( 2*i ).
547
- ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
548
- *
549
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
550
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
551
- *
552
- * LWORK (input) INTEGER
553
- * The length of the array WORK. LWORK >= max(1,2*N).
554
- * For optimal efficiency, LWORK >= (NB+1)*N,
555
- * where NB is the max of the blocksize for ZHETRD and for
556
- * ZUNMTR as returned by ILAENV.
557
- *
558
- * If LWORK = -1, then a workspace query is assumed; the routine
559
- * only calculates the optimal sizes of the WORK, RWORK and
560
- * IWORK arrays, returns these values as the first entries of
561
- * the WORK, RWORK and IWORK arrays, and no error message
562
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
563
- *
564
- * RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
565
- * On exit, if INFO = 0, RWORK(1) returns the optimal
566
- * (and minimal) LRWORK.
567
- *
568
- * LRWORK (input) INTEGER
569
- * The length of the array RWORK. LRWORK >= max(1,24*N).
570
- *
571
- * If LRWORK = -1, then a workspace query is assumed; the
572
- * routine only calculates the optimal sizes of the WORK, RWORK
573
- * and IWORK arrays, returns these values as the first entries
574
- * of the WORK, RWORK and IWORK arrays, and no error message
575
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
576
- *
577
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
578
- * On exit, if INFO = 0, IWORK(1) returns the optimal
579
- * (and minimal) LIWORK.
580
- *
581
- * LIWORK (input) INTEGER
582
- * The dimension of the array IWORK. LIWORK >= max(1,10*N).
583
- *
584
- * If LIWORK = -1, then a workspace query is assumed; the
585
- * routine only calculates the optimal sizes of the WORK, RWORK
586
- * and IWORK arrays, returns these values as the first entries
587
- * of the WORK, RWORK and IWORK arrays, and no error message
588
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
589
- *
590
- * INFO (output) INTEGER
591
- * = 0: successful exit
592
- * < 0: if INFO = -i, the i-th argument had an illegal value
593
- * > 0: Internal error
594
- *
595
-
596
- * Further Details
597
- * ===============
598
- *
599
- * Based on contributions by
600
- * Inderjit Dhillon, IBM Almaden, USA
601
- * Osni Marques, LBNL/NERSC, USA
602
- * Ken Stanley, Computer Science Division, University of
603
- * California at Berkeley, USA
604
- * Jason Riedy, Computer Science Division, University of
605
- * California at Berkeley, USA
606
- *
607
- * =====================================================================
608
- *
609
-
610
-
611
- </PRE>
612
- <A HREF="#top">go to the page top</A>
613
-
614
- <A NAME="zheevx"></A>
615
- <H2>zheevx</H2>
616
- <PRE>
617
- USAGE:
618
- m, w, z, work, ifail, info, a = NumRu::Lapack.zheevx( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
619
-
620
-
621
- FORTRAN MANUAL
622
- SUBROUTINE ZHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL, INFO )
623
-
624
- * Purpose
625
- * =======
626
- *
627
- * ZHEEVX computes selected eigenvalues and, optionally, eigenvectors
628
- * of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
629
- * be selected by specifying either a range of values or a range of
630
- * indices for the desired eigenvalues.
631
- *
632
-
633
- * Arguments
634
- * =========
635
- *
636
- * JOBZ (input) CHARACTER*1
637
- * = 'N': Compute eigenvalues only;
638
- * = 'V': Compute eigenvalues and eigenvectors.
639
- *
640
- * RANGE (input) CHARACTER*1
641
- * = 'A': all eigenvalues will be found.
642
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
643
- * will be found.
644
- * = 'I': the IL-th through IU-th eigenvalues will be found.
645
- *
646
- * UPLO (input) CHARACTER*1
647
- * = 'U': Upper triangle of A is stored;
648
- * = 'L': Lower triangle of A is stored.
649
- *
650
- * N (input) INTEGER
651
- * The order of the matrix A. N >= 0.
652
- *
653
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
654
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
655
- * leading N-by-N upper triangular part of A contains the
656
- * upper triangular part of the matrix A. If UPLO = 'L',
657
- * the leading N-by-N lower triangular part of A contains
658
- * the lower triangular part of the matrix A.
659
- * On exit, the lower triangle (if UPLO='L') or the upper
660
- * triangle (if UPLO='U') of A, including the diagonal, is
661
- * destroyed.
662
- *
663
- * LDA (input) INTEGER
664
- * The leading dimension of the array A. LDA >= max(1,N).
665
- *
666
- * VL (input) DOUBLE PRECISION
667
- * VU (input) DOUBLE PRECISION
668
- * If RANGE='V', the lower and upper bounds of the interval to
669
- * be searched for eigenvalues. VL < VU.
670
- * Not referenced if RANGE = 'A' or 'I'.
671
- *
672
- * IL (input) INTEGER
673
- * IU (input) INTEGER
674
- * If RANGE='I', the indices (in ascending order) of the
675
- * smallest and largest eigenvalues to be returned.
676
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
677
- * Not referenced if RANGE = 'A' or 'V'.
678
- *
679
- * ABSTOL (input) DOUBLE PRECISION
680
- * The absolute error tolerance for the eigenvalues.
681
- * An approximate eigenvalue is accepted as converged
682
- * when it is determined to lie in an interval [a,b]
683
- * of width less than or equal to
684
- *
685
- * ABSTOL + EPS * max( |a|,|b| ) ,
686
- *
687
- * where EPS is the machine precision. If ABSTOL is less than
688
- * or equal to zero, then EPS*|T| will be used in its place,
689
- * where |T| is the 1-norm of the tridiagonal matrix obtained
690
- * by reducing A to tridiagonal form.
691
- *
692
- * Eigenvalues will be computed most accurately when ABSTOL is
693
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
694
- * If this routine returns with INFO>0, indicating that some
695
- * eigenvectors did not converge, try setting ABSTOL to
696
- * 2*DLAMCH('S').
697
- *
698
- * See "Computing Small Singular Values of Bidiagonal Matrices
699
- * with Guaranteed High Relative Accuracy," by Demmel and
700
- * Kahan, LAPACK Working Note #3.
701
- *
702
- * M (output) INTEGER
703
- * The total number of eigenvalues found. 0 <= M <= N.
704
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
705
- *
706
- * W (output) DOUBLE PRECISION array, dimension (N)
707
- * On normal exit, the first M elements contain the selected
708
- * eigenvalues in ascending order.
709
- *
710
- * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
711
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
712
- * contain the orthonormal eigenvectors of the matrix A
713
- * corresponding to the selected eigenvalues, with the i-th
714
- * column of Z holding the eigenvector associated with W(i).
715
- * If an eigenvector fails to converge, then that column of Z
716
- * contains the latest approximation to the eigenvector, and the
717
- * index of the eigenvector is returned in IFAIL.
718
- * If JOBZ = 'N', then Z is not referenced.
719
- * Note: the user must ensure that at least max(1,M) columns are
720
- * supplied in the array Z; if RANGE = 'V', the exact value of M
721
- * is not known in advance and an upper bound must be used.
722
- *
723
- * LDZ (input) INTEGER
724
- * The leading dimension of the array Z. LDZ >= 1, and if
725
- * JOBZ = 'V', LDZ >= max(1,N).
726
- *
727
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
728
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
729
- *
730
- * LWORK (input) INTEGER
731
- * The length of the array WORK. LWORK >= 1, when N <= 1;
732
- * otherwise 2*N.
733
- * For optimal efficiency, LWORK >= (NB+1)*N,
734
- * where NB is the max of the blocksize for ZHETRD and for
735
- * ZUNMTR as returned by ILAENV.
736
- *
737
- * If LWORK = -1, then a workspace query is assumed; the routine
738
- * only calculates the optimal size of the WORK array, returns
739
- * this value as the first entry of the WORK array, and no error
740
- * message related to LWORK is issued by XERBLA.
741
- *
742
- * RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
743
- *
744
- * IWORK (workspace) INTEGER array, dimension (5*N)
745
- *
746
- * IFAIL (output) INTEGER array, dimension (N)
747
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
748
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
749
- * indices of the eigenvectors that failed to converge.
750
- * If JOBZ = 'N', then IFAIL is not referenced.
751
- *
752
- * INFO (output) INTEGER
753
- * = 0: successful exit
754
- * < 0: if INFO = -i, the i-th argument had an illegal value
755
- * > 0: if INFO = i, then i eigenvectors failed to converge.
756
- * Their indices are stored in array IFAIL.
757
- *
758
-
759
- * =====================================================================
760
- *
761
-
762
-
763
- </PRE>
764
- <A HREF="#top">go to the page top</A>
765
-
766
- <A NAME="zhegs2"></A>
767
- <H2>zhegs2</H2>
768
- <PRE>
769
- USAGE:
770
- info, a = NumRu::Lapack.zhegs2( itype, uplo, a, b, [:usage => usage, :help => help])
771
-
772
-
773
- FORTRAN MANUAL
774
- SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
775
-
776
- * Purpose
777
- * =======
778
- *
779
- * ZHEGS2 reduces a complex Hermitian-definite generalized
780
- * eigenproblem to standard form.
781
- *
782
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
783
- * and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
784
- *
785
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
786
- * B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
787
- *
788
- * B must have been previously factorized as U'*U or L*L' by ZPOTRF.
789
- *
790
-
791
- * Arguments
792
- * =========
793
- *
794
- * ITYPE (input) INTEGER
795
- * = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
796
- * = 2 or 3: compute U*A*U' or L'*A*L.
797
- *
798
- * UPLO (input) CHARACTER*1
799
- * Specifies whether the upper or lower triangular part of the
800
- * Hermitian matrix A is stored, and how B has been factorized.
801
- * = 'U': Upper triangular
802
- * = 'L': Lower triangular
803
- *
804
- * N (input) INTEGER
805
- * The order of the matrices A and B. N >= 0.
806
- *
807
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
808
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
809
- * n by n upper triangular part of A contains the upper
810
- * triangular part of the matrix A, and the strictly lower
811
- * triangular part of A is not referenced. If UPLO = 'L', the
812
- * leading n by n lower triangular part of A contains the lower
813
- * triangular part of the matrix A, and the strictly upper
814
- * triangular part of A is not referenced.
815
- *
816
- * On exit, if INFO = 0, the transformed matrix, stored in the
817
- * same format as A.
818
- *
819
- * LDA (input) INTEGER
820
- * The leading dimension of the array A. LDA >= max(1,N).
821
- *
822
- * B (input) COMPLEX*16 array, dimension (LDB,N)
823
- * The triangular factor from the Cholesky factorization of B,
824
- * as returned by ZPOTRF.
825
- *
826
- * LDB (input) INTEGER
827
- * The leading dimension of the array B. LDB >= max(1,N).
828
- *
829
- * INFO (output) INTEGER
830
- * = 0: successful exit.
831
- * < 0: if INFO = -i, the i-th argument had an illegal value.
832
- *
833
-
834
- * =====================================================================
835
- *
836
-
837
-
838
- </PRE>
839
- <A HREF="#top">go to the page top</A>
840
-
841
- <A NAME="zhegst"></A>
842
- <H2>zhegst</H2>
843
- <PRE>
844
- USAGE:
845
- info, a = NumRu::Lapack.zhegst( itype, uplo, a, b, [:usage => usage, :help => help])
846
-
847
-
848
- FORTRAN MANUAL
849
- SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
850
-
851
- * Purpose
852
- * =======
853
- *
854
- * ZHEGST reduces a complex Hermitian-definite generalized
855
- * eigenproblem to standard form.
856
- *
857
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
858
- * and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
859
- *
860
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
861
- * B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
862
- *
863
- * B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
864
- *
865
-
866
- * Arguments
867
- * =========
868
- *
869
- * ITYPE (input) INTEGER
870
- * = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
871
- * = 2 or 3: compute U*A*U**H or L**H*A*L.
872
- *
873
- * UPLO (input) CHARACTER*1
874
- * = 'U': Upper triangle of A is stored and B is factored as
875
- * U**H*U;
876
- * = 'L': Lower triangle of A is stored and B is factored as
877
- * L*L**H.
878
- *
879
- * N (input) INTEGER
880
- * The order of the matrices A and B. N >= 0.
881
- *
882
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
883
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
884
- * N-by-N upper triangular part of A contains the upper
885
- * triangular part of the matrix A, and the strictly lower
886
- * triangular part of A is not referenced. If UPLO = 'L', the
887
- * leading N-by-N lower triangular part of A contains the lower
888
- * triangular part of the matrix A, and the strictly upper
889
- * triangular part of A is not referenced.
890
- *
891
- * On exit, if INFO = 0, the transformed matrix, stored in the
892
- * same format as A.
893
- *
894
- * LDA (input) INTEGER
895
- * The leading dimension of the array A. LDA >= max(1,N).
896
- *
897
- * B (input) COMPLEX*16 array, dimension (LDB,N)
898
- * The triangular factor from the Cholesky factorization of B,
899
- * as returned by ZPOTRF.
900
- *
901
- * LDB (input) INTEGER
902
- * The leading dimension of the array B. LDB >= max(1,N).
903
- *
904
- * INFO (output) INTEGER
905
- * = 0: successful exit
906
- * < 0: if INFO = -i, the i-th argument had an illegal value
907
- *
908
-
909
- * =====================================================================
910
- *
911
-
912
-
913
- </PRE>
914
- <A HREF="#top">go to the page top</A>
915
-
916
- <A NAME="zhegv"></A>
917
- <H2>zhegv</H2>
918
- <PRE>
919
- USAGE:
920
- w, work, info, a, b = NumRu::Lapack.zhegv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
921
-
922
-
923
- FORTRAN MANUAL
924
- SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, INFO )
925
-
926
- * Purpose
927
- * =======
928
- *
929
- * ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
930
- * of a complex generalized Hermitian-definite eigenproblem, of the form
931
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
932
- * Here A and B are assumed to be Hermitian and B is also
933
- * positive definite.
934
- *
935
-
936
- * Arguments
937
- * =========
938
- *
939
- * ITYPE (input) INTEGER
940
- * Specifies the problem type to be solved:
941
- * = 1: A*x = (lambda)*B*x
942
- * = 2: A*B*x = (lambda)*x
943
- * = 3: B*A*x = (lambda)*x
944
- *
945
- * JOBZ (input) CHARACTER*1
946
- * = 'N': Compute eigenvalues only;
947
- * = 'V': Compute eigenvalues and eigenvectors.
948
- *
949
- * UPLO (input) CHARACTER*1
950
- * = 'U': Upper triangles of A and B are stored;
951
- * = 'L': Lower triangles of A and B are stored.
952
- *
953
- * N (input) INTEGER
954
- * The order of the matrices A and B. N >= 0.
955
- *
956
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
957
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
958
- * leading N-by-N upper triangular part of A contains the
959
- * upper triangular part of the matrix A. If UPLO = 'L',
960
- * the leading N-by-N lower triangular part of A contains
961
- * the lower triangular part of the matrix A.
962
- *
963
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
964
- * matrix Z of eigenvectors. The eigenvectors are normalized
965
- * as follows:
966
- * if ITYPE = 1 or 2, Z**H*B*Z = I;
967
- * if ITYPE = 3, Z**H*inv(B)*Z = I.
968
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
969
- * or the lower triangle (if UPLO='L') of A, including the
970
- * diagonal, is destroyed.
971
- *
972
- * LDA (input) INTEGER
973
- * The leading dimension of the array A. LDA >= max(1,N).
974
- *
975
- * B (input/output) COMPLEX*16 array, dimension (LDB, N)
976
- * On entry, the Hermitian positive definite matrix B.
977
- * If UPLO = 'U', the leading N-by-N upper triangular part of B
978
- * contains the upper triangular part of the matrix B.
979
- * If UPLO = 'L', the leading N-by-N lower triangular part of B
980
- * contains the lower triangular part of the matrix B.
981
- *
982
- * On exit, if INFO <= N, the part of B containing the matrix is
983
- * overwritten by the triangular factor U or L from the Cholesky
984
- * factorization B = U**H*U or B = L*L**H.
985
- *
986
- * LDB (input) INTEGER
987
- * The leading dimension of the array B. LDB >= max(1,N).
988
- *
989
- * W (output) DOUBLE PRECISION array, dimension (N)
990
- * If INFO = 0, the eigenvalues in ascending order.
991
- *
992
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
993
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
994
- *
995
- * LWORK (input) INTEGER
996
- * The length of the array WORK. LWORK >= max(1,2*N-1).
997
- * For optimal efficiency, LWORK >= (NB+1)*N,
998
- * where NB is the blocksize for ZHETRD returned by ILAENV.
999
- *
1000
- * If LWORK = -1, then a workspace query is assumed; the routine
1001
- * only calculates the optimal size of the WORK array, returns
1002
- * this value as the first entry of the WORK array, and no error
1003
- * message related to LWORK is issued by XERBLA.
1004
- *
1005
- * RWORK (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
1006
- *
1007
- * INFO (output) INTEGER
1008
- * = 0: successful exit
1009
- * < 0: if INFO = -i, the i-th argument had an illegal value
1010
- * > 0: ZPOTRF or ZHEEV returned an error code:
1011
- * <= N: if INFO = i, ZHEEV failed to converge;
1012
- * i off-diagonal elements of an intermediate
1013
- * tridiagonal form did not converge to zero;
1014
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1015
- * minor of order i of B is not positive definite.
1016
- * The factorization of B could not be completed and
1017
- * no eigenvalues or eigenvectors were computed.
1018
- *
1019
-
1020
- * =====================================================================
1021
- *
1022
-
1023
-
1024
- </PRE>
1025
- <A HREF="#top">go to the page top</A>
1026
-
1027
- <A NAME="zhegvd"></A>
1028
- <H2>zhegvd</H2>
1029
- <PRE>
1030
- USAGE:
1031
- w, work, rwork, iwork, info, a, b = NumRu::Lapack.zhegvd( itype, jobz, uplo, a, b, [:lwork => lwork, :lrwork => lrwork, :liwork => liwork, :usage => usage, :help => help])
1032
-
1033
-
1034
- FORTRAN MANUAL
1035
- SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
1036
-
1037
- * Purpose
1038
- * =======
1039
- *
1040
- * ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
1041
- * of a complex generalized Hermitian-definite eigenproblem, of the form
1042
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
1043
- * B are assumed to be Hermitian and B is also positive definite.
1044
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
1045
- *
1046
- * The divide and conquer algorithm makes very mild assumptions about
1047
- * floating point arithmetic. It will work on machines with a guard
1048
- * digit in add/subtract, or on those binary machines without guard
1049
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
1050
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
1051
- * without guard digits, but we know of none.
1052
- *
1053
-
1054
- * Arguments
1055
- * =========
1056
- *
1057
- * ITYPE (input) INTEGER
1058
- * Specifies the problem type to be solved:
1059
- * = 1: A*x = (lambda)*B*x
1060
- * = 2: A*B*x = (lambda)*x
1061
- * = 3: B*A*x = (lambda)*x
1062
- *
1063
- * JOBZ (input) CHARACTER*1
1064
- * = 'N': Compute eigenvalues only;
1065
- * = 'V': Compute eigenvalues and eigenvectors.
1066
- *
1067
- * UPLO (input) CHARACTER*1
1068
- * = 'U': Upper triangles of A and B are stored;
1069
- * = 'L': Lower triangles of A and B are stored.
1070
- *
1071
- * N (input) INTEGER
1072
- * The order of the matrices A and B. N >= 0.
1073
- *
1074
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
1075
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
1076
- * leading N-by-N upper triangular part of A contains the
1077
- * upper triangular part of the matrix A. If UPLO = 'L',
1078
- * the leading N-by-N lower triangular part of A contains
1079
- * the lower triangular part of the matrix A.
1080
- *
1081
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1082
- * matrix Z of eigenvectors. The eigenvectors are normalized
1083
- * as follows:
1084
- * if ITYPE = 1 or 2, Z**H*B*Z = I;
1085
- * if ITYPE = 3, Z**H*inv(B)*Z = I.
1086
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1087
- * or the lower triangle (if UPLO='L') of A, including the
1088
- * diagonal, is destroyed.
1089
- *
1090
- * LDA (input) INTEGER
1091
- * The leading dimension of the array A. LDA >= max(1,N).
1092
- *
1093
- * B (input/output) COMPLEX*16 array, dimension (LDB, N)
1094
- * On entry, the Hermitian matrix B. If UPLO = 'U', the
1095
- * leading N-by-N upper triangular part of B contains the
1096
- * upper triangular part of the matrix B. If UPLO = 'L',
1097
- * the leading N-by-N lower triangular part of B contains
1098
- * the lower triangular part of the matrix B.
1099
- *
1100
- * On exit, if INFO <= N, the part of B containing the matrix is
1101
- * overwritten by the triangular factor U or L from the Cholesky
1102
- * factorization B = U**H*U or B = L*L**H.
1103
- *
1104
- * LDB (input) INTEGER
1105
- * The leading dimension of the array B. LDB >= max(1,N).
1106
- *
1107
- * W (output) DOUBLE PRECISION array, dimension (N)
1108
- * If INFO = 0, the eigenvalues in ascending order.
1109
- *
1110
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
1111
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1112
- *
1113
- * LWORK (input) INTEGER
1114
- * The length of the array WORK.
1115
- * If N <= 1, LWORK >= 1.
1116
- * If JOBZ = 'N' and N > 1, LWORK >= N + 1.
1117
- * If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
1118
- *
1119
- * If LWORK = -1, then a workspace query is assumed; the routine
1120
- * only calculates the optimal sizes of the WORK, RWORK and
1121
- * IWORK arrays, returns these values as the first entries of
1122
- * the WORK, RWORK and IWORK arrays, and no error message
1123
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
1124
- *
1125
- * RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
1126
- * On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
1127
- *
1128
- * LRWORK (input) INTEGER
1129
- * The dimension of the array RWORK.
1130
- * If N <= 1, LRWORK >= 1.
1131
- * If JOBZ = 'N' and N > 1, LRWORK >= N.
1132
- * If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
1133
- *
1134
- * If LRWORK = -1, then a workspace query is assumed; the
1135
- * routine only calculates the optimal sizes of the WORK, RWORK
1136
- * and IWORK arrays, returns these values as the first entries
1137
- * of the WORK, RWORK and IWORK arrays, and no error message
1138
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
1139
- *
1140
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1141
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1142
- *
1143
- * LIWORK (input) INTEGER
1144
- * The dimension of the array IWORK.
1145
- * If N <= 1, LIWORK >= 1.
1146
- * If JOBZ = 'N' and N > 1, LIWORK >= 1.
1147
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
1148
- *
1149
- * If LIWORK = -1, then a workspace query is assumed; the
1150
- * routine only calculates the optimal sizes of the WORK, RWORK
1151
- * and IWORK arrays, returns these values as the first entries
1152
- * of the WORK, RWORK and IWORK arrays, and no error message
1153
- * related to LWORK or LRWORK or LIWORK is issued by XERBLA.
1154
- *
1155
- * INFO (output) INTEGER
1156
- * = 0: successful exit
1157
- * < 0: if INFO = -i, the i-th argument had an illegal value
1158
- * > 0: ZPOTRF or ZHEEVD returned an error code:
1159
- * <= N: if INFO = i and JOBZ = 'N', then the algorithm
1160
- * failed to converge; i off-diagonal elements of an
1161
- * intermediate tridiagonal form did not converge to
1162
- * zero;
1163
- * if INFO = i and JOBZ = 'V', then the algorithm
1164
- * failed to compute an eigenvalue while working on
1165
- * the submatrix lying in rows and columns INFO/(N+1)
1166
- * through mod(INFO,N+1);
1167
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1168
- * minor of order i of B is not positive definite.
1169
- * The factorization of B could not be completed and
1170
- * no eigenvalues or eigenvectors were computed.
1171
- *
1172
-
1173
- * Further Details
1174
- * ===============
1175
- *
1176
- * Based on contributions by
1177
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1178
- *
1179
- * Modified so that no backsubstitution is performed if ZHEEVD fails to
1180
- * converge (NEIG in old code could be greater than N causing out of
1181
- * bounds reference to A - reported by Ralf Meyer). Also corrected the
1182
- * description of INFO and the test on ITYPE. Sven, 16 Feb 05.
1183
- * =====================================================================
1184
- *
1185
-
1186
-
1187
- </PRE>
1188
- <A HREF="#top">go to the page top</A>
1189
-
1190
- <A NAME="zhegvx"></A>
1191
- <H2>zhegvx</H2>
1192
- <PRE>
1193
- USAGE:
1194
- m, w, z, work, ifail, info, a, b = NumRu::Lapack.zhegvx( itype, jobz, range, uplo, a, b, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
1195
-
1196
-
1197
- FORTRAN MANUAL
1198
- SUBROUTINE ZHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL, INFO )
1199
-
1200
- * Purpose
1201
- * =======
1202
- *
1203
- * ZHEGVX computes selected eigenvalues, and optionally, eigenvectors
1204
- * of a complex generalized Hermitian-definite eigenproblem, of the form
1205
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
1206
- * B are assumed to be Hermitian and B is also positive definite.
1207
- * Eigenvalues and eigenvectors can be selected by specifying either a
1208
- * range of values or a range of indices for the desired eigenvalues.
1209
- *
1210
-
1211
- * Arguments
1212
- * =========
1213
- *
1214
- * ITYPE (input) INTEGER
1215
- * Specifies the problem type to be solved:
1216
- * = 1: A*x = (lambda)*B*x
1217
- * = 2: A*B*x = (lambda)*x
1218
- * = 3: B*A*x = (lambda)*x
1219
- *
1220
- * JOBZ (input) CHARACTER*1
1221
- * = 'N': Compute eigenvalues only;
1222
- * = 'V': Compute eigenvalues and eigenvectors.
1223
- *
1224
- * RANGE (input) CHARACTER*1
1225
- * = 'A': all eigenvalues will be found.
1226
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
1227
- * will be found.
1228
- * = 'I': the IL-th through IU-th eigenvalues will be found.
1229
- **
1230
- * UPLO (input) CHARACTER*1
1231
- * = 'U': Upper triangles of A and B are stored;
1232
- * = 'L': Lower triangles of A and B are stored.
1233
- *
1234
- * N (input) INTEGER
1235
- * The order of the matrices A and B. N >= 0.
1236
- *
1237
- * A (input/output) COMPLEX*16 array, dimension (LDA, N)
1238
- * On entry, the Hermitian matrix A. If UPLO = 'U', the
1239
- * leading N-by-N upper triangular part of A contains the
1240
- * upper triangular part of the matrix A. If UPLO = 'L',
1241
- * the leading N-by-N lower triangular part of A contains
1242
- * the lower triangular part of the matrix A.
1243
- *
1244
- * On exit, the lower triangle (if UPLO='L') or the upper
1245
- * triangle (if UPLO='U') of A, including the diagonal, is
1246
- * destroyed.
1247
- *
1248
- * LDA (input) INTEGER
1249
- * The leading dimension of the array A. LDA >= max(1,N).
1250
- *
1251
- * B (input/output) COMPLEX*16 array, dimension (LDB, N)
1252
- * On entry, the Hermitian matrix B. If UPLO = 'U', the
1253
- * leading N-by-N upper triangular part of B contains the
1254
- * upper triangular part of the matrix B. If UPLO = 'L',
1255
- * the leading N-by-N lower triangular part of B contains
1256
- * the lower triangular part of the matrix B.
1257
- *
1258
- * On exit, if INFO <= N, the part of B containing the matrix is
1259
- * overwritten by the triangular factor U or L from the Cholesky
1260
- * factorization B = U**H*U or B = L*L**H.
1261
- *
1262
- * LDB (input) INTEGER
1263
- * The leading dimension of the array B. LDB >= max(1,N).
1264
- *
1265
- * VL (input) DOUBLE PRECISION
1266
- * VU (input) DOUBLE PRECISION
1267
- * If RANGE='V', the lower and upper bounds of the interval to
1268
- * be searched for eigenvalues. VL < VU.
1269
- * Not referenced if RANGE = 'A' or 'I'.
1270
- *
1271
- * IL (input) INTEGER
1272
- * IU (input) INTEGER
1273
- * If RANGE='I', the indices (in ascending order) of the
1274
- * smallest and largest eigenvalues to be returned.
1275
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1276
- * Not referenced if RANGE = 'A' or 'V'.
1277
- *
1278
- * ABSTOL (input) DOUBLE PRECISION
1279
- * The absolute error tolerance for the eigenvalues.
1280
- * An approximate eigenvalue is accepted as converged
1281
- * when it is determined to lie in an interval [a,b]
1282
- * of width less than or equal to
1283
- *
1284
- * ABSTOL + EPS * max( |a|,|b| ) ,
1285
- *
1286
- * where EPS is the machine precision. If ABSTOL is less than
1287
- * or equal to zero, then EPS*|T| will be used in its place,
1288
- * where |T| is the 1-norm of the tridiagonal matrix obtained
1289
- * by reducing A to tridiagonal form.
1290
- *
1291
- * Eigenvalues will be computed most accurately when ABSTOL is
1292
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
1293
- * If this routine returns with INFO>0, indicating that some
1294
- * eigenvectors did not converge, try setting ABSTOL to
1295
- * 2*DLAMCH('S').
1296
- *
1297
- * M (output) INTEGER
1298
- * The total number of eigenvalues found. 0 <= M <= N.
1299
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1300
- *
1301
- * W (output) DOUBLE PRECISION array, dimension (N)
1302
- * The first M elements contain the selected
1303
- * eigenvalues in ascending order.
1304
- *
1305
- * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M))
1306
- * If JOBZ = 'N', then Z is not referenced.
1307
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1308
- * contain the orthonormal eigenvectors of the matrix A
1309
- * corresponding to the selected eigenvalues, with the i-th
1310
- * column of Z holding the eigenvector associated with W(i).
1311
- * The eigenvectors are normalized as follows:
1312
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1313
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1314
- *
1315
- * If an eigenvector fails to converge, then that column of Z
1316
- * contains the latest approximation to the eigenvector, and the
1317
- * index of the eigenvector is returned in IFAIL.
1318
- * Note: the user must ensure that at least max(1,M) columns are
1319
- * supplied in the array Z; if RANGE = 'V', the exact value of M
1320
- * is not known in advance and an upper bound must be used.
1321
- *
1322
- * LDZ (input) INTEGER
1323
- * The leading dimension of the array Z. LDZ >= 1, and if
1324
- * JOBZ = 'V', LDZ >= max(1,N).
1325
- *
1326
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
1327
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1328
- *
1329
- * LWORK (input) INTEGER
1330
- * The length of the array WORK. LWORK >= max(1,2*N).
1331
- * For optimal efficiency, LWORK >= (NB+1)*N,
1332
- * where NB is the blocksize for ZHETRD returned by ILAENV.
1333
- *
1334
- * If LWORK = -1, then a workspace query is assumed; the routine
1335
- * only calculates the optimal size of the WORK array, returns
1336
- * this value as the first entry of the WORK array, and no error
1337
- * message related to LWORK is issued by XERBLA.
1338
- *
1339
- * RWORK (workspace) DOUBLE PRECISION array, dimension (7*N)
1340
- *
1341
- * IWORK (workspace) INTEGER array, dimension (5*N)
1342
- *
1343
- * IFAIL (output) INTEGER array, dimension (N)
1344
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
1345
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
1346
- * indices of the eigenvectors that failed to converge.
1347
- * If JOBZ = 'N', then IFAIL is not referenced.
1348
- *
1349
- * INFO (output) INTEGER
1350
- * = 0: successful exit
1351
- * < 0: if INFO = -i, the i-th argument had an illegal value
1352
- * > 0: ZPOTRF or ZHEEVX returned an error code:
1353
- * <= N: if INFO = i, ZHEEVX failed to converge;
1354
- * i eigenvectors failed to converge. Their indices
1355
- * are stored in array IFAIL.
1356
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1357
- * minor of order i of B is not positive definite.
1358
- * The factorization of B could not be completed and
1359
- * no eigenvalues or eigenvectors were computed.
1360
- *
1361
-
1362
- * Further Details
1363
- * ===============
1364
- *
1365
- * Based on contributions by
1366
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1367
- *
1368
- * =====================================================================
1369
- *
1370
-
1371
-
1372
- </PRE>
1373
- <A HREF="#top">go to the page top</A>
1374
-
1375
- <A NAME="zherfs"></A>
1376
- <H2>zherfs</H2>
1377
- <PRE>
1378
- USAGE:
1379
- ferr, berr, info, x = NumRu::Lapack.zherfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])
1380
-
1381
-
1382
- FORTRAN MANUAL
1383
- SUBROUTINE ZHERFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
1384
-
1385
- * Purpose
1386
- * =======
1387
- *
1388
- * ZHERFS improves the computed solution to a system of linear
1389
- * equations when the coefficient matrix is Hermitian indefinite, and
1390
- * provides error bounds and backward error estimates for the solution.
1391
- *
1392
-
1393
- * Arguments
1394
- * =========
1395
- *
1396
- * UPLO (input) CHARACTER*1
1397
- * = 'U': Upper triangle of A is stored;
1398
- * = 'L': Lower triangle of A is stored.
1399
- *
1400
- * N (input) INTEGER
1401
- * The order of the matrix A. N >= 0.
1402
- *
1403
- * NRHS (input) INTEGER
1404
- * The number of right hand sides, i.e., the number of columns
1405
- * of the matrices B and X. NRHS >= 0.
1406
- *
1407
- * A (input) COMPLEX*16 array, dimension (LDA,N)
1408
- * The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
1409
- * upper triangular part of A contains the upper triangular part
1410
- * of the matrix A, and the strictly lower triangular part of A
1411
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
1412
- * triangular part of A contains the lower triangular part of
1413
- * the matrix A, and the strictly upper triangular part of A is
1414
- * not referenced.
1415
- *
1416
- * LDA (input) INTEGER
1417
- * The leading dimension of the array A. LDA >= max(1,N).
1418
- *
1419
- * AF (input) COMPLEX*16 array, dimension (LDAF,N)
1420
- * The factored form of the matrix A. AF contains the block
1421
- * diagonal matrix D and the multipliers used to obtain the
1422
- * factor U or L from the factorization A = U*D*U**H or
1423
- * A = L*D*L**H as computed by ZHETRF.
1424
- *
1425
- * LDAF (input) INTEGER
1426
- * The leading dimension of the array AF. LDAF >= max(1,N).
1427
- *
1428
- * IPIV (input) INTEGER array, dimension (N)
1429
- * Details of the interchanges and the block structure of D
1430
- * as determined by ZHETRF.
1431
- *
1432
- * B (input) COMPLEX*16 array, dimension (LDB,NRHS)
1433
- * The right hand side matrix B.
1434
- *
1435
- * LDB (input) INTEGER
1436
- * The leading dimension of the array B. LDB >= max(1,N).
1437
- *
1438
- * X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
1439
- * On entry, the solution matrix X, as computed by ZHETRS.
1440
- * On exit, the improved solution matrix X.
1441
- *
1442
- * LDX (input) INTEGER
1443
- * The leading dimension of the array X. LDX >= max(1,N).
1444
- *
1445
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1446
- * The estimated forward error bound for each solution vector
1447
- * X(j) (the j-th column of the solution matrix X).
1448
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1449
- * is an estimated upper bound for the magnitude of the largest
1450
- * element in (X(j) - XTRUE) divided by the magnitude of the
1451
- * largest element in X(j). The estimate is as reliable as
1452
- * the estimate for RCOND, and is almost always a slight
1453
- * overestimate of the true error.
1454
- *
1455
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1456
- * The componentwise relative backward error of each solution
1457
- * vector X(j) (i.e., the smallest relative change in
1458
- * any element of A or B that makes X(j) an exact solution).
1459
- *
1460
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
1461
- *
1462
- * RWORK (workspace) DOUBLE PRECISION array, dimension (N)
1463
- *
1464
- * INFO (output) INTEGER
1465
- * = 0: successful exit
1466
- * < 0: if INFO = -i, the i-th argument had an illegal value
1467
- *
1468
- * Internal Parameters
1469
- * ===================
1470
- *
1471
- * ITMAX is the maximum number of steps of iterative refinement.
1472
- *
1473
-
1474
- * =====================================================================
1475
- *
1476
-
1477
-
1478
- </PRE>
1479
- <A HREF="#top">go to the page top</A>
1480
-
1481
- <A NAME="zherfsx"></A>
1482
- <H2>zherfsx</H2>
1483
- <PRE>
1484
- USAGE:
1485
- rcond, berr, err_bnds_norm, err_bnds_comp, info, s, x, params = NumRu::Lapack.zherfsx( uplo, equed, a, af, ipiv, s, b, x, params, [:usage => usage, :help => help])
1486
-
1487
-
1488
- FORTRAN MANUAL
1489
- SUBROUTINE ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
1490
-
1491
- * Purpose
1492
- * =======
1493
- *
1494
- * ZHERFSX improves the computed solution to a system of linear
1495
- * equations when the coefficient matrix is Hermitian indefinite, and
1496
- * provides error bounds and backward error estimates for the
1497
- * solution. In addition to normwise error bound, the code provides
1498
- * maximum componentwise error bound if possible. See comments for
1499
- * ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
1500
- *
1501
- * The original system of linear equations may have been equilibrated
1502
- * before calling this routine, as described by arguments EQUED and S
1503
- * below. In this case, the solution and error bounds returned are
1504
- * for the original unequilibrated system.
1505
- *
1506
-
1507
- * Arguments
1508
- * =========
1509
- *
1510
- * Some optional parameters are bundled in the PARAMS array. These
1511
- * settings determine how refinement is performed, but often the
1512
- * defaults are acceptable. If the defaults are acceptable, users
1513
- * can pass NPARAMS = 0 which prevents the source code from accessing
1514
- * the PARAMS argument.
1515
- *
1516
- * UPLO (input) CHARACTER*1
1517
- * = 'U': Upper triangle of A is stored;
1518
- * = 'L': Lower triangle of A is stored.
1519
- *
1520
- * EQUED (input) CHARACTER*1
1521
- * Specifies the form of equilibration that was done to A
1522
- * before calling this routine. This is needed to compute
1523
- * the solution and error bounds correctly.
1524
- * = 'N': No equilibration
1525
- * = 'Y': Both row and column equilibration, i.e., A has been
1526
- * replaced by diag(S) * A * diag(S).
1527
- * The right hand side B has been changed accordingly.
1528
- *
1529
- * N (input) INTEGER
1530
- * The order of the matrix A. N >= 0.
1531
- *
1532
- * NRHS (input) INTEGER
1533
- * The number of right hand sides, i.e., the number of columns
1534
- * of the matrices B and X. NRHS >= 0.
1535
- *
1536
- * A (input) COMPLEX*16 array, dimension (LDA,N)
1537
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1538
- * upper triangular part of A contains the upper triangular
1539
- * part of the matrix A, and the strictly lower triangular
1540
- * part of A is not referenced. If UPLO = 'L', the leading
1541
- * N-by-N lower triangular part of A contains the lower
1542
- * triangular part of the matrix A, and the strictly upper
1543
- * triangular part of A is not referenced.
1544
- *
1545
- * LDA (input) INTEGER
1546
- * The leading dimension of the array A. LDA >= max(1,N).
1547
- *
1548
- * AF (input) COMPLEX*16 array, dimension (LDAF,N)
1549
- * The factored form of the matrix A. AF contains the block
1550
- * diagonal matrix D and the multipliers used to obtain the
1551
- * factor U or L from the factorization A = U*D*U**T or A =
1552
- * L*D*L**T as computed by DSYTRF.
1553
- *
1554
- * LDAF (input) INTEGER
1555
- * The leading dimension of the array AF. LDAF >= max(1,N).
1556
- *
1557
- * IPIV (input) INTEGER array, dimension (N)
1558
- * Details of the interchanges and the block structure of D
1559
- * as determined by DSYTRF.
1560
- *
1561
- * S (input or output) DOUBLE PRECISION array, dimension (N)
1562
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
1563
- * the left and right by diag(S). S is an input argument if FACT =
1564
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
1565
- * = 'Y', each element of S must be positive. If S is output, each
1566
- * element of S is a power of the radix. If S is input, each element
1567
- * of S should be a power of the radix to ensure a reliable solution
1568
- * and error estimates. Scaling by powers of the radix does not cause
1569
- * rounding errors unless the result underflows or overflows.
1570
- * Rounding errors during scaling lead to refining with a matrix that
1571
- * is not equivalent to the input matrix, producing error estimates
1572
- * that may not be reliable.
1573
- *
1574
- * B (input) COMPLEX*16 array, dimension (LDB,NRHS)
1575
- * The right hand side matrix B.
1576
- *
1577
- * LDB (input) INTEGER
1578
- * The leading dimension of the array B. LDB >= max(1,N).
1579
- *
1580
- * X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
1581
- * On entry, the solution matrix X, as computed by DGETRS.
1582
- * On exit, the improved solution matrix X.
1583
- *
1584
- * LDX (input) INTEGER
1585
- * The leading dimension of the array X. LDX >= max(1,N).
1586
- *
1587
- * RCOND (output) DOUBLE PRECISION
1588
- * Reciprocal scaled condition number. This is an estimate of the
1589
- * reciprocal Skeel condition number of the matrix A after
1590
- * equilibration (if done). If this is less than the machine
1591
- * precision (in particular, if it is zero), the matrix is singular
1592
- * to working precision. Note that the error may still be small even
1593
- * if this number is very small and the matrix appears ill-
1594
- * conditioned.
1595
- *
1596
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1597
- * Componentwise relative backward error. This is the
1598
- * componentwise relative backward error of each solution vector X(j)
1599
- * (i.e., the smallest relative change in any element of A or B that
1600
- * makes X(j) an exact solution).
1601
- *
1602
- * N_ERR_BNDS (input) INTEGER
1603
- * Number of error bounds to return for each right hand side
1604
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
1605
- * ERR_BNDS_COMP below.
1606
- *
1607
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1608
- * For each right-hand side, this array contains information about
1609
- * various error bounds and condition numbers corresponding to the
1610
- * normwise relative error, which is defined as follows:
1611
- *
1612
- * Normwise relative error in the ith solution vector:
1613
- * max_j (abs(XTRUE(j,i) - X(j,i)))
1614
- * ------------------------------
1615
- * max_j abs(X(j,i))
1616
- *
1617
- * The array is indexed by the type of error information as described
1618
- * below. There currently are up to three pieces of information
1619
- * returned.
1620
- *
1621
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
1622
- * right-hand side.
1623
- *
1624
- * The second index in ERR_BNDS_NORM(:,err) contains the following
1625
- * three fields:
1626
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1627
- * reciprocal condition number is less than the threshold
1628
- * sqrt(n) * dlamch('Epsilon').
1629
- *
1630
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1631
- * almost certainly within a factor of 10 of the true error
1632
- * so long as the next entry is greater than the threshold
1633
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1634
- * be trusted if the previous boolean is true.
1635
- *
1636
- * err = 3 Reciprocal condition number: Estimated normwise
1637
- * reciprocal condition number. Compared with the threshold
1638
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1639
- * estimate is "guaranteed". These reciprocal condition
1640
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1641
- * appropriately scaled matrix Z.
1642
- * Let Z = S*A, where S scales each row by a power of the
1643
- * radix so all absolute row sums of Z are approximately 1.
1644
- *
1645
- * See Lapack Working Note 165 for further details and extra
1646
- * cautions.
1647
- *
1648
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1649
- * For each right-hand side, this array contains information about
1650
- * various error bounds and condition numbers corresponding to the
1651
- * componentwise relative error, which is defined as follows:
1652
- *
1653
- * Componentwise relative error in the ith solution vector:
1654
- * abs(XTRUE(j,i) - X(j,i))
1655
- * max_j ----------------------
1656
- * abs(X(j,i))
1657
- *
1658
- * The array is indexed by the right-hand side i (on which the
1659
- * componentwise relative error depends), and the type of error
1660
- * information as described below. There currently are up to three
1661
- * pieces of information returned for each right-hand side. If
1662
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1663
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
1664
- * the first (:,N_ERR_BNDS) entries are returned.
1665
- *
1666
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
1667
- * right-hand side.
1668
- *
1669
- * The second index in ERR_BNDS_COMP(:,err) contains the following
1670
- * three fields:
1671
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1672
- * reciprocal condition number is less than the threshold
1673
- * sqrt(n) * dlamch('Epsilon').
1674
- *
1675
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1676
- * almost certainly within a factor of 10 of the true error
1677
- * so long as the next entry is greater than the threshold
1678
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1679
- * be trusted if the previous boolean is true.
1680
- *
1681
- * err = 3 Reciprocal condition number: Estimated componentwise
1682
- * reciprocal condition number. Compared with the threshold
1683
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1684
- * estimate is "guaranteed". These reciprocal condition
1685
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1686
- * appropriately scaled matrix Z.
1687
- * Let Z = S*(A*diag(x)), where x is the solution for the
1688
- * current right-hand side and S scales each row of
1689
- * A*diag(x) by a power of the radix so all absolute row
1690
- * sums of Z are approximately 1.
1691
- *
1692
- * See Lapack Working Note 165 for further details and extra
1693
- * cautions.
1694
- *
1695
- * NPARAMS (input) INTEGER
1696
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
1697
- * PARAMS array is never referenced and default values are used.
1698
- *
1699
- * PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS
1700
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
1701
- * that entry will be filled with default value used for that
1702
- * parameter. Only positions up to NPARAMS are accessed; defaults
1703
- * are used for higher-numbered parameters.
1704
- *
1705
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
1706
- * refinement or not.
1707
- * Default: 1.0D+0
1708
- * = 0.0 : No refinement is performed, and no error bounds are
1709
- * computed.
1710
- * = 1.0 : Use the double-precision refinement algorithm,
1711
- * possibly with doubled-single computations if the
1712
- * compilation environment does not support DOUBLE
1713
- * PRECISION.
1714
- * (other values are reserved for future use)
1715
- *
1716
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
1717
- * computations allowed for refinement.
1718
- * Default: 10
1719
- * Aggressive: Set to 100 to permit convergence using approximate
1720
- * factorizations or factorizations other than LU. If
1721
- * the factorization uses a technique other than
1722
- * Gaussian elimination, the guarantees in
1723
- * err_bnds_norm and err_bnds_comp may no longer be
1724
- * trustworthy.
1725
- *
1726
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
1727
- * will attempt to find a solution with small componentwise
1728
- * relative error in the double-precision algorithm. Positive
1729
- * is true, 0.0 is false.
1730
- * Default: 1.0 (attempt componentwise convergence)
1731
- *
1732
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
1733
- *
1734
- * RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
1735
- *
1736
- * INFO (output) INTEGER
1737
- * = 0: Successful exit. The solution to every right-hand side is
1738
- * guaranteed.
1739
- * < 0: If INFO = -i, the i-th argument had an illegal value
1740
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
1741
- * has been completed, but the factor U is exactly singular, so
1742
- * the solution and error bounds could not be computed. RCOND = 0
1743
- * is returned.
1744
- * = N+J: The solution corresponding to the Jth right-hand side is
1745
- * not guaranteed. The solutions corresponding to other right-
1746
- * hand sides K with K > J may not be guaranteed as well, but
1747
- * only the first such right-hand side is reported. If a small
1748
- * componentwise error is not requested (PARAMS(3) = 0.0) then
1749
- * the Jth right-hand side is the first with a normwise error
1750
- * bound that is not guaranteed (the smallest J such
1751
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
1752
- * the Jth right-hand side is the first with either a normwise or
1753
- * componentwise error bound that is not guaranteed (the smallest
1754
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
1755
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
1756
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
1757
- * about all of the right-hand sides check ERR_BNDS_NORM or
1758
- * ERR_BNDS_COMP.
1759
- *
1760
-
1761
- * ==================================================================
1762
- *
1763
-
1764
-
1765
- </PRE>
1766
- <A HREF="#top">go to the page top</A>
1767
-
1768
- <A NAME="zhesv"></A>
1769
- <H2>zhesv</H2>
1770
- <PRE>
1771
- USAGE:
1772
- ipiv, work, info, a, b = NumRu::Lapack.zhesv( uplo, a, b, lwork, [:usage => usage, :help => help])
1773
-
1774
-
1775
- FORTRAN MANUAL
1776
- SUBROUTINE ZHESV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )
1777
-
1778
- * Purpose
1779
- * =======
1780
- *
1781
- * ZHESV computes the solution to a complex system of linear equations
1782
- * A * X = B,
1783
- * where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
1784
- * matrices.
1785
- *
1786
- * The diagonal pivoting method is used to factor A as
1787
- * A = U * D * U**H, if UPLO = 'U', or
1788
- * A = L * D * L**H, if UPLO = 'L',
1789
- * where U (or L) is a product of permutation and unit upper (lower)
1790
- * triangular matrices, and D is Hermitian and block diagonal with
1791
- * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
1792
- * used to solve the system of equations A * X = B.
1793
- *
1794
-
1795
- * Arguments
1796
- * =========
1797
- *
1798
- * UPLO (input) CHARACTER*1
1799
- * = 'U': Upper triangle of A is stored;
1800
- * = 'L': Lower triangle of A is stored.
1801
- *
1802
- * N (input) INTEGER
1803
- * The number of linear equations, i.e., the order of the
1804
- * matrix A. N >= 0.
1805
- *
1806
- * NRHS (input) INTEGER
1807
- * The number of right hand sides, i.e., the number of columns
1808
- * of the matrix B. NRHS >= 0.
1809
- *
1810
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
1811
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
1812
- * N-by-N upper triangular part of A contains the upper
1813
- * triangular part of the matrix A, and the strictly lower
1814
- * triangular part of A is not referenced. If UPLO = 'L', the
1815
- * leading N-by-N lower triangular part of A contains the lower
1816
- * triangular part of the matrix A, and the strictly upper
1817
- * triangular part of A is not referenced.
1818
- *
1819
- * On exit, if INFO = 0, the block diagonal matrix D and the
1820
- * multipliers used to obtain the factor U or L from the
1821
- * factorization A = U*D*U**H or A = L*D*L**H as computed by
1822
- * ZHETRF.
1823
- *
1824
- * LDA (input) INTEGER
1825
- * The leading dimension of the array A. LDA >= max(1,N).
1826
- *
1827
- * IPIV (output) INTEGER array, dimension (N)
1828
- * Details of the interchanges and the block structure of D, as
1829
- * determined by ZHETRF. If IPIV(k) > 0, then rows and columns
1830
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1831
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1832
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1833
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1834
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1835
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1836
- * diagonal block.
1837
- *
1838
- * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
1839
- * On entry, the N-by-NRHS right hand side matrix B.
1840
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1841
- *
1842
- * LDB (input) INTEGER
1843
- * The leading dimension of the array B. LDB >= max(1,N).
1844
- *
1845
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
1846
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1847
- *
1848
- * LWORK (input) INTEGER
1849
- * The length of WORK. LWORK >= 1, and for best performance
1850
- * LWORK >= max(1,N*NB), where NB is the optimal blocksize for
1851
- * ZHETRF.
1852
- *
1853
- * If LWORK = -1, then a workspace query is assumed; the routine
1854
- * only calculates the optimal size of the WORK array, returns
1855
- * this value as the first entry of the WORK array, and no error
1856
- * message related to LWORK is issued by XERBLA.
1857
- *
1858
- * INFO (output) INTEGER
1859
- * = 0: successful exit
1860
- * < 0: if INFO = -i, the i-th argument had an illegal value
1861
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1862
- * has been completed, but the block diagonal matrix D is
1863
- * exactly singular, so the solution could not be computed.
1864
- *
1865
-
1866
- * =====================================================================
1867
- *
1868
- * .. Local Scalars ..
1869
- LOGICAL LQUERY
1870
- INTEGER LWKOPT, NB
1871
- * ..
1872
- * .. External Functions ..
1873
- LOGICAL LSAME
1874
- INTEGER ILAENV
1875
- EXTERNAL LSAME, ILAENV
1876
- * ..
1877
- * .. External Subroutines ..
1878
- EXTERNAL XERBLA, ZHETRF, ZHETRS2
1879
- * ..
1880
- * .. Intrinsic Functions ..
1881
- INTRINSIC MAX
1882
- * ..
1883
-
1884
-
1885
- </PRE>
1886
- <A HREF="#top">go to the page top</A>
1887
-
1888
- <A NAME="zhesvx"></A>
1889
- <H2>zhesvx</H2>
1890
- <PRE>
1891
- USAGE:
1892
- x, rcond, ferr, berr, work, info, af, ipiv = NumRu::Lapack.zhesvx( fact, uplo, a, af, ipiv, b, [:lwork => lwork, :usage => usage, :help => help])
1893
-
1894
-
1895
- FORTRAN MANUAL
1896
- SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORK, INFO )
1897
-
1898
- * Purpose
1899
- * =======
1900
- *
1901
- * ZHESVX uses the diagonal pivoting factorization to compute the
1902
- * solution to a complex system of linear equations A * X = B,
1903
- * where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
1904
- * matrices.
1905
- *
1906
- * Error bounds on the solution and a condition estimate are also
1907
- * provided.
1908
- *
1909
- * Description
1910
- * ===========
1911
- *
1912
- * The following steps are performed:
1913
- *
1914
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
1915
- * The form of the factorization is
1916
- * A = U * D * U**H, if UPLO = 'U', or
1917
- * A = L * D * L**H, if UPLO = 'L',
1918
- * where U (or L) is a product of permutation and unit upper (lower)
1919
- * triangular matrices, and D is Hermitian and block diagonal with
1920
- * 1-by-1 and 2-by-2 diagonal blocks.
1921
- *
1922
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1923
- * returns with INFO = i. Otherwise, the factored form of A is used
1924
- * to estimate the condition number of the matrix A. If the
1925
- * reciprocal of the condition number is less than machine precision,
1926
- * INFO = N+1 is returned as a warning, but the routine still goes on
1927
- * to solve for X and compute error bounds as described below.
1928
- *
1929
- * 3. The system of equations is solved for X using the factored form
1930
- * of A.
1931
- *
1932
- * 4. Iterative refinement is applied to improve the computed solution
1933
- * matrix and calculate error bounds and backward error estimates
1934
- * for it.
1935
- *
1936
-
1937
- * Arguments
1938
- * =========
1939
- *
1940
- * FACT (input) CHARACTER*1
1941
- * Specifies whether or not the factored form of A has been
1942
- * supplied on entry.
1943
- * = 'F': On entry, AF and IPIV contain the factored form
1944
- * of A. A, AF and IPIV will not be modified.
1945
- * = 'N': The matrix A will be copied to AF and factored.
1946
- *
1947
- * UPLO (input) CHARACTER*1
1948
- * = 'U': Upper triangle of A is stored;
1949
- * = 'L': Lower triangle of A is stored.
1950
- *
1951
- * N (input) INTEGER
1952
- * The number of linear equations, i.e., the order of the
1953
- * matrix A. N >= 0.
1954
- *
1955
- * NRHS (input) INTEGER
1956
- * The number of right hand sides, i.e., the number of columns
1957
- * of the matrices B and X. NRHS >= 0.
1958
- *
1959
- * A (input) COMPLEX*16 array, dimension (LDA,N)
1960
- * The Hermitian matrix A. If UPLO = 'U', the leading N-by-N
1961
- * upper triangular part of A contains the upper triangular part
1962
- * of the matrix A, and the strictly lower triangular part of A
1963
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
1964
- * triangular part of A contains the lower triangular part of
1965
- * the matrix A, and the strictly upper triangular part of A is
1966
- * not referenced.
1967
- *
1968
- * LDA (input) INTEGER
1969
- * The leading dimension of the array A. LDA >= max(1,N).
1970
- *
1971
- * AF (input or output) COMPLEX*16 array, dimension (LDAF,N)
1972
- * If FACT = 'F', then AF is an input argument and on entry
1973
- * contains the block diagonal matrix D and the multipliers used
1974
- * to obtain the factor U or L from the factorization
1975
- * A = U*D*U**H or A = L*D*L**H as computed by ZHETRF.
1976
- *
1977
- * If FACT = 'N', then AF is an output argument and on exit
1978
- * returns the block diagonal matrix D and the multipliers used
1979
- * to obtain the factor U or L from the factorization
1980
- * A = U*D*U**H or A = L*D*L**H.
1981
- *
1982
- * LDAF (input) INTEGER
1983
- * The leading dimension of the array AF. LDAF >= max(1,N).
1984
- *
1985
- * IPIV (input or output) INTEGER array, dimension (N)
1986
- * If FACT = 'F', then IPIV is an input argument and on entry
1987
- * contains details of the interchanges and the block structure
1988
- * of D, as determined by ZHETRF.
1989
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1990
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1991
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1992
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1993
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1994
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1995
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1996
- *
1997
- * If FACT = 'N', then IPIV is an output argument and on exit
1998
- * contains details of the interchanges and the block structure
1999
- * of D, as determined by ZHETRF.
2000
- *
2001
- * B (input) COMPLEX*16 array, dimension (LDB,NRHS)
2002
- * The N-by-NRHS right hand side matrix B.
2003
- *
2004
- * LDB (input) INTEGER
2005
- * The leading dimension of the array B. LDB >= max(1,N).
2006
- *
2007
- * X (output) COMPLEX*16 array, dimension (LDX,NRHS)
2008
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
2009
- *
2010
- * LDX (input) INTEGER
2011
- * The leading dimension of the array X. LDX >= max(1,N).
2012
- *
2013
- * RCOND (output) DOUBLE PRECISION
2014
- * The estimate of the reciprocal condition number of the matrix
2015
- * A. If RCOND is less than the machine precision (in
2016
- * particular, if RCOND = 0), the matrix is singular to working
2017
- * precision. This condition is indicated by a return code of
2018
- * INFO > 0.
2019
- *
2020
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
2021
- * The estimated forward error bound for each solution vector
2022
- * X(j) (the j-th column of the solution matrix X).
2023
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
2024
- * is an estimated upper bound for the magnitude of the largest
2025
- * element in (X(j) - XTRUE) divided by the magnitude of the
2026
- * largest element in X(j). The estimate is as reliable as
2027
- * the estimate for RCOND, and is almost always a slight
2028
- * overestimate of the true error.
2029
- *
2030
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2031
- * The componentwise relative backward error of each solution
2032
- * vector X(j) (i.e., the smallest relative change in
2033
- * any element of A or B that makes X(j) an exact solution).
2034
- *
2035
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
2036
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2037
- *
2038
- * LWORK (input) INTEGER
2039
- * The length of WORK. LWORK >= max(1,2*N), and for best
2040
- * performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where
2041
- * NB is the optimal blocksize for ZHETRF.
2042
- *
2043
- * If LWORK = -1, then a workspace query is assumed; the routine
2044
- * only calculates the optimal size of the WORK array, returns
2045
- * this value as the first entry of the WORK array, and no error
2046
- * message related to LWORK is issued by XERBLA.
2047
- *
2048
- * RWORK (workspace) DOUBLE PRECISION array, dimension (N)
2049
- *
2050
- * INFO (output) INTEGER
2051
- * = 0: successful exit
2052
- * < 0: if INFO = -i, the i-th argument had an illegal value
2053
- * > 0: if INFO = i, and i is
2054
- * <= N: D(i,i) is exactly zero. The factorization
2055
- * has been completed but the factor D is exactly
2056
- * singular, so the solution and error bounds could
2057
- * not be computed. RCOND = 0 is returned.
2058
- * = N+1: D is nonsingular, but RCOND is less than machine
2059
- * precision, meaning that the matrix is singular
2060
- * to working precision. Nevertheless, the
2061
- * solution and error bounds are computed because
2062
- * there are a number of situations where the
2063
- * computed solution can be more accurate than the
2064
- * value of RCOND would suggest.
2065
- *
2066
-
2067
- * =====================================================================
2068
- *
2069
-
2070
-
2071
- </PRE>
2072
- <A HREF="#top">go to the page top</A>
2073
-
2074
- <A NAME="zhesvxx"></A>
2075
- <H2>zhesvxx</H2>
2076
- <PRE>
2077
- USAGE:
2078
- x, rcond, rpvgrw, berr, err_bnds_norm, err_bnds_comp, info, a, af, ipiv, equed, s, b, params = NumRu::Lapack.zhesvxx( fact, uplo, a, af, ipiv, equed, s, b, params, [:usage => usage, :help => help])
2079
-
2080
-
2081
- FORTRAN MANUAL
2082
- SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
2083
-
2084
- * Purpose
2085
- * =======
2086
- *
2087
- * ZHESVXX uses the diagonal pivoting factorization to compute the
2088
- * solution to a complex*16 system of linear equations A * X = B, where
2089
- * A is an N-by-N symmetric matrix and X and B are N-by-NRHS
2090
- * matrices.
2091
- *
2092
- * If requested, both normwise and maximum componentwise error bounds
2093
- * are returned. ZHESVXX will return a solution with a tiny
2094
- * guaranteed error (O(eps) where eps is the working machine
2095
- * precision) unless the matrix is very ill-conditioned, in which
2096
- * case a warning is returned. Relevant condition numbers also are
2097
- * calculated and returned.
2098
- *
2099
- * ZHESVXX accepts user-provided factorizations and equilibration
2100
- * factors; see the definitions of the FACT and EQUED options.
2101
- * Solving with refinement and using a factorization from a previous
2102
- * ZHESVXX call will also produce a solution with either O(eps)
2103
- * errors or warnings, but we cannot make that claim for general
2104
- * user-provided factorizations and equilibration factors if they
2105
- * differ from what ZHESVXX would itself produce.
2106
- *
2107
- * Description
2108
- * ===========
2109
- *
2110
- * The following steps are performed:
2111
- *
2112
- * 1. If FACT = 'E', double precision scaling factors are computed to equilibrate
2113
- * the system:
2114
- *
2115
- * diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
2116
- *
2117
- * Whether or not the system will be equilibrated depends on the
2118
- * scaling of the matrix A, but if equilibration is used, A is
2119
- * overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2120
- *
2121
- * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
2122
- * the matrix A (after equilibration if FACT = 'E') as
2123
- *
2124
- * A = U * D * U**T, if UPLO = 'U', or
2125
- * A = L * D * L**T, if UPLO = 'L',
2126
- *
2127
- * where U (or L) is a product of permutation and unit upper (lower)
2128
- * triangular matrices, and D is symmetric and block diagonal with
2129
- * 1-by-1 and 2-by-2 diagonal blocks.
2130
- *
2131
- * 3. If some D(i,i)=0, so that D is exactly singular, then the
2132
- * routine returns with INFO = i. Otherwise, the factored form of A
2133
- * is used to estimate the condition number of the matrix A (see
2134
- * argument RCOND). If the reciprocal of the condition number is
2135
- * less than machine precision, the routine still goes on to solve
2136
- * for X and compute error bounds as described below.
2137
- *
2138
- * 4. The system of equations is solved for X using the factored form
2139
- * of A.
2140
- *
2141
- * 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
2142
- * the routine will use iterative refinement to try to get a small
2143
- * error and error bounds. Refinement calculates the residual to at
2144
- * least twice the working precision.
2145
- *
2146
- * 6. If equilibration was used, the matrix X is premultiplied by
2147
- * diag(R) so that it solves the original system before
2148
- * equilibration.
2149
- *
2150
-
2151
- * Arguments
2152
- * =========
2153
- *
2154
- * Some optional parameters are bundled in the PARAMS array. These
2155
- * settings determine how refinement is performed, but often the
2156
- * defaults are acceptable. If the defaults are acceptable, users
2157
- * can pass NPARAMS = 0 which prevents the source code from accessing
2158
- * the PARAMS argument.
2159
- *
2160
- * FACT (input) CHARACTER*1
2161
- * Specifies whether or not the factored form of the matrix A is
2162
- * supplied on entry, and if not, whether the matrix A should be
2163
- * equilibrated before it is factored.
2164
- * = 'F': On entry, AF and IPIV contain the factored form of A.
2165
- * If EQUED is not 'N', the matrix A has been
2166
- * equilibrated with scaling factors given by S.
2167
- * A, AF, and IPIV are not modified.
2168
- * = 'N': The matrix A will be copied to AF and factored.
2169
- * = 'E': The matrix A will be equilibrated if necessary, then
2170
- * copied to AF and factored.
2171
- *
2172
- * N (input) INTEGER
2173
- * The number of linear equations, i.e., the order of the
2174
- * matrix A. N >= 0.
2175
- *
2176
- * NRHS (input) INTEGER
2177
- * The number of right hand sides, i.e., the number of columns
2178
- * of the matrices B and X. NRHS >= 0.
2179
- *
2180
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2181
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2182
- * upper triangular part of A contains the upper triangular
2183
- * part of the matrix A, and the strictly lower triangular
2184
- * part of A is not referenced. If UPLO = 'L', the leading
2185
- * N-by-N lower triangular part of A contains the lower
2186
- * triangular part of the matrix A, and the strictly upper
2187
- * triangular part of A is not referenced.
2188
- *
2189
- * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
2190
- * diag(S)*A*diag(S).
2191
- *
2192
- * LDA (input) INTEGER
2193
- * The leading dimension of the array A. LDA >= max(1,N).
2194
- *
2195
- * AF (input or output) COMPLEX*16 array, dimension (LDAF,N)
2196
- * If FACT = 'F', then AF is an input argument and on entry
2197
- * contains the block diagonal matrix D and the multipliers
2198
- * used to obtain the factor U or L from the factorization A =
2199
- * U*D*U**T or A = L*D*L**T as computed by DSYTRF.
2200
- *
2201
- * If FACT = 'N', then AF is an output argument and on exit
2202
- * returns the block diagonal matrix D and the multipliers
2203
- * used to obtain the factor U or L from the factorization A =
2204
- * U*D*U**T or A = L*D*L**T.
2205
- *
2206
- * LDAF (input) INTEGER
2207
- * The leading dimension of the array AF. LDAF >= max(1,N).
2208
- *
2209
- * IPIV (input or output) INTEGER array, dimension (N)
2210
- * If FACT = 'F', then IPIV is an input argument and on entry
2211
- * contains details of the interchanges and the block
2212
- * structure of D, as determined by ZHETRF. If IPIV(k) > 0,
2213
- * then rows and columns k and IPIV(k) were interchanged and
2214
- * D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
2215
- * IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
2216
- * -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
2217
- * diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
2218
- * then rows and columns k+1 and -IPIV(k) were interchanged
2219
- * and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2220
- *
2221
- * If FACT = 'N', then IPIV is an output argument and on exit
2222
- * contains details of the interchanges and the block
2223
- * structure of D, as determined by ZHETRF.
2224
- *
2225
- * EQUED (input or output) CHARACTER*1
2226
- * Specifies the form of equilibration that was done.
2227
- * = 'N': No equilibration (always true if FACT = 'N').
2228
- * = 'Y': Both row and column equilibration, i.e., A has been
2229
- * replaced by diag(S) * A * diag(S).
2230
- * EQUED is an input argument if FACT = 'F'; otherwise, it is an
2231
- * output argument.
2232
- *
2233
- * S (input or output) DOUBLE PRECISION array, dimension (N)
2234
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
2235
- * the left and right by diag(S). S is an input argument if FACT =
2236
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
2237
- * = 'Y', each element of S must be positive. If S is output, each
2238
- * element of S is a power of the radix. If S is input, each element
2239
- * of S should be a power of the radix to ensure a reliable solution
2240
- * and error estimates. Scaling by powers of the radix does not cause
2241
- * rounding errors unless the result underflows or overflows.
2242
- * Rounding errors during scaling lead to refining with a matrix that
2243
- * is not equivalent to the input matrix, producing error estimates
2244
- * that may not be reliable.
2245
- *
2246
- * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
2247
- * On entry, the N-by-NRHS right hand side matrix B.
2248
- * On exit,
2249
- * if EQUED = 'N', B is not modified;
2250
- * if EQUED = 'Y', B is overwritten by diag(S)*B;
2251
- *
2252
- * LDB (input) INTEGER
2253
- * The leading dimension of the array B. LDB >= max(1,N).
2254
- *
2255
- * X (output) COMPLEX*16 array, dimension (LDX,NRHS)
2256
- * If INFO = 0, the N-by-NRHS solution matrix X to the original
2257
- * system of equations. Note that A and B are modified on exit if
2258
- * EQUED .ne. 'N', and the solution to the equilibrated system is
2259
- * inv(diag(S))*X.
2260
- *
2261
- * LDX (input) INTEGER
2262
- * The leading dimension of the array X. LDX >= max(1,N).
2263
- *
2264
- * RCOND (output) DOUBLE PRECISION
2265
- * Reciprocal scaled condition number. This is an estimate of the
2266
- * reciprocal Skeel condition number of the matrix A after
2267
- * equilibration (if done). If this is less than the machine
2268
- * precision (in particular, if it is zero), the matrix is singular
2269
- * to working precision. Note that the error may still be small even
2270
- * if this number is very small and the matrix appears ill-
2271
- * conditioned.
2272
- *
2273
- * RPVGRW (output) DOUBLE PRECISION
2274
- * Reciprocal pivot growth. On exit, this contains the reciprocal
2275
- * pivot growth factor norm(A)/norm(U). The "max absolute element"
2276
- * norm is used. If this is much less than 1, then the stability of
2277
- * the LU factorization of the (equilibrated) matrix A could be poor.
2278
- * This also means that the solution X, estimated condition numbers,
2279
- * and error bounds could be unreliable. If factorization fails with
2280
- * 0<INFO<=N, then this contains the reciprocal pivot growth factor
2281
- * for the leading INFO columns of A.
2282
- *
2283
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2284
- * Componentwise relative backward error. This is the
2285
- * componentwise relative backward error of each solution vector X(j)
2286
- * (i.e., the smallest relative change in any element of A or B that
2287
- * makes X(j) an exact solution).
2288
- *
2289
- * N_ERR_BNDS (input) INTEGER
2290
- * Number of error bounds to return for each right hand side
2291
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
2292
- * ERR_BNDS_COMP below.
2293
- *
2294
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2295
- * For each right-hand side, this array contains information about
2296
- * various error bounds and condition numbers corresponding to the
2297
- * normwise relative error, which is defined as follows:
2298
- *
2299
- * Normwise relative error in the ith solution vector:
2300
- * max_j (abs(XTRUE(j,i) - X(j,i)))
2301
- * ------------------------------
2302
- * max_j abs(X(j,i))
2303
- *
2304
- * The array is indexed by the type of error information as described
2305
- * below. There currently are up to three pieces of information
2306
- * returned.
2307
- *
2308
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
2309
- * right-hand side.
2310
- *
2311
- * The second index in ERR_BNDS_NORM(:,err) contains the following
2312
- * three fields:
2313
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2314
- * reciprocal condition number is less than the threshold
2315
- * sqrt(n) * dlamch('Epsilon').
2316
- *
2317
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2318
- * almost certainly within a factor of 10 of the true error
2319
- * so long as the next entry is greater than the threshold
2320
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
2321
- * be trusted if the previous boolean is true.
2322
- *
2323
- * err = 3 Reciprocal condition number: Estimated normwise
2324
- * reciprocal condition number. Compared with the threshold
2325
- * sqrt(n) * dlamch('Epsilon') to determine if the error
2326
- * estimate is "guaranteed". These reciprocal condition
2327
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2328
- * appropriately scaled matrix Z.
2329
- * Let Z = S*A, where S scales each row by a power of the
2330
- * radix so all absolute row sums of Z are approximately 1.
2331
- *
2332
- * See Lapack Working Note 165 for further details and extra
2333
- * cautions.
2334
- *
2335
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2336
- * For each right-hand side, this array contains information about
2337
- * various error bounds and condition numbers corresponding to the
2338
- * componentwise relative error, which is defined as follows:
2339
- *
2340
- * Componentwise relative error in the ith solution vector:
2341
- * abs(XTRUE(j,i) - X(j,i))
2342
- * max_j ----------------------
2343
- * abs(X(j,i))
2344
- *
2345
- * The array is indexed by the right-hand side i (on which the
2346
- * componentwise relative error depends), and the type of error
2347
- * information as described below. There currently are up to three
2348
- * pieces of information returned for each right-hand side. If
2349
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
2350
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
2351
- * the first (:,N_ERR_BNDS) entries are returned.
2352
- *
2353
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
2354
- * right-hand side.
2355
- *
2356
- * The second index in ERR_BNDS_COMP(:,err) contains the following
2357
- * three fields:
2358
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2359
- * reciprocal condition number is less than the threshold
2360
- * sqrt(n) * dlamch('Epsilon').
2361
- *
2362
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2363
- * almost certainly within a factor of 10 of the true error
2364
- * so long as the next entry is greater than the threshold
2365
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
2366
- * be trusted if the previous boolean is true.
2367
- *
2368
- * err = 3 Reciprocal condition number: Estimated componentwise
2369
- * reciprocal condition number. Compared with the threshold
2370
- * sqrt(n) * dlamch('Epsilon') to determine if the error
2371
- * estimate is "guaranteed". These reciprocal condition
2372
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2373
- * appropriately scaled matrix Z.
2374
- * Let Z = S*(A*diag(x)), where x is the solution for the
2375
- * current right-hand side and S scales each row of
2376
- * A*diag(x) by a power of the radix so all absolute row
2377
- * sums of Z are approximately 1.
2378
- *
2379
- * See Lapack Working Note 165 for further details and extra
2380
- * cautions.
2381
- *
2382
- * NPARAMS (input) INTEGER
2383
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
2384
- * PARAMS array is never referenced and default values are used.
2385
- *
2386
- * PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS
2387
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
2388
- * that entry will be filled with default value used for that
2389
- * parameter. Only positions up to NPARAMS are accessed; defaults
2390
- * are used for higher-numbered parameters.
2391
- *
2392
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
2393
- * refinement or not.
2394
- * Default: 1.0D+0
2395
- * = 0.0 : No refinement is performed, and no error bounds are
2396
- * computed.
2397
- * = 1.0 : Use the extra-precise refinement algorithm.
2398
- * (other values are reserved for future use)
2399
- *
2400
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
2401
- * computations allowed for refinement.
2402
- * Default: 10
2403
- * Aggressive: Set to 100 to permit convergence using approximate
2404
- * factorizations or factorizations other than LU. If
2405
- * the factorization uses a technique other than
2406
- * Gaussian elimination, the guarantees in
2407
- * err_bnds_norm and err_bnds_comp may no longer be
2408
- * trustworthy.
2409
- *
2410
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
2411
- * will attempt to find a solution with small componentwise
2412
- * relative error in the double-precision algorithm. Positive
2413
- * is true, 0.0 is false.
2414
- * Default: 1.0 (attempt componentwise convergence)
2415
- *
2416
- * WORK (workspace) COMPLEX*16 array, dimension (2*N)
2417
- *
2418
- * RWORK (workspace) DOUBLE PRECISION array, dimension (2*N)
2419
- *
2420
- * INFO (output) INTEGER
2421
- * = 0: Successful exit. The solution to every right-hand side is
2422
- * guaranteed.
2423
- * < 0: If INFO = -i, the i-th argument had an illegal value
2424
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
2425
- * has been completed, but the factor U is exactly singular, so
2426
- * the solution and error bounds could not be computed. RCOND = 0
2427
- * is returned.
2428
- * = N+J: The solution corresponding to the Jth right-hand side is
2429
- * not guaranteed. The solutions corresponding to other right-
2430
- * hand sides K with K > J may not be guaranteed as well, but
2431
- * only the first such right-hand side is reported. If a small
2432
- * componentwise error is not requested (PARAMS(3) = 0.0) then
2433
- * the Jth right-hand side is the first with a normwise error
2434
- * bound that is not guaranteed (the smallest J such
2435
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
2436
- * the Jth right-hand side is the first with either a normwise or
2437
- * componentwise error bound that is not guaranteed (the smallest
2438
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
2439
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
2440
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
2441
- * about all of the right-hand sides check ERR_BNDS_NORM or
2442
- * ERR_BNDS_COMP.
2443
- *
2444
-
2445
- * ==================================================================
2446
- *
2447
-
2448
-
2449
- </PRE>
2450
- <A HREF="#top">go to the page top</A>
2451
-
2452
- <A NAME="zhetd2"></A>
2453
- <H2>zhetd2</H2>
2454
- <PRE>
2455
- USAGE:
2456
- d, e, tau, info, a = NumRu::Lapack.zhetd2( uplo, a, [:usage => usage, :help => help])
2457
-
2458
-
2459
- FORTRAN MANUAL
2460
- SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
2461
-
2462
- * Purpose
2463
- * =======
2464
- *
2465
- * ZHETD2 reduces a complex Hermitian matrix A to real symmetric
2466
- * tridiagonal form T by a unitary similarity transformation:
2467
- * Q' * A * Q = T.
2468
- *
2469
-
2470
- * Arguments
2471
- * =========
2472
- *
2473
- * UPLO (input) CHARACTER*1
2474
- * Specifies whether the upper or lower triangular part of the
2475
- * Hermitian matrix A is stored:
2476
- * = 'U': Upper triangular
2477
- * = 'L': Lower triangular
2478
- *
2479
- * N (input) INTEGER
2480
- * The order of the matrix A. N >= 0.
2481
- *
2482
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2483
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
2484
- * n-by-n upper triangular part of A contains the upper
2485
- * triangular part of the matrix A, and the strictly lower
2486
- * triangular part of A is not referenced. If UPLO = 'L', the
2487
- * leading n-by-n lower triangular part of A contains the lower
2488
- * triangular part of the matrix A, and the strictly upper
2489
- * triangular part of A is not referenced.
2490
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2491
- * of A are overwritten by the corresponding elements of the
2492
- * tridiagonal matrix T, and the elements above the first
2493
- * superdiagonal, with the array TAU, represent the unitary
2494
- * matrix Q as a product of elementary reflectors; if UPLO
2495
- * = 'L', the diagonal and first subdiagonal of A are over-
2496
- * written by the corresponding elements of the tridiagonal
2497
- * matrix T, and the elements below the first subdiagonal, with
2498
- * the array TAU, represent the unitary matrix Q as a product
2499
- * of elementary reflectors. See Further Details.
2500
- *
2501
- * LDA (input) INTEGER
2502
- * The leading dimension of the array A. LDA >= max(1,N).
2503
- *
2504
- * D (output) DOUBLE PRECISION array, dimension (N)
2505
- * The diagonal elements of the tridiagonal matrix T:
2506
- * D(i) = A(i,i).
2507
- *
2508
- * E (output) DOUBLE PRECISION array, dimension (N-1)
2509
- * The off-diagonal elements of the tridiagonal matrix T:
2510
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2511
- *
2512
- * TAU (output) COMPLEX*16 array, dimension (N-1)
2513
- * The scalar factors of the elementary reflectors (see Further
2514
- * Details).
2515
- *
2516
- * INFO (output) INTEGER
2517
- * = 0: successful exit
2518
- * < 0: if INFO = -i, the i-th argument had an illegal value.
2519
- *
2520
-
2521
- * Further Details
2522
- * ===============
2523
- *
2524
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2525
- * reflectors
2526
- *
2527
- * Q = H(n-1) . . . H(2) H(1).
2528
- *
2529
- * Each H(i) has the form
2530
- *
2531
- * H(i) = I - tau * v * v'
2532
- *
2533
- * where tau is a complex scalar, and v is a complex vector with
2534
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2535
- * A(1:i-1,i+1), and tau in TAU(i).
2536
- *
2537
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2538
- * reflectors
2539
- *
2540
- * Q = H(1) H(2) . . . H(n-1).
2541
- *
2542
- * Each H(i) has the form
2543
- *
2544
- * H(i) = I - tau * v * v'
2545
- *
2546
- * where tau is a complex scalar, and v is a complex vector with
2547
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2548
- * and tau in TAU(i).
2549
- *
2550
- * The contents of A on exit are illustrated by the following examples
2551
- * with n = 5:
2552
- *
2553
- * if UPLO = 'U': if UPLO = 'L':
2554
- *
2555
- * ( d e v2 v3 v4 ) ( d )
2556
- * ( d e v3 v4 ) ( e d )
2557
- * ( d e v4 ) ( v1 e d )
2558
- * ( d e ) ( v1 v2 e d )
2559
- * ( d ) ( v1 v2 v3 e d )
2560
- *
2561
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2562
- * denotes an element of the vector defining H(i).
2563
- *
2564
- * =====================================================================
2565
- *
2566
-
2567
-
2568
- </PRE>
2569
- <A HREF="#top">go to the page top</A>
2570
-
2571
- <A NAME="zhetf2"></A>
2572
- <H2>zhetf2</H2>
2573
- <PRE>
2574
- USAGE:
2575
- ipiv, info, a = NumRu::Lapack.zhetf2( uplo, a, [:usage => usage, :help => help])
2576
-
2577
-
2578
- FORTRAN MANUAL
2579
- SUBROUTINE ZHETF2( UPLO, N, A, LDA, IPIV, INFO )
2580
-
2581
- * Purpose
2582
- * =======
2583
- *
2584
- * ZHETF2 computes the factorization of a complex Hermitian matrix A
2585
- * using the Bunch-Kaufman diagonal pivoting method:
2586
- *
2587
- * A = U*D*U' or A = L*D*L'
2588
- *
2589
- * where U (or L) is a product of permutation and unit upper (lower)
2590
- * triangular matrices, U' is the conjugate transpose of U, and D is
2591
- * Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2592
- *
2593
- * This is the unblocked version of the algorithm, calling Level 2 BLAS.
2594
- *
2595
-
2596
- * Arguments
2597
- * =========
2598
- *
2599
- * UPLO (input) CHARACTER*1
2600
- * Specifies whether the upper or lower triangular part of the
2601
- * Hermitian matrix A is stored:
2602
- * = 'U': Upper triangular
2603
- * = 'L': Lower triangular
2604
- *
2605
- * N (input) INTEGER
2606
- * The order of the matrix A. N >= 0.
2607
- *
2608
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2609
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
2610
- * n-by-n upper triangular part of A contains the upper
2611
- * triangular part of the matrix A, and the strictly lower
2612
- * triangular part of A is not referenced. If UPLO = 'L', the
2613
- * leading n-by-n lower triangular part of A contains the lower
2614
- * triangular part of the matrix A, and the strictly upper
2615
- * triangular part of A is not referenced.
2616
- *
2617
- * On exit, the block diagonal matrix D and the multipliers used
2618
- * to obtain the factor U or L (see below for further details).
2619
- *
2620
- * LDA (input) INTEGER
2621
- * The leading dimension of the array A. LDA >= max(1,N).
2622
- *
2623
- * IPIV (output) INTEGER array, dimension (N)
2624
- * Details of the interchanges and the block structure of D.
2625
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2626
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2627
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2628
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2629
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2630
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2631
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2632
- *
2633
- * INFO (output) INTEGER
2634
- * = 0: successful exit
2635
- * < 0: if INFO = -k, the k-th argument had an illegal value
2636
- * > 0: if INFO = k, D(k,k) is exactly zero. The factorization
2637
- * has been completed, but the block diagonal matrix D is
2638
- * exactly singular, and division by zero will occur if it
2639
- * is used to solve a system of equations.
2640
- *
2641
-
2642
- * Further Details
2643
- * ===============
2644
- *
2645
- * 09-29-06 - patch from
2646
- * Bobby Cheng, MathWorks
2647
- *
2648
- * Replace l.210 and l.393
2649
- * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
2650
- * by
2651
- * IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
2652
- *
2653
- * 01-01-96 - Based on modifications by
2654
- * J. Lewis, Boeing Computer Services Company
2655
- * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
2656
- *
2657
- * If UPLO = 'U', then A = U*D*U', where
2658
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
2659
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
2660
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2661
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2662
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
2663
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2664
- *
2665
- * ( I v 0 ) k-s
2666
- * U(k) = ( 0 I 0 ) s
2667
- * ( 0 0 I ) n-k
2668
- * k-s s n-k
2669
- *
2670
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
2671
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
2672
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
2673
- *
2674
- * If UPLO = 'L', then A = L*D*L', where
2675
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
2676
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
2677
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2678
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2679
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
2680
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2681
- *
2682
- * ( I 0 0 ) k-1
2683
- * L(k) = ( 0 I 0 ) s
2684
- * ( 0 v I ) n-k-s+1
2685
- * k-1 s n-k-s+1
2686
- *
2687
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
2688
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
2689
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
2690
- *
2691
- * =====================================================================
2692
- *
2693
-
2694
-
2695
- </PRE>
2696
- <A HREF="#top">go to the page top</A>
2697
-
2698
- <A NAME="zhetrd"></A>
2699
- <H2>zhetrd</H2>
2700
- <PRE>
2701
- USAGE:
2702
- d, e, tau, work, info, a = NumRu::Lapack.zhetrd( uplo, a, lwork, [:usage => usage, :help => help])
2703
-
2704
-
2705
- FORTRAN MANUAL
2706
- SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
2707
-
2708
- * Purpose
2709
- * =======
2710
- *
2711
- * ZHETRD reduces a complex Hermitian matrix A to real symmetric
2712
- * tridiagonal form T by a unitary similarity transformation:
2713
- * Q**H * A * Q = T.
2714
- *
2715
-
2716
- * Arguments
2717
- * =========
2718
- *
2719
- * UPLO (input) CHARACTER*1
2720
- * = 'U': Upper triangle of A is stored;
2721
- * = 'L': Lower triangle of A is stored.
2722
- *
2723
- * N (input) INTEGER
2724
- * The order of the matrix A. N >= 0.
2725
- *
2726
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2727
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
2728
- * N-by-N upper triangular part of A contains the upper
2729
- * triangular part of the matrix A, and the strictly lower
2730
- * triangular part of A is not referenced. If UPLO = 'L', the
2731
- * leading N-by-N lower triangular part of A contains the lower
2732
- * triangular part of the matrix A, and the strictly upper
2733
- * triangular part of A is not referenced.
2734
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2735
- * of A are overwritten by the corresponding elements of the
2736
- * tridiagonal matrix T, and the elements above the first
2737
- * superdiagonal, with the array TAU, represent the unitary
2738
- * matrix Q as a product of elementary reflectors; if UPLO
2739
- * = 'L', the diagonal and first subdiagonal of A are over-
2740
- * written by the corresponding elements of the tridiagonal
2741
- * matrix T, and the elements below the first subdiagonal, with
2742
- * the array TAU, represent the unitary matrix Q as a product
2743
- * of elementary reflectors. See Further Details.
2744
- *
2745
- * LDA (input) INTEGER
2746
- * The leading dimension of the array A. LDA >= max(1,N).
2747
- *
2748
- * D (output) DOUBLE PRECISION array, dimension (N)
2749
- * The diagonal elements of the tridiagonal matrix T:
2750
- * D(i) = A(i,i).
2751
- *
2752
- * E (output) DOUBLE PRECISION array, dimension (N-1)
2753
- * The off-diagonal elements of the tridiagonal matrix T:
2754
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2755
- *
2756
- * TAU (output) COMPLEX*16 array, dimension (N-1)
2757
- * The scalar factors of the elementary reflectors (see Further
2758
- * Details).
2759
- *
2760
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
2761
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2762
- *
2763
- * LWORK (input) INTEGER
2764
- * The dimension of the array WORK. LWORK >= 1.
2765
- * For optimum performance LWORK >= N*NB, where NB is the
2766
- * optimal blocksize.
2767
- *
2768
- * If LWORK = -1, then a workspace query is assumed; the routine
2769
- * only calculates the optimal size of the WORK array, returns
2770
- * this value as the first entry of the WORK array, and no error
2771
- * message related to LWORK is issued by XERBLA.
2772
- *
2773
- * INFO (output) INTEGER
2774
- * = 0: successful exit
2775
- * < 0: if INFO = -i, the i-th argument had an illegal value
2776
- *
2777
-
2778
- * Further Details
2779
- * ===============
2780
- *
2781
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2782
- * reflectors
2783
- *
2784
- * Q = H(n-1) . . . H(2) H(1).
2785
- *
2786
- * Each H(i) has the form
2787
- *
2788
- * H(i) = I - tau * v * v'
2789
- *
2790
- * where tau is a complex scalar, and v is a complex vector with
2791
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2792
- * A(1:i-1,i+1), and tau in TAU(i).
2793
- *
2794
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2795
- * reflectors
2796
- *
2797
- * Q = H(1) H(2) . . . H(n-1).
2798
- *
2799
- * Each H(i) has the form
2800
- *
2801
- * H(i) = I - tau * v * v'
2802
- *
2803
- * where tau is a complex scalar, and v is a complex vector with
2804
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2805
- * and tau in TAU(i).
2806
- *
2807
- * The contents of A on exit are illustrated by the following examples
2808
- * with n = 5:
2809
- *
2810
- * if UPLO = 'U': if UPLO = 'L':
2811
- *
2812
- * ( d e v2 v3 v4 ) ( d )
2813
- * ( d e v3 v4 ) ( e d )
2814
- * ( d e v4 ) ( v1 e d )
2815
- * ( d e ) ( v1 v2 e d )
2816
- * ( d ) ( v1 v2 v3 e d )
2817
- *
2818
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2819
- * denotes an element of the vector defining H(i).
2820
- *
2821
- * =====================================================================
2822
- *
2823
-
2824
-
2825
- </PRE>
2826
- <A HREF="#top">go to the page top</A>
2827
-
2828
- <A NAME="zhetrf"></A>
2829
- <H2>zhetrf</H2>
2830
- <PRE>
2831
- USAGE:
2832
- ipiv, work, info, a = NumRu::Lapack.zhetrf( uplo, a, lwork, [:usage => usage, :help => help])
2833
-
2834
-
2835
- FORTRAN MANUAL
2836
- SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
2837
-
2838
- * Purpose
2839
- * =======
2840
- *
2841
- * ZHETRF computes the factorization of a complex Hermitian matrix A
2842
- * using the Bunch-Kaufman diagonal pivoting method. The form of the
2843
- * factorization is
2844
- *
2845
- * A = U*D*U**H or A = L*D*L**H
2846
- *
2847
- * where U (or L) is a product of permutation and unit upper (lower)
2848
- * triangular matrices, and D is Hermitian and block diagonal with
2849
- * 1-by-1 and 2-by-2 diagonal blocks.
2850
- *
2851
- * This is the blocked version of the algorithm, calling Level 3 BLAS.
2852
- *
2853
-
2854
- * Arguments
2855
- * =========
2856
- *
2857
- * UPLO (input) CHARACTER*1
2858
- * = 'U': Upper triangle of A is stored;
2859
- * = 'L': Lower triangle of A is stored.
2860
- *
2861
- * N (input) INTEGER
2862
- * The order of the matrix A. N >= 0.
2863
- *
2864
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2865
- * On entry, the Hermitian matrix A. If UPLO = 'U', the leading
2866
- * N-by-N upper triangular part of A contains the upper
2867
- * triangular part of the matrix A, and the strictly lower
2868
- * triangular part of A is not referenced. If UPLO = 'L', the
2869
- * leading N-by-N lower triangular part of A contains the lower
2870
- * triangular part of the matrix A, and the strictly upper
2871
- * triangular part of A is not referenced.
2872
- *
2873
- * On exit, the block diagonal matrix D and the multipliers used
2874
- * to obtain the factor U or L (see below for further details).
2875
- *
2876
- * LDA (input) INTEGER
2877
- * The leading dimension of the array A. LDA >= max(1,N).
2878
- *
2879
- * IPIV (output) INTEGER array, dimension (N)
2880
- * Details of the interchanges and the block structure of D.
2881
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2882
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2883
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2884
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2885
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2886
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2887
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2888
- *
2889
- * WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
2890
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2891
- *
2892
- * LWORK (input) INTEGER
2893
- * The length of WORK. LWORK >=1. For best performance
2894
- * LWORK >= N*NB, where NB is the block size returned by ILAENV.
2895
- *
2896
- * INFO (output) INTEGER
2897
- * = 0: successful exit
2898
- * < 0: if INFO = -i, the i-th argument had an illegal value
2899
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
2900
- * has been completed, but the block diagonal matrix D is
2901
- * exactly singular, and division by zero will occur if it
2902
- * is used to solve a system of equations.
2903
- *
2904
-
2905
- * Further Details
2906
- * ===============
2907
- *
2908
- * If UPLO = 'U', then A = U*D*U', where
2909
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
2910
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
2911
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2912
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2913
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
2914
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2915
- *
2916
- * ( I v 0 ) k-s
2917
- * U(k) = ( 0 I 0 ) s
2918
- * ( 0 0 I ) n-k
2919
- * k-s s n-k
2920
- *
2921
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
2922
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
2923
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
2924
- *
2925
- * If UPLO = 'L', then A = L*D*L', where
2926
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
2927
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
2928
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2929
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2930
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
2931
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2932
- *
2933
- * ( I 0 0 ) k-1
2934
- * L(k) = ( 0 I 0 ) s
2935
- * ( 0 v I ) n-k-s+1
2936
- * k-1 s n-k-s+1
2937
- *
2938
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
2939
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
2940
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
2941
- *
2942
- * =====================================================================
2943
- *
2944
- * .. Local Scalars ..
2945
- LOGICAL LQUERY, UPPER
2946
- INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
2947
- * ..
2948
- * .. External Functions ..
2949
- LOGICAL LSAME
2950
- INTEGER ILAENV
2951
- EXTERNAL LSAME, ILAENV
2952
- * ..
2953
- * .. External Subroutines ..
2954
- EXTERNAL XERBLA, ZHETF2, ZLAHEF
2955
- * ..
2956
- * .. Intrinsic Functions ..
2957
- INTRINSIC MAX
2958
- * ..
2959
-
2960
-
2961
- </PRE>
2962
- <A HREF="#top">go to the page top</A>
2963
-
2964
- <A NAME="zhetri"></A>
2965
- <H2>zhetri</H2>
2966
- <PRE>
2967
- USAGE:
2968
- info, a = NumRu::Lapack.zhetri( uplo, a, ipiv, [:usage => usage, :help => help])
2969
-
2970
-
2971
- FORTRAN MANUAL
2972
- SUBROUTINE ZHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
2973
-
2974
- * Purpose
2975
- * =======
2976
- *
2977
- * ZHETRI computes the inverse of a complex Hermitian indefinite matrix
2978
- * A using the factorization A = U*D*U**H or A = L*D*L**H computed by
2979
- * ZHETRF.
2980
- *
2981
-
2982
- * Arguments
2983
- * =========
2984
- *
2985
- * UPLO (input) CHARACTER*1
2986
- * Specifies whether the details of the factorization are stored
2987
- * as an upper or lower triangular matrix.
2988
- * = 'U': Upper triangular, form is A = U*D*U**H;
2989
- * = 'L': Lower triangular, form is A = L*D*L**H.
2990
- *
2991
- * N (input) INTEGER
2992
- * The order of the matrix A. N >= 0.
2993
- *
2994
- * A (input/output) COMPLEX*16 array, dimension (LDA,N)
2995
- * On entry, the block diagonal matrix D and the multipliers
2996
- * used to obtain the factor U or L as computed by ZHETRF.
2997
- *
2998
- * On exit, if INFO = 0, the (Hermitian) inverse of the original
2999
- * matrix. If UPLO = 'U', the upper triangular part of the
3000
- * inverse is formed and the part of A below the diagonal is not
3001
- * referenced; if UPLO = 'L' the lower triangular part of the
3002
- * inverse is formed and the part of A above the diagonal is
3003
- * not referenced.
3004
- *
3005
- * LDA (input) INTEGER
3006
- * The leading dimension of the array A. LDA >= max(1,N).
3007
- *
3008
- * IPIV (input) INTEGER array, dimension (N)
3009
- * Details of the interchanges and the block structure of D
3010
- * as determined by ZHETRF.
3011
- *
3012
- * WORK (workspace) COMPLEX*16 array, dimension (N)
3013
- *
3014
- * INFO (output) INTEGER
3015
- * = 0: successful exit
3016
- * < 0: if INFO = -i, the i-th argument had an illegal value
3017
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3018
- * inverse could not be computed.
3019
- *
3020
-
3021
- * =====================================================================
3022
- *
3023
-
3024
-
3025
- </PRE>
3026
- <A HREF="#top">go to the page top</A>
3027
-
3028
- <A NAME="zhetrs"></A>
3029
- <H2>zhetrs</H2>
3030
- <PRE>
3031
- USAGE:
3032
- info, b = NumRu::Lapack.zhetrs( uplo, a, ipiv, b, [:usage => usage, :help => help])
3033
-
3034
-
3035
- FORTRAN MANUAL
3036
- SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
3037
-
3038
- * Purpose
3039
- * =======
3040
- *
3041
- * ZHETRS solves a system of linear equations A*X = B with a complex
3042
- * Hermitian matrix A using the factorization A = U*D*U**H or
3043
- * A = L*D*L**H computed by ZHETRF.
3044
- *
3045
-
3046
- * Arguments
3047
- * =========
3048
- *
3049
- * UPLO (input) CHARACTER*1
3050
- * Specifies whether the details of the factorization are stored
3051
- * as an upper or lower triangular matrix.
3052
- * = 'U': Upper triangular, form is A = U*D*U**H;
3053
- * = 'L': Lower triangular, form is A = L*D*L**H.
3054
- *
3055
- * N (input) INTEGER
3056
- * The order of the matrix A. N >= 0.
3057
- *
3058
- * NRHS (input) INTEGER
3059
- * The number of right hand sides, i.e., the number of columns
3060
- * of the matrix B. NRHS >= 0.
3061
- *
3062
- * A (input) COMPLEX*16 array, dimension (LDA,N)
3063
- * The block diagonal matrix D and the multipliers used to
3064
- * obtain the factor U or L as computed by ZHETRF.
3065
- *
3066
- * LDA (input) INTEGER
3067
- * The leading dimension of the array A. LDA >= max(1,N).
3068
- *
3069
- * IPIV (input) INTEGER array, dimension (N)
3070
- * Details of the interchanges and the block structure of D
3071
- * as determined by ZHETRF.
3072
- *
3073
- * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
3074
- * On entry, the right hand side matrix B.
3075
- * On exit, the solution matrix X.
3076
- *
3077
- * LDB (input) INTEGER
3078
- * The leading dimension of the array B. LDB >= max(1,N).
3079
- *
3080
- * INFO (output) INTEGER
3081
- * = 0: successful exit
3082
- * < 0: if INFO = -i, the i-th argument had an illegal value
3083
- *
3084
-
3085
- * =====================================================================
3086
- *
3087
-
3088
-
3089
- </PRE>
3090
- <A HREF="#top">go to the page top</A>
3091
-
3092
- <A NAME="zhetrs2"></A>
3093
- <H2>zhetrs2</H2>
3094
- <PRE>
3095
- USAGE:
3096
- info, b = NumRu::Lapack.zhetrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])
3097
-
3098
-
3099
- FORTRAN MANUAL
3100
- SUBROUTINE ZHETRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO )
3101
-
3102
- * Purpose
3103
- * =======
3104
- *
3105
- * ZHETRS2 solves a system of linear equations A*X = B with a real
3106
- * Hermitian matrix A using the factorization A = U*D*U**T or
3107
- * A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV.
3108
- *
3109
-
3110
- * Arguments
3111
- * =========
3112
- *
3113
- * UPLO (input) CHARACTER*1
3114
- * Specifies whether the details of the factorization are stored
3115
- * as an upper or lower triangular matrix.
3116
- * = 'U': Upper triangular, form is A = U*D*U**H;
3117
- * = 'L': Lower triangular, form is A = L*D*L**H.
3118
- *
3119
- * N (input) INTEGER
3120
- * The order of the matrix A. N >= 0.
3121
- *
3122
- * NRHS (input) INTEGER
3123
- * The number of right hand sides, i.e., the number of columns
3124
- * of the matrix B. NRHS >= 0.
3125
- *
3126
- * A (input) DOUBLE COMPLEX array, dimension (LDA,N)
3127
- * The block diagonal matrix D and the multipliers used to
3128
- * obtain the factor U or L as computed by ZHETRF.
3129
- *
3130
- * LDA (input) INTEGER
3131
- * The leading dimension of the array A. LDA >= max(1,N).
3132
- *
3133
- * IPIV (input) INTEGER array, dimension (N)
3134
- * Details of the interchanges and the block structure of D
3135
- * as determined by ZHETRF.
3136
- *
3137
- * B (input/output) DOUBLE COMPLEX array, dimension (LDB,NRHS)
3138
- * On entry, the right hand side matrix B.
3139
- * On exit, the solution matrix X.
3140
- *
3141
- * LDB (input) INTEGER
3142
- * The leading dimension of the array B. LDB >= max(1,N).
3143
- *
3144
- * WORK (workspace) REAL array, dimension (N)
3145
- *
3146
- * INFO (output) INTEGER
3147
- * = 0: successful exit
3148
- * < 0: if INFO = -i, the i-th argument had an illegal value
3149
- *
3150
-
3151
- * =====================================================================
3152
- *
3153
-
3154
-
3155
- </PRE>
3156
- <A HREF="#top">go to the page top</A>
3157
-
3158
- <HR />
3159
- <A HREF="z.html">back to matrix types</A><BR>
3160
- <A HREF="z.html">back to data types</A>
3161
- </BODY>
3162
- </HTML>