ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/dst.html DELETED
@@ -1,1422 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for (real) symmetric tridiagonal matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for (real) symmetric tridiagonal matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dstebz">dstebz</A></LI>
10
- <LI><A HREF="#dstedc">dstedc</A></LI>
11
- <LI><A HREF="#dstegr">dstegr</A></LI>
12
- <LI><A HREF="#dstein">dstein</A></LI>
13
- <LI><A HREF="#dstemr">dstemr</A></LI>
14
- <LI><A HREF="#dsteqr">dsteqr</A></LI>
15
- <LI><A HREF="#dsterf">dsterf</A></LI>
16
- <LI><A HREF="#dstev">dstev</A></LI>
17
- <LI><A HREF="#dstevd">dstevd</A></LI>
18
- <LI><A HREF="#dstevr">dstevr</A></LI>
19
- <LI><A HREF="#dstevx">dstevx</A></LI>
20
- </UL>
21
-
22
- <A NAME="dstebz"></A>
23
- <H2>dstebz</H2>
24
- <PRE>
25
- USAGE:
26
- m, nsplit, w, iblock, isplit, info = NumRu::Lapack.dstebz( range, order, vl, vu, il, iu, abstol, d, e, [:usage => usage, :help => help])
27
-
28
-
29
- FORTRAN MANUAL
30
- SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO )
31
-
32
- * Purpose
33
- * =======
34
- *
35
- * DSTEBZ computes the eigenvalues of a symmetric tridiagonal
36
- * matrix T. The user may ask for all eigenvalues, all eigenvalues
37
- * in the half-open interval (VL, VU], or the IL-th through IU-th
38
- * eigenvalues.
39
- *
40
- * To avoid overflow, the matrix must be scaled so that its
41
- * largest element is no greater than overflow**(1/2) *
42
- * underflow**(1/4) in absolute value, and for greatest
43
- * accuracy, it should not be much smaller than that.
44
- *
45
- * See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
46
- * Matrix", Report CS41, Computer Science Dept., Stanford
47
- * University, July 21, 1966.
48
- *
49
-
50
- * Arguments
51
- * =========
52
- *
53
- * RANGE (input) CHARACTER*1
54
- * = 'A': ("All") all eigenvalues will be found.
55
- * = 'V': ("Value") all eigenvalues in the half-open interval
56
- * (VL, VU] will be found.
57
- * = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
58
- * entire matrix) will be found.
59
- *
60
- * ORDER (input) CHARACTER*1
61
- * = 'B': ("By Block") the eigenvalues will be grouped by
62
- * split-off block (see IBLOCK, ISPLIT) and
63
- * ordered from smallest to largest within
64
- * the block.
65
- * = 'E': ("Entire matrix")
66
- * the eigenvalues for the entire matrix
67
- * will be ordered from smallest to
68
- * largest.
69
- *
70
- * N (input) INTEGER
71
- * The order of the tridiagonal matrix T. N >= 0.
72
- *
73
- * VL (input) DOUBLE PRECISION
74
- * VU (input) DOUBLE PRECISION
75
- * If RANGE='V', the lower and upper bounds of the interval to
76
- * be searched for eigenvalues. Eigenvalues less than or equal
77
- * to VL, or greater than VU, will not be returned. VL < VU.
78
- * Not referenced if RANGE = 'A' or 'I'.
79
- *
80
- * IL (input) INTEGER
81
- * IU (input) INTEGER
82
- * If RANGE='I', the indices (in ascending order) of the
83
- * smallest and largest eigenvalues to be returned.
84
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
85
- * Not referenced if RANGE = 'A' or 'V'.
86
- *
87
- * ABSTOL (input) DOUBLE PRECISION
88
- * The absolute tolerance for the eigenvalues. An eigenvalue
89
- * (or cluster) is considered to be located if it has been
90
- * determined to lie in an interval whose width is ABSTOL or
91
- * less. If ABSTOL is less than or equal to zero, then ULP*|T|
92
- * will be used, where |T| means the 1-norm of T.
93
- *
94
- * Eigenvalues will be computed most accurately when ABSTOL is
95
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
96
- *
97
- * D (input) DOUBLE PRECISION array, dimension (N)
98
- * The n diagonal elements of the tridiagonal matrix T.
99
- *
100
- * E (input) DOUBLE PRECISION array, dimension (N-1)
101
- * The (n-1) off-diagonal elements of the tridiagonal matrix T.
102
- *
103
- * M (output) INTEGER
104
- * The actual number of eigenvalues found. 0 <= M <= N.
105
- * (See also the description of INFO=2,3.)
106
- *
107
- * NSPLIT (output) INTEGER
108
- * The number of diagonal blocks in the matrix T.
109
- * 1 <= NSPLIT <= N.
110
- *
111
- * W (output) DOUBLE PRECISION array, dimension (N)
112
- * On exit, the first M elements of W will contain the
113
- * eigenvalues. (DSTEBZ may use the remaining N-M elements as
114
- * workspace.)
115
- *
116
- * IBLOCK (output) INTEGER array, dimension (N)
117
- * At each row/column j where E(j) is zero or small, the
118
- * matrix T is considered to split into a block diagonal
119
- * matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
120
- * block (from 1 to the number of blocks) the eigenvalue W(i)
121
- * belongs. (DSTEBZ may use the remaining N-M elements as
122
- * workspace.)
123
- *
124
- * ISPLIT (output) INTEGER array, dimension (N)
125
- * The splitting points, at which T breaks up into submatrices.
126
- * The first submatrix consists of rows/columns 1 to ISPLIT(1),
127
- * the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
128
- * etc., and the NSPLIT-th consists of rows/columns
129
- * ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
130
- * (Only the first NSPLIT elements will actually be used, but
131
- * since the user cannot know a priori what value NSPLIT will
132
- * have, N words must be reserved for ISPLIT.)
133
- *
134
- * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
135
- *
136
- * IWORK (workspace) INTEGER array, dimension (3*N)
137
- *
138
- * INFO (output) INTEGER
139
- * = 0: successful exit
140
- * < 0: if INFO = -i, the i-th argument had an illegal value
141
- * > 0: some or all of the eigenvalues failed to converge or
142
- * were not computed:
143
- * =1 or 3: Bisection failed to converge for some
144
- * eigenvalues; these eigenvalues are flagged by a
145
- * negative block number. The effect is that the
146
- * eigenvalues may not be as accurate as the
147
- * absolute and relative tolerances. This is
148
- * generally caused by unexpectedly inaccurate
149
- * arithmetic.
150
- * =2 or 3: RANGE='I' only: Not all of the eigenvalues
151
- * IL:IU were found.
152
- * Effect: M < IU+1-IL
153
- * Cause: non-monotonic arithmetic, causing the
154
- * Sturm sequence to be non-monotonic.
155
- * Cure: recalculate, using RANGE='A', and pick
156
- * out eigenvalues IL:IU. In some cases,
157
- * increasing the PARAMETER "FUDGE" may
158
- * make things work.
159
- * = 4: RANGE='I', and the Gershgorin interval
160
- * initially used was too small. No eigenvalues
161
- * were computed.
162
- * Probable cause: your machine has sloppy
163
- * floating-point arithmetic.
164
- * Cure: Increase the PARAMETER "FUDGE",
165
- * recompile, and try again.
166
- *
167
- * Internal Parameters
168
- * ===================
169
- *
170
- * RELFAC DOUBLE PRECISION, default = 2.0e0
171
- * The relative tolerance. An interval (a,b] lies within
172
- * "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
173
- * where "ulp" is the machine precision (distance from 1 to
174
- * the next larger floating point number.)
175
- *
176
- * FUDGE DOUBLE PRECISION, default = 2
177
- * A "fudge factor" to widen the Gershgorin intervals. Ideally,
178
- * a value of 1 should work, but on machines with sloppy
179
- * arithmetic, this needs to be larger. The default for
180
- * publicly released versions should be large enough to handle
181
- * the worst machine around. Note that this has no effect
182
- * on accuracy of the solution.
183
- *
184
-
185
- * =====================================================================
186
- *
187
-
188
-
189
- </PRE>
190
- <A HREF="#top">go to the page top</A>
191
-
192
- <A NAME="dstedc"></A>
193
- <H2>dstedc</H2>
194
- <PRE>
195
- USAGE:
196
- work, iwork, info, d, e, z = NumRu::Lapack.dstedc( compz, d, e, z, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
197
-
198
-
199
- FORTRAN MANUAL
200
- SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
201
-
202
- * Purpose
203
- * =======
204
- *
205
- * DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
206
- * symmetric tridiagonal matrix using the divide and conquer method.
207
- * The eigenvectors of a full or band real symmetric matrix can also be
208
- * found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
209
- * matrix to tridiagonal form.
210
- *
211
- * This code makes very mild assumptions about floating point
212
- * arithmetic. It will work on machines with a guard digit in
213
- * add/subtract, or on those binary machines without guard digits
214
- * which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
215
- * It could conceivably fail on hexadecimal or decimal machines
216
- * without guard digits, but we know of none. See DLAED3 for details.
217
- *
218
-
219
- * Arguments
220
- * =========
221
- *
222
- * COMPZ (input) CHARACTER*1
223
- * = 'N': Compute eigenvalues only.
224
- * = 'I': Compute eigenvectors of tridiagonal matrix also.
225
- * = 'V': Compute eigenvectors of original dense symmetric
226
- * matrix also. On entry, Z contains the orthogonal
227
- * matrix used to reduce the original matrix to
228
- * tridiagonal form.
229
- *
230
- * N (input) INTEGER
231
- * The dimension of the symmetric tridiagonal matrix. N >= 0.
232
- *
233
- * D (input/output) DOUBLE PRECISION array, dimension (N)
234
- * On entry, the diagonal elements of the tridiagonal matrix.
235
- * On exit, if INFO = 0, the eigenvalues in ascending order.
236
- *
237
- * E (input/output) DOUBLE PRECISION array, dimension (N-1)
238
- * On entry, the subdiagonal elements of the tridiagonal matrix.
239
- * On exit, E has been destroyed.
240
- *
241
- * Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
242
- * On entry, if COMPZ = 'V', then Z contains the orthogonal
243
- * matrix used in the reduction to tridiagonal form.
244
- * On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
245
- * orthonormal eigenvectors of the original symmetric matrix,
246
- * and if COMPZ = 'I', Z contains the orthonormal eigenvectors
247
- * of the symmetric tridiagonal matrix.
248
- * If COMPZ = 'N', then Z is not referenced.
249
- *
250
- * LDZ (input) INTEGER
251
- * The leading dimension of the array Z. LDZ >= 1.
252
- * If eigenvectors are desired, then LDZ >= max(1,N).
253
- *
254
- * WORK (workspace/output) DOUBLE PRECISION array,
255
- * dimension (LWORK)
256
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
257
- *
258
- * LWORK (input) INTEGER
259
- * The dimension of the array WORK.
260
- * If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
261
- * If COMPZ = 'V' and N > 1 then LWORK must be at least
262
- * ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
263
- * where lg( N ) = smallest integer k such
264
- * that 2**k >= N.
265
- * If COMPZ = 'I' and N > 1 then LWORK must be at least
266
- * ( 1 + 4*N + N**2 ).
267
- * Note that for COMPZ = 'I' or 'V', then if N is less than or
268
- * equal to the minimum divide size, usually 25, then LWORK need
269
- * only be max(1,2*(N-1)).
270
- *
271
- * If LWORK = -1, then a workspace query is assumed; the routine
272
- * only calculates the optimal size of the WORK array, returns
273
- * this value as the first entry of the WORK array, and no error
274
- * message related to LWORK is issued by XERBLA.
275
- *
276
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
277
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
278
- *
279
- * LIWORK (input) INTEGER
280
- * The dimension of the array IWORK.
281
- * If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
282
- * If COMPZ = 'V' and N > 1 then LIWORK must be at least
283
- * ( 6 + 6*N + 5*N*lg N ).
284
- * If COMPZ = 'I' and N > 1 then LIWORK must be at least
285
- * ( 3 + 5*N ).
286
- * Note that for COMPZ = 'I' or 'V', then if N is less than or
287
- * equal to the minimum divide size, usually 25, then LIWORK
288
- * need only be 1.
289
- *
290
- * If LIWORK = -1, then a workspace query is assumed; the
291
- * routine only calculates the optimal size of the IWORK array,
292
- * returns this value as the first entry of the IWORK array, and
293
- * no error message related to LIWORK is issued by XERBLA.
294
- *
295
- * INFO (output) INTEGER
296
- * = 0: successful exit.
297
- * < 0: if INFO = -i, the i-th argument had an illegal value.
298
- * > 0: The algorithm failed to compute an eigenvalue while
299
- * working on the submatrix lying in rows and columns
300
- * INFO/(N+1) through mod(INFO,N+1).
301
- *
302
-
303
- * Further Details
304
- * ===============
305
- *
306
- * Based on contributions by
307
- * Jeff Rutter, Computer Science Division, University of California
308
- * at Berkeley, USA
309
- * Modified by Francoise Tisseur, University of Tennessee.
310
- *
311
- * =====================================================================
312
- *
313
-
314
-
315
- </PRE>
316
- <A HREF="#top">go to the page top</A>
317
-
318
- <A NAME="dstegr"></A>
319
- <H2>dstegr</H2>
320
- <PRE>
321
- USAGE:
322
- m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
323
-
324
-
325
- FORTRAN MANUAL
326
- SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
327
-
328
- * Purpose
329
- * =======
330
- *
331
- * DSTEGR computes selected eigenvalues and, optionally, eigenvectors
332
- * of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
333
- * a well defined set of pairwise different real eigenvalues, the corresponding
334
- * real eigenvectors are pairwise orthogonal.
335
- *
336
- * The spectrum may be computed either completely or partially by specifying
337
- * either an interval (VL,VU] or a range of indices IL:IU for the desired
338
- * eigenvalues.
339
- *
340
- * DSTEGR is a compatability wrapper around the improved DSTEMR routine.
341
- * See DSTEMR for further details.
342
- *
343
- * One important change is that the ABSTOL parameter no longer provides any
344
- * benefit and hence is no longer used.
345
- *
346
- * Note : DSTEGR and DSTEMR work only on machines which follow
347
- * IEEE-754 floating-point standard in their handling of infinities and
348
- * NaNs. Normal execution may create these exceptiona values and hence
349
- * may abort due to a floating point exception in environments which
350
- * do not conform to the IEEE-754 standard.
351
- *
352
-
353
- * Arguments
354
- * =========
355
- *
356
- * JOBZ (input) CHARACTER*1
357
- * = 'N': Compute eigenvalues only;
358
- * = 'V': Compute eigenvalues and eigenvectors.
359
- *
360
- * RANGE (input) CHARACTER*1
361
- * = 'A': all eigenvalues will be found.
362
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
363
- * will be found.
364
- * = 'I': the IL-th through IU-th eigenvalues will be found.
365
- *
366
- * N (input) INTEGER
367
- * The order of the matrix. N >= 0.
368
- *
369
- * D (input/output) DOUBLE PRECISION array, dimension (N)
370
- * On entry, the N diagonal elements of the tridiagonal matrix
371
- * T. On exit, D is overwritten.
372
- *
373
- * E (input/output) DOUBLE PRECISION array, dimension (N)
374
- * On entry, the (N-1) subdiagonal elements of the tridiagonal
375
- * matrix T in elements 1 to N-1 of E. E(N) need not be set on
376
- * input, but is used internally as workspace.
377
- * On exit, E is overwritten.
378
- *
379
- * VL (input) DOUBLE PRECISION
380
- * VU (input) DOUBLE PRECISION
381
- * If RANGE='V', the lower and upper bounds of the interval to
382
- * be searched for eigenvalues. VL < VU.
383
- * Not referenced if RANGE = 'A' or 'I'.
384
- *
385
- * IL (input) INTEGER
386
- * IU (input) INTEGER
387
- * If RANGE='I', the indices (in ascending order) of the
388
- * smallest and largest eigenvalues to be returned.
389
- * 1 <= IL <= IU <= N, if N > 0.
390
- * Not referenced if RANGE = 'A' or 'V'.
391
- *
392
- * ABSTOL (input) DOUBLE PRECISION
393
- * Unused. Was the absolute error tolerance for the
394
- * eigenvalues/eigenvectors in previous versions.
395
- *
396
- * M (output) INTEGER
397
- * The total number of eigenvalues found. 0 <= M <= N.
398
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
399
- *
400
- * W (output) DOUBLE PRECISION array, dimension (N)
401
- * The first M elements contain the selected eigenvalues in
402
- * ascending order.
403
- *
404
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
405
- * If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
406
- * contain the orthonormal eigenvectors of the matrix T
407
- * corresponding to the selected eigenvalues, with the i-th
408
- * column of Z holding the eigenvector associated with W(i).
409
- * If JOBZ = 'N', then Z is not referenced.
410
- * Note: the user must ensure that at least max(1,M) columns are
411
- * supplied in the array Z; if RANGE = 'V', the exact value of M
412
- * is not known in advance and an upper bound must be used.
413
- * Supplying N columns is always safe.
414
- *
415
- * LDZ (input) INTEGER
416
- * The leading dimension of the array Z. LDZ >= 1, and if
417
- * JOBZ = 'V', then LDZ >= max(1,N).
418
- *
419
- * ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
420
- * The support of the eigenvectors in Z, i.e., the indices
421
- * indicating the nonzero elements in Z. The i-th computed eigenvector
422
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
423
- * ISUPPZ( 2*i ). This is relevant in the case when the matrix
424
- * is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
425
- *
426
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
427
- * On exit, if INFO = 0, WORK(1) returns the optimal
428
- * (and minimal) LWORK.
429
- *
430
- * LWORK (input) INTEGER
431
- * The dimension of the array WORK. LWORK >= max(1,18*N)
432
- * if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
433
- * If LWORK = -1, then a workspace query is assumed; the routine
434
- * only calculates the optimal size of the WORK array, returns
435
- * this value as the first entry of the WORK array, and no error
436
- * message related to LWORK is issued by XERBLA.
437
- *
438
- * IWORK (workspace/output) INTEGER array, dimension (LIWORK)
439
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
440
- *
441
- * LIWORK (input) INTEGER
442
- * The dimension of the array IWORK. LIWORK >= max(1,10*N)
443
- * if the eigenvectors are desired, and LIWORK >= max(1,8*N)
444
- * if only the eigenvalues are to be computed.
445
- * If LIWORK = -1, then a workspace query is assumed; the
446
- * routine only calculates the optimal size of the IWORK array,
447
- * returns this value as the first entry of the IWORK array, and
448
- * no error message related to LIWORK is issued by XERBLA.
449
- *
450
- * INFO (output) INTEGER
451
- * On exit, INFO
452
- * = 0: successful exit
453
- * < 0: if INFO = -i, the i-th argument had an illegal value
454
- * > 0: if INFO = 1X, internal error in DLARRE,
455
- * if INFO = 2X, internal error in DLARRV.
456
- * Here, the digit X = ABS( IINFO ) < 10, where IINFO is
457
- * the nonzero error code returned by DLARRE or
458
- * DLARRV, respectively.
459
- *
460
-
461
- * Further Details
462
- * ===============
463
- *
464
- * Based on contributions by
465
- * Inderjit Dhillon, IBM Almaden, USA
466
- * Osni Marques, LBNL/NERSC, USA
467
- * Christof Voemel, LBNL/NERSC, USA
468
- *
469
- * =====================================================================
470
- *
471
- * .. Local Scalars ..
472
- LOGICAL TRYRAC
473
- * ..
474
- * .. External Subroutines ..
475
- EXTERNAL DSTEMR
476
- * ..
477
-
478
-
479
- </PRE>
480
- <A HREF="#top">go to the page top</A>
481
-
482
- <A NAME="dstein"></A>
483
- <H2>dstein</H2>
484
- <PRE>
485
- USAGE:
486
- z, ifail, info = NumRu::Lapack.dstein( d, e, w, iblock, isplit, [:usage => usage, :help => help])
487
-
488
-
489
- FORTRAN MANUAL
490
- SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO )
491
-
492
- * Purpose
493
- * =======
494
- *
495
- * DSTEIN computes the eigenvectors of a real symmetric tridiagonal
496
- * matrix T corresponding to specified eigenvalues, using inverse
497
- * iteration.
498
- *
499
- * The maximum number of iterations allowed for each eigenvector is
500
- * specified by an internal parameter MAXITS (currently set to 5).
501
- *
502
-
503
- * Arguments
504
- * =========
505
- *
506
- * N (input) INTEGER
507
- * The order of the matrix. N >= 0.
508
- *
509
- * D (input) DOUBLE PRECISION array, dimension (N)
510
- * The n diagonal elements of the tridiagonal matrix T.
511
- *
512
- * E (input) DOUBLE PRECISION array, dimension (N-1)
513
- * The (n-1) subdiagonal elements of the tridiagonal matrix
514
- * T, in elements 1 to N-1.
515
- *
516
- * M (input) INTEGER
517
- * The number of eigenvectors to be found. 0 <= M <= N.
518
- *
519
- * W (input) DOUBLE PRECISION array, dimension (N)
520
- * The first M elements of W contain the eigenvalues for
521
- * which eigenvectors are to be computed. The eigenvalues
522
- * should be grouped by split-off block and ordered from
523
- * smallest to largest within the block. ( The output array
524
- * W from DSTEBZ with ORDER = 'B' is expected here. )
525
- *
526
- * IBLOCK (input) INTEGER array, dimension (N)
527
- * The submatrix indices associated with the corresponding
528
- * eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
529
- * the first submatrix from the top, =2 if W(i) belongs to
530
- * the second submatrix, etc. ( The output array IBLOCK
531
- * from DSTEBZ is expected here. )
532
- *
533
- * ISPLIT (input) INTEGER array, dimension (N)
534
- * The splitting points, at which T breaks up into submatrices.
535
- * The first submatrix consists of rows/columns 1 to
536
- * ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
537
- * through ISPLIT( 2 ), etc.
538
- * ( The output array ISPLIT from DSTEBZ is expected here. )
539
- *
540
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, M)
541
- * The computed eigenvectors. The eigenvector associated
542
- * with the eigenvalue W(i) is stored in the i-th column of
543
- * Z. Any vector which fails to converge is set to its current
544
- * iterate after MAXITS iterations.
545
- *
546
- * LDZ (input) INTEGER
547
- * The leading dimension of the array Z. LDZ >= max(1,N).
548
- *
549
- * WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
550
- *
551
- * IWORK (workspace) INTEGER array, dimension (N)
552
- *
553
- * IFAIL (output) INTEGER array, dimension (M)
554
- * On normal exit, all elements of IFAIL are zero.
555
- * If one or more eigenvectors fail to converge after
556
- * MAXITS iterations, then their indices are stored in
557
- * array IFAIL.
558
- *
559
- * INFO (output) INTEGER
560
- * = 0: successful exit.
561
- * < 0: if INFO = -i, the i-th argument had an illegal value
562
- * > 0: if INFO = i, then i eigenvectors failed to converge
563
- * in MAXITS iterations. Their indices are stored in
564
- * array IFAIL.
565
- *
566
- * Internal Parameters
567
- * ===================
568
- *
569
- * MAXITS INTEGER, default = 5
570
- * The maximum number of iterations performed.
571
- *
572
- * EXTRA INTEGER, default = 2
573
- * The number of iterations performed after norm growth
574
- * criterion is satisfied, should be at least 1.
575
- *
576
-
577
- * =====================================================================
578
- *
579
-
580
-
581
- </PRE>
582
- <A HREF="#top">go to the page top</A>
583
-
584
- <A NAME="dstemr"></A>
585
- <H2>dstemr</H2>
586
- <PRE>
587
- USAGE:
588
- m, w, z, isuppz, work, iwork, info, d, e, tryrac = NumRu::Lapack.dstemr( jobz, range, d, e, vl, vu, il, iu, nzc, tryrac, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
589
-
590
-
591
- FORTRAN MANUAL
592
- SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO )
593
-
594
- * Purpose
595
- * =======
596
- *
597
- * DSTEMR computes selected eigenvalues and, optionally, eigenvectors
598
- * of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
599
- * a well defined set of pairwise different real eigenvalues, the corresponding
600
- * real eigenvectors are pairwise orthogonal.
601
- *
602
- * The spectrum may be computed either completely or partially by specifying
603
- * either an interval (VL,VU] or a range of indices IL:IU for the desired
604
- * eigenvalues.
605
- *
606
- * Depending on the number of desired eigenvalues, these are computed either
607
- * by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
608
- * computed by the use of various suitable L D L^T factorizations near clusters
609
- * of close eigenvalues (referred to as RRRs, Relatively Robust
610
- * Representations). An informal sketch of the algorithm follows.
611
- *
612
- * For each unreduced block (submatrix) of T,
613
- * (a) Compute T - sigma I = L D L^T, so that L and D
614
- * define all the wanted eigenvalues to high relative accuracy.
615
- * This means that small relative changes in the entries of D and L
616
- * cause only small relative changes in the eigenvalues and
617
- * eigenvectors. The standard (unfactored) representation of the
618
- * tridiagonal matrix T does not have this property in general.
619
- * (b) Compute the eigenvalues to suitable accuracy.
620
- * If the eigenvectors are desired, the algorithm attains full
621
- * accuracy of the computed eigenvalues only right before
622
- * the corresponding vectors have to be computed, see steps c) and d).
623
- * (c) For each cluster of close eigenvalues, select a new
624
- * shift close to the cluster, find a new factorization, and refine
625
- * the shifted eigenvalues to suitable accuracy.
626
- * (d) For each eigenvalue with a large enough relative separation compute
627
- * the corresponding eigenvector by forming a rank revealing twisted
628
- * factorization. Go back to (c) for any clusters that remain.
629
- *
630
- * For more details, see:
631
- * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
632
- * to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
633
- * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
634
- * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
635
- * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
636
- * 2004. Also LAPACK Working Note 154.
637
- * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
638
- * tridiagonal eigenvalue/eigenvector problem",
639
- * Computer Science Division Technical Report No. UCB/CSD-97-971,
640
- * UC Berkeley, May 1997.
641
- *
642
- * Further Details
643
- * 1.DSTEMR works only on machines which follow IEEE-754
644
- * floating-point standard in their handling of infinities and NaNs.
645
- * This permits the use of efficient inner loops avoiding a check for
646
- * zero divisors.
647
- *
648
-
649
- * Arguments
650
- * =========
651
- *
652
- * JOBZ (input) CHARACTER*1
653
- * = 'N': Compute eigenvalues only;
654
- * = 'V': Compute eigenvalues and eigenvectors.
655
- *
656
- * RANGE (input) CHARACTER*1
657
- * = 'A': all eigenvalues will be found.
658
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
659
- * will be found.
660
- * = 'I': the IL-th through IU-th eigenvalues will be found.
661
- *
662
- * N (input) INTEGER
663
- * The order of the matrix. N >= 0.
664
- *
665
- * D (input/output) DOUBLE PRECISION array, dimension (N)
666
- * On entry, the N diagonal elements of the tridiagonal matrix
667
- * T. On exit, D is overwritten.
668
- *
669
- * E (input/output) DOUBLE PRECISION array, dimension (N)
670
- * On entry, the (N-1) subdiagonal elements of the tridiagonal
671
- * matrix T in elements 1 to N-1 of E. E(N) need not be set on
672
- * input, but is used internally as workspace.
673
- * On exit, E is overwritten.
674
- *
675
- * VL (input) DOUBLE PRECISION
676
- * VU (input) DOUBLE PRECISION
677
- * If RANGE='V', the lower and upper bounds of the interval to
678
- * be searched for eigenvalues. VL < VU.
679
- * Not referenced if RANGE = 'A' or 'I'.
680
- *
681
- * IL (input) INTEGER
682
- * IU (input) INTEGER
683
- * If RANGE='I', the indices (in ascending order) of the
684
- * smallest and largest eigenvalues to be returned.
685
- * 1 <= IL <= IU <= N, if N > 0.
686
- * Not referenced if RANGE = 'A' or 'V'.
687
- *
688
- * M (output) INTEGER
689
- * The total number of eigenvalues found. 0 <= M <= N.
690
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
691
- *
692
- * W (output) DOUBLE PRECISION array, dimension (N)
693
- * The first M elements contain the selected eigenvalues in
694
- * ascending order.
695
- *
696
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
697
- * If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
698
- * contain the orthonormal eigenvectors of the matrix T
699
- * corresponding to the selected eigenvalues, with the i-th
700
- * column of Z holding the eigenvector associated with W(i).
701
- * If JOBZ = 'N', then Z is not referenced.
702
- * Note: the user must ensure that at least max(1,M) columns are
703
- * supplied in the array Z; if RANGE = 'V', the exact value of M
704
- * is not known in advance and can be computed with a workspace
705
- * query by setting NZC = -1, see below.
706
- *
707
- * LDZ (input) INTEGER
708
- * The leading dimension of the array Z. LDZ >= 1, and if
709
- * JOBZ = 'V', then LDZ >= max(1,N).
710
- *
711
- * NZC (input) INTEGER
712
- * The number of eigenvectors to be held in the array Z.
713
- * If RANGE = 'A', then NZC >= max(1,N).
714
- * If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
715
- * If RANGE = 'I', then NZC >= IU-IL+1.
716
- * If NZC = -1, then a workspace query is assumed; the
717
- * routine calculates the number of columns of the array Z that
718
- * are needed to hold the eigenvectors.
719
- * This value is returned as the first entry of the Z array, and
720
- * no error message related to NZC is issued by XERBLA.
721
- *
722
- * ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
723
- * The support of the eigenvectors in Z, i.e., the indices
724
- * indicating the nonzero elements in Z. The i-th computed eigenvector
725
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
726
- * ISUPPZ( 2*i ). This is relevant in the case when the matrix
727
- * is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
728
- *
729
- * TRYRAC (input/output) LOGICAL
730
- * If TRYRAC.EQ..TRUE., indicates that the code should check whether
731
- * the tridiagonal matrix defines its eigenvalues to high relative
732
- * accuracy. If so, the code uses relative-accuracy preserving
733
- * algorithms that might be (a bit) slower depending on the matrix.
734
- * If the matrix does not define its eigenvalues to high relative
735
- * accuracy, the code can uses possibly faster algorithms.
736
- * If TRYRAC.EQ..FALSE., the code is not required to guarantee
737
- * relatively accurate eigenvalues and can use the fastest possible
738
- * techniques.
739
- * On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
740
- * does not define its eigenvalues to high relative accuracy.
741
- *
742
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
743
- * On exit, if INFO = 0, WORK(1) returns the optimal
744
- * (and minimal) LWORK.
745
- *
746
- * LWORK (input) INTEGER
747
- * The dimension of the array WORK. LWORK >= max(1,18*N)
748
- * if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
749
- * If LWORK = -1, then a workspace query is assumed; the routine
750
- * only calculates the optimal size of the WORK array, returns
751
- * this value as the first entry of the WORK array, and no error
752
- * message related to LWORK is issued by XERBLA.
753
- *
754
- * IWORK (workspace/output) INTEGER array, dimension (LIWORK)
755
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
756
- *
757
- * LIWORK (input) INTEGER
758
- * The dimension of the array IWORK. LIWORK >= max(1,10*N)
759
- * if the eigenvectors are desired, and LIWORK >= max(1,8*N)
760
- * if only the eigenvalues are to be computed.
761
- * If LIWORK = -1, then a workspace query is assumed; the
762
- * routine only calculates the optimal size of the IWORK array,
763
- * returns this value as the first entry of the IWORK array, and
764
- * no error message related to LIWORK is issued by XERBLA.
765
- *
766
- * INFO (output) INTEGER
767
- * On exit, INFO
768
- * = 0: successful exit
769
- * < 0: if INFO = -i, the i-th argument had an illegal value
770
- * > 0: if INFO = 1X, internal error in DLARRE,
771
- * if INFO = 2X, internal error in DLARRV.
772
- * Here, the digit X = ABS( IINFO ) < 10, where IINFO is
773
- * the nonzero error code returned by DLARRE or
774
- * DLARRV, respectively.
775
- *
776
- *
777
-
778
- * Further Details
779
- * ===============
780
- *
781
- * Based on contributions by
782
- * Beresford Parlett, University of California, Berkeley, USA
783
- * Jim Demmel, University of California, Berkeley, USA
784
- * Inderjit Dhillon, University of Texas, Austin, USA
785
- * Osni Marques, LBNL/NERSC, USA
786
- * Christof Voemel, University of California, Berkeley, USA
787
- *
788
- * =====================================================================
789
- *
790
-
791
-
792
- </PRE>
793
- <A HREF="#top">go to the page top</A>
794
-
795
- <A NAME="dsteqr"></A>
796
- <H2>dsteqr</H2>
797
- <PRE>
798
- USAGE:
799
- info, d, e, z = NumRu::Lapack.dsteqr( compz, d, e, z, [:usage => usage, :help => help])
800
-
801
-
802
- FORTRAN MANUAL
803
- SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
804
-
805
- * Purpose
806
- * =======
807
- *
808
- * DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
809
- * symmetric tridiagonal matrix using the implicit QL or QR method.
810
- * The eigenvectors of a full or band symmetric matrix can also be found
811
- * if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
812
- * tridiagonal form.
813
- *
814
-
815
- * Arguments
816
- * =========
817
- *
818
- * COMPZ (input) CHARACTER*1
819
- * = 'N': Compute eigenvalues only.
820
- * = 'V': Compute eigenvalues and eigenvectors of the original
821
- * symmetric matrix. On entry, Z must contain the
822
- * orthogonal matrix used to reduce the original matrix
823
- * to tridiagonal form.
824
- * = 'I': Compute eigenvalues and eigenvectors of the
825
- * tridiagonal matrix. Z is initialized to the identity
826
- * matrix.
827
- *
828
- * N (input) INTEGER
829
- * The order of the matrix. N >= 0.
830
- *
831
- * D (input/output) DOUBLE PRECISION array, dimension (N)
832
- * On entry, the diagonal elements of the tridiagonal matrix.
833
- * On exit, if INFO = 0, the eigenvalues in ascending order.
834
- *
835
- * E (input/output) DOUBLE PRECISION array, dimension (N-1)
836
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
837
- * matrix.
838
- * On exit, E has been destroyed.
839
- *
840
- * Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
841
- * On entry, if COMPZ = 'V', then Z contains the orthogonal
842
- * matrix used in the reduction to tridiagonal form.
843
- * On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
844
- * orthonormal eigenvectors of the original symmetric matrix,
845
- * and if COMPZ = 'I', Z contains the orthonormal eigenvectors
846
- * of the symmetric tridiagonal matrix.
847
- * If COMPZ = 'N', then Z is not referenced.
848
- *
849
- * LDZ (input) INTEGER
850
- * The leading dimension of the array Z. LDZ >= 1, and if
851
- * eigenvectors are desired, then LDZ >= max(1,N).
852
- *
853
- * WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
854
- * If COMPZ = 'N', then WORK is not referenced.
855
- *
856
- * INFO (output) INTEGER
857
- * = 0: successful exit
858
- * < 0: if INFO = -i, the i-th argument had an illegal value
859
- * > 0: the algorithm has failed to find all the eigenvalues in
860
- * a total of 30*N iterations; if INFO = i, then i
861
- * elements of E have not converged to zero; on exit, D
862
- * and E contain the elements of a symmetric tridiagonal
863
- * matrix which is orthogonally similar to the original
864
- * matrix.
865
- *
866
-
867
- * =====================================================================
868
- *
869
-
870
-
871
- </PRE>
872
- <A HREF="#top">go to the page top</A>
873
-
874
- <A NAME="dsterf"></A>
875
- <H2>dsterf</H2>
876
- <PRE>
877
- USAGE:
878
- info, d, e = NumRu::Lapack.dsterf( d, e, [:usage => usage, :help => help])
879
-
880
-
881
- FORTRAN MANUAL
882
- SUBROUTINE DSTERF( N, D, E, INFO )
883
-
884
- * Purpose
885
- * =======
886
- *
887
- * DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
888
- * using the Pal-Walker-Kahan variant of the QL or QR algorithm.
889
- *
890
-
891
- * Arguments
892
- * =========
893
- *
894
- * N (input) INTEGER
895
- * The order of the matrix. N >= 0.
896
- *
897
- * D (input/output) DOUBLE PRECISION array, dimension (N)
898
- * On entry, the n diagonal elements of the tridiagonal matrix.
899
- * On exit, if INFO = 0, the eigenvalues in ascending order.
900
- *
901
- * E (input/output) DOUBLE PRECISION array, dimension (N-1)
902
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
903
- * matrix.
904
- * On exit, E has been destroyed.
905
- *
906
- * INFO (output) INTEGER
907
- * = 0: successful exit
908
- * < 0: if INFO = -i, the i-th argument had an illegal value
909
- * > 0: the algorithm failed to find all of the eigenvalues in
910
- * a total of 30*N iterations; if INFO = i, then i
911
- * elements of E have not converged to zero.
912
- *
913
-
914
- * =====================================================================
915
- *
916
-
917
-
918
- </PRE>
919
- <A HREF="#top">go to the page top</A>
920
-
921
- <A NAME="dstev"></A>
922
- <H2>dstev</H2>
923
- <PRE>
924
- USAGE:
925
- z, info, d, e = NumRu::Lapack.dstev( jobz, d, e, [:usage => usage, :help => help])
926
-
927
-
928
- FORTRAN MANUAL
929
- SUBROUTINE DSTEV( JOBZ, N, D, E, Z, LDZ, WORK, INFO )
930
-
931
- * Purpose
932
- * =======
933
- *
934
- * DSTEV computes all eigenvalues and, optionally, eigenvectors of a
935
- * real symmetric tridiagonal matrix A.
936
- *
937
-
938
- * Arguments
939
- * =========
940
- *
941
- * JOBZ (input) CHARACTER*1
942
- * = 'N': Compute eigenvalues only;
943
- * = 'V': Compute eigenvalues and eigenvectors.
944
- *
945
- * N (input) INTEGER
946
- * The order of the matrix. N >= 0.
947
- *
948
- * D (input/output) DOUBLE PRECISION array, dimension (N)
949
- * On entry, the n diagonal elements of the tridiagonal matrix
950
- * A.
951
- * On exit, if INFO = 0, the eigenvalues in ascending order.
952
- *
953
- * E (input/output) DOUBLE PRECISION array, dimension (N-1)
954
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
955
- * matrix A, stored in elements 1 to N-1 of E.
956
- * On exit, the contents of E are destroyed.
957
- *
958
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
959
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
960
- * eigenvectors of the matrix A, with the i-th column of Z
961
- * holding the eigenvector associated with D(i).
962
- * If JOBZ = 'N', then Z is not referenced.
963
- *
964
- * LDZ (input) INTEGER
965
- * The leading dimension of the array Z. LDZ >= 1, and if
966
- * JOBZ = 'V', LDZ >= max(1,N).
967
- *
968
- * WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
969
- * If JOBZ = 'N', WORK is not referenced.
970
- *
971
- * INFO (output) INTEGER
972
- * = 0: successful exit
973
- * < 0: if INFO = -i, the i-th argument had an illegal value
974
- * > 0: if INFO = i, the algorithm failed to converge; i
975
- * off-diagonal elements of E did not converge to zero.
976
- *
977
-
978
- * =====================================================================
979
- *
980
-
981
-
982
- </PRE>
983
- <A HREF="#top">go to the page top</A>
984
-
985
- <A NAME="dstevd"></A>
986
- <H2>dstevd</H2>
987
- <PRE>
988
- USAGE:
989
- z, work, iwork, info, d, e = NumRu::Lapack.dstevd( jobz, d, e, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
990
-
991
-
992
- FORTRAN MANUAL
993
- SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
994
-
995
- * Purpose
996
- * =======
997
- *
998
- * DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
999
- * real symmetric tridiagonal matrix. If eigenvectors are desired, it
1000
- * uses a divide and conquer algorithm.
1001
- *
1002
- * The divide and conquer algorithm makes very mild assumptions about
1003
- * floating point arithmetic. It will work on machines with a guard
1004
- * digit in add/subtract, or on those binary machines without guard
1005
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
1006
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
1007
- * without guard digits, but we know of none.
1008
- *
1009
-
1010
- * Arguments
1011
- * =========
1012
- *
1013
- * JOBZ (input) CHARACTER*1
1014
- * = 'N': Compute eigenvalues only;
1015
- * = 'V': Compute eigenvalues and eigenvectors.
1016
- *
1017
- * N (input) INTEGER
1018
- * The order of the matrix. N >= 0.
1019
- *
1020
- * D (input/output) DOUBLE PRECISION array, dimension (N)
1021
- * On entry, the n diagonal elements of the tridiagonal matrix
1022
- * A.
1023
- * On exit, if INFO = 0, the eigenvalues in ascending order.
1024
- *
1025
- * E (input/output) DOUBLE PRECISION array, dimension (N-1)
1026
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
1027
- * matrix A, stored in elements 1 to N-1 of E.
1028
- * On exit, the contents of E are destroyed.
1029
- *
1030
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
1031
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
1032
- * eigenvectors of the matrix A, with the i-th column of Z
1033
- * holding the eigenvector associated with D(i).
1034
- * If JOBZ = 'N', then Z is not referenced.
1035
- *
1036
- * LDZ (input) INTEGER
1037
- * The leading dimension of the array Z. LDZ >= 1, and if
1038
- * JOBZ = 'V', LDZ >= max(1,N).
1039
- *
1040
- * WORK (workspace/output) DOUBLE PRECISION array,
1041
- * dimension (LWORK)
1042
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1043
- *
1044
- * LWORK (input) INTEGER
1045
- * The dimension of the array WORK.
1046
- * If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
1047
- * If JOBZ = 'V' and N > 1 then LWORK must be at least
1048
- * ( 1 + 4*N + N**2 ).
1049
- *
1050
- * If LWORK = -1, then a workspace query is assumed; the routine
1051
- * only calculates the optimal sizes of the WORK and IWORK
1052
- * arrays, returns these values as the first entries of the WORK
1053
- * and IWORK arrays, and no error message related to LWORK or
1054
- * LIWORK is issued by XERBLA.
1055
- *
1056
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1057
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1058
- *
1059
- * LIWORK (input) INTEGER
1060
- * The dimension of the array IWORK.
1061
- * If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
1062
- * If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
1063
- *
1064
- * If LIWORK = -1, then a workspace query is assumed; the
1065
- * routine only calculates the optimal sizes of the WORK and
1066
- * IWORK arrays, returns these values as the first entries of
1067
- * the WORK and IWORK arrays, and no error message related to
1068
- * LWORK or LIWORK is issued by XERBLA.
1069
- *
1070
- * INFO (output) INTEGER
1071
- * = 0: successful exit
1072
- * < 0: if INFO = -i, the i-th argument had an illegal value
1073
- * > 0: if INFO = i, the algorithm failed to converge; i
1074
- * off-diagonal elements of E did not converge to zero.
1075
- *
1076
-
1077
- * =====================================================================
1078
- *
1079
-
1080
-
1081
- </PRE>
1082
- <A HREF="#top">go to the page top</A>
1083
-
1084
- <A NAME="dstevr"></A>
1085
- <H2>dstevr</H2>
1086
- <PRE>
1087
- USAGE:
1088
- m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstevr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
1089
-
1090
-
1091
- FORTRAN MANUAL
1092
- SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
1093
-
1094
- * Purpose
1095
- * =======
1096
- *
1097
- * DSTEVR computes selected eigenvalues and, optionally, eigenvectors
1098
- * of a real symmetric tridiagonal matrix T. Eigenvalues and
1099
- * eigenvectors can be selected by specifying either a range of values
1100
- * or a range of indices for the desired eigenvalues.
1101
- *
1102
- * Whenever possible, DSTEVR calls DSTEMR to compute the
1103
- * eigenspectrum using Relatively Robust Representations. DSTEMR
1104
- * computes eigenvalues by the dqds algorithm, while orthogonal
1105
- * eigenvectors are computed from various "good" L D L^T representations
1106
- * (also known as Relatively Robust Representations). Gram-Schmidt
1107
- * orthogonalization is avoided as far as possible. More specifically,
1108
- * the various steps of the algorithm are as follows. For the i-th
1109
- * unreduced block of T,
1110
- * (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
1111
- * is a relatively robust representation,
1112
- * (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
1113
- * relative accuracy by the dqds algorithm,
1114
- * (c) If there is a cluster of close eigenvalues, "choose" sigma_i
1115
- * close to the cluster, and go to step (a),
1116
- * (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
1117
- * compute the corresponding eigenvector by forming a
1118
- * rank-revealing twisted factorization.
1119
- * The desired accuracy of the output can be specified by the input
1120
- * parameter ABSTOL.
1121
- *
1122
- * For more details, see "A new O(n^2) algorithm for the symmetric
1123
- * tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
1124
- * Computer Science Division Technical Report No. UCB//CSD-97-971,
1125
- * UC Berkeley, May 1997.
1126
- *
1127
- *
1128
- * Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
1129
- * on machines which conform to the ieee-754 floating point standard.
1130
- * DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
1131
- * when partial spectrum requests are made.
1132
- *
1133
- * Normal execution of DSTEMR may create NaNs and infinities and
1134
- * hence may abort due to a floating point exception in environments
1135
- * which do not handle NaNs and infinities in the ieee standard default
1136
- * manner.
1137
- *
1138
-
1139
- * Arguments
1140
- * =========
1141
- *
1142
- * JOBZ (input) CHARACTER*1
1143
- * = 'N': Compute eigenvalues only;
1144
- * = 'V': Compute eigenvalues and eigenvectors.
1145
- *
1146
- * RANGE (input) CHARACTER*1
1147
- * = 'A': all eigenvalues will be found.
1148
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
1149
- * will be found.
1150
- * = 'I': the IL-th through IU-th eigenvalues will be found.
1151
- ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
1152
- ********** DSTEIN are called
1153
- *
1154
- * N (input) INTEGER
1155
- * The order of the matrix. N >= 0.
1156
- *
1157
- * D (input/output) DOUBLE PRECISION array, dimension (N)
1158
- * On entry, the n diagonal elements of the tridiagonal matrix
1159
- * A.
1160
- * On exit, D may be multiplied by a constant factor chosen
1161
- * to avoid over/underflow in computing the eigenvalues.
1162
- *
1163
- * E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
1164
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
1165
- * matrix A in elements 1 to N-1 of E.
1166
- * On exit, E may be multiplied by a constant factor chosen
1167
- * to avoid over/underflow in computing the eigenvalues.
1168
- *
1169
- * VL (input) DOUBLE PRECISION
1170
- * VU (input) DOUBLE PRECISION
1171
- * If RANGE='V', the lower and upper bounds of the interval to
1172
- * be searched for eigenvalues. VL < VU.
1173
- * Not referenced if RANGE = 'A' or 'I'.
1174
- *
1175
- * IL (input) INTEGER
1176
- * IU (input) INTEGER
1177
- * If RANGE='I', the indices (in ascending order) of the
1178
- * smallest and largest eigenvalues to be returned.
1179
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1180
- * Not referenced if RANGE = 'A' or 'V'.
1181
- *
1182
- * ABSTOL (input) DOUBLE PRECISION
1183
- * The absolute error tolerance for the eigenvalues.
1184
- * An approximate eigenvalue is accepted as converged
1185
- * when it is determined to lie in an interval [a,b]
1186
- * of width less than or equal to
1187
- *
1188
- * ABSTOL + EPS * max( |a|,|b| ) ,
1189
- *
1190
- * where EPS is the machine precision. If ABSTOL is less than
1191
- * or equal to zero, then EPS*|T| will be used in its place,
1192
- * where |T| is the 1-norm of the tridiagonal matrix obtained
1193
- * by reducing A to tridiagonal form.
1194
- *
1195
- * See "Computing Small Singular Values of Bidiagonal Matrices
1196
- * with Guaranteed High Relative Accuracy," by Demmel and
1197
- * Kahan, LAPACK Working Note #3.
1198
- *
1199
- * If high relative accuracy is important, set ABSTOL to
1200
- * DLAMCH( 'Safe minimum' ). Doing so will guarantee that
1201
- * eigenvalues are computed to high relative accuracy when
1202
- * possible in future releases. The current code does not
1203
- * make any guarantees about high relative accuracy, but
1204
- * future releases will. See J. Barlow and J. Demmel,
1205
- * "Computing Accurate Eigensystems of Scaled Diagonally
1206
- * Dominant Matrices", LAPACK Working Note #7, for a discussion
1207
- * of which matrices define their eigenvalues to high relative
1208
- * accuracy.
1209
- *
1210
- * M (output) INTEGER
1211
- * The total number of eigenvalues found. 0 <= M <= N.
1212
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1213
- *
1214
- * W (output) DOUBLE PRECISION array, dimension (N)
1215
- * The first M elements contain the selected eigenvalues in
1216
- * ascending order.
1217
- *
1218
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
1219
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1220
- * contain the orthonormal eigenvectors of the matrix A
1221
- * corresponding to the selected eigenvalues, with the i-th
1222
- * column of Z holding the eigenvector associated with W(i).
1223
- * Note: the user must ensure that at least max(1,M) columns are
1224
- * supplied in the array Z; if RANGE = 'V', the exact value of M
1225
- * is not known in advance and an upper bound must be used.
1226
- *
1227
- * LDZ (input) INTEGER
1228
- * The leading dimension of the array Z. LDZ >= 1, and if
1229
- * JOBZ = 'V', LDZ >= max(1,N).
1230
- *
1231
- * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
1232
- * The support of the eigenvectors in Z, i.e., the indices
1233
- * indicating the nonzero elements in Z. The i-th eigenvector
1234
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
1235
- * ISUPPZ( 2*i ).
1236
- ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
1237
- *
1238
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1239
- * On exit, if INFO = 0, WORK(1) returns the optimal (and
1240
- * minimal) LWORK.
1241
- *
1242
- * LWORK (input) INTEGER
1243
- * The dimension of the array WORK. LWORK >= max(1,20*N).
1244
- *
1245
- * If LWORK = -1, then a workspace query is assumed; the routine
1246
- * only calculates the optimal sizes of the WORK and IWORK
1247
- * arrays, returns these values as the first entries of the WORK
1248
- * and IWORK arrays, and no error message related to LWORK or
1249
- * LIWORK is issued by XERBLA.
1250
- *
1251
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1252
- * On exit, if INFO = 0, IWORK(1) returns the optimal (and
1253
- * minimal) LIWORK.
1254
- *
1255
- * LIWORK (input) INTEGER
1256
- * The dimension of the array IWORK. LIWORK >= max(1,10*N).
1257
- *
1258
- * If LIWORK = -1, then a workspace query is assumed; the
1259
- * routine only calculates the optimal sizes of the WORK and
1260
- * IWORK arrays, returns these values as the first entries of
1261
- * the WORK and IWORK arrays, and no error message related to
1262
- * LWORK or LIWORK is issued by XERBLA.
1263
- *
1264
- * INFO (output) INTEGER
1265
- * = 0: successful exit
1266
- * < 0: if INFO = -i, the i-th argument had an illegal value
1267
- * > 0: Internal error
1268
- *
1269
-
1270
- * Further Details
1271
- * ===============
1272
- *
1273
- * Based on contributions by
1274
- * Inderjit Dhillon, IBM Almaden, USA
1275
- * Osni Marques, LBNL/NERSC, USA
1276
- * Ken Stanley, Computer Science Division, University of
1277
- * California at Berkeley, USA
1278
- *
1279
- * =====================================================================
1280
- *
1281
-
1282
-
1283
- </PRE>
1284
- <A HREF="#top">go to the page top</A>
1285
-
1286
- <A NAME="dstevx"></A>
1287
- <H2>dstevx</H2>
1288
- <PRE>
1289
- USAGE:
1290
- m, w, z, ifail, info, d, e = NumRu::Lapack.dstevx( jobz, range, d, e, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
1291
-
1292
-
1293
- FORTRAN MANUAL
1294
- SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
1295
-
1296
- * Purpose
1297
- * =======
1298
- *
1299
- * DSTEVX computes selected eigenvalues and, optionally, eigenvectors
1300
- * of a real symmetric tridiagonal matrix A. Eigenvalues and
1301
- * eigenvectors can be selected by specifying either a range of values
1302
- * or a range of indices for the desired eigenvalues.
1303
- *
1304
-
1305
- * Arguments
1306
- * =========
1307
- *
1308
- * JOBZ (input) CHARACTER*1
1309
- * = 'N': Compute eigenvalues only;
1310
- * = 'V': Compute eigenvalues and eigenvectors.
1311
- *
1312
- * RANGE (input) CHARACTER*1
1313
- * = 'A': all eigenvalues will be found.
1314
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
1315
- * will be found.
1316
- * = 'I': the IL-th through IU-th eigenvalues will be found.
1317
- *
1318
- * N (input) INTEGER
1319
- * The order of the matrix. N >= 0.
1320
- *
1321
- * D (input/output) DOUBLE PRECISION array, dimension (N)
1322
- * On entry, the n diagonal elements of the tridiagonal matrix
1323
- * A.
1324
- * On exit, D may be multiplied by a constant factor chosen
1325
- * to avoid over/underflow in computing the eigenvalues.
1326
- *
1327
- * E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
1328
- * On entry, the (n-1) subdiagonal elements of the tridiagonal
1329
- * matrix A in elements 1 to N-1 of E.
1330
- * On exit, E may be multiplied by a constant factor chosen
1331
- * to avoid over/underflow in computing the eigenvalues.
1332
- *
1333
- * VL (input) DOUBLE PRECISION
1334
- * VU (input) DOUBLE PRECISION
1335
- * If RANGE='V', the lower and upper bounds of the interval to
1336
- * be searched for eigenvalues. VL < VU.
1337
- * Not referenced if RANGE = 'A' or 'I'.
1338
- *
1339
- * IL (input) INTEGER
1340
- * IU (input) INTEGER
1341
- * If RANGE='I', the indices (in ascending order) of the
1342
- * smallest and largest eigenvalues to be returned.
1343
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1344
- * Not referenced if RANGE = 'A' or 'V'.
1345
- *
1346
- * ABSTOL (input) DOUBLE PRECISION
1347
- * The absolute error tolerance for the eigenvalues.
1348
- * An approximate eigenvalue is accepted as converged
1349
- * when it is determined to lie in an interval [a,b]
1350
- * of width less than or equal to
1351
- *
1352
- * ABSTOL + EPS * max( |a|,|b| ) ,
1353
- *
1354
- * where EPS is the machine precision. If ABSTOL is less
1355
- * than or equal to zero, then EPS*|T| will be used in
1356
- * its place, where |T| is the 1-norm of the tridiagonal
1357
- * matrix.
1358
- *
1359
- * Eigenvalues will be computed most accurately when ABSTOL is
1360
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
1361
- * If this routine returns with INFO>0, indicating that some
1362
- * eigenvectors did not converge, try setting ABSTOL to
1363
- * 2*DLAMCH('S').
1364
- *
1365
- * See "Computing Small Singular Values of Bidiagonal Matrices
1366
- * with Guaranteed High Relative Accuracy," by Demmel and
1367
- * Kahan, LAPACK Working Note #3.
1368
- *
1369
- * M (output) INTEGER
1370
- * The total number of eigenvalues found. 0 <= M <= N.
1371
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1372
- *
1373
- * W (output) DOUBLE PRECISION array, dimension (N)
1374
- * The first M elements contain the selected eigenvalues in
1375
- * ascending order.
1376
- *
1377
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
1378
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1379
- * contain the orthonormal eigenvectors of the matrix A
1380
- * corresponding to the selected eigenvalues, with the i-th
1381
- * column of Z holding the eigenvector associated with W(i).
1382
- * If an eigenvector fails to converge (INFO > 0), then that
1383
- * column of Z contains the latest approximation to the
1384
- * eigenvector, and the index of the eigenvector is returned
1385
- * in IFAIL. If JOBZ = 'N', then Z is not referenced.
1386
- * Note: the user must ensure that at least max(1,M) columns are
1387
- * supplied in the array Z; if RANGE = 'V', the exact value of M
1388
- * is not known in advance and an upper bound must be used.
1389
- *
1390
- * LDZ (input) INTEGER
1391
- * The leading dimension of the array Z. LDZ >= 1, and if
1392
- * JOBZ = 'V', LDZ >= max(1,N).
1393
- *
1394
- * WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
1395
- *
1396
- * IWORK (workspace) INTEGER array, dimension (5*N)
1397
- *
1398
- * IFAIL (output) INTEGER array, dimension (N)
1399
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
1400
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
1401
- * indices of the eigenvectors that failed to converge.
1402
- * If JOBZ = 'N', then IFAIL is not referenced.
1403
- *
1404
- * INFO (output) INTEGER
1405
- * = 0: successful exit
1406
- * < 0: if INFO = -i, the i-th argument had an illegal value
1407
- * > 0: if INFO = i, then i eigenvectors failed to converge.
1408
- * Their indices are stored in array IFAIL.
1409
- *
1410
-
1411
- * =====================================================================
1412
- *
1413
-
1414
-
1415
- </PRE>
1416
- <A HREF="#top">go to the page top</A>
1417
-
1418
- <HR />
1419
- <A HREF="d.html">back to matrix types</A><BR>
1420
- <A HREF="d.html">back to data types</A>
1421
- </BODY>
1422
- </HTML>