ruby-lapack 1.4.1a → 1.5
Sign up to get free protection for your applications and to get access to all the features.
- data/Rakefile +1 -2
- data/ext/cbbcsd.c +34 -34
- data/ext/cbdsqr.c +20 -20
- data/ext/cgbbrd.c +12 -12
- data/ext/cgbcon.c +13 -13
- data/ext/cgbequ.c +3 -3
- data/ext/cgbequb.c +2 -2
- data/ext/cgbrfs.c +22 -22
- data/ext/cgbrfsx.c +43 -43
- data/ext/cgbsv.c +2 -2
- data/ext/cgbsvx.c +25 -25
- data/ext/cgbsvxx.c +36 -36
- data/ext/cgbtf2.c +3 -3
- data/ext/cgbtrf.c +3 -3
- data/ext/cgbtrs.c +11 -11
- data/ext/cgebak.c +11 -11
- data/ext/cgebal.c +1 -1
- data/ext/cgebd2.c +1 -1
- data/ext/cgebrd.c +1 -1
- data/ext/cgecon.c +1 -1
- data/ext/cgees.c +3 -3
- data/ext/cgeesx.c +4 -4
- data/ext/cgeev.c +4 -4
- data/ext/cgeevx.c +5 -5
- data/ext/cgegs.c +2 -2
- data/ext/cgegv.c +3 -3
- data/ext/cgehd2.c +1 -1
- data/ext/cgehrd.c +2 -2
- data/ext/cgelqf.c +6 -6
- data/ext/cgels.c +2 -2
- data/ext/cgelsd.c +9 -9
- data/ext/cgelss.c +2 -2
- data/ext/cgelsx.c +12 -12
- data/ext/cgelsy.c +12 -12
- data/ext/cgeql2.c +1 -1
- data/ext/cgeqlf.c +1 -1
- data/ext/cgeqp3.c +11 -11
- data/ext/cgeqpf.c +11 -11
- data/ext/cgeqr2.c +1 -1
- data/ext/cgeqr2p.c +1 -1
- data/ext/cgeqrf.c +1 -1
- data/ext/cgeqrfp.c +1 -1
- data/ext/cgerfs.c +31 -31
- data/ext/cgerfsx.c +25 -25
- data/ext/cgerqf.c +6 -6
- data/ext/cgesc2.c +13 -13
- data/ext/cgesdd.c +3 -3
- data/ext/cgesvd.c +4 -4
- data/ext/cgesvx.c +32 -32
- data/ext/cgesvxx.c +26 -26
- data/ext/cgetf2.c +1 -1
- data/ext/cgetrf.c +1 -1
- data/ext/cgetri.c +10 -10
- data/ext/cgetrs.c +10 -10
- data/ext/cggbak.c +11 -11
- data/ext/cggbal.c +11 -11
- data/ext/cgges.c +15 -15
- data/ext/cggesx.c +6 -6
- data/ext/cggev.c +3 -3
- data/ext/cggevx.c +5 -5
- data/ext/cgghrd.c +14 -14
- data/ext/cggqrf.c +9 -9
- data/ext/cggrqf.c +1 -1
- data/ext/cggsvd.c +3 -3
- data/ext/cggsvp.c +4 -4
- data/ext/cgtcon.c +20 -20
- data/ext/cgtrfs.c +48 -48
- data/ext/cgtsv.c +8 -8
- data/ext/cgtsvx.c +55 -55
- data/ext/cgttrs.c +19 -19
- data/ext/cgtts2.c +20 -20
- data/ext/chbev.c +3 -3
- data/ext/chbevd.c +9 -9
- data/ext/chbevx.c +7 -7
- data/ext/chbgst.c +15 -15
- data/ext/chbgv.c +15 -15
- data/ext/chbgvd.c +20 -20
- data/ext/chbgvx.c +9 -9
- data/ext/chbtrd.c +13 -13
- data/ext/checon.c +12 -12
- data/ext/cheequb.c +1 -1
- data/ext/cheev.c +2 -2
- data/ext/cheevd.c +7 -7
- data/ext/cheevr.c +12 -12
- data/ext/cheevx.c +7 -7
- data/ext/chegs2.c +2 -2
- data/ext/chegst.c +2 -2
- data/ext/chegv.c +13 -13
- data/ext/chegvd.c +18 -18
- data/ext/chegvx.c +19 -19
- data/ext/cherfs.c +31 -31
- data/ext/cherfsx.c +43 -43
- data/ext/chesv.c +10 -10
- data/ext/chesvx.c +15 -15
- data/ext/chesvxx.c +41 -41
- data/ext/chetd2.c +1 -1
- data/ext/chetf2.c +1 -1
- data/ext/chetrd.c +2 -2
- data/ext/chetrf.c +2 -2
- data/ext/chetri.c +1 -1
- data/ext/chetrs.c +10 -10
- data/ext/chetrs2.c +10 -10
- data/ext/chfrk.c +6 -6
- data/ext/chgeqz.c +27 -27
- data/ext/chpcon.c +1 -1
- data/ext/chpev.c +2 -2
- data/ext/chpevd.c +2 -2
- data/ext/chpevx.c +7 -7
- data/ext/chpgst.c +10 -10
- data/ext/chpgv.c +2 -2
- data/ext/chpgvd.c +11 -11
- data/ext/chpgvx.c +8 -8
- data/ext/chprfs.c +10 -10
- data/ext/chpsv.c +1 -1
- data/ext/chpsvx.c +20 -20
- data/ext/chptrd.c +1 -1
- data/ext/chptrf.c +1 -1
- data/ext/chptri.c +1 -1
- data/ext/chptrs.c +1 -1
- data/ext/chsein.c +21 -21
- data/ext/chseqr.c +4 -4
- data/ext/cla_gbamv.c +14 -14
- data/ext/cla_gbrcond_c.c +33 -33
- data/ext/cla_gbrcond_x.c +32 -32
- data/ext/cla_gbrfsx_extended.c +75 -75
- data/ext/cla_gbrpvgrw.c +13 -13
- data/ext/cla_geamv.c +6 -6
- data/ext/cla_gercond_c.c +31 -31
- data/ext/cla_gercond_x.c +30 -30
- data/ext/cla_gerfsx_extended.c +81 -81
- data/ext/cla_heamv.c +12 -12
- data/ext/cla_hercond_c.c +31 -31
- data/ext/cla_hercond_x.c +30 -30
- data/ext/cla_herfsx_extended.c +82 -82
- data/ext/cla_herpvgrw.c +14 -14
- data/ext/cla_lin_berr.c +14 -14
- data/ext/cla_porcond_c.c +23 -23
- data/ext/cla_porcond_x.c +22 -22
- data/ext/cla_porfsx_extended.c +74 -74
- data/ext/cla_porpvgrw.c +2 -2
- data/ext/cla_rpvgrw.c +12 -12
- data/ext/cla_syamv.c +13 -13
- data/ext/cla_syrcond_c.c +31 -31
- data/ext/cla_syrcond_x.c +30 -30
- data/ext/cla_syrfsx_extended.c +82 -82
- data/ext/cla_syrpvgrw.c +14 -14
- data/ext/cla_wwaddw.c +11 -11
- data/ext/clabrd.c +2 -2
- data/ext/clacn2.c +2 -2
- data/ext/clacp2.c +1 -1
- data/ext/clacpy.c +1 -1
- data/ext/clacrm.c +11 -11
- data/ext/clacrt.c +12 -12
- data/ext/claed7.c +42 -42
- data/ext/claed8.c +27 -27
- data/ext/claein.c +14 -14
- data/ext/clags2.c +5 -5
- data/ext/clagtm.c +21 -21
- data/ext/clahef.c +1 -1
- data/ext/clahqr.c +6 -6
- data/ext/clahr2.c +1 -1
- data/ext/clahrd.c +1 -1
- data/ext/claic1.c +12 -12
- data/ext/clals0.c +37 -37
- data/ext/clalsa.c +72 -72
- data/ext/clalsd.c +4 -4
- data/ext/clangb.c +3 -3
- data/ext/clange.c +1 -1
- data/ext/clangt.c +10 -10
- data/ext/clanhb.c +2 -2
- data/ext/clanhe.c +1 -1
- data/ext/clanhf.c +3 -3
- data/ext/clanhp.c +2 -2
- data/ext/clanhs.c +1 -1
- data/ext/clanht.c +1 -1
- data/ext/clansb.c +2 -2
- data/ext/clansp.c +2 -2
- data/ext/clansy.c +1 -1
- data/ext/clantb.c +3 -3
- data/ext/clantp.c +2 -2
- data/ext/clantr.c +3 -3
- data/ext/clapll.c +10 -10
- data/ext/clapmr.c +1 -1
- data/ext/clapmt.c +11 -11
- data/ext/claqgb.c +2 -2
- data/ext/claqge.c +10 -10
- data/ext/claqhb.c +2 -2
- data/ext/claqhe.c +12 -12
- data/ext/claqhp.c +2 -2
- data/ext/claqp2.c +10 -10
- data/ext/claqps.c +20 -20
- data/ext/claqr0.c +3 -3
- data/ext/claqr1.c +4 -4
- data/ext/claqr2.c +18 -18
- data/ext/claqr3.c +18 -18
- data/ext/claqr4.c +3 -3
- data/ext/claqr5.c +21 -21
- data/ext/claqsb.c +13 -13
- data/ext/claqsp.c +2 -2
- data/ext/claqsy.c +12 -12
- data/ext/clar1v.c +15 -15
- data/ext/clar2v.c +19 -19
- data/ext/clarf.c +2 -2
- data/ext/clarfb.c +16 -16
- data/ext/clarfg.c +1 -1
- data/ext/clarfgp.c +1 -1
- data/ext/clarft.c +2 -2
- data/ext/clarfx.c +3 -3
- data/ext/clargv.c +2 -2
- data/ext/clarnv.c +1 -1
- data/ext/clarrv.c +40 -40
- data/ext/clarscl2.c +8 -8
- data/ext/clartv.c +20 -20
- data/ext/clarz.c +11 -11
- data/ext/clarzb.c +14 -14
- data/ext/clarzt.c +2 -2
- data/ext/clascl.c +4 -4
- data/ext/clascl2.c +8 -8
- data/ext/claset.c +4 -4
- data/ext/clasr.c +2 -2
- data/ext/classq.c +2 -2
- data/ext/claswp.c +2 -2
- data/ext/clasyf.c +1 -1
- data/ext/clatbs.c +14 -14
- data/ext/clatdf.c +21 -21
- data/ext/clatps.c +12 -12
- data/ext/clatrd.c +1 -1
- data/ext/clatrs.c +15 -15
- data/ext/clatrz.c +1 -1
- data/ext/clatzm.c +3 -3
- data/ext/clauu2.c +1 -1
- data/ext/clauum.c +1 -1
- data/ext/cpbcon.c +3 -3
- data/ext/cpbequ.c +1 -1
- data/ext/cpbrfs.c +12 -12
- data/ext/cpbstf.c +1 -1
- data/ext/cpbsv.c +1 -1
- data/ext/cpbsvx.c +23 -23
- data/ext/cpbtf2.c +1 -1
- data/ext/cpbtrf.c +1 -1
- data/ext/cpbtrs.c +1 -1
- data/ext/cpftrf.c +2 -2
- data/ext/cpftri.c +2 -2
- data/ext/cpftrs.c +2 -2
- data/ext/cpocon.c +1 -1
- data/ext/cporfs.c +23 -23
- data/ext/cporfsx.c +22 -22
- data/ext/cposv.c +9 -9
- data/ext/cposvx.c +12 -12
- data/ext/cposvxx.c +20 -20
- data/ext/cpotf2.c +1 -1
- data/ext/cpotrf.c +1 -1
- data/ext/cpotri.c +1 -1
- data/ext/cpotrs.c +9 -9
- data/ext/cppcon.c +1 -1
- data/ext/cppequ.c +1 -1
- data/ext/cpprfs.c +20 -20
- data/ext/cppsv.c +1 -1
- data/ext/cppsvx.c +12 -12
- data/ext/cpptrf.c +1 -1
- data/ext/cpptri.c +1 -1
- data/ext/cpptrs.c +1 -1
- data/ext/cpstf2.c +2 -2
- data/ext/cpstrf.c +2 -2
- data/ext/cptcon.c +1 -1
- data/ext/cpteqr.c +10 -10
- data/ext/cptrfs.c +12 -12
- data/ext/cptsv.c +8 -8
- data/ext/cptsvx.c +19 -19
- data/ext/cpttrs.c +1 -1
- data/ext/cptts2.c +1 -1
- data/ext/crot.c +11 -11
- data/ext/cspcon.c +1 -1
- data/ext/cspmv.c +3 -3
- data/ext/cspr.c +11 -11
- data/ext/csprfs.c +10 -10
- data/ext/cspsv.c +1 -1
- data/ext/cspsvx.c +20 -20
- data/ext/csptrf.c +1 -1
- data/ext/csptri.c +1 -1
- data/ext/csptrs.c +1 -1
- data/ext/csrscl.c +2 -2
- data/ext/cstedc.c +10 -10
- data/ext/cstegr.c +18 -18
- data/ext/cstein.c +14 -14
- data/ext/cstemr.c +22 -22
- data/ext/csteqr.c +10 -10
- data/ext/csycon.c +12 -12
- data/ext/csyconv.c +12 -12
- data/ext/csyequb.c +1 -1
- data/ext/csymv.c +13 -13
- data/ext/csyr.c +4 -4
- data/ext/csyrfs.c +31 -31
- data/ext/csyrfsx.c +43 -43
- data/ext/csysv.c +10 -10
- data/ext/csysvx.c +15 -15
- data/ext/csysvxx.c +41 -41
- data/ext/csyswapr.c +2 -2
- data/ext/csytf2.c +1 -1
- data/ext/csytrf.c +2 -2
- data/ext/csytri.c +1 -1
- data/ext/csytri2.c +3 -3
- data/ext/csytri2x.c +2 -2
- data/ext/csytrs.c +10 -10
- data/ext/csytrs2.c +10 -10
- data/ext/ctbcon.c +3 -3
- data/ext/ctbrfs.c +14 -14
- data/ext/ctbtrs.c +2 -2
- data/ext/ctfsm.c +5 -5
- data/ext/ctftri.c +1 -1
- data/ext/ctfttp.c +1 -1
- data/ext/ctfttr.c +1 -1
- data/ext/ctgevc.c +32 -32
- data/ext/ctgex2.c +14 -14
- data/ext/ctgexc.c +25 -25
- data/ext/ctgsen.c +37 -37
- data/ext/ctgsja.c +26 -26
- data/ext/ctgsna.c +24 -24
- data/ext/ctgsy2.c +22 -22
- data/ext/ctgsyl.c +42 -42
- data/ext/ctpcon.c +2 -2
- data/ext/ctprfs.c +13 -13
- data/ext/ctptri.c +1 -1
- data/ext/ctptrs.c +3 -3
- data/ext/ctpttf.c +1 -1
- data/ext/ctpttr.c +1 -1
- data/ext/ctrcon.c +3 -3
- data/ext/ctrevc.c +12 -12
- data/ext/ctrexc.c +1 -1
- data/ext/ctrrfs.c +11 -11
- data/ext/ctrsen.c +13 -13
- data/ext/ctrsna.c +20 -20
- data/ext/ctrsyl.c +11 -11
- data/ext/ctrti2.c +1 -1
- data/ext/ctrtri.c +1 -1
- data/ext/ctrtrs.c +10 -10
- data/ext/ctrttf.c +1 -1
- data/ext/ctrttp.c +1 -1
- data/ext/cunbdb.c +15 -15
- data/ext/cuncsd.c +27 -27
- data/ext/cung2l.c +9 -9
- data/ext/cung2r.c +9 -9
- data/ext/cungbr.c +1 -1
- data/ext/cunghr.c +7 -7
- data/ext/cungl2.c +1 -1
- data/ext/cunglq.c +9 -9
- data/ext/cungql.c +9 -9
- data/ext/cungqr.c +9 -9
- data/ext/cungr2.c +1 -1
- data/ext/cungrq.c +9 -9
- data/ext/cungtr.c +6 -6
- data/ext/cunm2l.c +12 -12
- data/ext/cunm2r.c +12 -12
- data/ext/cunmbr.c +3 -3
- data/ext/cunmhr.c +12 -12
- data/ext/cunml2.c +1 -1
- data/ext/cunmlq.c +7 -7
- data/ext/cunmql.c +12 -12
- data/ext/cunmqr.c +12 -12
- data/ext/cunmr2.c +1 -1
- data/ext/cunmr3.c +10 -10
- data/ext/cunmrq.c +7 -7
- data/ext/cunmrz.c +10 -10
- data/ext/cunmtr.c +17 -17
- data/ext/cupgtr.c +8 -8
- data/ext/cupmtr.c +2 -2
- data/ext/dbbcsd.c +29 -29
- data/ext/dbdsdc.c +6 -6
- data/ext/dbdsqr.c +20 -20
- data/ext/ddisna.c +1 -1
- data/ext/dgbbrd.c +12 -12
- data/ext/dgbcon.c +13 -13
- data/ext/dgbequ.c +3 -3
- data/ext/dgbequb.c +2 -2
- data/ext/dgbrfs.c +22 -22
- data/ext/dgbrfsx.c +43 -43
- data/ext/dgbsv.c +2 -2
- data/ext/dgbsvx.c +25 -25
- data/ext/dgbsvxx.c +36 -36
- data/ext/dgbtf2.c +3 -3
- data/ext/dgbtrf.c +3 -3
- data/ext/dgbtrs.c +11 -11
- data/ext/dgebak.c +11 -11
- data/ext/dgebal.c +1 -1
- data/ext/dgebd2.c +1 -1
- data/ext/dgebrd.c +1 -1
- data/ext/dgecon.c +1 -1
- data/ext/dgees.c +3 -3
- data/ext/dgeesx.c +4 -4
- data/ext/dgeev.c +3 -3
- data/ext/dgeevx.c +5 -5
- data/ext/dgegs.c +2 -2
- data/ext/dgegv.c +3 -3
- data/ext/dgehd2.c +1 -1
- data/ext/dgehrd.c +2 -2
- data/ext/dgejsv.c +16 -16
- data/ext/dgelqf.c +6 -6
- data/ext/dgels.c +2 -2
- data/ext/dgelsd.c +7 -7
- data/ext/dgelss.c +2 -2
- data/ext/dgelsx.c +12 -12
- data/ext/dgelsy.c +12 -12
- data/ext/dgeql2.c +1 -1
- data/ext/dgeqlf.c +1 -1
- data/ext/dgeqp3.c +11 -11
- data/ext/dgeqpf.c +11 -11
- data/ext/dgeqr2.c +1 -1
- data/ext/dgeqr2p.c +1 -1
- data/ext/dgeqrf.c +1 -1
- data/ext/dgeqrfp.c +1 -1
- data/ext/dgerfs.c +31 -31
- data/ext/dgerfsx.c +25 -25
- data/ext/dgerqf.c +6 -6
- data/ext/dgesc2.c +13 -13
- data/ext/dgesdd.c +3 -3
- data/ext/dgesvd.c +4 -4
- data/ext/dgesvj.c +15 -15
- data/ext/dgesvx.c +32 -32
- data/ext/dgesvxx.c +26 -26
- data/ext/dgetf2.c +1 -1
- data/ext/dgetrf.c +1 -1
- data/ext/dgetri.c +10 -10
- data/ext/dgetrs.c +10 -10
- data/ext/dggbak.c +11 -11
- data/ext/dggbal.c +11 -11
- data/ext/dgges.c +15 -15
- data/ext/dggesx.c +6 -6
- data/ext/dggev.c +3 -3
- data/ext/dggevx.c +4 -4
- data/ext/dgghrd.c +14 -14
- data/ext/dggqrf.c +9 -9
- data/ext/dggrqf.c +1 -1
- data/ext/dggsvd.c +3 -3
- data/ext/dggsvp.c +4 -4
- data/ext/dgsvj0.c +20 -20
- data/ext/dgsvj1.c +26 -26
- data/ext/dgtcon.c +20 -20
- data/ext/dgtrfs.c +48 -48
- data/ext/dgtsv.c +8 -8
- data/ext/dgtsvx.c +55 -55
- data/ext/dgttrs.c +19 -19
- data/ext/dgtts2.c +20 -20
- data/ext/dhgeqz.c +27 -27
- data/ext/dhsein.c +42 -42
- data/ext/dhseqr.c +4 -4
- data/ext/dla_gbamv.c +16 -16
- data/ext/dla_gbrcond.c +25 -25
- data/ext/dla_gbrfsx_extended.c +56 -56
- data/ext/dla_gbrpvgrw.c +13 -13
- data/ext/dla_geamv.c +4 -4
- data/ext/dla_gercond.c +31 -31
- data/ext/dla_gerfsx_extended.c +70 -70
- data/ext/dla_lin_berr.c +14 -14
- data/ext/dla_porcond.c +15 -15
- data/ext/dla_porfsx_extended.c +74 -74
- data/ext/dla_porpvgrw.c +2 -2
- data/ext/dla_rpvgrw.c +12 -12
- data/ext/dla_syamv.c +12 -12
- data/ext/dla_syrcond.c +31 -31
- data/ext/dla_syrfsx_extended.c +82 -82
- data/ext/dla_syrpvgrw.c +14 -14
- data/ext/dla_wwaddw.c +11 -11
- data/ext/dlabad.c +1 -1
- data/ext/dlabrd.c +2 -2
- data/ext/dlacn2.c +2 -2
- data/ext/dlacpy.c +1 -1
- data/ext/dlaebz.c +43 -43
- data/ext/dlaed0.c +2 -2
- data/ext/dlaed1.c +20 -20
- data/ext/dlaed2.c +21 -21
- data/ext/dlaed3.c +30 -30
- data/ext/dlaed4.c +12 -12
- data/ext/dlaed5.c +11 -11
- data/ext/dlaed6.c +12 -12
- data/ext/dlaed7.c +35 -35
- data/ext/dlaed8.c +16 -16
- data/ext/dlaed9.c +14 -14
- data/ext/dlaeda.c +31 -31
- data/ext/dlaein.c +13 -13
- data/ext/dlaexc.c +14 -14
- data/ext/dlag2s.c +2 -2
- data/ext/dlags2.c +4 -4
- data/ext/dlagtf.c +10 -10
- data/ext/dlagtm.c +21 -21
- data/ext/dlagts.c +13 -13
- data/ext/dlahqr.c +6 -6
- data/ext/dlahr2.c +1 -1
- data/ext/dlahrd.c +1 -1
- data/ext/dlaic1.c +12 -12
- data/ext/dlaln2.c +16 -16
- data/ext/dlals0.c +37 -37
- data/ext/dlalsa.c +72 -72
- data/ext/dlalsd.c +4 -4
- data/ext/dlamrg.c +1 -1
- data/ext/dlaneg.c +1 -1
- data/ext/dlangb.c +3 -3
- data/ext/dlange.c +1 -1
- data/ext/dlangt.c +10 -10
- data/ext/dlanhs.c +1 -1
- data/ext/dlansb.c +2 -2
- data/ext/dlansf.c +3 -3
- data/ext/dlansp.c +3 -3
- data/ext/dlanst.c +1 -1
- data/ext/dlansy.c +2 -2
- data/ext/dlantb.c +2 -2
- data/ext/dlantp.c +2 -2
- data/ext/dlantr.c +3 -3
- data/ext/dlapll.c +10 -10
- data/ext/dlapmr.c +1 -1
- data/ext/dlapmt.c +11 -11
- data/ext/dlaqgb.c +2 -2
- data/ext/dlaqge.c +10 -10
- data/ext/dlaqp2.c +10 -10
- data/ext/dlaqps.c +20 -20
- data/ext/dlaqr0.c +3 -3
- data/ext/dlaqr1.c +2 -2
- data/ext/dlaqr2.c +18 -18
- data/ext/dlaqr3.c +18 -18
- data/ext/dlaqr4.c +3 -3
- data/ext/dlaqr5.c +9 -9
- data/ext/dlaqsb.c +13 -13
- data/ext/dlaqsp.c +2 -2
- data/ext/dlaqsy.c +12 -12
- data/ext/dlaqtr.c +12 -12
- data/ext/dlar1v.c +15 -15
- data/ext/dlar2v.c +19 -19
- data/ext/dlarf.c +2 -2
- data/ext/dlarfb.c +16 -16
- data/ext/dlarfg.c +1 -1
- data/ext/dlarfgp.c +1 -1
- data/ext/dlarft.c +2 -2
- data/ext/dlarfx.c +2 -2
- data/ext/dlargv.c +2 -2
- data/ext/dlarnv.c +1 -1
- data/ext/dlarra.c +20 -20
- data/ext/dlarrb.c +22 -22
- data/ext/dlarrc.c +13 -13
- data/ext/dlarrd.c +25 -25
- data/ext/dlarre.c +17 -17
- data/ext/dlarrf.c +21 -21
- data/ext/dlarrj.c +23 -23
- data/ext/dlarrk.c +3 -3
- data/ext/dlarrv.c +40 -40
- data/ext/dlarscl2.c +8 -8
- data/ext/dlartv.c +20 -20
- data/ext/dlaruv.c +1 -1
- data/ext/dlarz.c +11 -11
- data/ext/dlarzb.c +14 -14
- data/ext/dlarzt.c +2 -2
- data/ext/dlascl.c +4 -4
- data/ext/dlascl2.c +8 -8
- data/ext/dlasd0.c +3 -3
- data/ext/dlasd1.c +13 -13
- data/ext/dlasd2.c +18 -18
- data/ext/dlasd3.c +15 -15
- data/ext/dlasd4.c +12 -12
- data/ext/dlasd5.c +11 -11
- data/ext/dlasd6.c +14 -14
- data/ext/dlasd7.c +25 -25
- data/ext/dlasd8.c +27 -27
- data/ext/dlasda.c +5 -5
- data/ext/dlasdq.c +20 -20
- data/ext/dlaset.c +3 -3
- data/ext/dlasq3.c +8 -8
- data/ext/dlasq4.c +5 -5
- data/ext/dlasq5.c +3 -3
- data/ext/dlasq6.c +1 -1
- data/ext/dlasr.c +2 -2
- data/ext/dlasrt.c +1 -1
- data/ext/dlassq.c +2 -2
- data/ext/dlaswp.c +2 -2
- data/ext/dlasy2.c +24 -24
- data/ext/dlasyf.c +1 -1
- data/ext/dlat2s.c +1 -1
- data/ext/dlatbs.c +14 -14
- data/ext/dlatdf.c +21 -21
- data/ext/dlatps.c +12 -12
- data/ext/dlatrd.c +1 -1
- data/ext/dlatrs.c +15 -15
- data/ext/dlatrz.c +1 -1
- data/ext/dlatzm.c +2 -2
- data/ext/dlauu2.c +1 -1
- data/ext/dlauum.c +1 -1
- data/ext/dopgtr.c +8 -8
- data/ext/dopmtr.c +2 -2
- data/ext/dorbdb.c +15 -15
- data/ext/dorcsd.c +13 -13
- data/ext/dorg2l.c +9 -9
- data/ext/dorg2r.c +9 -9
- data/ext/dorgbr.c +1 -1
- data/ext/dorghr.c +7 -7
- data/ext/dorgl2.c +1 -1
- data/ext/dorglq.c +9 -9
- data/ext/dorgql.c +9 -9
- data/ext/dorgqr.c +9 -9
- data/ext/dorgr2.c +1 -1
- data/ext/dorgrq.c +9 -9
- data/ext/dorgtr.c +6 -6
- data/ext/dorm2l.c +12 -12
- data/ext/dorm2r.c +12 -12
- data/ext/dormbr.c +3 -3
- data/ext/dormhr.c +12 -12
- data/ext/dorml2.c +1 -1
- data/ext/dormlq.c +7 -7
- data/ext/dormql.c +12 -12
- data/ext/dormqr.c +12 -12
- data/ext/dormr2.c +1 -1
- data/ext/dormr3.c +10 -10
- data/ext/dormrq.c +7 -7
- data/ext/dormrz.c +10 -10
- data/ext/dormtr.c +17 -17
- data/ext/dpbcon.c +3 -3
- data/ext/dpbequ.c +1 -1
- data/ext/dpbrfs.c +12 -12
- data/ext/dpbstf.c +1 -1
- data/ext/dpbsv.c +1 -1
- data/ext/dpbsvx.c +23 -23
- data/ext/dpbtf2.c +1 -1
- data/ext/dpbtrf.c +1 -1
- data/ext/dpbtrs.c +1 -1
- data/ext/dpftrf.c +2 -2
- data/ext/dpftri.c +2 -2
- data/ext/dpftrs.c +2 -2
- data/ext/dpocon.c +1 -1
- data/ext/dporfs.c +23 -23
- data/ext/dporfsx.c +22 -22
- data/ext/dposv.c +9 -9
- data/ext/dposvx.c +12 -12
- data/ext/dposvxx.c +20 -20
- data/ext/dpotf2.c +1 -1
- data/ext/dpotrf.c +1 -1
- data/ext/dpotri.c +1 -1
- data/ext/dpotrs.c +9 -9
- data/ext/dppcon.c +1 -1
- data/ext/dppequ.c +1 -1
- data/ext/dpprfs.c +20 -20
- data/ext/dppsv.c +1 -1
- data/ext/dppsvx.c +12 -12
- data/ext/dpptrf.c +1 -1
- data/ext/dpptri.c +1 -1
- data/ext/dpptrs.c +1 -1
- data/ext/dpstf2.c +2 -2
- data/ext/dpstrf.c +2 -2
- data/ext/dptcon.c +1 -1
- data/ext/dpteqr.c +10 -10
- data/ext/dptrfs.c +30 -30
- data/ext/dptsv.c +8 -8
- data/ext/dptsvx.c +19 -19
- data/ext/dpttrs.c +8 -8
- data/ext/dptts2.c +8 -8
- data/ext/drscl.c +2 -2
- data/ext/dsbev.c +3 -3
- data/ext/dsbevd.c +9 -9
- data/ext/dsbevx.c +7 -7
- data/ext/dsbgst.c +15 -15
- data/ext/dsbgv.c +15 -15
- data/ext/dsbgvd.c +20 -20
- data/ext/dsbgvx.c +10 -10
- data/ext/dsbtrd.c +13 -13
- data/ext/dsfrk.c +5 -5
- data/ext/dspcon.c +1 -1
- data/ext/dspev.c +2 -2
- data/ext/dspevd.c +7 -7
- data/ext/dspevx.c +7 -7
- data/ext/dspgst.c +10 -10
- data/ext/dspgv.c +2 -2
- data/ext/dspgvd.c +7 -7
- data/ext/dspgvx.c +8 -8
- data/ext/dsposv.c +10 -10
- data/ext/dsprfs.c +10 -10
- data/ext/dspsv.c +1 -1
- data/ext/dspsvx.c +20 -20
- data/ext/dsptrd.c +1 -1
- data/ext/dsptrf.c +1 -1
- data/ext/dsptri.c +1 -1
- data/ext/dsptrs.c +1 -1
- data/ext/dstebz.c +5 -5
- data/ext/dstedc.c +5 -5
- data/ext/dstegr.c +18 -18
- data/ext/dstein.c +14 -14
- data/ext/dstemr.c +22 -22
- data/ext/dsteqr.c +10 -10
- data/ext/dstev.c +1 -1
- data/ext/dstevd.c +7 -7
- data/ext/dstevr.c +16 -16
- data/ext/dstevx.c +6 -6
- data/ext/dsycon.c +12 -12
- data/ext/dsyconv.c +12 -12
- data/ext/dsyequb.c +1 -1
- data/ext/dsyev.c +2 -2
- data/ext/dsyevd.c +1 -1
- data/ext/dsyevr.c +6 -6
- data/ext/dsyevx.c +7 -7
- data/ext/dsygs2.c +2 -2
- data/ext/dsygst.c +2 -2
- data/ext/dsygv.c +13 -13
- data/ext/dsygvd.c +18 -18
- data/ext/dsygvx.c +19 -19
- data/ext/dsyrfs.c +31 -31
- data/ext/dsyrfsx.c +43 -43
- data/ext/dsysv.c +10 -10
- data/ext/dsysvx.c +15 -15
- data/ext/dsysvxx.c +41 -41
- data/ext/dsyswapr.c +2 -2
- data/ext/dsytd2.c +1 -1
- data/ext/dsytf2.c +1 -1
- data/ext/dsytrd.c +2 -2
- data/ext/dsytrf.c +2 -2
- data/ext/dsytri.c +1 -1
- data/ext/dsytri2.c +3 -3
- data/ext/dsytri2x.c +2 -2
- data/ext/dsytrs.c +10 -10
- data/ext/dsytrs2.c +10 -10
- data/ext/dtbcon.c +3 -3
- data/ext/dtbrfs.c +14 -14
- data/ext/dtbtrs.c +2 -2
- data/ext/dtfsm.c +13 -13
- data/ext/dtftri.c +1 -1
- data/ext/dtfttp.c +1 -1
- data/ext/dtfttr.c +2 -2
- data/ext/dtgevc.c +32 -32
- data/ext/dtgex2.c +23 -23
- data/ext/dtgexc.c +24 -24
- data/ext/dtgsen.c +37 -37
- data/ext/dtgsja.c +26 -26
- data/ext/dtgsna.c +24 -24
- data/ext/dtgsy2.c +22 -22
- data/ext/dtgsyl.c +42 -42
- data/ext/dtpcon.c +2 -2
- data/ext/dtprfs.c +13 -13
- data/ext/dtptri.c +1 -1
- data/ext/dtptrs.c +3 -3
- data/ext/dtpttf.c +1 -1
- data/ext/dtpttr.c +1 -1
- data/ext/dtrcon.c +3 -3
- data/ext/dtrevc.c +12 -12
- data/ext/dtrexc.c +1 -1
- data/ext/dtrrfs.c +11 -11
- data/ext/dtrsen.c +13 -13
- data/ext/dtrsna.c +20 -20
- data/ext/dtrsyl.c +11 -11
- data/ext/dtrti2.c +1 -1
- data/ext/dtrtri.c +1 -1
- data/ext/dtrtrs.c +10 -10
- data/ext/dtrttf.c +1 -1
- data/ext/dtrttp.c +1 -1
- data/ext/dzsum1.c +1 -1
- data/ext/icmax1.c +1 -1
- data/ext/ieeeck.c +1 -1
- data/ext/ilaclc.c +1 -1
- data/ext/ilaclr.c +1 -1
- data/ext/iladlc.c +1 -1
- data/ext/iladlr.c +1 -1
- data/ext/ilaenv.c +4 -4
- data/ext/ilaslc.c +1 -1
- data/ext/ilaslr.c +1 -1
- data/ext/ilazlc.c +1 -1
- data/ext/ilazlr.c +1 -1
- data/ext/iparmq.c +3 -3
- data/ext/izmax1.c +1 -1
- data/ext/rb_lapack.c +3146 -3146
- data/ext/rb_lapack.h +1 -1
- data/ext/sbbcsd.c +29 -29
- data/ext/sbdsdc.c +10 -10
- data/ext/sbdsqr.c +20 -20
- data/ext/scsum1.c +1 -1
- data/ext/sdisna.c +1 -1
- data/ext/sgbbrd.c +12 -12
- data/ext/sgbcon.c +13 -13
- data/ext/sgbequ.c +3 -3
- data/ext/sgbequb.c +2 -2
- data/ext/sgbrfs.c +22 -22
- data/ext/sgbrfsx.c +43 -43
- data/ext/sgbsv.c +2 -2
- data/ext/sgbsvx.c +25 -25
- data/ext/sgbsvxx.c +36 -36
- data/ext/sgbtf2.c +3 -3
- data/ext/sgbtrf.c +3 -3
- data/ext/sgbtrs.c +11 -11
- data/ext/sgebak.c +11 -11
- data/ext/sgebal.c +1 -1
- data/ext/sgebd2.c +1 -1
- data/ext/sgebrd.c +1 -1
- data/ext/sgecon.c +1 -1
- data/ext/sgees.c +3 -3
- data/ext/sgeesx.c +4 -4
- data/ext/sgeev.c +3 -3
- data/ext/sgeevx.c +5 -5
- data/ext/sgegs.c +2 -2
- data/ext/sgegv.c +3 -3
- data/ext/sgehd2.c +1 -1
- data/ext/sgehrd.c +2 -2
- data/ext/sgejsv.c +16 -16
- data/ext/sgelqf.c +6 -6
- data/ext/sgels.c +2 -2
- data/ext/sgelsd.c +7 -7
- data/ext/sgelss.c +2 -2
- data/ext/sgelsx.c +12 -12
- data/ext/sgelsy.c +12 -12
- data/ext/sgeql2.c +1 -1
- data/ext/sgeqlf.c +1 -1
- data/ext/sgeqp3.c +11 -11
- data/ext/sgeqpf.c +11 -11
- data/ext/sgeqr2.c +1 -1
- data/ext/sgeqr2p.c +1 -1
- data/ext/sgeqrf.c +1 -1
- data/ext/sgeqrfp.c +1 -1
- data/ext/sgerfs.c +31 -31
- data/ext/sgerfsx.c +25 -25
- data/ext/sgerqf.c +6 -6
- data/ext/sgesc2.c +13 -13
- data/ext/sgesdd.c +3 -3
- data/ext/sgesvd.c +4 -4
- data/ext/sgesvj.c +15 -15
- data/ext/sgesvx.c +32 -32
- data/ext/sgesvxx.c +26 -26
- data/ext/sgetf2.c +1 -1
- data/ext/sgetrf.c +1 -1
- data/ext/sgetri.c +10 -10
- data/ext/sgetrs.c +10 -10
- data/ext/sggbak.c +11 -11
- data/ext/sggbal.c +11 -11
- data/ext/sgges.c +15 -15
- data/ext/sggesx.c +6 -6
- data/ext/sggev.c +3 -3
- data/ext/sggevx.c +4 -4
- data/ext/sgghrd.c +14 -14
- data/ext/sggqrf.c +9 -9
- data/ext/sggrqf.c +1 -1
- data/ext/sggsvd.c +3 -3
- data/ext/sggsvp.c +4 -4
- data/ext/sgsvj0.c +20 -20
- data/ext/sgsvj1.c +26 -26
- data/ext/sgtcon.c +20 -20
- data/ext/sgtrfs.c +48 -48
- data/ext/sgtsv.c +8 -8
- data/ext/sgtsvx.c +55 -55
- data/ext/sgttrs.c +19 -19
- data/ext/sgtts2.c +20 -20
- data/ext/shgeqz.c +27 -27
- data/ext/shsein.c +42 -42
- data/ext/shseqr.c +4 -4
- data/ext/sla_gbamv.c +16 -16
- data/ext/sla_gbrcond.c +25 -25
- data/ext/sla_gbrfsx_extended.c +66 -66
- data/ext/sla_gbrpvgrw.c +13 -13
- data/ext/sla_geamv.c +4 -4
- data/ext/sla_gercond.c +31 -31
- data/ext/sla_gerfsx_extended.c +82 -82
- data/ext/sla_lin_berr.c +14 -14
- data/ext/sla_porcond.c +15 -15
- data/ext/sla_porfsx_extended.c +74 -74
- data/ext/sla_porpvgrw.c +2 -2
- data/ext/sla_rpvgrw.c +12 -12
- data/ext/sla_syamv.c +12 -12
- data/ext/sla_syrcond.c +31 -31
- data/ext/sla_syrfsx_extended.c +82 -82
- data/ext/sla_syrpvgrw.c +14 -14
- data/ext/sla_wwaddw.c +11 -11
- data/ext/slabad.c +1 -1
- data/ext/slabrd.c +2 -2
- data/ext/slacn2.c +2 -2
- data/ext/slacpy.c +1 -1
- data/ext/slaebz.c +43 -43
- data/ext/slaed0.c +2 -2
- data/ext/slaed1.c +20 -20
- data/ext/slaed2.c +21 -21
- data/ext/slaed3.c +30 -30
- data/ext/slaed4.c +12 -12
- data/ext/slaed5.c +11 -11
- data/ext/slaed6.c +12 -12
- data/ext/slaed7.c +35 -35
- data/ext/slaed8.c +16 -16
- data/ext/slaed9.c +14 -14
- data/ext/slaeda.c +31 -31
- data/ext/slaein.c +13 -13
- data/ext/slaexc.c +14 -14
- data/ext/slags2.c +4 -4
- data/ext/slagtf.c +10 -10
- data/ext/slagtm.c +21 -21
- data/ext/slagts.c +13 -13
- data/ext/slahqr.c +6 -6
- data/ext/slahr2.c +1 -1
- data/ext/slahrd.c +3 -3
- data/ext/slaic1.c +12 -12
- data/ext/slaln2.c +16 -16
- data/ext/slals0.c +37 -37
- data/ext/slalsa.c +72 -72
- data/ext/slalsd.c +4 -4
- data/ext/slamrg.c +2 -2
- data/ext/slaneg.c +1 -1
- data/ext/slangb.c +3 -3
- data/ext/slange.c +1 -1
- data/ext/slangt.c +10 -10
- data/ext/slanhs.c +1 -1
- data/ext/slansb.c +2 -2
- data/ext/slansf.c +3 -3
- data/ext/slansp.c +3 -3
- data/ext/slanst.c +1 -1
- data/ext/slansy.c +2 -2
- data/ext/slantb.c +2 -2
- data/ext/slantp.c +2 -2
- data/ext/slantr.c +3 -3
- data/ext/slapll.c +10 -10
- data/ext/slapmr.c +1 -1
- data/ext/slapmt.c +11 -11
- data/ext/slaqgb.c +2 -2
- data/ext/slaqge.c +10 -10
- data/ext/slaqp2.c +10 -10
- data/ext/slaqps.c +20 -20
- data/ext/slaqr0.c +3 -3
- data/ext/slaqr1.c +2 -2
- data/ext/slaqr2.c +18 -18
- data/ext/slaqr3.c +18 -18
- data/ext/slaqr4.c +3 -3
- data/ext/slaqr5.c +9 -9
- data/ext/slaqsb.c +13 -13
- data/ext/slaqsp.c +2 -2
- data/ext/slaqsy.c +12 -12
- data/ext/slaqtr.c +12 -12
- data/ext/slar1v.c +15 -15
- data/ext/slar2v.c +19 -19
- data/ext/slarf.c +2 -2
- data/ext/slarfb.c +16 -16
- data/ext/slarfg.c +1 -1
- data/ext/slarfgp.c +1 -1
- data/ext/slarft.c +2 -2
- data/ext/slarfx.c +2 -2
- data/ext/slargv.c +2 -2
- data/ext/slarnv.c +1 -1
- data/ext/slarra.c +20 -20
- data/ext/slarrb.c +22 -22
- data/ext/slarrc.c +13 -13
- data/ext/slarrd.c +25 -25
- data/ext/slarre.c +17 -17
- data/ext/slarrf.c +21 -21
- data/ext/slarrj.c +23 -23
- data/ext/slarrk.c +3 -3
- data/ext/slarrv.c +40 -40
- data/ext/slarscl2.c +8 -8
- data/ext/slartv.c +20 -20
- data/ext/slaruv.c +1 -1
- data/ext/slarz.c +11 -11
- data/ext/slarzb.c +14 -14
- data/ext/slarzt.c +2 -2
- data/ext/slascl.c +4 -4
- data/ext/slascl2.c +8 -8
- data/ext/slasd0.c +3 -3
- data/ext/slasd1.c +12 -12
- data/ext/slasd2.c +18 -18
- data/ext/slasd3.c +15 -15
- data/ext/slasd4.c +12 -12
- data/ext/slasd5.c +11 -11
- data/ext/slasd6.c +14 -14
- data/ext/slasd7.c +25 -25
- data/ext/slasd8.c +27 -27
- data/ext/slasda.c +5 -5
- data/ext/slasdq.c +20 -20
- data/ext/slaset.c +3 -3
- data/ext/slasq3.c +8 -8
- data/ext/slasq4.c +5 -5
- data/ext/slasq5.c +3 -3
- data/ext/slasq6.c +1 -1
- data/ext/slasr.c +2 -2
- data/ext/slasrt.c +1 -1
- data/ext/slassq.c +2 -2
- data/ext/slaswp.c +2 -2
- data/ext/slasy2.c +24 -24
- data/ext/slasyf.c +1 -1
- data/ext/slatbs.c +14 -14
- data/ext/slatdf.c +21 -21
- data/ext/slatps.c +12 -12
- data/ext/slatrd.c +1 -1
- data/ext/slatrs.c +15 -15
- data/ext/slatrz.c +1 -1
- data/ext/slatzm.c +2 -2
- data/ext/slauu2.c +1 -1
- data/ext/slauum.c +1 -1
- data/ext/sopgtr.c +8 -8
- data/ext/sopmtr.c +2 -2
- data/ext/sorbdb.c +15 -15
- data/ext/sorcsd.c +13 -13
- data/ext/sorg2l.c +9 -9
- data/ext/sorg2r.c +9 -9
- data/ext/sorgbr.c +1 -1
- data/ext/sorghr.c +7 -7
- data/ext/sorgl2.c +1 -1
- data/ext/sorglq.c +9 -9
- data/ext/sorgql.c +9 -9
- data/ext/sorgqr.c +9 -9
- data/ext/sorgr2.c +1 -1
- data/ext/sorgrq.c +9 -9
- data/ext/sorgtr.c +6 -6
- data/ext/sorm2l.c +12 -12
- data/ext/sorm2r.c +12 -12
- data/ext/sormbr.c +3 -3
- data/ext/sormhr.c +12 -12
- data/ext/sorml2.c +1 -1
- data/ext/sormlq.c +7 -7
- data/ext/sormql.c +12 -12
- data/ext/sormqr.c +12 -12
- data/ext/sormr2.c +1 -1
- data/ext/sormr3.c +10 -10
- data/ext/sormrq.c +7 -7
- data/ext/sormrz.c +10 -10
- data/ext/sormtr.c +17 -17
- data/ext/spbcon.c +3 -3
- data/ext/spbequ.c +1 -1
- data/ext/spbrfs.c +12 -12
- data/ext/spbstf.c +1 -1
- data/ext/spbsv.c +1 -1
- data/ext/spbsvx.c +23 -23
- data/ext/spbtf2.c +1 -1
- data/ext/spbtrf.c +1 -1
- data/ext/spbtrs.c +1 -1
- data/ext/spftrf.c +2 -2
- data/ext/spftri.c +2 -2
- data/ext/spftrs.c +2 -2
- data/ext/spocon.c +1 -1
- data/ext/sporfs.c +23 -23
- data/ext/sporfsx.c +22 -22
- data/ext/sposv.c +9 -9
- data/ext/sposvx.c +12 -12
- data/ext/sposvxx.c +20 -20
- data/ext/spotf2.c +1 -1
- data/ext/spotrf.c +1 -1
- data/ext/spotri.c +1 -1
- data/ext/spotrs.c +9 -9
- data/ext/sppcon.c +1 -1
- data/ext/sppequ.c +1 -1
- data/ext/spprfs.c +20 -20
- data/ext/sppsv.c +1 -1
- data/ext/sppsvx.c +12 -12
- data/ext/spptrf.c +1 -1
- data/ext/spptri.c +1 -1
- data/ext/spptrs.c +1 -1
- data/ext/spstf2.c +2 -2
- data/ext/spstrf.c +2 -2
- data/ext/sptcon.c +1 -1
- data/ext/spteqr.c +10 -10
- data/ext/sptrfs.c +30 -30
- data/ext/sptsv.c +8 -8
- data/ext/sptsvx.c +19 -19
- data/ext/spttrs.c +8 -8
- data/ext/sptts2.c +8 -8
- data/ext/srscl.c +2 -2
- data/ext/ssbev.c +3 -3
- data/ext/ssbevd.c +9 -9
- data/ext/ssbevx.c +7 -7
- data/ext/ssbgst.c +15 -15
- data/ext/ssbgv.c +15 -15
- data/ext/ssbgvd.c +20 -20
- data/ext/ssbgvx.c +10 -10
- data/ext/ssbtrd.c +13 -13
- data/ext/ssfrk.c +5 -5
- data/ext/sspcon.c +1 -1
- data/ext/sspev.c +2 -2
- data/ext/sspevd.c +7 -7
- data/ext/sspevx.c +7 -7
- data/ext/sspgst.c +10 -10
- data/ext/sspgv.c +2 -2
- data/ext/sspgvd.c +7 -7
- data/ext/sspgvx.c +8 -8
- data/ext/ssprfs.c +10 -10
- data/ext/sspsv.c +1 -1
- data/ext/sspsvx.c +20 -20
- data/ext/ssptrd.c +1 -1
- data/ext/ssptrf.c +1 -1
- data/ext/ssptri.c +1 -1
- data/ext/ssptrs.c +1 -1
- data/ext/sstebz.c +5 -5
- data/ext/sstedc.c +5 -5
- data/ext/sstegr.c +18 -18
- data/ext/sstein.c +14 -14
- data/ext/sstemr.c +22 -22
- data/ext/ssteqr.c +10 -10
- data/ext/sstev.c +1 -1
- data/ext/sstevd.c +7 -7
- data/ext/sstevr.c +16 -16
- data/ext/sstevx.c +6 -6
- data/ext/ssycon.c +12 -12
- data/ext/ssyconv.c +12 -12
- data/ext/ssyequb.c +1 -1
- data/ext/ssyev.c +2 -2
- data/ext/ssyevd.c +1 -1
- data/ext/ssyevr.c +6 -6
- data/ext/ssyevx.c +7 -7
- data/ext/ssygs2.c +2 -2
- data/ext/ssygst.c +2 -2
- data/ext/ssygv.c +13 -13
- data/ext/ssygvd.c +18 -18
- data/ext/ssygvx.c +22 -22
- data/ext/ssyrfs.c +31 -31
- data/ext/ssyrfsx.c +43 -43
- data/ext/ssysv.c +10 -10
- data/ext/ssysvx.c +15 -15
- data/ext/ssysvxx.c +41 -41
- data/ext/ssyswapr.c +2 -2
- data/ext/ssytd2.c +1 -1
- data/ext/ssytf2.c +1 -1
- data/ext/ssytrd.c +2 -2
- data/ext/ssytrf.c +2 -2
- data/ext/ssytri.c +1 -1
- data/ext/ssytri2.c +11 -11
- data/ext/ssytri2x.c +2 -2
- data/ext/ssytrs.c +10 -10
- data/ext/ssytrs2.c +10 -10
- data/ext/stbcon.c +3 -3
- data/ext/stbrfs.c +14 -14
- data/ext/stbtrs.c +2 -2
- data/ext/stfsm.c +13 -13
- data/ext/stftri.c +1 -1
- data/ext/stfttp.c +1 -1
- data/ext/stfttr.c +1 -1
- data/ext/stgevc.c +32 -32
- data/ext/stgex2.c +16 -16
- data/ext/stgexc.c +26 -26
- data/ext/stgsen.c +37 -37
- data/ext/stgsja.c +26 -26
- data/ext/stgsna.c +24 -24
- data/ext/stgsy2.c +22 -22
- data/ext/stgsyl.c +42 -42
- data/ext/stpcon.c +2 -2
- data/ext/stprfs.c +13 -13
- data/ext/stptri.c +1 -1
- data/ext/stptrs.c +3 -3
- data/ext/stpttf.c +1 -1
- data/ext/stpttr.c +1 -1
- data/ext/strcon.c +3 -3
- data/ext/strevc.c +12 -12
- data/ext/strexc.c +1 -1
- data/ext/strrfs.c +11 -11
- data/ext/strsen.c +13 -13
- data/ext/strsna.c +20 -20
- data/ext/strsyl.c +11 -11
- data/ext/strti2.c +1 -1
- data/ext/strtri.c +1 -1
- data/ext/strtrs.c +10 -10
- data/ext/strttf.c +1 -1
- data/ext/strttp.c +1 -1
- data/ext/xerbla_array.c +1 -1
- data/ext/zbbcsd.c +34 -34
- data/ext/zbdsqr.c +20 -20
- data/ext/zcposv.c +10 -10
- data/ext/zdrscl.c +2 -2
- data/ext/zgbbrd.c +12 -12
- data/ext/zgbcon.c +13 -13
- data/ext/zgbequ.c +3 -3
- data/ext/zgbequb.c +2 -2
- data/ext/zgbrfs.c +22 -22
- data/ext/zgbrfsx.c +43 -43
- data/ext/zgbsv.c +2 -2
- data/ext/zgbsvx.c +25 -25
- data/ext/zgbsvxx.c +36 -36
- data/ext/zgbtf2.c +3 -3
- data/ext/zgbtrf.c +3 -3
- data/ext/zgbtrs.c +11 -11
- data/ext/zgebak.c +11 -11
- data/ext/zgebal.c +1 -1
- data/ext/zgebd2.c +1 -1
- data/ext/zgebrd.c +1 -1
- data/ext/zgecon.c +1 -1
- data/ext/zgees.c +3 -3
- data/ext/zgeesx.c +4 -4
- data/ext/zgeev.c +4 -4
- data/ext/zgeevx.c +5 -5
- data/ext/zgegs.c +2 -2
- data/ext/zgegv.c +3 -3
- data/ext/zgehd2.c +1 -1
- data/ext/zgehrd.c +2 -2
- data/ext/zgelqf.c +6 -6
- data/ext/zgels.c +2 -2
- data/ext/zgelsd.c +9 -9
- data/ext/zgelss.c +2 -2
- data/ext/zgelsx.c +12 -12
- data/ext/zgelsy.c +12 -12
- data/ext/zgeql2.c +1 -1
- data/ext/zgeqlf.c +1 -1
- data/ext/zgeqp3.c +11 -11
- data/ext/zgeqpf.c +11 -11
- data/ext/zgeqr2.c +1 -1
- data/ext/zgeqr2p.c +1 -1
- data/ext/zgeqrf.c +1 -1
- data/ext/zgeqrfp.c +1 -1
- data/ext/zgerfs.c +31 -31
- data/ext/zgerfsx.c +25 -25
- data/ext/zgerqf.c +6 -6
- data/ext/zgesc2.c +13 -13
- data/ext/zgesdd.c +3 -3
- data/ext/zgesvd.c +4 -4
- data/ext/zgesvx.c +32 -32
- data/ext/zgesvxx.c +26 -26
- data/ext/zgetf2.c +1 -1
- data/ext/zgetrf.c +1 -1
- data/ext/zgetri.c +10 -10
- data/ext/zgetrs.c +10 -10
- data/ext/zggbak.c +11 -11
- data/ext/zggbal.c +11 -11
- data/ext/zgges.c +15 -15
- data/ext/zggesx.c +6 -6
- data/ext/zggev.c +3 -3
- data/ext/zggevx.c +5 -5
- data/ext/zgghrd.c +14 -14
- data/ext/zggqrf.c +9 -9
- data/ext/zggrqf.c +1 -1
- data/ext/zggsvd.c +3 -3
- data/ext/zggsvp.c +4 -4
- data/ext/zgtcon.c +20 -20
- data/ext/zgtrfs.c +48 -48
- data/ext/zgtsv.c +8 -8
- data/ext/zgtsvx.c +55 -55
- data/ext/zgttrs.c +19 -19
- data/ext/zgtts2.c +20 -20
- data/ext/zhbev.c +3 -3
- data/ext/zhbevd.c +9 -9
- data/ext/zhbevx.c +7 -7
- data/ext/zhbgst.c +15 -15
- data/ext/zhbgv.c +15 -15
- data/ext/zhbgvd.c +20 -20
- data/ext/zhbgvx.c +9 -9
- data/ext/zhbtrd.c +13 -13
- data/ext/zhecon.c +12 -12
- data/ext/zheequb.c +1 -1
- data/ext/zheev.c +2 -2
- data/ext/zheevd.c +7 -7
- data/ext/zheevr.c +12 -12
- data/ext/zheevx.c +7 -7
- data/ext/zhegs2.c +2 -2
- data/ext/zhegst.c +2 -2
- data/ext/zhegv.c +13 -13
- data/ext/zhegvd.c +18 -18
- data/ext/zhegvx.c +19 -19
- data/ext/zherfs.c +31 -31
- data/ext/zherfsx.c +43 -43
- data/ext/zhesv.c +10 -10
- data/ext/zhesvx.c +15 -15
- data/ext/zhesvxx.c +41 -41
- data/ext/zhetd2.c +1 -1
- data/ext/zhetf2.c +1 -1
- data/ext/zhetrd.c +2 -2
- data/ext/zhetrf.c +2 -2
- data/ext/zhetri.c +1 -1
- data/ext/zhetrs.c +10 -10
- data/ext/zhetrs2.c +10 -10
- data/ext/zhfrk.c +6 -6
- data/ext/zhgeqz.c +27 -27
- data/ext/zhpcon.c +1 -1
- data/ext/zhpev.c +2 -2
- data/ext/zhpevd.c +2 -2
- data/ext/zhpevx.c +7 -7
- data/ext/zhpgst.c +10 -10
- data/ext/zhpgv.c +2 -2
- data/ext/zhpgvd.c +11 -11
- data/ext/zhpgvx.c +8 -8
- data/ext/zhprfs.c +10 -10
- data/ext/zhpsv.c +1 -1
- data/ext/zhpsvx.c +20 -20
- data/ext/zhptrd.c +1 -1
- data/ext/zhptrf.c +1 -1
- data/ext/zhptri.c +1 -1
- data/ext/zhptrs.c +1 -1
- data/ext/zhsein.c +21 -21
- data/ext/zhseqr.c +4 -4
- data/ext/zla_gbamv.c +14 -14
- data/ext/zla_gbrcond_c.c +33 -33
- data/ext/zla_gbrcond_x.c +32 -32
- data/ext/zla_gbrfsx_extended.c +78 -78
- data/ext/zla_gbrpvgrw.c +13 -13
- data/ext/zla_geamv.c +4 -4
- data/ext/zla_gercond_c.c +31 -31
- data/ext/zla_gercond_x.c +30 -30
- data/ext/zla_gerfsx_extended.c +70 -70
- data/ext/zla_heamv.c +12 -12
- data/ext/zla_hercond_c.c +31 -31
- data/ext/zla_hercond_x.c +30 -30
- data/ext/zla_herfsx_extended.c +82 -82
- data/ext/zla_herpvgrw.c +14 -14
- data/ext/zla_lin_berr.c +14 -14
- data/ext/zla_porcond_c.c +23 -23
- data/ext/zla_porcond_x.c +22 -22
- data/ext/zla_porfsx_extended.c +74 -74
- data/ext/zla_porpvgrw.c +2 -2
- data/ext/zla_rpvgrw.c +12 -12
- data/ext/zla_syamv.c +12 -12
- data/ext/zla_syrcond_c.c +31 -31
- data/ext/zla_syrcond_x.c +30 -30
- data/ext/zla_syrfsx_extended.c +82 -82
- data/ext/zla_syrpvgrw.c +14 -14
- data/ext/zla_wwaddw.c +11 -11
- data/ext/zlabrd.c +2 -2
- data/ext/zlacn2.c +2 -2
- data/ext/zlacp2.c +1 -1
- data/ext/zlacpy.c +1 -1
- data/ext/zlacrm.c +11 -11
- data/ext/zlacrt.c +12 -12
- data/ext/zlaed7.c +42 -42
- data/ext/zlaed8.c +27 -27
- data/ext/zlaein.c +14 -14
- data/ext/zlag2c.c +2 -2
- data/ext/zlags2.c +5 -5
- data/ext/zlagtm.c +21 -21
- data/ext/zlahef.c +1 -1
- data/ext/zlahqr.c +6 -6
- data/ext/zlahr2.c +1 -1
- data/ext/zlahrd.c +1 -1
- data/ext/zlaic1.c +12 -12
- data/ext/zlals0.c +37 -37
- data/ext/zlalsa.c +72 -72
- data/ext/zlalsd.c +4 -4
- data/ext/zlangb.c +3 -3
- data/ext/zlange.c +1 -1
- data/ext/zlangt.c +10 -10
- data/ext/zlanhb.c +2 -2
- data/ext/zlanhe.c +2 -2
- data/ext/zlanhf.c +3 -3
- data/ext/zlanhp.c +3 -3
- data/ext/zlanhs.c +1 -1
- data/ext/zlanht.c +1 -1
- data/ext/zlansb.c +2 -2
- data/ext/zlansp.c +3 -3
- data/ext/zlansy.c +2 -2
- data/ext/zlantb.c +2 -2
- data/ext/zlantp.c +2 -2
- data/ext/zlantr.c +3 -3
- data/ext/zlapll.c +10 -10
- data/ext/zlapmr.c +1 -1
- data/ext/zlapmt.c +11 -11
- data/ext/zlaqgb.c +2 -2
- data/ext/zlaqge.c +10 -10
- data/ext/zlaqhb.c +2 -2
- data/ext/zlaqhe.c +12 -12
- data/ext/zlaqhp.c +2 -2
- data/ext/zlaqp2.c +10 -10
- data/ext/zlaqps.c +20 -20
- data/ext/zlaqr0.c +17 -17
- data/ext/zlaqr1.c +4 -4
- data/ext/zlaqr2.c +18 -18
- data/ext/zlaqr3.c +18 -18
- data/ext/zlaqr4.c +7 -7
- data/ext/zlaqr5.c +21 -21
- data/ext/zlaqsb.c +13 -13
- data/ext/zlaqsp.c +2 -2
- data/ext/zlaqsy.c +12 -12
- data/ext/zlar1v.c +15 -15
- data/ext/zlar2v.c +19 -19
- data/ext/zlarf.c +2 -2
- data/ext/zlarfb.c +16 -16
- data/ext/zlarfg.c +1 -1
- data/ext/zlarfgp.c +1 -1
- data/ext/zlarft.c +2 -2
- data/ext/zlarfx.c +3 -3
- data/ext/zlargv.c +2 -2
- data/ext/zlarnv.c +1 -1
- data/ext/zlarrv.c +40 -40
- data/ext/zlarscl2.c +8 -8
- data/ext/zlartv.c +20 -20
- data/ext/zlarz.c +11 -11
- data/ext/zlarzb.c +14 -14
- data/ext/zlarzt.c +2 -2
- data/ext/zlascl.c +4 -4
- data/ext/zlascl2.c +8 -8
- data/ext/zlaset.c +4 -4
- data/ext/zlasr.c +2 -2
- data/ext/zlassq.c +2 -2
- data/ext/zlaswp.c +2 -2
- data/ext/zlasyf.c +1 -1
- data/ext/zlat2c.c +1 -1
- data/ext/zlatbs.c +14 -14
- data/ext/zlatdf.c +21 -21
- data/ext/zlatps.c +12 -12
- data/ext/zlatrd.c +1 -1
- data/ext/zlatrs.c +15 -15
- data/ext/zlatrz.c +1 -1
- data/ext/zlatzm.c +3 -3
- data/ext/zlauu2.c +1 -1
- data/ext/zlauum.c +1 -1
- data/ext/zpbcon.c +3 -3
- data/ext/zpbequ.c +1 -1
- data/ext/zpbrfs.c +12 -12
- data/ext/zpbstf.c +1 -1
- data/ext/zpbsv.c +1 -1
- data/ext/zpbsvx.c +23 -23
- data/ext/zpbtf2.c +1 -1
- data/ext/zpbtrf.c +1 -1
- data/ext/zpbtrs.c +1 -1
- data/ext/zpftrf.c +2 -2
- data/ext/zpftri.c +2 -2
- data/ext/zpftrs.c +2 -2
- data/ext/zpocon.c +1 -1
- data/ext/zporfs.c +23 -23
- data/ext/zporfsx.c +22 -22
- data/ext/zposv.c +9 -9
- data/ext/zposvx.c +12 -12
- data/ext/zposvxx.c +20 -20
- data/ext/zpotf2.c +1 -1
- data/ext/zpotrf.c +1 -1
- data/ext/zpotri.c +1 -1
- data/ext/zpotrs.c +9 -9
- data/ext/zppcon.c +1 -1
- data/ext/zppequ.c +1 -1
- data/ext/zpprfs.c +20 -20
- data/ext/zppsv.c +1 -1
- data/ext/zppsvx.c +12 -12
- data/ext/zpptrf.c +1 -1
- data/ext/zpptri.c +1 -1
- data/ext/zpptrs.c +1 -1
- data/ext/zpstf2.c +2 -2
- data/ext/zpstrf.c +2 -2
- data/ext/zptcon.c +1 -1
- data/ext/zpteqr.c +10 -10
- data/ext/zptrfs.c +12 -12
- data/ext/zptsv.c +1 -1
- data/ext/zptsvx.c +19 -19
- data/ext/zpttrs.c +1 -1
- data/ext/zptts2.c +1 -1
- data/ext/zrot.c +11 -11
- data/ext/zspcon.c +1 -1
- data/ext/zspmv.c +15 -15
- data/ext/zspr.c +11 -11
- data/ext/zsprfs.c +10 -10
- data/ext/zspsv.c +1 -1
- data/ext/zspsvx.c +20 -20
- data/ext/zsptrf.c +1 -1
- data/ext/zsptri.c +1 -1
- data/ext/zsptrs.c +1 -1
- data/ext/zstedc.c +10 -10
- data/ext/zstegr.c +18 -18
- data/ext/zstein.c +14 -14
- data/ext/zstemr.c +22 -22
- data/ext/zsteqr.c +10 -10
- data/ext/zsycon.c +12 -12
- data/ext/zsyconv.c +12 -12
- data/ext/zsyequb.c +1 -1
- data/ext/zsymv.c +13 -13
- data/ext/zsyr.c +4 -4
- data/ext/zsyrfs.c +31 -31
- data/ext/zsyrfsx.c +43 -43
- data/ext/zsysv.c +10 -10
- data/ext/zsysvx.c +15 -15
- data/ext/zsysvxx.c +41 -41
- data/ext/zsyswapr.c +2 -2
- data/ext/zsytf2.c +1 -1
- data/ext/zsytrf.c +2 -2
- data/ext/zsytri.c +1 -1
- data/ext/zsytri2.c +3 -3
- data/ext/zsytri2x.c +2 -2
- data/ext/zsytrs.c +10 -10
- data/ext/zsytrs2.c +10 -10
- data/ext/ztbcon.c +3 -3
- data/ext/ztbrfs.c +14 -14
- data/ext/ztbtrs.c +2 -2
- data/ext/ztfsm.c +5 -5
- data/ext/ztftri.c +1 -1
- data/ext/ztfttp.c +1 -1
- data/ext/ztfttr.c +1 -1
- data/ext/ztgevc.c +32 -32
- data/ext/ztgex2.c +14 -14
- data/ext/ztgexc.c +25 -25
- data/ext/ztgsen.c +37 -37
- data/ext/ztgsja.c +26 -26
- data/ext/ztgsna.c +24 -24
- data/ext/ztgsy2.c +22 -22
- data/ext/ztgsyl.c +42 -42
- data/ext/ztpcon.c +2 -2
- data/ext/ztprfs.c +13 -13
- data/ext/ztptri.c +1 -1
- data/ext/ztptrs.c +3 -3
- data/ext/ztpttf.c +1 -1
- data/ext/ztpttr.c +1 -1
- data/ext/ztrcon.c +3 -3
- data/ext/ztrevc.c +12 -12
- data/ext/ztrexc.c +1 -1
- data/ext/ztrrfs.c +11 -11
- data/ext/ztrsen.c +13 -13
- data/ext/ztrsna.c +20 -20
- data/ext/ztrsyl.c +11 -11
- data/ext/ztrti2.c +1 -1
- data/ext/ztrtri.c +1 -1
- data/ext/ztrtrs.c +10 -10
- data/ext/ztrttf.c +1 -1
- data/ext/ztrttp.c +1 -1
- data/ext/zunbdb.c +15 -15
- data/ext/zuncsd.c +27 -27
- data/ext/zung2l.c +9 -9
- data/ext/zung2r.c +9 -9
- data/ext/zungbr.c +1 -1
- data/ext/zunghr.c +7 -7
- data/ext/zungl2.c +1 -1
- data/ext/zunglq.c +9 -9
- data/ext/zungql.c +9 -9
- data/ext/zungqr.c +9 -9
- data/ext/zungr2.c +1 -1
- data/ext/zungrq.c +9 -9
- data/ext/zungtr.c +6 -6
- data/ext/zunm2l.c +12 -12
- data/ext/zunm2r.c +12 -12
- data/ext/zunmbr.c +3 -3
- data/ext/zunmhr.c +12 -12
- data/ext/zunml2.c +1 -1
- data/ext/zunmlq.c +7 -7
- data/ext/zunmql.c +12 -12
- data/ext/zunmqr.c +12 -12
- data/ext/zunmr2.c +1 -1
- data/ext/zunmr3.c +10 -10
- data/ext/zunmrq.c +7 -7
- data/ext/zunmrz.c +10 -10
- data/ext/zunmtr.c +17 -17
- data/ext/zupgtr.c +8 -8
- data/ext/zupmtr.c +2 -2
- metadata +3183 -3329
- data/doc/bd.html +0 -16
- data/doc/c.html +0 -36
- data/doc/cbd.html +0 -161
- data/doc/cgb.html +0 -1865
- data/doc/cge.html +0 -5261
- data/doc/cgg.html +0 -2027
- data/doc/cgt.html +0 -711
- data/doc/chb.html +0 -1031
- data/doc/che.html +0 -3165
- data/doc/chg.html +0 -201
- data/doc/chp.html +0 -1696
- data/doc/chs.html +0 -386
- data/doc/cpb.html +0 -994
- data/doc/cpo.html +0 -1520
- data/doc/cpp.html +0 -770
- data/doc/cpt.html +0 -706
- data/doc/csp.html +0 -905
- data/doc/cst.html +0 -742
- data/doc/csy.html +0 -2194
- data/doc/ctb.html +0 -284
- data/doc/ctg.html +0 -1544
- data/doc/ctp.html +0 -553
- data/doc/ctr.html +0 -1281
- data/doc/ctz.html +0 -211
- data/doc/cun.html +0 -2553
- data/doc/cup.html +0 -166
- data/doc/d.html +0 -35
- data/doc/dbd.html +0 -304
- data/doc/ddi.html +0 -87
- data/doc/dgb.html +0 -1857
- data/doc/dge.html +0 -7267
- data/doc/dgg.html +0 -2102
- data/doc/dgt.html +0 -713
- data/doc/dhg.html +0 -225
- data/doc/dhs.html +0 -414
- data/doc/di.html +0 -14
- data/doc/dop.html +0 -166
- data/doc/dor.html +0 -2540
- data/doc/dpb.html +0 -992
- data/doc/dpo.html +0 -1517
- data/doc/dpp.html +0 -770
- data/doc/dpt.html +0 -675
- data/doc/dsb.html +0 -995
- data/doc/dsp.html +0 -1777
- data/doc/dst.html +0 -1422
- data/doc/dsy.html +0 -3433
- data/doc/dtb.html +0 -284
- data/doc/dtg.html +0 -1730
- data/doc/dtp.html +0 -532
- data/doc/dtr.html +0 -1346
- data/doc/dtz.html +0 -211
- data/doc/gb.html +0 -16
- data/doc/ge.html +0 -16
- data/doc/gg.html +0 -16
- data/doc/gt.html +0 -16
- data/doc/hb.html +0 -14
- data/doc/he.html +0 -14
- data/doc/hg.html +0 -16
- data/doc/hp.html +0 -14
- data/doc/hs.html +0 -16
- data/doc/index.html +0 -53
- data/doc/op.html +0 -14
- data/doc/or.html +0 -14
- data/doc/others.html +0 -1142
- data/doc/pb.html +0 -16
- data/doc/po.html +0 -16
- data/doc/pp.html +0 -16
- data/doc/pt.html +0 -16
- data/doc/s.html +0 -35
- data/doc/sb.html +0 -14
- data/doc/sbd.html +0 -303
- data/doc/sdi.html +0 -87
- data/doc/sgb.html +0 -1863
- data/doc/sge.html +0 -7263
- data/doc/sgg.html +0 -2102
- data/doc/sgt.html +0 -713
- data/doc/shg.html +0 -225
- data/doc/shs.html +0 -414
- data/doc/sop.html +0 -166
- data/doc/sor.html +0 -2540
- data/doc/sp.html +0 -16
- data/doc/spb.html +0 -992
- data/doc/spo.html +0 -1520
- data/doc/spp.html +0 -770
- data/doc/spt.html +0 -675
- data/doc/ssb.html +0 -995
- data/doc/ssp.html +0 -1647
- data/doc/sst.html +0 -1423
- data/doc/ssy.html +0 -3438
- data/doc/st.html +0 -16
- data/doc/stb.html +0 -284
- data/doc/stg.html +0 -1729
- data/doc/stp.html +0 -532
- data/doc/str.html +0 -1346
- data/doc/stz.html +0 -211
- data/doc/sy.html +0 -16
- data/doc/tb.html +0 -16
- data/doc/tg.html +0 -16
- data/doc/tp.html +0 -16
- data/doc/tr.html +0 -16
- data/doc/tz.html +0 -16
- data/doc/un.html +0 -14
- data/doc/up.html +0 -14
- data/doc/z.html +0 -36
- data/doc/zbd.html +0 -161
- data/doc/zgb.html +0 -1862
- data/doc/zge.html +0 -5258
- data/doc/zgg.html +0 -2027
- data/doc/zgt.html +0 -711
- data/doc/zhb.html +0 -1031
- data/doc/zhe.html +0 -3162
- data/doc/zhg.html +0 -201
- data/doc/zhp.html +0 -1697
- data/doc/zhs.html +0 -386
- data/doc/zpb.html +0 -994
- data/doc/zpo.html +0 -1517
- data/doc/zpp.html +0 -770
- data/doc/zpt.html +0 -706
- data/doc/zsp.html +0 -905
- data/doc/zst.html +0 -743
- data/doc/zsy.html +0 -2191
- data/doc/ztb.html +0 -284
- data/doc/ztg.html +0 -1544
- data/doc/ztp.html +0 -553
- data/doc/ztr.html +0 -1281
- data/doc/ztz.html +0 -211
- data/doc/zun.html +0 -2553
- data/doc/zup.html +0 -166
data/doc/dst.html
DELETED
@@ -1,1422 +0,0 @@
|
|
1
|
-
<HTML>
|
2
|
-
<HEAD>
|
3
|
-
<TITLE>DOUBLE PRECISION routines for (real) symmetric tridiagonal matrix</TITLE>
|
4
|
-
</HEAD>
|
5
|
-
<BODY>
|
6
|
-
<A NAME="top"></A>
|
7
|
-
<H1>DOUBLE PRECISION routines for (real) symmetric tridiagonal matrix</H1>
|
8
|
-
<UL>
|
9
|
-
<LI><A HREF="#dstebz">dstebz</A></LI>
|
10
|
-
<LI><A HREF="#dstedc">dstedc</A></LI>
|
11
|
-
<LI><A HREF="#dstegr">dstegr</A></LI>
|
12
|
-
<LI><A HREF="#dstein">dstein</A></LI>
|
13
|
-
<LI><A HREF="#dstemr">dstemr</A></LI>
|
14
|
-
<LI><A HREF="#dsteqr">dsteqr</A></LI>
|
15
|
-
<LI><A HREF="#dsterf">dsterf</A></LI>
|
16
|
-
<LI><A HREF="#dstev">dstev</A></LI>
|
17
|
-
<LI><A HREF="#dstevd">dstevd</A></LI>
|
18
|
-
<LI><A HREF="#dstevr">dstevr</A></LI>
|
19
|
-
<LI><A HREF="#dstevx">dstevx</A></LI>
|
20
|
-
</UL>
|
21
|
-
|
22
|
-
<A NAME="dstebz"></A>
|
23
|
-
<H2>dstebz</H2>
|
24
|
-
<PRE>
|
25
|
-
USAGE:
|
26
|
-
m, nsplit, w, iblock, isplit, info = NumRu::Lapack.dstebz( range, order, vl, vu, il, iu, abstol, d, e, [:usage => usage, :help => help])
|
27
|
-
|
28
|
-
|
29
|
-
FORTRAN MANUAL
|
30
|
-
SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E, M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK, INFO )
|
31
|
-
|
32
|
-
* Purpose
|
33
|
-
* =======
|
34
|
-
*
|
35
|
-
* DSTEBZ computes the eigenvalues of a symmetric tridiagonal
|
36
|
-
* matrix T. The user may ask for all eigenvalues, all eigenvalues
|
37
|
-
* in the half-open interval (VL, VU], or the IL-th through IU-th
|
38
|
-
* eigenvalues.
|
39
|
-
*
|
40
|
-
* To avoid overflow, the matrix must be scaled so that its
|
41
|
-
* largest element is no greater than overflow**(1/2) *
|
42
|
-
* underflow**(1/4) in absolute value, and for greatest
|
43
|
-
* accuracy, it should not be much smaller than that.
|
44
|
-
*
|
45
|
-
* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
|
46
|
-
* Matrix", Report CS41, Computer Science Dept., Stanford
|
47
|
-
* University, July 21, 1966.
|
48
|
-
*
|
49
|
-
|
50
|
-
* Arguments
|
51
|
-
* =========
|
52
|
-
*
|
53
|
-
* RANGE (input) CHARACTER*1
|
54
|
-
* = 'A': ("All") all eigenvalues will be found.
|
55
|
-
* = 'V': ("Value") all eigenvalues in the half-open interval
|
56
|
-
* (VL, VU] will be found.
|
57
|
-
* = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
|
58
|
-
* entire matrix) will be found.
|
59
|
-
*
|
60
|
-
* ORDER (input) CHARACTER*1
|
61
|
-
* = 'B': ("By Block") the eigenvalues will be grouped by
|
62
|
-
* split-off block (see IBLOCK, ISPLIT) and
|
63
|
-
* ordered from smallest to largest within
|
64
|
-
* the block.
|
65
|
-
* = 'E': ("Entire matrix")
|
66
|
-
* the eigenvalues for the entire matrix
|
67
|
-
* will be ordered from smallest to
|
68
|
-
* largest.
|
69
|
-
*
|
70
|
-
* N (input) INTEGER
|
71
|
-
* The order of the tridiagonal matrix T. N >= 0.
|
72
|
-
*
|
73
|
-
* VL (input) DOUBLE PRECISION
|
74
|
-
* VU (input) DOUBLE PRECISION
|
75
|
-
* If RANGE='V', the lower and upper bounds of the interval to
|
76
|
-
* be searched for eigenvalues. Eigenvalues less than or equal
|
77
|
-
* to VL, or greater than VU, will not be returned. VL < VU.
|
78
|
-
* Not referenced if RANGE = 'A' or 'I'.
|
79
|
-
*
|
80
|
-
* IL (input) INTEGER
|
81
|
-
* IU (input) INTEGER
|
82
|
-
* If RANGE='I', the indices (in ascending order) of the
|
83
|
-
* smallest and largest eigenvalues to be returned.
|
84
|
-
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
85
|
-
* Not referenced if RANGE = 'A' or 'V'.
|
86
|
-
*
|
87
|
-
* ABSTOL (input) DOUBLE PRECISION
|
88
|
-
* The absolute tolerance for the eigenvalues. An eigenvalue
|
89
|
-
* (or cluster) is considered to be located if it has been
|
90
|
-
* determined to lie in an interval whose width is ABSTOL or
|
91
|
-
* less. If ABSTOL is less than or equal to zero, then ULP*|T|
|
92
|
-
* will be used, where |T| means the 1-norm of T.
|
93
|
-
*
|
94
|
-
* Eigenvalues will be computed most accurately when ABSTOL is
|
95
|
-
* set to twice the underflow threshold 2*DLAMCH('S'), not zero.
|
96
|
-
*
|
97
|
-
* D (input) DOUBLE PRECISION array, dimension (N)
|
98
|
-
* The n diagonal elements of the tridiagonal matrix T.
|
99
|
-
*
|
100
|
-
* E (input) DOUBLE PRECISION array, dimension (N-1)
|
101
|
-
* The (n-1) off-diagonal elements of the tridiagonal matrix T.
|
102
|
-
*
|
103
|
-
* M (output) INTEGER
|
104
|
-
* The actual number of eigenvalues found. 0 <= M <= N.
|
105
|
-
* (See also the description of INFO=2,3.)
|
106
|
-
*
|
107
|
-
* NSPLIT (output) INTEGER
|
108
|
-
* The number of diagonal blocks in the matrix T.
|
109
|
-
* 1 <= NSPLIT <= N.
|
110
|
-
*
|
111
|
-
* W (output) DOUBLE PRECISION array, dimension (N)
|
112
|
-
* On exit, the first M elements of W will contain the
|
113
|
-
* eigenvalues. (DSTEBZ may use the remaining N-M elements as
|
114
|
-
* workspace.)
|
115
|
-
*
|
116
|
-
* IBLOCK (output) INTEGER array, dimension (N)
|
117
|
-
* At each row/column j where E(j) is zero or small, the
|
118
|
-
* matrix T is considered to split into a block diagonal
|
119
|
-
* matrix. On exit, if INFO = 0, IBLOCK(i) specifies to which
|
120
|
-
* block (from 1 to the number of blocks) the eigenvalue W(i)
|
121
|
-
* belongs. (DSTEBZ may use the remaining N-M elements as
|
122
|
-
* workspace.)
|
123
|
-
*
|
124
|
-
* ISPLIT (output) INTEGER array, dimension (N)
|
125
|
-
* The splitting points, at which T breaks up into submatrices.
|
126
|
-
* The first submatrix consists of rows/columns 1 to ISPLIT(1),
|
127
|
-
* the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
|
128
|
-
* etc., and the NSPLIT-th consists of rows/columns
|
129
|
-
* ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
|
130
|
-
* (Only the first NSPLIT elements will actually be used, but
|
131
|
-
* since the user cannot know a priori what value NSPLIT will
|
132
|
-
* have, N words must be reserved for ISPLIT.)
|
133
|
-
*
|
134
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
|
135
|
-
*
|
136
|
-
* IWORK (workspace) INTEGER array, dimension (3*N)
|
137
|
-
*
|
138
|
-
* INFO (output) INTEGER
|
139
|
-
* = 0: successful exit
|
140
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
141
|
-
* > 0: some or all of the eigenvalues failed to converge or
|
142
|
-
* were not computed:
|
143
|
-
* =1 or 3: Bisection failed to converge for some
|
144
|
-
* eigenvalues; these eigenvalues are flagged by a
|
145
|
-
* negative block number. The effect is that the
|
146
|
-
* eigenvalues may not be as accurate as the
|
147
|
-
* absolute and relative tolerances. This is
|
148
|
-
* generally caused by unexpectedly inaccurate
|
149
|
-
* arithmetic.
|
150
|
-
* =2 or 3: RANGE='I' only: Not all of the eigenvalues
|
151
|
-
* IL:IU were found.
|
152
|
-
* Effect: M < IU+1-IL
|
153
|
-
* Cause: non-monotonic arithmetic, causing the
|
154
|
-
* Sturm sequence to be non-monotonic.
|
155
|
-
* Cure: recalculate, using RANGE='A', and pick
|
156
|
-
* out eigenvalues IL:IU. In some cases,
|
157
|
-
* increasing the PARAMETER "FUDGE" may
|
158
|
-
* make things work.
|
159
|
-
* = 4: RANGE='I', and the Gershgorin interval
|
160
|
-
* initially used was too small. No eigenvalues
|
161
|
-
* were computed.
|
162
|
-
* Probable cause: your machine has sloppy
|
163
|
-
* floating-point arithmetic.
|
164
|
-
* Cure: Increase the PARAMETER "FUDGE",
|
165
|
-
* recompile, and try again.
|
166
|
-
*
|
167
|
-
* Internal Parameters
|
168
|
-
* ===================
|
169
|
-
*
|
170
|
-
* RELFAC DOUBLE PRECISION, default = 2.0e0
|
171
|
-
* The relative tolerance. An interval (a,b] lies within
|
172
|
-
* "relative tolerance" if b-a < RELFAC*ulp*max(|a|,|b|),
|
173
|
-
* where "ulp" is the machine precision (distance from 1 to
|
174
|
-
* the next larger floating point number.)
|
175
|
-
*
|
176
|
-
* FUDGE DOUBLE PRECISION, default = 2
|
177
|
-
* A "fudge factor" to widen the Gershgorin intervals. Ideally,
|
178
|
-
* a value of 1 should work, but on machines with sloppy
|
179
|
-
* arithmetic, this needs to be larger. The default for
|
180
|
-
* publicly released versions should be large enough to handle
|
181
|
-
* the worst machine around. Note that this has no effect
|
182
|
-
* on accuracy of the solution.
|
183
|
-
*
|
184
|
-
|
185
|
-
* =====================================================================
|
186
|
-
*
|
187
|
-
|
188
|
-
|
189
|
-
</PRE>
|
190
|
-
<A HREF="#top">go to the page top</A>
|
191
|
-
|
192
|
-
<A NAME="dstedc"></A>
|
193
|
-
<H2>dstedc</H2>
|
194
|
-
<PRE>
|
195
|
-
USAGE:
|
196
|
-
work, iwork, info, d, e, z = NumRu::Lapack.dstedc( compz, d, e, z, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
|
197
|
-
|
198
|
-
|
199
|
-
FORTRAN MANUAL
|
200
|
-
SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
|
201
|
-
|
202
|
-
* Purpose
|
203
|
-
* =======
|
204
|
-
*
|
205
|
-
* DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
|
206
|
-
* symmetric tridiagonal matrix using the divide and conquer method.
|
207
|
-
* The eigenvectors of a full or band real symmetric matrix can also be
|
208
|
-
* found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
|
209
|
-
* matrix to tridiagonal form.
|
210
|
-
*
|
211
|
-
* This code makes very mild assumptions about floating point
|
212
|
-
* arithmetic. It will work on machines with a guard digit in
|
213
|
-
* add/subtract, or on those binary machines without guard digits
|
214
|
-
* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
|
215
|
-
* It could conceivably fail on hexadecimal or decimal machines
|
216
|
-
* without guard digits, but we know of none. See DLAED3 for details.
|
217
|
-
*
|
218
|
-
|
219
|
-
* Arguments
|
220
|
-
* =========
|
221
|
-
*
|
222
|
-
* COMPZ (input) CHARACTER*1
|
223
|
-
* = 'N': Compute eigenvalues only.
|
224
|
-
* = 'I': Compute eigenvectors of tridiagonal matrix also.
|
225
|
-
* = 'V': Compute eigenvectors of original dense symmetric
|
226
|
-
* matrix also. On entry, Z contains the orthogonal
|
227
|
-
* matrix used to reduce the original matrix to
|
228
|
-
* tridiagonal form.
|
229
|
-
*
|
230
|
-
* N (input) INTEGER
|
231
|
-
* The dimension of the symmetric tridiagonal matrix. N >= 0.
|
232
|
-
*
|
233
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
234
|
-
* On entry, the diagonal elements of the tridiagonal matrix.
|
235
|
-
* On exit, if INFO = 0, the eigenvalues in ascending order.
|
236
|
-
*
|
237
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
238
|
-
* On entry, the subdiagonal elements of the tridiagonal matrix.
|
239
|
-
* On exit, E has been destroyed.
|
240
|
-
*
|
241
|
-
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
|
242
|
-
* On entry, if COMPZ = 'V', then Z contains the orthogonal
|
243
|
-
* matrix used in the reduction to tridiagonal form.
|
244
|
-
* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
245
|
-
* orthonormal eigenvectors of the original symmetric matrix,
|
246
|
-
* and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
247
|
-
* of the symmetric tridiagonal matrix.
|
248
|
-
* If COMPZ = 'N', then Z is not referenced.
|
249
|
-
*
|
250
|
-
* LDZ (input) INTEGER
|
251
|
-
* The leading dimension of the array Z. LDZ >= 1.
|
252
|
-
* If eigenvectors are desired, then LDZ >= max(1,N).
|
253
|
-
*
|
254
|
-
* WORK (workspace/output) DOUBLE PRECISION array,
|
255
|
-
* dimension (LWORK)
|
256
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
257
|
-
*
|
258
|
-
* LWORK (input) INTEGER
|
259
|
-
* The dimension of the array WORK.
|
260
|
-
* If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
|
261
|
-
* If COMPZ = 'V' and N > 1 then LWORK must be at least
|
262
|
-
* ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
|
263
|
-
* where lg( N ) = smallest integer k such
|
264
|
-
* that 2**k >= N.
|
265
|
-
* If COMPZ = 'I' and N > 1 then LWORK must be at least
|
266
|
-
* ( 1 + 4*N + N**2 ).
|
267
|
-
* Note that for COMPZ = 'I' or 'V', then if N is less than or
|
268
|
-
* equal to the minimum divide size, usually 25, then LWORK need
|
269
|
-
* only be max(1,2*(N-1)).
|
270
|
-
*
|
271
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
272
|
-
* only calculates the optimal size of the WORK array, returns
|
273
|
-
* this value as the first entry of the WORK array, and no error
|
274
|
-
* message related to LWORK is issued by XERBLA.
|
275
|
-
*
|
276
|
-
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
|
277
|
-
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
278
|
-
*
|
279
|
-
* LIWORK (input) INTEGER
|
280
|
-
* The dimension of the array IWORK.
|
281
|
-
* If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
|
282
|
-
* If COMPZ = 'V' and N > 1 then LIWORK must be at least
|
283
|
-
* ( 6 + 6*N + 5*N*lg N ).
|
284
|
-
* If COMPZ = 'I' and N > 1 then LIWORK must be at least
|
285
|
-
* ( 3 + 5*N ).
|
286
|
-
* Note that for COMPZ = 'I' or 'V', then if N is less than or
|
287
|
-
* equal to the minimum divide size, usually 25, then LIWORK
|
288
|
-
* need only be 1.
|
289
|
-
*
|
290
|
-
* If LIWORK = -1, then a workspace query is assumed; the
|
291
|
-
* routine only calculates the optimal size of the IWORK array,
|
292
|
-
* returns this value as the first entry of the IWORK array, and
|
293
|
-
* no error message related to LIWORK is issued by XERBLA.
|
294
|
-
*
|
295
|
-
* INFO (output) INTEGER
|
296
|
-
* = 0: successful exit.
|
297
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value.
|
298
|
-
* > 0: The algorithm failed to compute an eigenvalue while
|
299
|
-
* working on the submatrix lying in rows and columns
|
300
|
-
* INFO/(N+1) through mod(INFO,N+1).
|
301
|
-
*
|
302
|
-
|
303
|
-
* Further Details
|
304
|
-
* ===============
|
305
|
-
*
|
306
|
-
* Based on contributions by
|
307
|
-
* Jeff Rutter, Computer Science Division, University of California
|
308
|
-
* at Berkeley, USA
|
309
|
-
* Modified by Francoise Tisseur, University of Tennessee.
|
310
|
-
*
|
311
|
-
* =====================================================================
|
312
|
-
*
|
313
|
-
|
314
|
-
|
315
|
-
</PRE>
|
316
|
-
<A HREF="#top">go to the page top</A>
|
317
|
-
|
318
|
-
<A NAME="dstegr"></A>
|
319
|
-
<H2>dstegr</H2>
|
320
|
-
<PRE>
|
321
|
-
USAGE:
|
322
|
-
m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstegr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
|
323
|
-
|
324
|
-
|
325
|
-
FORTRAN MANUAL
|
326
|
-
SUBROUTINE DSTEGR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
|
327
|
-
|
328
|
-
* Purpose
|
329
|
-
* =======
|
330
|
-
*
|
331
|
-
* DSTEGR computes selected eigenvalues and, optionally, eigenvectors
|
332
|
-
* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
|
333
|
-
* a well defined set of pairwise different real eigenvalues, the corresponding
|
334
|
-
* real eigenvectors are pairwise orthogonal.
|
335
|
-
*
|
336
|
-
* The spectrum may be computed either completely or partially by specifying
|
337
|
-
* either an interval (VL,VU] or a range of indices IL:IU for the desired
|
338
|
-
* eigenvalues.
|
339
|
-
*
|
340
|
-
* DSTEGR is a compatability wrapper around the improved DSTEMR routine.
|
341
|
-
* See DSTEMR for further details.
|
342
|
-
*
|
343
|
-
* One important change is that the ABSTOL parameter no longer provides any
|
344
|
-
* benefit and hence is no longer used.
|
345
|
-
*
|
346
|
-
* Note : DSTEGR and DSTEMR work only on machines which follow
|
347
|
-
* IEEE-754 floating-point standard in their handling of infinities and
|
348
|
-
* NaNs. Normal execution may create these exceptiona values and hence
|
349
|
-
* may abort due to a floating point exception in environments which
|
350
|
-
* do not conform to the IEEE-754 standard.
|
351
|
-
*
|
352
|
-
|
353
|
-
* Arguments
|
354
|
-
* =========
|
355
|
-
*
|
356
|
-
* JOBZ (input) CHARACTER*1
|
357
|
-
* = 'N': Compute eigenvalues only;
|
358
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
359
|
-
*
|
360
|
-
* RANGE (input) CHARACTER*1
|
361
|
-
* = 'A': all eigenvalues will be found.
|
362
|
-
* = 'V': all eigenvalues in the half-open interval (VL,VU]
|
363
|
-
* will be found.
|
364
|
-
* = 'I': the IL-th through IU-th eigenvalues will be found.
|
365
|
-
*
|
366
|
-
* N (input) INTEGER
|
367
|
-
* The order of the matrix. N >= 0.
|
368
|
-
*
|
369
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
370
|
-
* On entry, the N diagonal elements of the tridiagonal matrix
|
371
|
-
* T. On exit, D is overwritten.
|
372
|
-
*
|
373
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N)
|
374
|
-
* On entry, the (N-1) subdiagonal elements of the tridiagonal
|
375
|
-
* matrix T in elements 1 to N-1 of E. E(N) need not be set on
|
376
|
-
* input, but is used internally as workspace.
|
377
|
-
* On exit, E is overwritten.
|
378
|
-
*
|
379
|
-
* VL (input) DOUBLE PRECISION
|
380
|
-
* VU (input) DOUBLE PRECISION
|
381
|
-
* If RANGE='V', the lower and upper bounds of the interval to
|
382
|
-
* be searched for eigenvalues. VL < VU.
|
383
|
-
* Not referenced if RANGE = 'A' or 'I'.
|
384
|
-
*
|
385
|
-
* IL (input) INTEGER
|
386
|
-
* IU (input) INTEGER
|
387
|
-
* If RANGE='I', the indices (in ascending order) of the
|
388
|
-
* smallest and largest eigenvalues to be returned.
|
389
|
-
* 1 <= IL <= IU <= N, if N > 0.
|
390
|
-
* Not referenced if RANGE = 'A' or 'V'.
|
391
|
-
*
|
392
|
-
* ABSTOL (input) DOUBLE PRECISION
|
393
|
-
* Unused. Was the absolute error tolerance for the
|
394
|
-
* eigenvalues/eigenvectors in previous versions.
|
395
|
-
*
|
396
|
-
* M (output) INTEGER
|
397
|
-
* The total number of eigenvalues found. 0 <= M <= N.
|
398
|
-
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
399
|
-
*
|
400
|
-
* W (output) DOUBLE PRECISION array, dimension (N)
|
401
|
-
* The first M elements contain the selected eigenvalues in
|
402
|
-
* ascending order.
|
403
|
-
*
|
404
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
|
405
|
-
* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
|
406
|
-
* contain the orthonormal eigenvectors of the matrix T
|
407
|
-
* corresponding to the selected eigenvalues, with the i-th
|
408
|
-
* column of Z holding the eigenvector associated with W(i).
|
409
|
-
* If JOBZ = 'N', then Z is not referenced.
|
410
|
-
* Note: the user must ensure that at least max(1,M) columns are
|
411
|
-
* supplied in the array Z; if RANGE = 'V', the exact value of M
|
412
|
-
* is not known in advance and an upper bound must be used.
|
413
|
-
* Supplying N columns is always safe.
|
414
|
-
*
|
415
|
-
* LDZ (input) INTEGER
|
416
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
417
|
-
* JOBZ = 'V', then LDZ >= max(1,N).
|
418
|
-
*
|
419
|
-
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
|
420
|
-
* The support of the eigenvectors in Z, i.e., the indices
|
421
|
-
* indicating the nonzero elements in Z. The i-th computed eigenvector
|
422
|
-
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
|
423
|
-
* ISUPPZ( 2*i ). This is relevant in the case when the matrix
|
424
|
-
* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
|
425
|
-
*
|
426
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
427
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal
|
428
|
-
* (and minimal) LWORK.
|
429
|
-
*
|
430
|
-
* LWORK (input) INTEGER
|
431
|
-
* The dimension of the array WORK. LWORK >= max(1,18*N)
|
432
|
-
* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
|
433
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
434
|
-
* only calculates the optimal size of the WORK array, returns
|
435
|
-
* this value as the first entry of the WORK array, and no error
|
436
|
-
* message related to LWORK is issued by XERBLA.
|
437
|
-
*
|
438
|
-
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
|
439
|
-
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
440
|
-
*
|
441
|
-
* LIWORK (input) INTEGER
|
442
|
-
* The dimension of the array IWORK. LIWORK >= max(1,10*N)
|
443
|
-
* if the eigenvectors are desired, and LIWORK >= max(1,8*N)
|
444
|
-
* if only the eigenvalues are to be computed.
|
445
|
-
* If LIWORK = -1, then a workspace query is assumed; the
|
446
|
-
* routine only calculates the optimal size of the IWORK array,
|
447
|
-
* returns this value as the first entry of the IWORK array, and
|
448
|
-
* no error message related to LIWORK is issued by XERBLA.
|
449
|
-
*
|
450
|
-
* INFO (output) INTEGER
|
451
|
-
* On exit, INFO
|
452
|
-
* = 0: successful exit
|
453
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
454
|
-
* > 0: if INFO = 1X, internal error in DLARRE,
|
455
|
-
* if INFO = 2X, internal error in DLARRV.
|
456
|
-
* Here, the digit X = ABS( IINFO ) < 10, where IINFO is
|
457
|
-
* the nonzero error code returned by DLARRE or
|
458
|
-
* DLARRV, respectively.
|
459
|
-
*
|
460
|
-
|
461
|
-
* Further Details
|
462
|
-
* ===============
|
463
|
-
*
|
464
|
-
* Based on contributions by
|
465
|
-
* Inderjit Dhillon, IBM Almaden, USA
|
466
|
-
* Osni Marques, LBNL/NERSC, USA
|
467
|
-
* Christof Voemel, LBNL/NERSC, USA
|
468
|
-
*
|
469
|
-
* =====================================================================
|
470
|
-
*
|
471
|
-
* .. Local Scalars ..
|
472
|
-
LOGICAL TRYRAC
|
473
|
-
* ..
|
474
|
-
* .. External Subroutines ..
|
475
|
-
EXTERNAL DSTEMR
|
476
|
-
* ..
|
477
|
-
|
478
|
-
|
479
|
-
</PRE>
|
480
|
-
<A HREF="#top">go to the page top</A>
|
481
|
-
|
482
|
-
<A NAME="dstein"></A>
|
483
|
-
<H2>dstein</H2>
|
484
|
-
<PRE>
|
485
|
-
USAGE:
|
486
|
-
z, ifail, info = NumRu::Lapack.dstein( d, e, w, iblock, isplit, [:usage => usage, :help => help])
|
487
|
-
|
488
|
-
|
489
|
-
FORTRAN MANUAL
|
490
|
-
SUBROUTINE DSTEIN( N, D, E, M, W, IBLOCK, ISPLIT, Z, LDZ, WORK, IWORK, IFAIL, INFO )
|
491
|
-
|
492
|
-
* Purpose
|
493
|
-
* =======
|
494
|
-
*
|
495
|
-
* DSTEIN computes the eigenvectors of a real symmetric tridiagonal
|
496
|
-
* matrix T corresponding to specified eigenvalues, using inverse
|
497
|
-
* iteration.
|
498
|
-
*
|
499
|
-
* The maximum number of iterations allowed for each eigenvector is
|
500
|
-
* specified by an internal parameter MAXITS (currently set to 5).
|
501
|
-
*
|
502
|
-
|
503
|
-
* Arguments
|
504
|
-
* =========
|
505
|
-
*
|
506
|
-
* N (input) INTEGER
|
507
|
-
* The order of the matrix. N >= 0.
|
508
|
-
*
|
509
|
-
* D (input) DOUBLE PRECISION array, dimension (N)
|
510
|
-
* The n diagonal elements of the tridiagonal matrix T.
|
511
|
-
*
|
512
|
-
* E (input) DOUBLE PRECISION array, dimension (N-1)
|
513
|
-
* The (n-1) subdiagonal elements of the tridiagonal matrix
|
514
|
-
* T, in elements 1 to N-1.
|
515
|
-
*
|
516
|
-
* M (input) INTEGER
|
517
|
-
* The number of eigenvectors to be found. 0 <= M <= N.
|
518
|
-
*
|
519
|
-
* W (input) DOUBLE PRECISION array, dimension (N)
|
520
|
-
* The first M elements of W contain the eigenvalues for
|
521
|
-
* which eigenvectors are to be computed. The eigenvalues
|
522
|
-
* should be grouped by split-off block and ordered from
|
523
|
-
* smallest to largest within the block. ( The output array
|
524
|
-
* W from DSTEBZ with ORDER = 'B' is expected here. )
|
525
|
-
*
|
526
|
-
* IBLOCK (input) INTEGER array, dimension (N)
|
527
|
-
* The submatrix indices associated with the corresponding
|
528
|
-
* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to
|
529
|
-
* the first submatrix from the top, =2 if W(i) belongs to
|
530
|
-
* the second submatrix, etc. ( The output array IBLOCK
|
531
|
-
* from DSTEBZ is expected here. )
|
532
|
-
*
|
533
|
-
* ISPLIT (input) INTEGER array, dimension (N)
|
534
|
-
* The splitting points, at which T breaks up into submatrices.
|
535
|
-
* The first submatrix consists of rows/columns 1 to
|
536
|
-
* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
|
537
|
-
* through ISPLIT( 2 ), etc.
|
538
|
-
* ( The output array ISPLIT from DSTEBZ is expected here. )
|
539
|
-
*
|
540
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, M)
|
541
|
-
* The computed eigenvectors. The eigenvector associated
|
542
|
-
* with the eigenvalue W(i) is stored in the i-th column of
|
543
|
-
* Z. Any vector which fails to converge is set to its current
|
544
|
-
* iterate after MAXITS iterations.
|
545
|
-
*
|
546
|
-
* LDZ (input) INTEGER
|
547
|
-
* The leading dimension of the array Z. LDZ >= max(1,N).
|
548
|
-
*
|
549
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
|
550
|
-
*
|
551
|
-
* IWORK (workspace) INTEGER array, dimension (N)
|
552
|
-
*
|
553
|
-
* IFAIL (output) INTEGER array, dimension (M)
|
554
|
-
* On normal exit, all elements of IFAIL are zero.
|
555
|
-
* If one or more eigenvectors fail to converge after
|
556
|
-
* MAXITS iterations, then their indices are stored in
|
557
|
-
* array IFAIL.
|
558
|
-
*
|
559
|
-
* INFO (output) INTEGER
|
560
|
-
* = 0: successful exit.
|
561
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
562
|
-
* > 0: if INFO = i, then i eigenvectors failed to converge
|
563
|
-
* in MAXITS iterations. Their indices are stored in
|
564
|
-
* array IFAIL.
|
565
|
-
*
|
566
|
-
* Internal Parameters
|
567
|
-
* ===================
|
568
|
-
*
|
569
|
-
* MAXITS INTEGER, default = 5
|
570
|
-
* The maximum number of iterations performed.
|
571
|
-
*
|
572
|
-
* EXTRA INTEGER, default = 2
|
573
|
-
* The number of iterations performed after norm growth
|
574
|
-
* criterion is satisfied, should be at least 1.
|
575
|
-
*
|
576
|
-
|
577
|
-
* =====================================================================
|
578
|
-
*
|
579
|
-
|
580
|
-
|
581
|
-
</PRE>
|
582
|
-
<A HREF="#top">go to the page top</A>
|
583
|
-
|
584
|
-
<A NAME="dstemr"></A>
|
585
|
-
<H2>dstemr</H2>
|
586
|
-
<PRE>
|
587
|
-
USAGE:
|
588
|
-
m, w, z, isuppz, work, iwork, info, d, e, tryrac = NumRu::Lapack.dstemr( jobz, range, d, e, vl, vu, il, iu, nzc, tryrac, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
|
589
|
-
|
590
|
-
|
591
|
-
FORTRAN MANUAL
|
592
|
-
SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, IWORK, LIWORK, INFO )
|
593
|
-
|
594
|
-
* Purpose
|
595
|
-
* =======
|
596
|
-
*
|
597
|
-
* DSTEMR computes selected eigenvalues and, optionally, eigenvectors
|
598
|
-
* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
|
599
|
-
* a well defined set of pairwise different real eigenvalues, the corresponding
|
600
|
-
* real eigenvectors are pairwise orthogonal.
|
601
|
-
*
|
602
|
-
* The spectrum may be computed either completely or partially by specifying
|
603
|
-
* either an interval (VL,VU] or a range of indices IL:IU for the desired
|
604
|
-
* eigenvalues.
|
605
|
-
*
|
606
|
-
* Depending on the number of desired eigenvalues, these are computed either
|
607
|
-
* by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
|
608
|
-
* computed by the use of various suitable L D L^T factorizations near clusters
|
609
|
-
* of close eigenvalues (referred to as RRRs, Relatively Robust
|
610
|
-
* Representations). An informal sketch of the algorithm follows.
|
611
|
-
*
|
612
|
-
* For each unreduced block (submatrix) of T,
|
613
|
-
* (a) Compute T - sigma I = L D L^T, so that L and D
|
614
|
-
* define all the wanted eigenvalues to high relative accuracy.
|
615
|
-
* This means that small relative changes in the entries of D and L
|
616
|
-
* cause only small relative changes in the eigenvalues and
|
617
|
-
* eigenvectors. The standard (unfactored) representation of the
|
618
|
-
* tridiagonal matrix T does not have this property in general.
|
619
|
-
* (b) Compute the eigenvalues to suitable accuracy.
|
620
|
-
* If the eigenvectors are desired, the algorithm attains full
|
621
|
-
* accuracy of the computed eigenvalues only right before
|
622
|
-
* the corresponding vectors have to be computed, see steps c) and d).
|
623
|
-
* (c) For each cluster of close eigenvalues, select a new
|
624
|
-
* shift close to the cluster, find a new factorization, and refine
|
625
|
-
* the shifted eigenvalues to suitable accuracy.
|
626
|
-
* (d) For each eigenvalue with a large enough relative separation compute
|
627
|
-
* the corresponding eigenvector by forming a rank revealing twisted
|
628
|
-
* factorization. Go back to (c) for any clusters that remain.
|
629
|
-
*
|
630
|
-
* For more details, see:
|
631
|
-
* - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
|
632
|
-
* to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
|
633
|
-
* Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
|
634
|
-
* - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
|
635
|
-
* Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
|
636
|
-
* 2004. Also LAPACK Working Note 154.
|
637
|
-
* - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
|
638
|
-
* tridiagonal eigenvalue/eigenvector problem",
|
639
|
-
* Computer Science Division Technical Report No. UCB/CSD-97-971,
|
640
|
-
* UC Berkeley, May 1997.
|
641
|
-
*
|
642
|
-
* Further Details
|
643
|
-
* 1.DSTEMR works only on machines which follow IEEE-754
|
644
|
-
* floating-point standard in their handling of infinities and NaNs.
|
645
|
-
* This permits the use of efficient inner loops avoiding a check for
|
646
|
-
* zero divisors.
|
647
|
-
*
|
648
|
-
|
649
|
-
* Arguments
|
650
|
-
* =========
|
651
|
-
*
|
652
|
-
* JOBZ (input) CHARACTER*1
|
653
|
-
* = 'N': Compute eigenvalues only;
|
654
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
655
|
-
*
|
656
|
-
* RANGE (input) CHARACTER*1
|
657
|
-
* = 'A': all eigenvalues will be found.
|
658
|
-
* = 'V': all eigenvalues in the half-open interval (VL,VU]
|
659
|
-
* will be found.
|
660
|
-
* = 'I': the IL-th through IU-th eigenvalues will be found.
|
661
|
-
*
|
662
|
-
* N (input) INTEGER
|
663
|
-
* The order of the matrix. N >= 0.
|
664
|
-
*
|
665
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
666
|
-
* On entry, the N diagonal elements of the tridiagonal matrix
|
667
|
-
* T. On exit, D is overwritten.
|
668
|
-
*
|
669
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N)
|
670
|
-
* On entry, the (N-1) subdiagonal elements of the tridiagonal
|
671
|
-
* matrix T in elements 1 to N-1 of E. E(N) need not be set on
|
672
|
-
* input, but is used internally as workspace.
|
673
|
-
* On exit, E is overwritten.
|
674
|
-
*
|
675
|
-
* VL (input) DOUBLE PRECISION
|
676
|
-
* VU (input) DOUBLE PRECISION
|
677
|
-
* If RANGE='V', the lower and upper bounds of the interval to
|
678
|
-
* be searched for eigenvalues. VL < VU.
|
679
|
-
* Not referenced if RANGE = 'A' or 'I'.
|
680
|
-
*
|
681
|
-
* IL (input) INTEGER
|
682
|
-
* IU (input) INTEGER
|
683
|
-
* If RANGE='I', the indices (in ascending order) of the
|
684
|
-
* smallest and largest eigenvalues to be returned.
|
685
|
-
* 1 <= IL <= IU <= N, if N > 0.
|
686
|
-
* Not referenced if RANGE = 'A' or 'V'.
|
687
|
-
*
|
688
|
-
* M (output) INTEGER
|
689
|
-
* The total number of eigenvalues found. 0 <= M <= N.
|
690
|
-
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
691
|
-
*
|
692
|
-
* W (output) DOUBLE PRECISION array, dimension (N)
|
693
|
-
* The first M elements contain the selected eigenvalues in
|
694
|
-
* ascending order.
|
695
|
-
*
|
696
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
|
697
|
-
* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
|
698
|
-
* contain the orthonormal eigenvectors of the matrix T
|
699
|
-
* corresponding to the selected eigenvalues, with the i-th
|
700
|
-
* column of Z holding the eigenvector associated with W(i).
|
701
|
-
* If JOBZ = 'N', then Z is not referenced.
|
702
|
-
* Note: the user must ensure that at least max(1,M) columns are
|
703
|
-
* supplied in the array Z; if RANGE = 'V', the exact value of M
|
704
|
-
* is not known in advance and can be computed with a workspace
|
705
|
-
* query by setting NZC = -1, see below.
|
706
|
-
*
|
707
|
-
* LDZ (input) INTEGER
|
708
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
709
|
-
* JOBZ = 'V', then LDZ >= max(1,N).
|
710
|
-
*
|
711
|
-
* NZC (input) INTEGER
|
712
|
-
* The number of eigenvectors to be held in the array Z.
|
713
|
-
* If RANGE = 'A', then NZC >= max(1,N).
|
714
|
-
* If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
|
715
|
-
* If RANGE = 'I', then NZC >= IU-IL+1.
|
716
|
-
* If NZC = -1, then a workspace query is assumed; the
|
717
|
-
* routine calculates the number of columns of the array Z that
|
718
|
-
* are needed to hold the eigenvectors.
|
719
|
-
* This value is returned as the first entry of the Z array, and
|
720
|
-
* no error message related to NZC is issued by XERBLA.
|
721
|
-
*
|
722
|
-
* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) )
|
723
|
-
* The support of the eigenvectors in Z, i.e., the indices
|
724
|
-
* indicating the nonzero elements in Z. The i-th computed eigenvector
|
725
|
-
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
|
726
|
-
* ISUPPZ( 2*i ). This is relevant in the case when the matrix
|
727
|
-
* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
|
728
|
-
*
|
729
|
-
* TRYRAC (input/output) LOGICAL
|
730
|
-
* If TRYRAC.EQ..TRUE., indicates that the code should check whether
|
731
|
-
* the tridiagonal matrix defines its eigenvalues to high relative
|
732
|
-
* accuracy. If so, the code uses relative-accuracy preserving
|
733
|
-
* algorithms that might be (a bit) slower depending on the matrix.
|
734
|
-
* If the matrix does not define its eigenvalues to high relative
|
735
|
-
* accuracy, the code can uses possibly faster algorithms.
|
736
|
-
* If TRYRAC.EQ..FALSE., the code is not required to guarantee
|
737
|
-
* relatively accurate eigenvalues and can use the fastest possible
|
738
|
-
* techniques.
|
739
|
-
* On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
|
740
|
-
* does not define its eigenvalues to high relative accuracy.
|
741
|
-
*
|
742
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
743
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal
|
744
|
-
* (and minimal) LWORK.
|
745
|
-
*
|
746
|
-
* LWORK (input) INTEGER
|
747
|
-
* The dimension of the array WORK. LWORK >= max(1,18*N)
|
748
|
-
* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
|
749
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
750
|
-
* only calculates the optimal size of the WORK array, returns
|
751
|
-
* this value as the first entry of the WORK array, and no error
|
752
|
-
* message related to LWORK is issued by XERBLA.
|
753
|
-
*
|
754
|
-
* IWORK (workspace/output) INTEGER array, dimension (LIWORK)
|
755
|
-
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
756
|
-
*
|
757
|
-
* LIWORK (input) INTEGER
|
758
|
-
* The dimension of the array IWORK. LIWORK >= max(1,10*N)
|
759
|
-
* if the eigenvectors are desired, and LIWORK >= max(1,8*N)
|
760
|
-
* if only the eigenvalues are to be computed.
|
761
|
-
* If LIWORK = -1, then a workspace query is assumed; the
|
762
|
-
* routine only calculates the optimal size of the IWORK array,
|
763
|
-
* returns this value as the first entry of the IWORK array, and
|
764
|
-
* no error message related to LIWORK is issued by XERBLA.
|
765
|
-
*
|
766
|
-
* INFO (output) INTEGER
|
767
|
-
* On exit, INFO
|
768
|
-
* = 0: successful exit
|
769
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
770
|
-
* > 0: if INFO = 1X, internal error in DLARRE,
|
771
|
-
* if INFO = 2X, internal error in DLARRV.
|
772
|
-
* Here, the digit X = ABS( IINFO ) < 10, where IINFO is
|
773
|
-
* the nonzero error code returned by DLARRE or
|
774
|
-
* DLARRV, respectively.
|
775
|
-
*
|
776
|
-
*
|
777
|
-
|
778
|
-
* Further Details
|
779
|
-
* ===============
|
780
|
-
*
|
781
|
-
* Based on contributions by
|
782
|
-
* Beresford Parlett, University of California, Berkeley, USA
|
783
|
-
* Jim Demmel, University of California, Berkeley, USA
|
784
|
-
* Inderjit Dhillon, University of Texas, Austin, USA
|
785
|
-
* Osni Marques, LBNL/NERSC, USA
|
786
|
-
* Christof Voemel, University of California, Berkeley, USA
|
787
|
-
*
|
788
|
-
* =====================================================================
|
789
|
-
*
|
790
|
-
|
791
|
-
|
792
|
-
</PRE>
|
793
|
-
<A HREF="#top">go to the page top</A>
|
794
|
-
|
795
|
-
<A NAME="dsteqr"></A>
|
796
|
-
<H2>dsteqr</H2>
|
797
|
-
<PRE>
|
798
|
-
USAGE:
|
799
|
-
info, d, e, z = NumRu::Lapack.dsteqr( compz, d, e, z, [:usage => usage, :help => help])
|
800
|
-
|
801
|
-
|
802
|
-
FORTRAN MANUAL
|
803
|
-
SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
|
804
|
-
|
805
|
-
* Purpose
|
806
|
-
* =======
|
807
|
-
*
|
808
|
-
* DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
|
809
|
-
* symmetric tridiagonal matrix using the implicit QL or QR method.
|
810
|
-
* The eigenvectors of a full or band symmetric matrix can also be found
|
811
|
-
* if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
|
812
|
-
* tridiagonal form.
|
813
|
-
*
|
814
|
-
|
815
|
-
* Arguments
|
816
|
-
* =========
|
817
|
-
*
|
818
|
-
* COMPZ (input) CHARACTER*1
|
819
|
-
* = 'N': Compute eigenvalues only.
|
820
|
-
* = 'V': Compute eigenvalues and eigenvectors of the original
|
821
|
-
* symmetric matrix. On entry, Z must contain the
|
822
|
-
* orthogonal matrix used to reduce the original matrix
|
823
|
-
* to tridiagonal form.
|
824
|
-
* = 'I': Compute eigenvalues and eigenvectors of the
|
825
|
-
* tridiagonal matrix. Z is initialized to the identity
|
826
|
-
* matrix.
|
827
|
-
*
|
828
|
-
* N (input) INTEGER
|
829
|
-
* The order of the matrix. N >= 0.
|
830
|
-
*
|
831
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
832
|
-
* On entry, the diagonal elements of the tridiagonal matrix.
|
833
|
-
* On exit, if INFO = 0, the eigenvalues in ascending order.
|
834
|
-
*
|
835
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
836
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
837
|
-
* matrix.
|
838
|
-
* On exit, E has been destroyed.
|
839
|
-
*
|
840
|
-
* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
|
841
|
-
* On entry, if COMPZ = 'V', then Z contains the orthogonal
|
842
|
-
* matrix used in the reduction to tridiagonal form.
|
843
|
-
* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
|
844
|
-
* orthonormal eigenvectors of the original symmetric matrix,
|
845
|
-
* and if COMPZ = 'I', Z contains the orthonormal eigenvectors
|
846
|
-
* of the symmetric tridiagonal matrix.
|
847
|
-
* If COMPZ = 'N', then Z is not referenced.
|
848
|
-
*
|
849
|
-
* LDZ (input) INTEGER
|
850
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
851
|
-
* eigenvectors are desired, then LDZ >= max(1,N).
|
852
|
-
*
|
853
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
|
854
|
-
* If COMPZ = 'N', then WORK is not referenced.
|
855
|
-
*
|
856
|
-
* INFO (output) INTEGER
|
857
|
-
* = 0: successful exit
|
858
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
859
|
-
* > 0: the algorithm has failed to find all the eigenvalues in
|
860
|
-
* a total of 30*N iterations; if INFO = i, then i
|
861
|
-
* elements of E have not converged to zero; on exit, D
|
862
|
-
* and E contain the elements of a symmetric tridiagonal
|
863
|
-
* matrix which is orthogonally similar to the original
|
864
|
-
* matrix.
|
865
|
-
*
|
866
|
-
|
867
|
-
* =====================================================================
|
868
|
-
*
|
869
|
-
|
870
|
-
|
871
|
-
</PRE>
|
872
|
-
<A HREF="#top">go to the page top</A>
|
873
|
-
|
874
|
-
<A NAME="dsterf"></A>
|
875
|
-
<H2>dsterf</H2>
|
876
|
-
<PRE>
|
877
|
-
USAGE:
|
878
|
-
info, d, e = NumRu::Lapack.dsterf( d, e, [:usage => usage, :help => help])
|
879
|
-
|
880
|
-
|
881
|
-
FORTRAN MANUAL
|
882
|
-
SUBROUTINE DSTERF( N, D, E, INFO )
|
883
|
-
|
884
|
-
* Purpose
|
885
|
-
* =======
|
886
|
-
*
|
887
|
-
* DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
|
888
|
-
* using the Pal-Walker-Kahan variant of the QL or QR algorithm.
|
889
|
-
*
|
890
|
-
|
891
|
-
* Arguments
|
892
|
-
* =========
|
893
|
-
*
|
894
|
-
* N (input) INTEGER
|
895
|
-
* The order of the matrix. N >= 0.
|
896
|
-
*
|
897
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
898
|
-
* On entry, the n diagonal elements of the tridiagonal matrix.
|
899
|
-
* On exit, if INFO = 0, the eigenvalues in ascending order.
|
900
|
-
*
|
901
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
902
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
903
|
-
* matrix.
|
904
|
-
* On exit, E has been destroyed.
|
905
|
-
*
|
906
|
-
* INFO (output) INTEGER
|
907
|
-
* = 0: successful exit
|
908
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
909
|
-
* > 0: the algorithm failed to find all of the eigenvalues in
|
910
|
-
* a total of 30*N iterations; if INFO = i, then i
|
911
|
-
* elements of E have not converged to zero.
|
912
|
-
*
|
913
|
-
|
914
|
-
* =====================================================================
|
915
|
-
*
|
916
|
-
|
917
|
-
|
918
|
-
</PRE>
|
919
|
-
<A HREF="#top">go to the page top</A>
|
920
|
-
|
921
|
-
<A NAME="dstev"></A>
|
922
|
-
<H2>dstev</H2>
|
923
|
-
<PRE>
|
924
|
-
USAGE:
|
925
|
-
z, info, d, e = NumRu::Lapack.dstev( jobz, d, e, [:usage => usage, :help => help])
|
926
|
-
|
927
|
-
|
928
|
-
FORTRAN MANUAL
|
929
|
-
SUBROUTINE DSTEV( JOBZ, N, D, E, Z, LDZ, WORK, INFO )
|
930
|
-
|
931
|
-
* Purpose
|
932
|
-
* =======
|
933
|
-
*
|
934
|
-
* DSTEV computes all eigenvalues and, optionally, eigenvectors of a
|
935
|
-
* real symmetric tridiagonal matrix A.
|
936
|
-
*
|
937
|
-
|
938
|
-
* Arguments
|
939
|
-
* =========
|
940
|
-
*
|
941
|
-
* JOBZ (input) CHARACTER*1
|
942
|
-
* = 'N': Compute eigenvalues only;
|
943
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
944
|
-
*
|
945
|
-
* N (input) INTEGER
|
946
|
-
* The order of the matrix. N >= 0.
|
947
|
-
*
|
948
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
949
|
-
* On entry, the n diagonal elements of the tridiagonal matrix
|
950
|
-
* A.
|
951
|
-
* On exit, if INFO = 0, the eigenvalues in ascending order.
|
952
|
-
*
|
953
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
954
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
955
|
-
* matrix A, stored in elements 1 to N-1 of E.
|
956
|
-
* On exit, the contents of E are destroyed.
|
957
|
-
*
|
958
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
|
959
|
-
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
|
960
|
-
* eigenvectors of the matrix A, with the i-th column of Z
|
961
|
-
* holding the eigenvector associated with D(i).
|
962
|
-
* If JOBZ = 'N', then Z is not referenced.
|
963
|
-
*
|
964
|
-
* LDZ (input) INTEGER
|
965
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
966
|
-
* JOBZ = 'V', LDZ >= max(1,N).
|
967
|
-
*
|
968
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
|
969
|
-
* If JOBZ = 'N', WORK is not referenced.
|
970
|
-
*
|
971
|
-
* INFO (output) INTEGER
|
972
|
-
* = 0: successful exit
|
973
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
974
|
-
* > 0: if INFO = i, the algorithm failed to converge; i
|
975
|
-
* off-diagonal elements of E did not converge to zero.
|
976
|
-
*
|
977
|
-
|
978
|
-
* =====================================================================
|
979
|
-
*
|
980
|
-
|
981
|
-
|
982
|
-
</PRE>
|
983
|
-
<A HREF="#top">go to the page top</A>
|
984
|
-
|
985
|
-
<A NAME="dstevd"></A>
|
986
|
-
<H2>dstevd</H2>
|
987
|
-
<PRE>
|
988
|
-
USAGE:
|
989
|
-
z, work, iwork, info, d, e = NumRu::Lapack.dstevd( jobz, d, e, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
|
990
|
-
|
991
|
-
|
992
|
-
FORTRAN MANUAL
|
993
|
-
SUBROUTINE DSTEVD( JOBZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
|
994
|
-
|
995
|
-
* Purpose
|
996
|
-
* =======
|
997
|
-
*
|
998
|
-
* DSTEVD computes all eigenvalues and, optionally, eigenvectors of a
|
999
|
-
* real symmetric tridiagonal matrix. If eigenvectors are desired, it
|
1000
|
-
* uses a divide and conquer algorithm.
|
1001
|
-
*
|
1002
|
-
* The divide and conquer algorithm makes very mild assumptions about
|
1003
|
-
* floating point arithmetic. It will work on machines with a guard
|
1004
|
-
* digit in add/subtract, or on those binary machines without guard
|
1005
|
-
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
|
1006
|
-
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
|
1007
|
-
* without guard digits, but we know of none.
|
1008
|
-
*
|
1009
|
-
|
1010
|
-
* Arguments
|
1011
|
-
* =========
|
1012
|
-
*
|
1013
|
-
* JOBZ (input) CHARACTER*1
|
1014
|
-
* = 'N': Compute eigenvalues only;
|
1015
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
1016
|
-
*
|
1017
|
-
* N (input) INTEGER
|
1018
|
-
* The order of the matrix. N >= 0.
|
1019
|
-
*
|
1020
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
1021
|
-
* On entry, the n diagonal elements of the tridiagonal matrix
|
1022
|
-
* A.
|
1023
|
-
* On exit, if INFO = 0, the eigenvalues in ascending order.
|
1024
|
-
*
|
1025
|
-
* E (input/output) DOUBLE PRECISION array, dimension (N-1)
|
1026
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
1027
|
-
* matrix A, stored in elements 1 to N-1 of E.
|
1028
|
-
* On exit, the contents of E are destroyed.
|
1029
|
-
*
|
1030
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
|
1031
|
-
* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
|
1032
|
-
* eigenvectors of the matrix A, with the i-th column of Z
|
1033
|
-
* holding the eigenvector associated with D(i).
|
1034
|
-
* If JOBZ = 'N', then Z is not referenced.
|
1035
|
-
*
|
1036
|
-
* LDZ (input) INTEGER
|
1037
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
1038
|
-
* JOBZ = 'V', LDZ >= max(1,N).
|
1039
|
-
*
|
1040
|
-
* WORK (workspace/output) DOUBLE PRECISION array,
|
1041
|
-
* dimension (LWORK)
|
1042
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1043
|
-
*
|
1044
|
-
* LWORK (input) INTEGER
|
1045
|
-
* The dimension of the array WORK.
|
1046
|
-
* If JOBZ = 'N' or N <= 1 then LWORK must be at least 1.
|
1047
|
-
* If JOBZ = 'V' and N > 1 then LWORK must be at least
|
1048
|
-
* ( 1 + 4*N + N**2 ).
|
1049
|
-
*
|
1050
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1051
|
-
* only calculates the optimal sizes of the WORK and IWORK
|
1052
|
-
* arrays, returns these values as the first entries of the WORK
|
1053
|
-
* and IWORK arrays, and no error message related to LWORK or
|
1054
|
-
* LIWORK is issued by XERBLA.
|
1055
|
-
*
|
1056
|
-
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
|
1057
|
-
* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
|
1058
|
-
*
|
1059
|
-
* LIWORK (input) INTEGER
|
1060
|
-
* The dimension of the array IWORK.
|
1061
|
-
* If JOBZ = 'N' or N <= 1 then LIWORK must be at least 1.
|
1062
|
-
* If JOBZ = 'V' and N > 1 then LIWORK must be at least 3+5*N.
|
1063
|
-
*
|
1064
|
-
* If LIWORK = -1, then a workspace query is assumed; the
|
1065
|
-
* routine only calculates the optimal sizes of the WORK and
|
1066
|
-
* IWORK arrays, returns these values as the first entries of
|
1067
|
-
* the WORK and IWORK arrays, and no error message related to
|
1068
|
-
* LWORK or LIWORK is issued by XERBLA.
|
1069
|
-
*
|
1070
|
-
* INFO (output) INTEGER
|
1071
|
-
* = 0: successful exit
|
1072
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1073
|
-
* > 0: if INFO = i, the algorithm failed to converge; i
|
1074
|
-
* off-diagonal elements of E did not converge to zero.
|
1075
|
-
*
|
1076
|
-
|
1077
|
-
* =====================================================================
|
1078
|
-
*
|
1079
|
-
|
1080
|
-
|
1081
|
-
</PRE>
|
1082
|
-
<A HREF="#top">go to the page top</A>
|
1083
|
-
|
1084
|
-
<A NAME="dstevr"></A>
|
1085
|
-
<H2>dstevr</H2>
|
1086
|
-
<PRE>
|
1087
|
-
USAGE:
|
1088
|
-
m, w, z, isuppz, work, iwork, info, d, e = NumRu::Lapack.dstevr( jobz, range, d, e, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
|
1089
|
-
|
1090
|
-
|
1091
|
-
FORTRAN MANUAL
|
1092
|
-
SUBROUTINE DSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
|
1093
|
-
|
1094
|
-
* Purpose
|
1095
|
-
* =======
|
1096
|
-
*
|
1097
|
-
* DSTEVR computes selected eigenvalues and, optionally, eigenvectors
|
1098
|
-
* of a real symmetric tridiagonal matrix T. Eigenvalues and
|
1099
|
-
* eigenvectors can be selected by specifying either a range of values
|
1100
|
-
* or a range of indices for the desired eigenvalues.
|
1101
|
-
*
|
1102
|
-
* Whenever possible, DSTEVR calls DSTEMR to compute the
|
1103
|
-
* eigenspectrum using Relatively Robust Representations. DSTEMR
|
1104
|
-
* computes eigenvalues by the dqds algorithm, while orthogonal
|
1105
|
-
* eigenvectors are computed from various "good" L D L^T representations
|
1106
|
-
* (also known as Relatively Robust Representations). Gram-Schmidt
|
1107
|
-
* orthogonalization is avoided as far as possible. More specifically,
|
1108
|
-
* the various steps of the algorithm are as follows. For the i-th
|
1109
|
-
* unreduced block of T,
|
1110
|
-
* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
|
1111
|
-
* is a relatively robust representation,
|
1112
|
-
* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
|
1113
|
-
* relative accuracy by the dqds algorithm,
|
1114
|
-
* (c) If there is a cluster of close eigenvalues, "choose" sigma_i
|
1115
|
-
* close to the cluster, and go to step (a),
|
1116
|
-
* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
|
1117
|
-
* compute the corresponding eigenvector by forming a
|
1118
|
-
* rank-revealing twisted factorization.
|
1119
|
-
* The desired accuracy of the output can be specified by the input
|
1120
|
-
* parameter ABSTOL.
|
1121
|
-
*
|
1122
|
-
* For more details, see "A new O(n^2) algorithm for the symmetric
|
1123
|
-
* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
|
1124
|
-
* Computer Science Division Technical Report No. UCB//CSD-97-971,
|
1125
|
-
* UC Berkeley, May 1997.
|
1126
|
-
*
|
1127
|
-
*
|
1128
|
-
* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested
|
1129
|
-
* on machines which conform to the ieee-754 floating point standard.
|
1130
|
-
* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and
|
1131
|
-
* when partial spectrum requests are made.
|
1132
|
-
*
|
1133
|
-
* Normal execution of DSTEMR may create NaNs and infinities and
|
1134
|
-
* hence may abort due to a floating point exception in environments
|
1135
|
-
* which do not handle NaNs and infinities in the ieee standard default
|
1136
|
-
* manner.
|
1137
|
-
*
|
1138
|
-
|
1139
|
-
* Arguments
|
1140
|
-
* =========
|
1141
|
-
*
|
1142
|
-
* JOBZ (input) CHARACTER*1
|
1143
|
-
* = 'N': Compute eigenvalues only;
|
1144
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
1145
|
-
*
|
1146
|
-
* RANGE (input) CHARACTER*1
|
1147
|
-
* = 'A': all eigenvalues will be found.
|
1148
|
-
* = 'V': all eigenvalues in the half-open interval (VL,VU]
|
1149
|
-
* will be found.
|
1150
|
-
* = 'I': the IL-th through IU-th eigenvalues will be found.
|
1151
|
-
********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
|
1152
|
-
********** DSTEIN are called
|
1153
|
-
*
|
1154
|
-
* N (input) INTEGER
|
1155
|
-
* The order of the matrix. N >= 0.
|
1156
|
-
*
|
1157
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
1158
|
-
* On entry, the n diagonal elements of the tridiagonal matrix
|
1159
|
-
* A.
|
1160
|
-
* On exit, D may be multiplied by a constant factor chosen
|
1161
|
-
* to avoid over/underflow in computing the eigenvalues.
|
1162
|
-
*
|
1163
|
-
* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
|
1164
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
1165
|
-
* matrix A in elements 1 to N-1 of E.
|
1166
|
-
* On exit, E may be multiplied by a constant factor chosen
|
1167
|
-
* to avoid over/underflow in computing the eigenvalues.
|
1168
|
-
*
|
1169
|
-
* VL (input) DOUBLE PRECISION
|
1170
|
-
* VU (input) DOUBLE PRECISION
|
1171
|
-
* If RANGE='V', the lower and upper bounds of the interval to
|
1172
|
-
* be searched for eigenvalues. VL < VU.
|
1173
|
-
* Not referenced if RANGE = 'A' or 'I'.
|
1174
|
-
*
|
1175
|
-
* IL (input) INTEGER
|
1176
|
-
* IU (input) INTEGER
|
1177
|
-
* If RANGE='I', the indices (in ascending order) of the
|
1178
|
-
* smallest and largest eigenvalues to be returned.
|
1179
|
-
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
1180
|
-
* Not referenced if RANGE = 'A' or 'V'.
|
1181
|
-
*
|
1182
|
-
* ABSTOL (input) DOUBLE PRECISION
|
1183
|
-
* The absolute error tolerance for the eigenvalues.
|
1184
|
-
* An approximate eigenvalue is accepted as converged
|
1185
|
-
* when it is determined to lie in an interval [a,b]
|
1186
|
-
* of width less than or equal to
|
1187
|
-
*
|
1188
|
-
* ABSTOL + EPS * max( |a|,|b| ) ,
|
1189
|
-
*
|
1190
|
-
* where EPS is the machine precision. If ABSTOL is less than
|
1191
|
-
* or equal to zero, then EPS*|T| will be used in its place,
|
1192
|
-
* where |T| is the 1-norm of the tridiagonal matrix obtained
|
1193
|
-
* by reducing A to tridiagonal form.
|
1194
|
-
*
|
1195
|
-
* See "Computing Small Singular Values of Bidiagonal Matrices
|
1196
|
-
* with Guaranteed High Relative Accuracy," by Demmel and
|
1197
|
-
* Kahan, LAPACK Working Note #3.
|
1198
|
-
*
|
1199
|
-
* If high relative accuracy is important, set ABSTOL to
|
1200
|
-
* DLAMCH( 'Safe minimum' ). Doing so will guarantee that
|
1201
|
-
* eigenvalues are computed to high relative accuracy when
|
1202
|
-
* possible in future releases. The current code does not
|
1203
|
-
* make any guarantees about high relative accuracy, but
|
1204
|
-
* future releases will. See J. Barlow and J. Demmel,
|
1205
|
-
* "Computing Accurate Eigensystems of Scaled Diagonally
|
1206
|
-
* Dominant Matrices", LAPACK Working Note #7, for a discussion
|
1207
|
-
* of which matrices define their eigenvalues to high relative
|
1208
|
-
* accuracy.
|
1209
|
-
*
|
1210
|
-
* M (output) INTEGER
|
1211
|
-
* The total number of eigenvalues found. 0 <= M <= N.
|
1212
|
-
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
1213
|
-
*
|
1214
|
-
* W (output) DOUBLE PRECISION array, dimension (N)
|
1215
|
-
* The first M elements contain the selected eigenvalues in
|
1216
|
-
* ascending order.
|
1217
|
-
*
|
1218
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
|
1219
|
-
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
1220
|
-
* contain the orthonormal eigenvectors of the matrix A
|
1221
|
-
* corresponding to the selected eigenvalues, with the i-th
|
1222
|
-
* column of Z holding the eigenvector associated with W(i).
|
1223
|
-
* Note: the user must ensure that at least max(1,M) columns are
|
1224
|
-
* supplied in the array Z; if RANGE = 'V', the exact value of M
|
1225
|
-
* is not known in advance and an upper bound must be used.
|
1226
|
-
*
|
1227
|
-
* LDZ (input) INTEGER
|
1228
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
1229
|
-
* JOBZ = 'V', LDZ >= max(1,N).
|
1230
|
-
*
|
1231
|
-
* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
|
1232
|
-
* The support of the eigenvectors in Z, i.e., the indices
|
1233
|
-
* indicating the nonzero elements in Z. The i-th eigenvector
|
1234
|
-
* is nonzero only in elements ISUPPZ( 2*i-1 ) through
|
1235
|
-
* ISUPPZ( 2*i ).
|
1236
|
-
********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
|
1237
|
-
*
|
1238
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1239
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal (and
|
1240
|
-
* minimal) LWORK.
|
1241
|
-
*
|
1242
|
-
* LWORK (input) INTEGER
|
1243
|
-
* The dimension of the array WORK. LWORK >= max(1,20*N).
|
1244
|
-
*
|
1245
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1246
|
-
* only calculates the optimal sizes of the WORK and IWORK
|
1247
|
-
* arrays, returns these values as the first entries of the WORK
|
1248
|
-
* and IWORK arrays, and no error message related to LWORK or
|
1249
|
-
* LIWORK is issued by XERBLA.
|
1250
|
-
*
|
1251
|
-
* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
|
1252
|
-
* On exit, if INFO = 0, IWORK(1) returns the optimal (and
|
1253
|
-
* minimal) LIWORK.
|
1254
|
-
*
|
1255
|
-
* LIWORK (input) INTEGER
|
1256
|
-
* The dimension of the array IWORK. LIWORK >= max(1,10*N).
|
1257
|
-
*
|
1258
|
-
* If LIWORK = -1, then a workspace query is assumed; the
|
1259
|
-
* routine only calculates the optimal sizes of the WORK and
|
1260
|
-
* IWORK arrays, returns these values as the first entries of
|
1261
|
-
* the WORK and IWORK arrays, and no error message related to
|
1262
|
-
* LWORK or LIWORK is issued by XERBLA.
|
1263
|
-
*
|
1264
|
-
* INFO (output) INTEGER
|
1265
|
-
* = 0: successful exit
|
1266
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1267
|
-
* > 0: Internal error
|
1268
|
-
*
|
1269
|
-
|
1270
|
-
* Further Details
|
1271
|
-
* ===============
|
1272
|
-
*
|
1273
|
-
* Based on contributions by
|
1274
|
-
* Inderjit Dhillon, IBM Almaden, USA
|
1275
|
-
* Osni Marques, LBNL/NERSC, USA
|
1276
|
-
* Ken Stanley, Computer Science Division, University of
|
1277
|
-
* California at Berkeley, USA
|
1278
|
-
*
|
1279
|
-
* =====================================================================
|
1280
|
-
*
|
1281
|
-
|
1282
|
-
|
1283
|
-
</PRE>
|
1284
|
-
<A HREF="#top">go to the page top</A>
|
1285
|
-
|
1286
|
-
<A NAME="dstevx"></A>
|
1287
|
-
<H2>dstevx</H2>
|
1288
|
-
<PRE>
|
1289
|
-
USAGE:
|
1290
|
-
m, w, z, ifail, info, d, e = NumRu::Lapack.dstevx( jobz, range, d, e, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
|
1291
|
-
|
1292
|
-
|
1293
|
-
FORTRAN MANUAL
|
1294
|
-
SUBROUTINE DSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
|
1295
|
-
|
1296
|
-
* Purpose
|
1297
|
-
* =======
|
1298
|
-
*
|
1299
|
-
* DSTEVX computes selected eigenvalues and, optionally, eigenvectors
|
1300
|
-
* of a real symmetric tridiagonal matrix A. Eigenvalues and
|
1301
|
-
* eigenvectors can be selected by specifying either a range of values
|
1302
|
-
* or a range of indices for the desired eigenvalues.
|
1303
|
-
*
|
1304
|
-
|
1305
|
-
* Arguments
|
1306
|
-
* =========
|
1307
|
-
*
|
1308
|
-
* JOBZ (input) CHARACTER*1
|
1309
|
-
* = 'N': Compute eigenvalues only;
|
1310
|
-
* = 'V': Compute eigenvalues and eigenvectors.
|
1311
|
-
*
|
1312
|
-
* RANGE (input) CHARACTER*1
|
1313
|
-
* = 'A': all eigenvalues will be found.
|
1314
|
-
* = 'V': all eigenvalues in the half-open interval (VL,VU]
|
1315
|
-
* will be found.
|
1316
|
-
* = 'I': the IL-th through IU-th eigenvalues will be found.
|
1317
|
-
*
|
1318
|
-
* N (input) INTEGER
|
1319
|
-
* The order of the matrix. N >= 0.
|
1320
|
-
*
|
1321
|
-
* D (input/output) DOUBLE PRECISION array, dimension (N)
|
1322
|
-
* On entry, the n diagonal elements of the tridiagonal matrix
|
1323
|
-
* A.
|
1324
|
-
* On exit, D may be multiplied by a constant factor chosen
|
1325
|
-
* to avoid over/underflow in computing the eigenvalues.
|
1326
|
-
*
|
1327
|
-
* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1))
|
1328
|
-
* On entry, the (n-1) subdiagonal elements of the tridiagonal
|
1329
|
-
* matrix A in elements 1 to N-1 of E.
|
1330
|
-
* On exit, E may be multiplied by a constant factor chosen
|
1331
|
-
* to avoid over/underflow in computing the eigenvalues.
|
1332
|
-
*
|
1333
|
-
* VL (input) DOUBLE PRECISION
|
1334
|
-
* VU (input) DOUBLE PRECISION
|
1335
|
-
* If RANGE='V', the lower and upper bounds of the interval to
|
1336
|
-
* be searched for eigenvalues. VL < VU.
|
1337
|
-
* Not referenced if RANGE = 'A' or 'I'.
|
1338
|
-
*
|
1339
|
-
* IL (input) INTEGER
|
1340
|
-
* IU (input) INTEGER
|
1341
|
-
* If RANGE='I', the indices (in ascending order) of the
|
1342
|
-
* smallest and largest eigenvalues to be returned.
|
1343
|
-
* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
|
1344
|
-
* Not referenced if RANGE = 'A' or 'V'.
|
1345
|
-
*
|
1346
|
-
* ABSTOL (input) DOUBLE PRECISION
|
1347
|
-
* The absolute error tolerance for the eigenvalues.
|
1348
|
-
* An approximate eigenvalue is accepted as converged
|
1349
|
-
* when it is determined to lie in an interval [a,b]
|
1350
|
-
* of width less than or equal to
|
1351
|
-
*
|
1352
|
-
* ABSTOL + EPS * max( |a|,|b| ) ,
|
1353
|
-
*
|
1354
|
-
* where EPS is the machine precision. If ABSTOL is less
|
1355
|
-
* than or equal to zero, then EPS*|T| will be used in
|
1356
|
-
* its place, where |T| is the 1-norm of the tridiagonal
|
1357
|
-
* matrix.
|
1358
|
-
*
|
1359
|
-
* Eigenvalues will be computed most accurately when ABSTOL is
|
1360
|
-
* set to twice the underflow threshold 2*DLAMCH('S'), not zero.
|
1361
|
-
* If this routine returns with INFO>0, indicating that some
|
1362
|
-
* eigenvectors did not converge, try setting ABSTOL to
|
1363
|
-
* 2*DLAMCH('S').
|
1364
|
-
*
|
1365
|
-
* See "Computing Small Singular Values of Bidiagonal Matrices
|
1366
|
-
* with Guaranteed High Relative Accuracy," by Demmel and
|
1367
|
-
* Kahan, LAPACK Working Note #3.
|
1368
|
-
*
|
1369
|
-
* M (output) INTEGER
|
1370
|
-
* The total number of eigenvalues found. 0 <= M <= N.
|
1371
|
-
* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
|
1372
|
-
*
|
1373
|
-
* W (output) DOUBLE PRECISION array, dimension (N)
|
1374
|
-
* The first M elements contain the selected eigenvalues in
|
1375
|
-
* ascending order.
|
1376
|
-
*
|
1377
|
-
* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )
|
1378
|
-
* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
|
1379
|
-
* contain the orthonormal eigenvectors of the matrix A
|
1380
|
-
* corresponding to the selected eigenvalues, with the i-th
|
1381
|
-
* column of Z holding the eigenvector associated with W(i).
|
1382
|
-
* If an eigenvector fails to converge (INFO > 0), then that
|
1383
|
-
* column of Z contains the latest approximation to the
|
1384
|
-
* eigenvector, and the index of the eigenvector is returned
|
1385
|
-
* in IFAIL. If JOBZ = 'N', then Z is not referenced.
|
1386
|
-
* Note: the user must ensure that at least max(1,M) columns are
|
1387
|
-
* supplied in the array Z; if RANGE = 'V', the exact value of M
|
1388
|
-
* is not known in advance and an upper bound must be used.
|
1389
|
-
*
|
1390
|
-
* LDZ (input) INTEGER
|
1391
|
-
* The leading dimension of the array Z. LDZ >= 1, and if
|
1392
|
-
* JOBZ = 'V', LDZ >= max(1,N).
|
1393
|
-
*
|
1394
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (5*N)
|
1395
|
-
*
|
1396
|
-
* IWORK (workspace) INTEGER array, dimension (5*N)
|
1397
|
-
*
|
1398
|
-
* IFAIL (output) INTEGER array, dimension (N)
|
1399
|
-
* If JOBZ = 'V', then if INFO = 0, the first M elements of
|
1400
|
-
* IFAIL are zero. If INFO > 0, then IFAIL contains the
|
1401
|
-
* indices of the eigenvectors that failed to converge.
|
1402
|
-
* If JOBZ = 'N', then IFAIL is not referenced.
|
1403
|
-
*
|
1404
|
-
* INFO (output) INTEGER
|
1405
|
-
* = 0: successful exit
|
1406
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1407
|
-
* > 0: if INFO = i, then i eigenvectors failed to converge.
|
1408
|
-
* Their indices are stored in array IFAIL.
|
1409
|
-
*
|
1410
|
-
|
1411
|
-
* =====================================================================
|
1412
|
-
*
|
1413
|
-
|
1414
|
-
|
1415
|
-
</PRE>
|
1416
|
-
<A HREF="#top">go to the page top</A>
|
1417
|
-
|
1418
|
-
<HR />
|
1419
|
-
<A HREF="d.html">back to matrix types</A><BR>
|
1420
|
-
<A HREF="d.html">back to data types</A>
|
1421
|
-
</BODY>
|
1422
|
-
</HTML>
|