ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/dsy.html DELETED
@@ -1,3433 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for symmetric matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for symmetric matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dsycon">dsycon</A></LI>
10
- <LI><A HREF="#dsyconv">dsyconv</A></LI>
11
- <LI><A HREF="#dsyequb">dsyequb</A></LI>
12
- <LI><A HREF="#dsyev">dsyev</A></LI>
13
- <LI><A HREF="#dsyevd">dsyevd</A></LI>
14
- <LI><A HREF="#dsyevr">dsyevr</A></LI>
15
- <LI><A HREF="#dsyevx">dsyevx</A></LI>
16
- <LI><A HREF="#dsygs2">dsygs2</A></LI>
17
- <LI><A HREF="#dsygst">dsygst</A></LI>
18
- <LI><A HREF="#dsygv">dsygv</A></LI>
19
- <LI><A HREF="#dsygvd">dsygvd</A></LI>
20
- <LI><A HREF="#dsygvx">dsygvx</A></LI>
21
- <LI><A HREF="#dsyrfs">dsyrfs</A></LI>
22
- <LI><A HREF="#dsyrfsx">dsyrfsx</A></LI>
23
- <LI><A HREF="#dsysv">dsysv</A></LI>
24
- <LI><A HREF="#dsysvx">dsysvx</A></LI>
25
- <LI><A HREF="#dsysvxx">dsysvxx</A></LI>
26
- <LI><A HREF="#dsyswapr">dsyswapr</A></LI>
27
- <LI><A HREF="#dsytd2">dsytd2</A></LI>
28
- <LI><A HREF="#dsytf2">dsytf2</A></LI>
29
- <LI><A HREF="#dsytrd">dsytrd</A></LI>
30
- <LI><A HREF="#dsytrf">dsytrf</A></LI>
31
- <LI><A HREF="#dsytri">dsytri</A></LI>
32
- <LI><A HREF="#dsytri2">dsytri2</A></LI>
33
- <LI><A HREF="#dsytri2x">dsytri2x</A></LI>
34
- <LI><A HREF="#dsytrs">dsytrs</A></LI>
35
- <LI><A HREF="#dsytrs2">dsytrs2</A></LI>
36
- </UL>
37
-
38
- <A NAME="dsycon"></A>
39
- <H2>dsycon</H2>
40
- <PRE>
41
- USAGE:
42
- rcond, info = NumRu::Lapack.dsycon( uplo, a, ipiv, anorm, [:usage => usage, :help => help])
43
-
44
-
45
- FORTRAN MANUAL
46
- SUBROUTINE DSYCON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
47
-
48
- * Purpose
49
- * =======
50
- *
51
- * DSYCON estimates the reciprocal of the condition number (in the
52
- * 1-norm) of a real symmetric matrix A using the factorization
53
- * A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
54
- *
55
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
56
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
57
- *
58
-
59
- * Arguments
60
- * =========
61
- *
62
- * UPLO (input) CHARACTER*1
63
- * Specifies whether the details of the factorization are stored
64
- * as an upper or lower triangular matrix.
65
- * = 'U': Upper triangular, form is A = U*D*U**T;
66
- * = 'L': Lower triangular, form is A = L*D*L**T.
67
- *
68
- * N (input) INTEGER
69
- * The order of the matrix A. N >= 0.
70
- *
71
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
72
- * The block diagonal matrix D and the multipliers used to
73
- * obtain the factor U or L as computed by DSYTRF.
74
- *
75
- * LDA (input) INTEGER
76
- * The leading dimension of the array A. LDA >= max(1,N).
77
- *
78
- * IPIV (input) INTEGER array, dimension (N)
79
- * Details of the interchanges and the block structure of D
80
- * as determined by DSYTRF.
81
- *
82
- * ANORM (input) DOUBLE PRECISION
83
- * The 1-norm of the original matrix A.
84
- *
85
- * RCOND (output) DOUBLE PRECISION
86
- * The reciprocal of the condition number of the matrix A,
87
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
88
- * estimate of the 1-norm of inv(A) computed in this routine.
89
- *
90
- * WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
91
- *
92
- * IWORK (workspace) INTEGER array, dimension (N)
93
- *
94
- * INFO (output) INTEGER
95
- * = 0: successful exit
96
- * < 0: if INFO = -i, the i-th argument had an illegal value
97
- *
98
-
99
- * =====================================================================
100
- *
101
-
102
-
103
- </PRE>
104
- <A HREF="#top">go to the page top</A>
105
-
106
- <A NAME="dsyconv"></A>
107
- <H2>dsyconv</H2>
108
- <PRE>
109
- USAGE:
110
- info = NumRu::Lapack.dsyconv( uplo, way, a, ipiv, [:usage => usage, :help => help])
111
-
112
-
113
- FORTRAN MANUAL
114
- SUBROUTINE DSYCONV( UPLO, WAY, N, A, LDA, IPIV, WORK, INFO )
115
-
116
- * Purpose
117
- * =======
118
- *
119
- * DSYCONV convert A given by TRF into L and D and vice-versa.
120
- * Get Non-diag elements of D (returned in workspace) and
121
- * apply or reverse permutation done in TRF.
122
- *
123
-
124
- * Arguments
125
- * =========
126
- *
127
- * UPLO (input) CHARACTER*1
128
- * Specifies whether the details of the factorization are stored
129
- * as an upper or lower triangular matrix.
130
- * = 'U': Upper triangular, form is A = U*D*U**T;
131
- * = 'L': Lower triangular, form is A = L*D*L**T.
132
- *
133
- * WAY (input) CHARACTER*1
134
- * = 'C': Convert
135
- * = 'R': Revert
136
- *
137
- * N (input) INTEGER
138
- * The order of the matrix A. N >= 0.
139
- *
140
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
141
- * The block diagonal matrix D and the multipliers used to
142
- * obtain the factor U or L as computed by DSYTRF.
143
- *
144
- * LDA (input) INTEGER
145
- * The leading dimension of the array A. LDA >= max(1,N).
146
- *
147
- * IPIV (input) INTEGER array, dimension (N)
148
- * Details of the interchanges and the block structure of D
149
- * as determined by DSYTRF.
150
- *
151
- * WORK (workspace) DOUBLE PRECISION array, dimension (N)
152
- *
153
- * LWORK (input) INTEGER
154
- * The length of WORK. LWORK >=1.
155
- * LWORK = N
156
- *
157
- * If LWORK = -1, then a workspace query is assumed; the routine
158
- * only calculates the optimal size of the WORK array, returns
159
- * this value as the first entry of the WORK array, and no error
160
- * message related to LWORK is issued by XERBLA.
161
- *
162
- * INFO (output) INTEGER
163
- * = 0: successful exit
164
- * < 0: if INFO = -i, the i-th argument had an illegal value
165
- *
166
-
167
- * =====================================================================
168
- *
169
-
170
-
171
- </PRE>
172
- <A HREF="#top">go to the page top</A>
173
-
174
- <A NAME="dsyequb"></A>
175
- <H2>dsyequb</H2>
176
- <PRE>
177
- USAGE:
178
- s, scond, amax, info = NumRu::Lapack.dsyequb( uplo, a, [:usage => usage, :help => help])
179
-
180
-
181
- FORTRAN MANUAL
182
- SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
183
-
184
- * Purpose
185
- * =======
186
- *
187
- * DSYEQUB computes row and column scalings intended to equilibrate a
188
- * symmetric matrix A and reduce its condition number
189
- * (with respect to the two-norm). S contains the scale factors,
190
- * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
191
- * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
192
- * choice of S puts the condition number of B within a factor N of the
193
- * smallest possible condition number over all possible diagonal
194
- * scalings.
195
- *
196
-
197
- * Arguments
198
- * =========
199
- *
200
- * UPLO (input) CHARACTER*1
201
- * Specifies whether the details of the factorization are stored
202
- * as an upper or lower triangular matrix.
203
- * = 'U': Upper triangular, form is A = U*D*U**T;
204
- * = 'L': Lower triangular, form is A = L*D*L**T.
205
- *
206
- * N (input) INTEGER
207
- * The order of the matrix A. N >= 0.
208
- *
209
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
210
- * The N-by-N symmetric matrix whose scaling
211
- * factors are to be computed. Only the diagonal elements of A
212
- * are referenced.
213
- *
214
- * LDA (input) INTEGER
215
- * The leading dimension of the array A. LDA >= max(1,N).
216
- *
217
- * S (output) DOUBLE PRECISION array, dimension (N)
218
- * If INFO = 0, S contains the scale factors for A.
219
- *
220
- * SCOND (output) DOUBLE PRECISION
221
- * If INFO = 0, S contains the ratio of the smallest S(i) to
222
- * the largest S(i). If SCOND >= 0.1 and AMAX is neither too
223
- * large nor too small, it is not worth scaling by S.
224
- *
225
- * AMAX (output) DOUBLE PRECISION
226
- * Absolute value of largest matrix element. If AMAX is very
227
- * close to overflow or very close to underflow, the matrix
228
- * should be scaled.
229
- *
230
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
231
- *
232
- * INFO (output) INTEGER
233
- * = 0: successful exit
234
- * < 0: if INFO = -i, the i-th argument had an illegal value
235
- * > 0: if INFO = i, the i-th diagonal element is nonpositive.
236
- *
237
-
238
- * Further Details
239
- * ======= =======
240
- *
241
- * Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
242
- * Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
243
- * DOI 10.1023/B:NUMA.0000016606.32820.69
244
- * Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
245
- *
246
- * =====================================================================
247
- *
248
-
249
-
250
- </PRE>
251
- <A HREF="#top">go to the page top</A>
252
-
253
- <A NAME="dsyev"></A>
254
- <H2>dsyev</H2>
255
- <PRE>
256
- USAGE:
257
- w, work, info, a = NumRu::Lapack.dsyev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])
258
-
259
-
260
- FORTRAN MANUAL
261
- SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
262
-
263
- * Purpose
264
- * =======
265
- *
266
- * DSYEV computes all eigenvalues and, optionally, eigenvectors of a
267
- * real symmetric matrix A.
268
- *
269
-
270
- * Arguments
271
- * =========
272
- *
273
- * JOBZ (input) CHARACTER*1
274
- * = 'N': Compute eigenvalues only;
275
- * = 'V': Compute eigenvalues and eigenvectors.
276
- *
277
- * UPLO (input) CHARACTER*1
278
- * = 'U': Upper triangle of A is stored;
279
- * = 'L': Lower triangle of A is stored.
280
- *
281
- * N (input) INTEGER
282
- * The order of the matrix A. N >= 0.
283
- *
284
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
285
- * On entry, the symmetric matrix A. If UPLO = 'U', the
286
- * leading N-by-N upper triangular part of A contains the
287
- * upper triangular part of the matrix A. If UPLO = 'L',
288
- * the leading N-by-N lower triangular part of A contains
289
- * the lower triangular part of the matrix A.
290
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
291
- * orthonormal eigenvectors of the matrix A.
292
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
293
- * or the upper triangle (if UPLO='U') of A, including the
294
- * diagonal, is destroyed.
295
- *
296
- * LDA (input) INTEGER
297
- * The leading dimension of the array A. LDA >= max(1,N).
298
- *
299
- * W (output) DOUBLE PRECISION array, dimension (N)
300
- * If INFO = 0, the eigenvalues in ascending order.
301
- *
302
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
303
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
304
- *
305
- * LWORK (input) INTEGER
306
- * The length of the array WORK. LWORK >= max(1,3*N-1).
307
- * For optimal efficiency, LWORK >= (NB+2)*N,
308
- * where NB is the blocksize for DSYTRD returned by ILAENV.
309
- *
310
- * If LWORK = -1, then a workspace query is assumed; the routine
311
- * only calculates the optimal size of the WORK array, returns
312
- * this value as the first entry of the WORK array, and no error
313
- * message related to LWORK is issued by XERBLA.
314
- *
315
- * INFO (output) INTEGER
316
- * = 0: successful exit
317
- * < 0: if INFO = -i, the i-th argument had an illegal value
318
- * > 0: if INFO = i, the algorithm failed to converge; i
319
- * off-diagonal elements of an intermediate tridiagonal
320
- * form did not converge to zero.
321
- *
322
-
323
- * =====================================================================
324
- *
325
-
326
-
327
- </PRE>
328
- <A HREF="#top">go to the page top</A>
329
-
330
- <A NAME="dsyevd"></A>
331
- <H2>dsyevd</H2>
332
- <PRE>
333
- USAGE:
334
- w, work, iwork, info, a = NumRu::Lapack.dsyevd( jobz, uplo, a, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
335
-
336
-
337
- FORTRAN MANUAL
338
- SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO )
339
-
340
- * Purpose
341
- * =======
342
- *
343
- * DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
344
- * real symmetric matrix A. If eigenvectors are desired, it uses a
345
- * divide and conquer algorithm.
346
- *
347
- * The divide and conquer algorithm makes very mild assumptions about
348
- * floating point arithmetic. It will work on machines with a guard
349
- * digit in add/subtract, or on those binary machines without guard
350
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
351
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
352
- * without guard digits, but we know of none.
353
- *
354
- * Because of large use of BLAS of level 3, DSYEVD needs N**2 more
355
- * workspace than DSYEVX.
356
- *
357
-
358
- * Arguments
359
- * =========
360
- *
361
- * JOBZ (input) CHARACTER*1
362
- * = 'N': Compute eigenvalues only;
363
- * = 'V': Compute eigenvalues and eigenvectors.
364
- *
365
- * UPLO (input) CHARACTER*1
366
- * = 'U': Upper triangle of A is stored;
367
- * = 'L': Lower triangle of A is stored.
368
- *
369
- * N (input) INTEGER
370
- * The order of the matrix A. N >= 0.
371
- *
372
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
373
- * On entry, the symmetric matrix A. If UPLO = 'U', the
374
- * leading N-by-N upper triangular part of A contains the
375
- * upper triangular part of the matrix A. If UPLO = 'L',
376
- * the leading N-by-N lower triangular part of A contains
377
- * the lower triangular part of the matrix A.
378
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
379
- * orthonormal eigenvectors of the matrix A.
380
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
381
- * or the upper triangle (if UPLO='U') of A, including the
382
- * diagonal, is destroyed.
383
- *
384
- * LDA (input) INTEGER
385
- * The leading dimension of the array A. LDA >= max(1,N).
386
- *
387
- * W (output) DOUBLE PRECISION array, dimension (N)
388
- * If INFO = 0, the eigenvalues in ascending order.
389
- *
390
- * WORK (workspace/output) DOUBLE PRECISION array,
391
- * dimension (LWORK)
392
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
393
- *
394
- * LWORK (input) INTEGER
395
- * The dimension of the array WORK.
396
- * If N <= 1, LWORK must be at least 1.
397
- * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
398
- * If JOBZ = 'V' and N > 1, LWORK must be at least
399
- * 1 + 6*N + 2*N**2.
400
- *
401
- * If LWORK = -1, then a workspace query is assumed; the routine
402
- * only calculates the optimal sizes of the WORK and IWORK
403
- * arrays, returns these values as the first entries of the WORK
404
- * and IWORK arrays, and no error message related to LWORK or
405
- * LIWORK is issued by XERBLA.
406
- *
407
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
408
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
409
- *
410
- * LIWORK (input) INTEGER
411
- * The dimension of the array IWORK.
412
- * If N <= 1, LIWORK must be at least 1.
413
- * If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
414
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
415
- *
416
- * If LIWORK = -1, then a workspace query is assumed; the
417
- * routine only calculates the optimal sizes of the WORK and
418
- * IWORK arrays, returns these values as the first entries of
419
- * the WORK and IWORK arrays, and no error message related to
420
- * LWORK or LIWORK is issued by XERBLA.
421
- *
422
- * INFO (output) INTEGER
423
- * = 0: successful exit
424
- * < 0: if INFO = -i, the i-th argument had an illegal value
425
- * > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
426
- * to converge; i off-diagonal elements of an intermediate
427
- * tridiagonal form did not converge to zero;
428
- * if INFO = i and JOBZ = 'V', then the algorithm failed
429
- * to compute an eigenvalue while working on the submatrix
430
- * lying in rows and columns INFO/(N+1) through
431
- * mod(INFO,N+1).
432
- *
433
-
434
- * Further Details
435
- * ===============
436
- *
437
- * Based on contributions by
438
- * Jeff Rutter, Computer Science Division, University of California
439
- * at Berkeley, USA
440
- * Modified by Francoise Tisseur, University of Tennessee.
441
- *
442
- * Modified description of INFO. Sven, 16 Feb 05.
443
- * =====================================================================
444
- *
445
-
446
-
447
- </PRE>
448
- <A HREF="#top">go to the page top</A>
449
-
450
- <A NAME="dsyevr"></A>
451
- <H2>dsyevr</H2>
452
- <PRE>
453
- USAGE:
454
- m, w, z, isuppz, work, iwork, info, a = NumRu::Lapack.dsyevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
455
-
456
-
457
- FORTRAN MANUAL
458
- SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
459
-
460
- * Purpose
461
- * =======
462
- *
463
- * DSYEVR computes selected eigenvalues and, optionally, eigenvectors
464
- * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
465
- * selected by specifying either a range of values or a range of
466
- * indices for the desired eigenvalues.
467
- *
468
- * DSYEVR first reduces the matrix A to tridiagonal form T with a call
469
- * to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute
470
- * the eigenspectrum using Relatively Robust Representations. DSTEMR
471
- * computes eigenvalues by the dqds algorithm, while orthogonal
472
- * eigenvectors are computed from various "good" L D L^T representations
473
- * (also known as Relatively Robust Representations). Gram-Schmidt
474
- * orthogonalization is avoided as far as possible. More specifically,
475
- * the various steps of the algorithm are as follows.
476
- *
477
- * For each unreduced block (submatrix) of T,
478
- * (a) Compute T - sigma I = L D L^T, so that L and D
479
- * define all the wanted eigenvalues to high relative accuracy.
480
- * This means that small relative changes in the entries of D and L
481
- * cause only small relative changes in the eigenvalues and
482
- * eigenvectors. The standard (unfactored) representation of the
483
- * tridiagonal matrix T does not have this property in general.
484
- * (b) Compute the eigenvalues to suitable accuracy.
485
- * If the eigenvectors are desired, the algorithm attains full
486
- * accuracy of the computed eigenvalues only right before
487
- * the corresponding vectors have to be computed, see steps c) and d).
488
- * (c) For each cluster of close eigenvalues, select a new
489
- * shift close to the cluster, find a new factorization, and refine
490
- * the shifted eigenvalues to suitable accuracy.
491
- * (d) For each eigenvalue with a large enough relative separation compute
492
- * the corresponding eigenvector by forming a rank revealing twisted
493
- * factorization. Go back to (c) for any clusters that remain.
494
- *
495
- * The desired accuracy of the output can be specified by the input
496
- * parameter ABSTOL.
497
- *
498
- * For more details, see DSTEMR's documentation and:
499
- * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
500
- * to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
501
- * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
502
- * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
503
- * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
504
- * 2004. Also LAPACK Working Note 154.
505
- * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
506
- * tridiagonal eigenvalue/eigenvector problem",
507
- * Computer Science Division Technical Report No. UCB/CSD-97-971,
508
- * UC Berkeley, May 1997.
509
- *
510
- *
511
- * Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
512
- * on machines which conform to the ieee-754 floating point standard.
513
- * DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
514
- * when partial spectrum requests are made.
515
- *
516
- * Normal execution of DSTEMR may create NaNs and infinities and
517
- * hence may abort due to a floating point exception in environments
518
- * which do not handle NaNs and infinities in the ieee standard default
519
- * manner.
520
- *
521
-
522
- * Arguments
523
- * =========
524
- *
525
- * JOBZ (input) CHARACTER*1
526
- * = 'N': Compute eigenvalues only;
527
- * = 'V': Compute eigenvalues and eigenvectors.
528
- *
529
- * RANGE (input) CHARACTER*1
530
- * = 'A': all eigenvalues will be found.
531
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
532
- * will be found.
533
- * = 'I': the IL-th through IU-th eigenvalues will be found.
534
- ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
535
- ********** DSTEIN are called
536
- *
537
- * UPLO (input) CHARACTER*1
538
- * = 'U': Upper triangle of A is stored;
539
- * = 'L': Lower triangle of A is stored.
540
- *
541
- * N (input) INTEGER
542
- * The order of the matrix A. N >= 0.
543
- *
544
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
545
- * On entry, the symmetric matrix A. If UPLO = 'U', the
546
- * leading N-by-N upper triangular part of A contains the
547
- * upper triangular part of the matrix A. If UPLO = 'L',
548
- * the leading N-by-N lower triangular part of A contains
549
- * the lower triangular part of the matrix A.
550
- * On exit, the lower triangle (if UPLO='L') or the upper
551
- * triangle (if UPLO='U') of A, including the diagonal, is
552
- * destroyed.
553
- *
554
- * LDA (input) INTEGER
555
- * The leading dimension of the array A. LDA >= max(1,N).
556
- *
557
- * VL (input) DOUBLE PRECISION
558
- * VU (input) DOUBLE PRECISION
559
- * If RANGE='V', the lower and upper bounds of the interval to
560
- * be searched for eigenvalues. VL < VU.
561
- * Not referenced if RANGE = 'A' or 'I'.
562
- *
563
- * IL (input) INTEGER
564
- * IU (input) INTEGER
565
- * If RANGE='I', the indices (in ascending order) of the
566
- * smallest and largest eigenvalues to be returned.
567
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
568
- * Not referenced if RANGE = 'A' or 'V'.
569
- *
570
- * ABSTOL (input) DOUBLE PRECISION
571
- * The absolute error tolerance for the eigenvalues.
572
- * An approximate eigenvalue is accepted as converged
573
- * when it is determined to lie in an interval [a,b]
574
- * of width less than or equal to
575
- *
576
- * ABSTOL + EPS * max( |a|,|b| ) ,
577
- *
578
- * where EPS is the machine precision. If ABSTOL is less than
579
- * or equal to zero, then EPS*|T| will be used in its place,
580
- * where |T| is the 1-norm of the tridiagonal matrix obtained
581
- * by reducing A to tridiagonal form.
582
- *
583
- * See "Computing Small Singular Values of Bidiagonal Matrices
584
- * with Guaranteed High Relative Accuracy," by Demmel and
585
- * Kahan, LAPACK Working Note #3.
586
- *
587
- * If high relative accuracy is important, set ABSTOL to
588
- * DLAMCH( 'Safe minimum' ). Doing so will guarantee that
589
- * eigenvalues are computed to high relative accuracy when
590
- * possible in future releases. The current code does not
591
- * make any guarantees about high relative accuracy, but
592
- * future releases will. See J. Barlow and J. Demmel,
593
- * "Computing Accurate Eigensystems of Scaled Diagonally
594
- * Dominant Matrices", LAPACK Working Note #7, for a discussion
595
- * of which matrices define their eigenvalues to high relative
596
- * accuracy.
597
- *
598
- * M (output) INTEGER
599
- * The total number of eigenvalues found. 0 <= M <= N.
600
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
601
- *
602
- * W (output) DOUBLE PRECISION array, dimension (N)
603
- * The first M elements contain the selected eigenvalues in
604
- * ascending order.
605
- *
606
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
607
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
608
- * contain the orthonormal eigenvectors of the matrix A
609
- * corresponding to the selected eigenvalues, with the i-th
610
- * column of Z holding the eigenvector associated with W(i).
611
- * If JOBZ = 'N', then Z is not referenced.
612
- * Note: the user must ensure that at least max(1,M) columns are
613
- * supplied in the array Z; if RANGE = 'V', the exact value of M
614
- * is not known in advance and an upper bound must be used.
615
- * Supplying N columns is always safe.
616
- *
617
- * LDZ (input) INTEGER
618
- * The leading dimension of the array Z. LDZ >= 1, and if
619
- * JOBZ = 'V', LDZ >= max(1,N).
620
- *
621
- * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
622
- * The support of the eigenvectors in Z, i.e., the indices
623
- * indicating the nonzero elements in Z. The i-th eigenvector
624
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
625
- * ISUPPZ( 2*i ).
626
- ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
627
- *
628
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
629
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
630
- *
631
- * LWORK (input) INTEGER
632
- * The dimension of the array WORK. LWORK >= max(1,26*N).
633
- * For optimal efficiency, LWORK >= (NB+6)*N,
634
- * where NB is the max of the blocksize for DSYTRD and DORMTR
635
- * returned by ILAENV.
636
- *
637
- * If LWORK = -1, then a workspace query is assumed; the routine
638
- * only calculates the optimal size of the WORK array, returns
639
- * this value as the first entry of the WORK array, and no error
640
- * message related to LWORK is issued by XERBLA.
641
- *
642
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
643
- * On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
644
- *
645
- * LIWORK (input) INTEGER
646
- * The dimension of the array IWORK. LIWORK >= max(1,10*N).
647
- *
648
- * If LIWORK = -1, then a workspace query is assumed; the
649
- * routine only calculates the optimal size of the IWORK array,
650
- * returns this value as the first entry of the IWORK array, and
651
- * no error message related to LIWORK is issued by XERBLA.
652
- *
653
- * INFO (output) INTEGER
654
- * = 0: successful exit
655
- * < 0: if INFO = -i, the i-th argument had an illegal value
656
- * > 0: Internal error
657
- *
658
-
659
- * Further Details
660
- * ===============
661
- *
662
- * Based on contributions by
663
- * Inderjit Dhillon, IBM Almaden, USA
664
- * Osni Marques, LBNL/NERSC, USA
665
- * Ken Stanley, Computer Science Division, University of
666
- * California at Berkeley, USA
667
- * Jason Riedy, Computer Science Division, University of
668
- * California at Berkeley, USA
669
- *
670
- * =====================================================================
671
- *
672
-
673
-
674
- </PRE>
675
- <A HREF="#top">go to the page top</A>
676
-
677
- <A NAME="dsyevx"></A>
678
- <H2>dsyevx</H2>
679
- <PRE>
680
- USAGE:
681
- m, w, z, work, ifail, info, a = NumRu::Lapack.dsyevx( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
682
-
683
-
684
- FORTRAN MANUAL
685
- SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
686
-
687
- * Purpose
688
- * =======
689
- *
690
- * DSYEVX computes selected eigenvalues and, optionally, eigenvectors
691
- * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
692
- * selected by specifying either a range of values or a range of indices
693
- * for the desired eigenvalues.
694
- *
695
-
696
- * Arguments
697
- * =========
698
- *
699
- * JOBZ (input) CHARACTER*1
700
- * = 'N': Compute eigenvalues only;
701
- * = 'V': Compute eigenvalues and eigenvectors.
702
- *
703
- * RANGE (input) CHARACTER*1
704
- * = 'A': all eigenvalues will be found.
705
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
706
- * will be found.
707
- * = 'I': the IL-th through IU-th eigenvalues will be found.
708
- *
709
- * UPLO (input) CHARACTER*1
710
- * = 'U': Upper triangle of A is stored;
711
- * = 'L': Lower triangle of A is stored.
712
- *
713
- * N (input) INTEGER
714
- * The order of the matrix A. N >= 0.
715
- *
716
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
717
- * On entry, the symmetric matrix A. If UPLO = 'U', the
718
- * leading N-by-N upper triangular part of A contains the
719
- * upper triangular part of the matrix A. If UPLO = 'L',
720
- * the leading N-by-N lower triangular part of A contains
721
- * the lower triangular part of the matrix A.
722
- * On exit, the lower triangle (if UPLO='L') or the upper
723
- * triangle (if UPLO='U') of A, including the diagonal, is
724
- * destroyed.
725
- *
726
- * LDA (input) INTEGER
727
- * The leading dimension of the array A. LDA >= max(1,N).
728
- *
729
- * VL (input) DOUBLE PRECISION
730
- * VU (input) DOUBLE PRECISION
731
- * If RANGE='V', the lower and upper bounds of the interval to
732
- * be searched for eigenvalues. VL < VU.
733
- * Not referenced if RANGE = 'A' or 'I'.
734
- *
735
- * IL (input) INTEGER
736
- * IU (input) INTEGER
737
- * If RANGE='I', the indices (in ascending order) of the
738
- * smallest and largest eigenvalues to be returned.
739
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
740
- * Not referenced if RANGE = 'A' or 'V'.
741
- *
742
- * ABSTOL (input) DOUBLE PRECISION
743
- * The absolute error tolerance for the eigenvalues.
744
- * An approximate eigenvalue is accepted as converged
745
- * when it is determined to lie in an interval [a,b]
746
- * of width less than or equal to
747
- *
748
- * ABSTOL + EPS * max( |a|,|b| ) ,
749
- *
750
- * where EPS is the machine precision. If ABSTOL is less than
751
- * or equal to zero, then EPS*|T| will be used in its place,
752
- * where |T| is the 1-norm of the tridiagonal matrix obtained
753
- * by reducing A to tridiagonal form.
754
- *
755
- * Eigenvalues will be computed most accurately when ABSTOL is
756
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
757
- * If this routine returns with INFO>0, indicating that some
758
- * eigenvectors did not converge, try setting ABSTOL to
759
- * 2*DLAMCH('S').
760
- *
761
- * See "Computing Small Singular Values of Bidiagonal Matrices
762
- * with Guaranteed High Relative Accuracy," by Demmel and
763
- * Kahan, LAPACK Working Note #3.
764
- *
765
- * M (output) INTEGER
766
- * The total number of eigenvalues found. 0 <= M <= N.
767
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
768
- *
769
- * W (output) DOUBLE PRECISION array, dimension (N)
770
- * On normal exit, the first M elements contain the selected
771
- * eigenvalues in ascending order.
772
- *
773
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
774
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
775
- * contain the orthonormal eigenvectors of the matrix A
776
- * corresponding to the selected eigenvalues, with the i-th
777
- * column of Z holding the eigenvector associated with W(i).
778
- * If an eigenvector fails to converge, then that column of Z
779
- * contains the latest approximation to the eigenvector, and the
780
- * index of the eigenvector is returned in IFAIL.
781
- * If JOBZ = 'N', then Z is not referenced.
782
- * Note: the user must ensure that at least max(1,M) columns are
783
- * supplied in the array Z; if RANGE = 'V', the exact value of M
784
- * is not known in advance and an upper bound must be used.
785
- *
786
- * LDZ (input) INTEGER
787
- * The leading dimension of the array Z. LDZ >= 1, and if
788
- * JOBZ = 'V', LDZ >= max(1,N).
789
- *
790
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
791
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
792
- *
793
- * LWORK (input) INTEGER
794
- * The length of the array WORK. LWORK >= 1, when N <= 1;
795
- * otherwise 8*N.
796
- * For optimal efficiency, LWORK >= (NB+3)*N,
797
- * where NB is the max of the blocksize for DSYTRD and DORMTR
798
- * returned by ILAENV.
799
- *
800
- * If LWORK = -1, then a workspace query is assumed; the routine
801
- * only calculates the optimal size of the WORK array, returns
802
- * this value as the first entry of the WORK array, and no error
803
- * message related to LWORK is issued by XERBLA.
804
- *
805
- * IWORK (workspace) INTEGER array, dimension (5*N)
806
- *
807
- * IFAIL (output) INTEGER array, dimension (N)
808
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
809
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
810
- * indices of the eigenvectors that failed to converge.
811
- * If JOBZ = 'N', then IFAIL is not referenced.
812
- *
813
- * INFO (output) INTEGER
814
- * = 0: successful exit
815
- * < 0: if INFO = -i, the i-th argument had an illegal value
816
- * > 0: if INFO = i, then i eigenvectors failed to converge.
817
- * Their indices are stored in array IFAIL.
818
- *
819
-
820
- * =====================================================================
821
- *
822
-
823
-
824
- </PRE>
825
- <A HREF="#top">go to the page top</A>
826
-
827
- <A NAME="dsygs2"></A>
828
- <H2>dsygs2</H2>
829
- <PRE>
830
- USAGE:
831
- info, a = NumRu::Lapack.dsygs2( itype, uplo, a, b, [:usage => usage, :help => help])
832
-
833
-
834
- FORTRAN MANUAL
835
- SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
836
-
837
- * Purpose
838
- * =======
839
- *
840
- * DSYGS2 reduces a real symmetric-definite generalized eigenproblem
841
- * to standard form.
842
- *
843
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
844
- * and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
845
- *
846
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
847
- * B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
848
- *
849
- * B must have been previously factorized as U'*U or L*L' by DPOTRF.
850
- *
851
-
852
- * Arguments
853
- * =========
854
- *
855
- * ITYPE (input) INTEGER
856
- * = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
857
- * = 2 or 3: compute U*A*U' or L'*A*L.
858
- *
859
- * UPLO (input) CHARACTER*1
860
- * Specifies whether the upper or lower triangular part of the
861
- * symmetric matrix A is stored, and how B has been factorized.
862
- * = 'U': Upper triangular
863
- * = 'L': Lower triangular
864
- *
865
- * N (input) INTEGER
866
- * The order of the matrices A and B. N >= 0.
867
- *
868
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
869
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
870
- * n by n upper triangular part of A contains the upper
871
- * triangular part of the matrix A, and the strictly lower
872
- * triangular part of A is not referenced. If UPLO = 'L', the
873
- * leading n by n lower triangular part of A contains the lower
874
- * triangular part of the matrix A, and the strictly upper
875
- * triangular part of A is not referenced.
876
- *
877
- * On exit, if INFO = 0, the transformed matrix, stored in the
878
- * same format as A.
879
- *
880
- * LDA (input) INTEGER
881
- * The leading dimension of the array A. LDA >= max(1,N).
882
- *
883
- * B (input) DOUBLE PRECISION array, dimension (LDB,N)
884
- * The triangular factor from the Cholesky factorization of B,
885
- * as returned by DPOTRF.
886
- *
887
- * LDB (input) INTEGER
888
- * The leading dimension of the array B. LDB >= max(1,N).
889
- *
890
- * INFO (output) INTEGER
891
- * = 0: successful exit.
892
- * < 0: if INFO = -i, the i-th argument had an illegal value.
893
- *
894
-
895
- * =====================================================================
896
- *
897
-
898
-
899
- </PRE>
900
- <A HREF="#top">go to the page top</A>
901
-
902
- <A NAME="dsygst"></A>
903
- <H2>dsygst</H2>
904
- <PRE>
905
- USAGE:
906
- info, a = NumRu::Lapack.dsygst( itype, uplo, a, b, [:usage => usage, :help => help])
907
-
908
-
909
- FORTRAN MANUAL
910
- SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
911
-
912
- * Purpose
913
- * =======
914
- *
915
- * DSYGST reduces a real symmetric-definite generalized eigenproblem
916
- * to standard form.
917
- *
918
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
919
- * and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
920
- *
921
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
922
- * B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
923
- *
924
- * B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
925
- *
926
-
927
- * Arguments
928
- * =========
929
- *
930
- * ITYPE (input) INTEGER
931
- * = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
932
- * = 2 or 3: compute U*A*U**T or L**T*A*L.
933
- *
934
- * UPLO (input) CHARACTER*1
935
- * = 'U': Upper triangle of A is stored and B is factored as
936
- * U**T*U;
937
- * = 'L': Lower triangle of A is stored and B is factored as
938
- * L*L**T.
939
- *
940
- * N (input) INTEGER
941
- * The order of the matrices A and B. N >= 0.
942
- *
943
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
944
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
945
- * N-by-N upper triangular part of A contains the upper
946
- * triangular part of the matrix A, and the strictly lower
947
- * triangular part of A is not referenced. If UPLO = 'L', the
948
- * leading N-by-N lower triangular part of A contains the lower
949
- * triangular part of the matrix A, and the strictly upper
950
- * triangular part of A is not referenced.
951
- *
952
- * On exit, if INFO = 0, the transformed matrix, stored in the
953
- * same format as A.
954
- *
955
- * LDA (input) INTEGER
956
- * The leading dimension of the array A. LDA >= max(1,N).
957
- *
958
- * B (input) DOUBLE PRECISION array, dimension (LDB,N)
959
- * The triangular factor from the Cholesky factorization of B,
960
- * as returned by DPOTRF.
961
- *
962
- * LDB (input) INTEGER
963
- * The leading dimension of the array B. LDB >= max(1,N).
964
- *
965
- * INFO (output) INTEGER
966
- * = 0: successful exit
967
- * < 0: if INFO = -i, the i-th argument had an illegal value
968
- *
969
-
970
- * =====================================================================
971
- *
972
-
973
-
974
- </PRE>
975
- <A HREF="#top">go to the page top</A>
976
-
977
- <A NAME="dsygv"></A>
978
- <H2>dsygv</H2>
979
- <PRE>
980
- USAGE:
981
- w, work, info, a, b = NumRu::Lapack.dsygv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
982
-
983
-
984
- FORTRAN MANUAL
985
- SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )
986
-
987
- * Purpose
988
- * =======
989
- *
990
- * DSYGV computes all the eigenvalues, and optionally, the eigenvectors
991
- * of a real generalized symmetric-definite eigenproblem, of the form
992
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
993
- * Here A and B are assumed to be symmetric and B is also
994
- * positive definite.
995
- *
996
-
997
- * Arguments
998
- * =========
999
- *
1000
- * ITYPE (input) INTEGER
1001
- * Specifies the problem type to be solved:
1002
- * = 1: A*x = (lambda)*B*x
1003
- * = 2: A*B*x = (lambda)*x
1004
- * = 3: B*A*x = (lambda)*x
1005
- *
1006
- * JOBZ (input) CHARACTER*1
1007
- * = 'N': Compute eigenvalues only;
1008
- * = 'V': Compute eigenvalues and eigenvectors.
1009
- *
1010
- * UPLO (input) CHARACTER*1
1011
- * = 'U': Upper triangles of A and B are stored;
1012
- * = 'L': Lower triangles of A and B are stored.
1013
- *
1014
- * N (input) INTEGER
1015
- * The order of the matrices A and B. N >= 0.
1016
- *
1017
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1018
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1019
- * leading N-by-N upper triangular part of A contains the
1020
- * upper triangular part of the matrix A. If UPLO = 'L',
1021
- * the leading N-by-N lower triangular part of A contains
1022
- * the lower triangular part of the matrix A.
1023
- *
1024
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1025
- * matrix Z of eigenvectors. The eigenvectors are normalized
1026
- * as follows:
1027
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1028
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1029
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1030
- * or the lower triangle (if UPLO='L') of A, including the
1031
- * diagonal, is destroyed.
1032
- *
1033
- * LDA (input) INTEGER
1034
- * The leading dimension of the array A. LDA >= max(1,N).
1035
- *
1036
- * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1037
- * On entry, the symmetric positive definite matrix B.
1038
- * If UPLO = 'U', the leading N-by-N upper triangular part of B
1039
- * contains the upper triangular part of the matrix B.
1040
- * If UPLO = 'L', the leading N-by-N lower triangular part of B
1041
- * contains the lower triangular part of the matrix B.
1042
- *
1043
- * On exit, if INFO <= N, the part of B containing the matrix is
1044
- * overwritten by the triangular factor U or L from the Cholesky
1045
- * factorization B = U**T*U or B = L*L**T.
1046
- *
1047
- * LDB (input) INTEGER
1048
- * The leading dimension of the array B. LDB >= max(1,N).
1049
- *
1050
- * W (output) DOUBLE PRECISION array, dimension (N)
1051
- * If INFO = 0, the eigenvalues in ascending order.
1052
- *
1053
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1054
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1055
- *
1056
- * LWORK (input) INTEGER
1057
- * The length of the array WORK. LWORK >= max(1,3*N-1).
1058
- * For optimal efficiency, LWORK >= (NB+2)*N,
1059
- * where NB is the blocksize for DSYTRD returned by ILAENV.
1060
- *
1061
- * If LWORK = -1, then a workspace query is assumed; the routine
1062
- * only calculates the optimal size of the WORK array, returns
1063
- * this value as the first entry of the WORK array, and no error
1064
- * message related to LWORK is issued by XERBLA.
1065
- *
1066
- * INFO (output) INTEGER
1067
- * = 0: successful exit
1068
- * < 0: if INFO = -i, the i-th argument had an illegal value
1069
- * > 0: DPOTRF or DSYEV returned an error code:
1070
- * <= N: if INFO = i, DSYEV failed to converge;
1071
- * i off-diagonal elements of an intermediate
1072
- * tridiagonal form did not converge to zero;
1073
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1074
- * minor of order i of B is not positive definite.
1075
- * The factorization of B could not be completed and
1076
- * no eigenvalues or eigenvectors were computed.
1077
- *
1078
-
1079
- * =====================================================================
1080
- *
1081
-
1082
-
1083
- </PRE>
1084
- <A HREF="#top">go to the page top</A>
1085
-
1086
- <A NAME="dsygvd"></A>
1087
- <H2>dsygvd</H2>
1088
- <PRE>
1089
- USAGE:
1090
- w, work, iwork, info, a, b = NumRu::Lapack.dsygvd( itype, jobz, uplo, a, b, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
1091
-
1092
-
1093
- FORTRAN MANUAL
1094
- SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, IWORK, LIWORK, INFO )
1095
-
1096
- * Purpose
1097
- * =======
1098
- *
1099
- * DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
1100
- * of a real generalized symmetric-definite eigenproblem, of the form
1101
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
1102
- * B are assumed to be symmetric and B is also positive definite.
1103
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
1104
- *
1105
- * The divide and conquer algorithm makes very mild assumptions about
1106
- * floating point arithmetic. It will work on machines with a guard
1107
- * digit in add/subtract, or on those binary machines without guard
1108
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
1109
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
1110
- * without guard digits, but we know of none.
1111
- *
1112
-
1113
- * Arguments
1114
- * =========
1115
- *
1116
- * ITYPE (input) INTEGER
1117
- * Specifies the problem type to be solved:
1118
- * = 1: A*x = (lambda)*B*x
1119
- * = 2: A*B*x = (lambda)*x
1120
- * = 3: B*A*x = (lambda)*x
1121
- *
1122
- * JOBZ (input) CHARACTER*1
1123
- * = 'N': Compute eigenvalues only;
1124
- * = 'V': Compute eigenvalues and eigenvectors.
1125
- *
1126
- * UPLO (input) CHARACTER*1
1127
- * = 'U': Upper triangles of A and B are stored;
1128
- * = 'L': Lower triangles of A and B are stored.
1129
- *
1130
- * N (input) INTEGER
1131
- * The order of the matrices A and B. N >= 0.
1132
- *
1133
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1134
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1135
- * leading N-by-N upper triangular part of A contains the
1136
- * upper triangular part of the matrix A. If UPLO = 'L',
1137
- * the leading N-by-N lower triangular part of A contains
1138
- * the lower triangular part of the matrix A.
1139
- *
1140
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1141
- * matrix Z of eigenvectors. The eigenvectors are normalized
1142
- * as follows:
1143
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1144
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1145
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1146
- * or the lower triangle (if UPLO='L') of A, including the
1147
- * diagonal, is destroyed.
1148
- *
1149
- * LDA (input) INTEGER
1150
- * The leading dimension of the array A. LDA >= max(1,N).
1151
- *
1152
- * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1153
- * On entry, the symmetric matrix B. If UPLO = 'U', the
1154
- * leading N-by-N upper triangular part of B contains the
1155
- * upper triangular part of the matrix B. If UPLO = 'L',
1156
- * the leading N-by-N lower triangular part of B contains
1157
- * the lower triangular part of the matrix B.
1158
- *
1159
- * On exit, if INFO <= N, the part of B containing the matrix is
1160
- * overwritten by the triangular factor U or L from the Cholesky
1161
- * factorization B = U**T*U or B = L*L**T.
1162
- *
1163
- * LDB (input) INTEGER
1164
- * The leading dimension of the array B. LDB >= max(1,N).
1165
- *
1166
- * W (output) DOUBLE PRECISION array, dimension (N)
1167
- * If INFO = 0, the eigenvalues in ascending order.
1168
- *
1169
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1170
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1171
- *
1172
- * LWORK (input) INTEGER
1173
- * The dimension of the array WORK.
1174
- * If N <= 1, LWORK >= 1.
1175
- * If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
1176
- * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
1177
- *
1178
- * If LWORK = -1, then a workspace query is assumed; the routine
1179
- * only calculates the optimal sizes of the WORK and IWORK
1180
- * arrays, returns these values as the first entries of the WORK
1181
- * and IWORK arrays, and no error message related to LWORK or
1182
- * LIWORK is issued by XERBLA.
1183
- *
1184
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1185
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1186
- *
1187
- * LIWORK (input) INTEGER
1188
- * The dimension of the array IWORK.
1189
- * If N <= 1, LIWORK >= 1.
1190
- * If JOBZ = 'N' and N > 1, LIWORK >= 1.
1191
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
1192
- *
1193
- * If LIWORK = -1, then a workspace query is assumed; the
1194
- * routine only calculates the optimal sizes of the WORK and
1195
- * IWORK arrays, returns these values as the first entries of
1196
- * the WORK and IWORK arrays, and no error message related to
1197
- * LWORK or LIWORK is issued by XERBLA.
1198
- *
1199
- * INFO (output) INTEGER
1200
- * = 0: successful exit
1201
- * < 0: if INFO = -i, the i-th argument had an illegal value
1202
- * > 0: DPOTRF or DSYEVD returned an error code:
1203
- * <= N: if INFO = i and JOBZ = 'N', then the algorithm
1204
- * failed to converge; i off-diagonal elements of an
1205
- * intermediate tridiagonal form did not converge to
1206
- * zero;
1207
- * if INFO = i and JOBZ = 'V', then the algorithm
1208
- * failed to compute an eigenvalue while working on
1209
- * the submatrix lying in rows and columns INFO/(N+1)
1210
- * through mod(INFO,N+1);
1211
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1212
- * minor of order i of B is not positive definite.
1213
- * The factorization of B could not be completed and
1214
- * no eigenvalues or eigenvectors were computed.
1215
- *
1216
-
1217
- * Further Details
1218
- * ===============
1219
- *
1220
- * Based on contributions by
1221
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1222
- *
1223
- * Modified so that no backsubstitution is performed if DSYEVD fails to
1224
- * converge (NEIG in old code could be greater than N causing out of
1225
- * bounds reference to A - reported by Ralf Meyer). Also corrected the
1226
- * description of INFO and the test on ITYPE. Sven, 16 Feb 05.
1227
- * =====================================================================
1228
- *
1229
-
1230
-
1231
- </PRE>
1232
- <A HREF="#top">go to the page top</A>
1233
-
1234
- <A NAME="dsygvx"></A>
1235
- <H2>dsygvx</H2>
1236
- <PRE>
1237
- USAGE:
1238
- m, w, z, work, ifail, info, a, b = NumRu::Lapack.dsygvx( itype, jobz, range, uplo, a, b, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
1239
-
1240
-
1241
- FORTRAN MANUAL
1242
- SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
1243
-
1244
- * Purpose
1245
- * =======
1246
- *
1247
- * DSYGVX computes selected eigenvalues, and optionally, eigenvectors
1248
- * of a real generalized symmetric-definite eigenproblem, of the form
1249
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
1250
- * and B are assumed to be symmetric and B is also positive definite.
1251
- * Eigenvalues and eigenvectors can be selected by specifying either a
1252
- * range of values or a range of indices for the desired eigenvalues.
1253
- *
1254
-
1255
- * Arguments
1256
- * =========
1257
- *
1258
- * ITYPE (input) INTEGER
1259
- * Specifies the problem type to be solved:
1260
- * = 1: A*x = (lambda)*B*x
1261
- * = 2: A*B*x = (lambda)*x
1262
- * = 3: B*A*x = (lambda)*x
1263
- *
1264
- * JOBZ (input) CHARACTER*1
1265
- * = 'N': Compute eigenvalues only;
1266
- * = 'V': Compute eigenvalues and eigenvectors.
1267
- *
1268
- * RANGE (input) CHARACTER*1
1269
- * = 'A': all eigenvalues will be found.
1270
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
1271
- * will be found.
1272
- * = 'I': the IL-th through IU-th eigenvalues will be found.
1273
- *
1274
- * UPLO (input) CHARACTER*1
1275
- * = 'U': Upper triangle of A and B are stored;
1276
- * = 'L': Lower triangle of A and B are stored.
1277
- *
1278
- * N (input) INTEGER
1279
- * The order of the matrix pencil (A,B). N >= 0.
1280
- *
1281
- * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1282
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1283
- * leading N-by-N upper triangular part of A contains the
1284
- * upper triangular part of the matrix A. If UPLO = 'L',
1285
- * the leading N-by-N lower triangular part of A contains
1286
- * the lower triangular part of the matrix A.
1287
- *
1288
- * On exit, the lower triangle (if UPLO='L') or the upper
1289
- * triangle (if UPLO='U') of A, including the diagonal, is
1290
- * destroyed.
1291
- *
1292
- * LDA (input) INTEGER
1293
- * The leading dimension of the array A. LDA >= max(1,N).
1294
- *
1295
- * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1296
- * On entry, the symmetric matrix B. If UPLO = 'U', the
1297
- * leading N-by-N upper triangular part of B contains the
1298
- * upper triangular part of the matrix B. If UPLO = 'L',
1299
- * the leading N-by-N lower triangular part of B contains
1300
- * the lower triangular part of the matrix B.
1301
- *
1302
- * On exit, if INFO <= N, the part of B containing the matrix is
1303
- * overwritten by the triangular factor U or L from the Cholesky
1304
- * factorization B = U**T*U or B = L*L**T.
1305
- *
1306
- * LDB (input) INTEGER
1307
- * The leading dimension of the array B. LDB >= max(1,N).
1308
- *
1309
- * VL (input) DOUBLE PRECISION
1310
- * VU (input) DOUBLE PRECISION
1311
- * If RANGE='V', the lower and upper bounds of the interval to
1312
- * be searched for eigenvalues. VL < VU.
1313
- * Not referenced if RANGE = 'A' or 'I'.
1314
- *
1315
- * IL (input) INTEGER
1316
- * IU (input) INTEGER
1317
- * If RANGE='I', the indices (in ascending order) of the
1318
- * smallest and largest eigenvalues to be returned.
1319
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1320
- * Not referenced if RANGE = 'A' or 'V'.
1321
- *
1322
- * ABSTOL (input) DOUBLE PRECISION
1323
- * The absolute error tolerance for the eigenvalues.
1324
- * An approximate eigenvalue is accepted as converged
1325
- * when it is determined to lie in an interval [a,b]
1326
- * of width less than or equal to
1327
- *
1328
- * ABSTOL + EPS * max( |a|,|b| ) ,
1329
- *
1330
- * where EPS is the machine precision. If ABSTOL is less than
1331
- * or equal to zero, then EPS*|T| will be used in its place,
1332
- * where |T| is the 1-norm of the tridiagonal matrix obtained
1333
- * by reducing A to tridiagonal form.
1334
- *
1335
- * Eigenvalues will be computed most accurately when ABSTOL is
1336
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
1337
- * If this routine returns with INFO>0, indicating that some
1338
- * eigenvectors did not converge, try setting ABSTOL to
1339
- * 2*DLAMCH('S').
1340
- *
1341
- * M (output) INTEGER
1342
- * The total number of eigenvalues found. 0 <= M <= N.
1343
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1344
- *
1345
- * W (output) DOUBLE PRECISION array, dimension (N)
1346
- * On normal exit, the first M elements contain the selected
1347
- * eigenvalues in ascending order.
1348
- *
1349
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
1350
- * If JOBZ = 'N', then Z is not referenced.
1351
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1352
- * contain the orthonormal eigenvectors of the matrix A
1353
- * corresponding to the selected eigenvalues, with the i-th
1354
- * column of Z holding the eigenvector associated with W(i).
1355
- * The eigenvectors are normalized as follows:
1356
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1357
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1358
- *
1359
- * If an eigenvector fails to converge, then that column of Z
1360
- * contains the latest approximation to the eigenvector, and the
1361
- * index of the eigenvector is returned in IFAIL.
1362
- * Note: the user must ensure that at least max(1,M) columns are
1363
- * supplied in the array Z; if RANGE = 'V', the exact value of M
1364
- * is not known in advance and an upper bound must be used.
1365
- *
1366
- * LDZ (input) INTEGER
1367
- * The leading dimension of the array Z. LDZ >= 1, and if
1368
- * JOBZ = 'V', LDZ >= max(1,N).
1369
- *
1370
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1371
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1372
- *
1373
- * LWORK (input) INTEGER
1374
- * The length of the array WORK. LWORK >= max(1,8*N).
1375
- * For optimal efficiency, LWORK >= (NB+3)*N,
1376
- * where NB is the blocksize for DSYTRD returned by ILAENV.
1377
- *
1378
- * If LWORK = -1, then a workspace query is assumed; the routine
1379
- * only calculates the optimal size of the WORK array, returns
1380
- * this value as the first entry of the WORK array, and no error
1381
- * message related to LWORK is issued by XERBLA.
1382
- *
1383
- * IWORK (workspace) INTEGER array, dimension (5*N)
1384
- *
1385
- * IFAIL (output) INTEGER array, dimension (N)
1386
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
1387
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
1388
- * indices of the eigenvectors that failed to converge.
1389
- * If JOBZ = 'N', then IFAIL is not referenced.
1390
- *
1391
- * INFO (output) INTEGER
1392
- * = 0: successful exit
1393
- * < 0: if INFO = -i, the i-th argument had an illegal value
1394
- * > 0: DPOTRF or DSYEVX returned an error code:
1395
- * <= N: if INFO = i, DSYEVX failed to converge;
1396
- * i eigenvectors failed to converge. Their indices
1397
- * are stored in array IFAIL.
1398
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1399
- * minor of order i of B is not positive definite.
1400
- * The factorization of B could not be completed and
1401
- * no eigenvalues or eigenvectors were computed.
1402
- *
1403
-
1404
- * Further Details
1405
- * ===============
1406
- *
1407
- * Based on contributions by
1408
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1409
- *
1410
- * =====================================================================
1411
- *
1412
-
1413
-
1414
- </PRE>
1415
- <A HREF="#top">go to the page top</A>
1416
-
1417
- <A NAME="dsyrfs"></A>
1418
- <H2>dsyrfs</H2>
1419
- <PRE>
1420
- USAGE:
1421
- ferr, berr, info, x = NumRu::Lapack.dsyrfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])
1422
-
1423
-
1424
- FORTRAN MANUAL
1425
- SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
1426
-
1427
- * Purpose
1428
- * =======
1429
- *
1430
- * DSYRFS improves the computed solution to a system of linear
1431
- * equations when the coefficient matrix is symmetric indefinite, and
1432
- * provides error bounds and backward error estimates for the solution.
1433
- *
1434
-
1435
- * Arguments
1436
- * =========
1437
- *
1438
- * UPLO (input) CHARACTER*1
1439
- * = 'U': Upper triangle of A is stored;
1440
- * = 'L': Lower triangle of A is stored.
1441
- *
1442
- * N (input) INTEGER
1443
- * The order of the matrix A. N >= 0.
1444
- *
1445
- * NRHS (input) INTEGER
1446
- * The number of right hand sides, i.e., the number of columns
1447
- * of the matrices B and X. NRHS >= 0.
1448
- *
1449
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
1450
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1451
- * upper triangular part of A contains the upper triangular part
1452
- * of the matrix A, and the strictly lower triangular part of A
1453
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
1454
- * triangular part of A contains the lower triangular part of
1455
- * the matrix A, and the strictly upper triangular part of A is
1456
- * not referenced.
1457
- *
1458
- * LDA (input) INTEGER
1459
- * The leading dimension of the array A. LDA >= max(1,N).
1460
- *
1461
- * AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
1462
- * The factored form of the matrix A. AF contains the block
1463
- * diagonal matrix D and the multipliers used to obtain the
1464
- * factor U or L from the factorization A = U*D*U**T or
1465
- * A = L*D*L**T as computed by DSYTRF.
1466
- *
1467
- * LDAF (input) INTEGER
1468
- * The leading dimension of the array AF. LDAF >= max(1,N).
1469
- *
1470
- * IPIV (input) INTEGER array, dimension (N)
1471
- * Details of the interchanges and the block structure of D
1472
- * as determined by DSYTRF.
1473
- *
1474
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1475
- * The right hand side matrix B.
1476
- *
1477
- * LDB (input) INTEGER
1478
- * The leading dimension of the array B. LDB >= max(1,N).
1479
- *
1480
- * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1481
- * On entry, the solution matrix X, as computed by DSYTRS.
1482
- * On exit, the improved solution matrix X.
1483
- *
1484
- * LDX (input) INTEGER
1485
- * The leading dimension of the array X. LDX >= max(1,N).
1486
- *
1487
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1488
- * The estimated forward error bound for each solution vector
1489
- * X(j) (the j-th column of the solution matrix X).
1490
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1491
- * is an estimated upper bound for the magnitude of the largest
1492
- * element in (X(j) - XTRUE) divided by the magnitude of the
1493
- * largest element in X(j). The estimate is as reliable as
1494
- * the estimate for RCOND, and is almost always a slight
1495
- * overestimate of the true error.
1496
- *
1497
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1498
- * The componentwise relative backward error of each solution
1499
- * vector X(j) (i.e., the smallest relative change in
1500
- * any element of A or B that makes X(j) an exact solution).
1501
- *
1502
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
1503
- *
1504
- * IWORK (workspace) INTEGER array, dimension (N)
1505
- *
1506
- * INFO (output) INTEGER
1507
- * = 0: successful exit
1508
- * < 0: if INFO = -i, the i-th argument had an illegal value
1509
- *
1510
- * Internal Parameters
1511
- * ===================
1512
- *
1513
- * ITMAX is the maximum number of steps of iterative refinement.
1514
- *
1515
-
1516
- * =====================================================================
1517
- *
1518
-
1519
-
1520
- </PRE>
1521
- <A HREF="#top">go to the page top</A>
1522
-
1523
- <A NAME="dsyrfsx"></A>
1524
- <H2>dsyrfsx</H2>
1525
- <PRE>
1526
- USAGE:
1527
- rcond, berr, err_bnds_norm, err_bnds_comp, info, s, x, params = NumRu::Lapack.dsyrfsx( uplo, equed, a, af, ipiv, s, b, x, params, [:usage => usage, :help => help])
1528
-
1529
-
1530
- FORTRAN MANUAL
1531
- SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
1532
-
1533
- * Purpose
1534
- * =======
1535
- *
1536
- * DSYRFSX improves the computed solution to a system of linear
1537
- * equations when the coefficient matrix is symmetric indefinite, and
1538
- * provides error bounds and backward error estimates for the
1539
- * solution. In addition to normwise error bound, the code provides
1540
- * maximum componentwise error bound if possible. See comments for
1541
- * ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
1542
- *
1543
- * The original system of linear equations may have been equilibrated
1544
- * before calling this routine, as described by arguments EQUED and S
1545
- * below. In this case, the solution and error bounds returned are
1546
- * for the original unequilibrated system.
1547
- *
1548
-
1549
- * Arguments
1550
- * =========
1551
- *
1552
- * Some optional parameters are bundled in the PARAMS array. These
1553
- * settings determine how refinement is performed, but often the
1554
- * defaults are acceptable. If the defaults are acceptable, users
1555
- * can pass NPARAMS = 0 which prevents the source code from accessing
1556
- * the PARAMS argument.
1557
- *
1558
- * UPLO (input) CHARACTER*1
1559
- * = 'U': Upper triangle of A is stored;
1560
- * = 'L': Lower triangle of A is stored.
1561
- *
1562
- * EQUED (input) CHARACTER*1
1563
- * Specifies the form of equilibration that was done to A
1564
- * before calling this routine. This is needed to compute
1565
- * the solution and error bounds correctly.
1566
- * = 'N': No equilibration
1567
- * = 'Y': Both row and column equilibration, i.e., A has been
1568
- * replaced by diag(S) * A * diag(S).
1569
- * The right hand side B has been changed accordingly.
1570
- *
1571
- * N (input) INTEGER
1572
- * The order of the matrix A. N >= 0.
1573
- *
1574
- * NRHS (input) INTEGER
1575
- * The number of right hand sides, i.e., the number of columns
1576
- * of the matrices B and X. NRHS >= 0.
1577
- *
1578
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
1579
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1580
- * upper triangular part of A contains the upper triangular
1581
- * part of the matrix A, and the strictly lower triangular
1582
- * part of A is not referenced. If UPLO = 'L', the leading
1583
- * N-by-N lower triangular part of A contains the lower
1584
- * triangular part of the matrix A, and the strictly upper
1585
- * triangular part of A is not referenced.
1586
- *
1587
- * LDA (input) INTEGER
1588
- * The leading dimension of the array A. LDA >= max(1,N).
1589
- *
1590
- * AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
1591
- * The factored form of the matrix A. AF contains the block
1592
- * diagonal matrix D and the multipliers used to obtain the
1593
- * factor U or L from the factorization A = U*D*U**T or A =
1594
- * L*D*L**T as computed by DSYTRF.
1595
- *
1596
- * LDAF (input) INTEGER
1597
- * The leading dimension of the array AF. LDAF >= max(1,N).
1598
- *
1599
- * IPIV (input) INTEGER array, dimension (N)
1600
- * Details of the interchanges and the block structure of D
1601
- * as determined by DSYTRF.
1602
- *
1603
- * S (input or output) DOUBLE PRECISION array, dimension (N)
1604
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
1605
- * the left and right by diag(S). S is an input argument if FACT =
1606
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
1607
- * = 'Y', each element of S must be positive. If S is output, each
1608
- * element of S is a power of the radix. If S is input, each element
1609
- * of S should be a power of the radix to ensure a reliable solution
1610
- * and error estimates. Scaling by powers of the radix does not cause
1611
- * rounding errors unless the result underflows or overflows.
1612
- * Rounding errors during scaling lead to refining with a matrix that
1613
- * is not equivalent to the input matrix, producing error estimates
1614
- * that may not be reliable.
1615
- *
1616
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1617
- * The right hand side matrix B.
1618
- *
1619
- * LDB (input) INTEGER
1620
- * The leading dimension of the array B. LDB >= max(1,N).
1621
- *
1622
- * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1623
- * On entry, the solution matrix X, as computed by DGETRS.
1624
- * On exit, the improved solution matrix X.
1625
- *
1626
- * LDX (input) INTEGER
1627
- * The leading dimension of the array X. LDX >= max(1,N).
1628
- *
1629
- * RCOND (output) DOUBLE PRECISION
1630
- * Reciprocal scaled condition number. This is an estimate of the
1631
- * reciprocal Skeel condition number of the matrix A after
1632
- * equilibration (if done). If this is less than the machine
1633
- * precision (in particular, if it is zero), the matrix is singular
1634
- * to working precision. Note that the error may still be small even
1635
- * if this number is very small and the matrix appears ill-
1636
- * conditioned.
1637
- *
1638
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1639
- * Componentwise relative backward error. This is the
1640
- * componentwise relative backward error of each solution vector X(j)
1641
- * (i.e., the smallest relative change in any element of A or B that
1642
- * makes X(j) an exact solution).
1643
- *
1644
- * N_ERR_BNDS (input) INTEGER
1645
- * Number of error bounds to return for each right hand side
1646
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
1647
- * ERR_BNDS_COMP below.
1648
- *
1649
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1650
- * For each right-hand side, this array contains information about
1651
- * various error bounds and condition numbers corresponding to the
1652
- * normwise relative error, which is defined as follows:
1653
- *
1654
- * Normwise relative error in the ith solution vector:
1655
- * max_j (abs(XTRUE(j,i) - X(j,i)))
1656
- * ------------------------------
1657
- * max_j abs(X(j,i))
1658
- *
1659
- * The array is indexed by the type of error information as described
1660
- * below. There currently are up to three pieces of information
1661
- * returned.
1662
- *
1663
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
1664
- * right-hand side.
1665
- *
1666
- * The second index in ERR_BNDS_NORM(:,err) contains the following
1667
- * three fields:
1668
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1669
- * reciprocal condition number is less than the threshold
1670
- * sqrt(n) * dlamch('Epsilon').
1671
- *
1672
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1673
- * almost certainly within a factor of 10 of the true error
1674
- * so long as the next entry is greater than the threshold
1675
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1676
- * be trusted if the previous boolean is true.
1677
- *
1678
- * err = 3 Reciprocal condition number: Estimated normwise
1679
- * reciprocal condition number. Compared with the threshold
1680
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1681
- * estimate is "guaranteed". These reciprocal condition
1682
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1683
- * appropriately scaled matrix Z.
1684
- * Let Z = S*A, where S scales each row by a power of the
1685
- * radix so all absolute row sums of Z are approximately 1.
1686
- *
1687
- * See Lapack Working Note 165 for further details and extra
1688
- * cautions.
1689
- *
1690
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1691
- * For each right-hand side, this array contains information about
1692
- * various error bounds and condition numbers corresponding to the
1693
- * componentwise relative error, which is defined as follows:
1694
- *
1695
- * Componentwise relative error in the ith solution vector:
1696
- * abs(XTRUE(j,i) - X(j,i))
1697
- * max_j ----------------------
1698
- * abs(X(j,i))
1699
- *
1700
- * The array is indexed by the right-hand side i (on which the
1701
- * componentwise relative error depends), and the type of error
1702
- * information as described below. There currently are up to three
1703
- * pieces of information returned for each right-hand side. If
1704
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1705
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
1706
- * the first (:,N_ERR_BNDS) entries are returned.
1707
- *
1708
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
1709
- * right-hand side.
1710
- *
1711
- * The second index in ERR_BNDS_COMP(:,err) contains the following
1712
- * three fields:
1713
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1714
- * reciprocal condition number is less than the threshold
1715
- * sqrt(n) * dlamch('Epsilon').
1716
- *
1717
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1718
- * almost certainly within a factor of 10 of the true error
1719
- * so long as the next entry is greater than the threshold
1720
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1721
- * be trusted if the previous boolean is true.
1722
- *
1723
- * err = 3 Reciprocal condition number: Estimated componentwise
1724
- * reciprocal condition number. Compared with the threshold
1725
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1726
- * estimate is "guaranteed". These reciprocal condition
1727
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1728
- * appropriately scaled matrix Z.
1729
- * Let Z = S*(A*diag(x)), where x is the solution for the
1730
- * current right-hand side and S scales each row of
1731
- * A*diag(x) by a power of the radix so all absolute row
1732
- * sums of Z are approximately 1.
1733
- *
1734
- * See Lapack Working Note 165 for further details and extra
1735
- * cautions.
1736
- *
1737
- * NPARAMS (input) INTEGER
1738
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
1739
- * PARAMS array is never referenced and default values are used.
1740
- *
1741
- * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
1742
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
1743
- * that entry will be filled with default value used for that
1744
- * parameter. Only positions up to NPARAMS are accessed; defaults
1745
- * are used for higher-numbered parameters.
1746
- *
1747
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
1748
- * refinement or not.
1749
- * Default: 1.0D+0
1750
- * = 0.0 : No refinement is performed, and no error bounds are
1751
- * computed.
1752
- * = 1.0 : Use the double-precision refinement algorithm,
1753
- * possibly with doubled-single computations if the
1754
- * compilation environment does not support DOUBLE
1755
- * PRECISION.
1756
- * (other values are reserved for future use)
1757
- *
1758
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
1759
- * computations allowed for refinement.
1760
- * Default: 10
1761
- * Aggressive: Set to 100 to permit convergence using approximate
1762
- * factorizations or factorizations other than LU. If
1763
- * the factorization uses a technique other than
1764
- * Gaussian elimination, the guarantees in
1765
- * err_bnds_norm and err_bnds_comp may no longer be
1766
- * trustworthy.
1767
- *
1768
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
1769
- * will attempt to find a solution with small componentwise
1770
- * relative error in the double-precision algorithm. Positive
1771
- * is true, 0.0 is false.
1772
- * Default: 1.0 (attempt componentwise convergence)
1773
- *
1774
- * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
1775
- *
1776
- * IWORK (workspace) INTEGER array, dimension (N)
1777
- *
1778
- * INFO (output) INTEGER
1779
- * = 0: Successful exit. The solution to every right-hand side is
1780
- * guaranteed.
1781
- * < 0: If INFO = -i, the i-th argument had an illegal value
1782
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
1783
- * has been completed, but the factor U is exactly singular, so
1784
- * the solution and error bounds could not be computed. RCOND = 0
1785
- * is returned.
1786
- * = N+J: The solution corresponding to the Jth right-hand side is
1787
- * not guaranteed. The solutions corresponding to other right-
1788
- * hand sides K with K > J may not be guaranteed as well, but
1789
- * only the first such right-hand side is reported. If a small
1790
- * componentwise error is not requested (PARAMS(3) = 0.0) then
1791
- * the Jth right-hand side is the first with a normwise error
1792
- * bound that is not guaranteed (the smallest J such
1793
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
1794
- * the Jth right-hand side is the first with either a normwise or
1795
- * componentwise error bound that is not guaranteed (the smallest
1796
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
1797
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
1798
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
1799
- * about all of the right-hand sides check ERR_BNDS_NORM or
1800
- * ERR_BNDS_COMP.
1801
- *
1802
-
1803
- * ==================================================================
1804
- *
1805
-
1806
-
1807
- </PRE>
1808
- <A HREF="#top">go to the page top</A>
1809
-
1810
- <A NAME="dsysv"></A>
1811
- <H2>dsysv</H2>
1812
- <PRE>
1813
- USAGE:
1814
- ipiv, work, info, a, b = NumRu::Lapack.dsysv( uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
1815
-
1816
-
1817
- FORTRAN MANUAL
1818
- SUBROUTINE DSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )
1819
-
1820
- * Purpose
1821
- * =======
1822
- *
1823
- * DSYSV computes the solution to a real system of linear equations
1824
- * A * X = B,
1825
- * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1826
- * matrices.
1827
- *
1828
- * The diagonal pivoting method is used to factor A as
1829
- * A = U * D * U**T, if UPLO = 'U', or
1830
- * A = L * D * L**T, if UPLO = 'L',
1831
- * where U (or L) is a product of permutation and unit upper (lower)
1832
- * triangular matrices, and D is symmetric and block diagonal with
1833
- * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
1834
- * used to solve the system of equations A * X = B.
1835
- *
1836
-
1837
- * Arguments
1838
- * =========
1839
- *
1840
- * UPLO (input) CHARACTER*1
1841
- * = 'U': Upper triangle of A is stored;
1842
- * = 'L': Lower triangle of A is stored.
1843
- *
1844
- * N (input) INTEGER
1845
- * The number of linear equations, i.e., the order of the
1846
- * matrix A. N >= 0.
1847
- *
1848
- * NRHS (input) INTEGER
1849
- * The number of right hand sides, i.e., the number of columns
1850
- * of the matrix B. NRHS >= 0.
1851
- *
1852
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
1853
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
1854
- * N-by-N upper triangular part of A contains the upper
1855
- * triangular part of the matrix A, and the strictly lower
1856
- * triangular part of A is not referenced. If UPLO = 'L', the
1857
- * leading N-by-N lower triangular part of A contains the lower
1858
- * triangular part of the matrix A, and the strictly upper
1859
- * triangular part of A is not referenced.
1860
- *
1861
- * On exit, if INFO = 0, the block diagonal matrix D and the
1862
- * multipliers used to obtain the factor U or L from the
1863
- * factorization A = U*D*U**T or A = L*D*L**T as computed by
1864
- * DSYTRF.
1865
- *
1866
- * LDA (input) INTEGER
1867
- * The leading dimension of the array A. LDA >= max(1,N).
1868
- *
1869
- * IPIV (output) INTEGER array, dimension (N)
1870
- * Details of the interchanges and the block structure of D, as
1871
- * determined by DSYTRF. If IPIV(k) > 0, then rows and columns
1872
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1873
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1874
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1875
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1876
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1877
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1878
- * diagonal block.
1879
- *
1880
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1881
- * On entry, the N-by-NRHS right hand side matrix B.
1882
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1883
- *
1884
- * LDB (input) INTEGER
1885
- * The leading dimension of the array B. LDB >= max(1,N).
1886
- *
1887
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1888
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1889
- *
1890
- * LWORK (input) INTEGER
1891
- * The length of WORK. LWORK >= 1, and for best performance
1892
- * LWORK >= max(1,N*NB), where NB is the optimal blocksize for
1893
- * DSYTRF.
1894
- *
1895
- * If LWORK = -1, then a workspace query is assumed; the routine
1896
- * only calculates the optimal size of the WORK array, returns
1897
- * this value as the first entry of the WORK array, and no error
1898
- * message related to LWORK is issued by XERBLA.
1899
- *
1900
- * INFO (output) INTEGER
1901
- * = 0: successful exit
1902
- * < 0: if INFO = -i, the i-th argument had an illegal value
1903
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1904
- * has been completed, but the block diagonal matrix D is
1905
- * exactly singular, so the solution could not be computed.
1906
- *
1907
-
1908
- * =====================================================================
1909
- *
1910
- * .. Local Scalars ..
1911
- LOGICAL LQUERY
1912
- INTEGER LWKOPT, NB
1913
- * ..
1914
- * .. External Functions ..
1915
- LOGICAL LSAME
1916
- INTEGER ILAENV
1917
- EXTERNAL LSAME, ILAENV
1918
- * ..
1919
- * .. External Subroutines ..
1920
- EXTERNAL DSYTRF, DSYTRS2, XERBLA
1921
- * ..
1922
- * .. Intrinsic Functions ..
1923
- INTRINSIC MAX
1924
- * ..
1925
-
1926
-
1927
- </PRE>
1928
- <A HREF="#top">go to the page top</A>
1929
-
1930
- <A NAME="dsysvx"></A>
1931
- <H2>dsysvx</H2>
1932
- <PRE>
1933
- USAGE:
1934
- x, rcond, ferr, berr, work, info, af, ipiv = NumRu::Lapack.dsysvx( fact, uplo, a, af, ipiv, b, [:lwork => lwork, :usage => usage, :help => help])
1935
-
1936
-
1937
- FORTRAN MANUAL
1938
- SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORK, INFO )
1939
-
1940
- * Purpose
1941
- * =======
1942
- *
1943
- * DSYSVX uses the diagonal pivoting factorization to compute the
1944
- * solution to a real system of linear equations A * X = B,
1945
- * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1946
- * matrices.
1947
- *
1948
- * Error bounds on the solution and a condition estimate are also
1949
- * provided.
1950
- *
1951
- * Description
1952
- * ===========
1953
- *
1954
- * The following steps are performed:
1955
- *
1956
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
1957
- * The form of the factorization is
1958
- * A = U * D * U**T, if UPLO = 'U', or
1959
- * A = L * D * L**T, if UPLO = 'L',
1960
- * where U (or L) is a product of permutation and unit upper (lower)
1961
- * triangular matrices, and D is symmetric and block diagonal with
1962
- * 1-by-1 and 2-by-2 diagonal blocks.
1963
- *
1964
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1965
- * returns with INFO = i. Otherwise, the factored form of A is used
1966
- * to estimate the condition number of the matrix A. If the
1967
- * reciprocal of the condition number is less than machine precision,
1968
- * INFO = N+1 is returned as a warning, but the routine still goes on
1969
- * to solve for X and compute error bounds as described below.
1970
- *
1971
- * 3. The system of equations is solved for X using the factored form
1972
- * of A.
1973
- *
1974
- * 4. Iterative refinement is applied to improve the computed solution
1975
- * matrix and calculate error bounds and backward error estimates
1976
- * for it.
1977
- *
1978
-
1979
- * Arguments
1980
- * =========
1981
- *
1982
- * FACT (input) CHARACTER*1
1983
- * Specifies whether or not the factored form of A has been
1984
- * supplied on entry.
1985
- * = 'F': On entry, AF and IPIV contain the factored form of
1986
- * A. AF and IPIV will not be modified.
1987
- * = 'N': The matrix A will be copied to AF and factored.
1988
- *
1989
- * UPLO (input) CHARACTER*1
1990
- * = 'U': Upper triangle of A is stored;
1991
- * = 'L': Lower triangle of A is stored.
1992
- *
1993
- * N (input) INTEGER
1994
- * The number of linear equations, i.e., the order of the
1995
- * matrix A. N >= 0.
1996
- *
1997
- * NRHS (input) INTEGER
1998
- * The number of right hand sides, i.e., the number of columns
1999
- * of the matrices B and X. NRHS >= 0.
2000
- *
2001
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
2002
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2003
- * upper triangular part of A contains the upper triangular part
2004
- * of the matrix A, and the strictly lower triangular part of A
2005
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
2006
- * triangular part of A contains the lower triangular part of
2007
- * the matrix A, and the strictly upper triangular part of A is
2008
- * not referenced.
2009
- *
2010
- * LDA (input) INTEGER
2011
- * The leading dimension of the array A. LDA >= max(1,N).
2012
- *
2013
- * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
2014
- * If FACT = 'F', then AF is an input argument and on entry
2015
- * contains the block diagonal matrix D and the multipliers used
2016
- * to obtain the factor U or L from the factorization
2017
- * A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
2018
- *
2019
- * If FACT = 'N', then AF is an output argument and on exit
2020
- * returns the block diagonal matrix D and the multipliers used
2021
- * to obtain the factor U or L from the factorization
2022
- * A = U*D*U**T or A = L*D*L**T.
2023
- *
2024
- * LDAF (input) INTEGER
2025
- * The leading dimension of the array AF. LDAF >= max(1,N).
2026
- *
2027
- * IPIV (input or output) INTEGER array, dimension (N)
2028
- * If FACT = 'F', then IPIV is an input argument and on entry
2029
- * contains details of the interchanges and the block structure
2030
- * of D, as determined by DSYTRF.
2031
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2032
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2033
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2034
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2035
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2036
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2037
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2038
- *
2039
- * If FACT = 'N', then IPIV is an output argument and on exit
2040
- * contains details of the interchanges and the block structure
2041
- * of D, as determined by DSYTRF.
2042
- *
2043
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
2044
- * The N-by-NRHS right hand side matrix B.
2045
- *
2046
- * LDB (input) INTEGER
2047
- * The leading dimension of the array B. LDB >= max(1,N).
2048
- *
2049
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
2050
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
2051
- *
2052
- * LDX (input) INTEGER
2053
- * The leading dimension of the array X. LDX >= max(1,N).
2054
- *
2055
- * RCOND (output) DOUBLE PRECISION
2056
- * The estimate of the reciprocal condition number of the matrix
2057
- * A. If RCOND is less than the machine precision (in
2058
- * particular, if RCOND = 0), the matrix is singular to working
2059
- * precision. This condition is indicated by a return code of
2060
- * INFO > 0.
2061
- *
2062
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
2063
- * The estimated forward error bound for each solution vector
2064
- * X(j) (the j-th column of the solution matrix X).
2065
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
2066
- * is an estimated upper bound for the magnitude of the largest
2067
- * element in (X(j) - XTRUE) divided by the magnitude of the
2068
- * largest element in X(j). The estimate is as reliable as
2069
- * the estimate for RCOND, and is almost always a slight
2070
- * overestimate of the true error.
2071
- *
2072
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2073
- * The componentwise relative backward error of each solution
2074
- * vector X(j) (i.e., the smallest relative change in
2075
- * any element of A or B that makes X(j) an exact solution).
2076
- *
2077
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
2078
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2079
- *
2080
- * LWORK (input) INTEGER
2081
- * The length of WORK. LWORK >= max(1,3*N), and for best
2082
- * performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
2083
- * NB is the optimal blocksize for DSYTRF.
2084
- *
2085
- * If LWORK = -1, then a workspace query is assumed; the routine
2086
- * only calculates the optimal size of the WORK array, returns
2087
- * this value as the first entry of the WORK array, and no error
2088
- * message related to LWORK is issued by XERBLA.
2089
- *
2090
- * IWORK (workspace) INTEGER array, dimension (N)
2091
- *
2092
- * INFO (output) INTEGER
2093
- * = 0: successful exit
2094
- * < 0: if INFO = -i, the i-th argument had an illegal value
2095
- * > 0: if INFO = i, and i is
2096
- * <= N: D(i,i) is exactly zero. The factorization
2097
- * has been completed but the factor D is exactly
2098
- * singular, so the solution and error bounds could
2099
- * not be computed. RCOND = 0 is returned.
2100
- * = N+1: D is nonsingular, but RCOND is less than machine
2101
- * precision, meaning that the matrix is singular
2102
- * to working precision. Nevertheless, the
2103
- * solution and error bounds are computed because
2104
- * there are a number of situations where the
2105
- * computed solution can be more accurate than the
2106
- * value of RCOND would suggest.
2107
- *
2108
-
2109
- * =====================================================================
2110
- *
2111
-
2112
-
2113
- </PRE>
2114
- <A HREF="#top">go to the page top</A>
2115
-
2116
- <A NAME="dsysvxx"></A>
2117
- <H2>dsysvxx</H2>
2118
- <PRE>
2119
- USAGE:
2120
- x, rcond, rpvgrw, berr, err_bnds_norm, err_bnds_comp, info, a, af, ipiv, equed, s, b, params = NumRu::Lapack.dsysvxx( fact, uplo, a, af, ipiv, equed, s, b, params, [:usage => usage, :help => help])
2121
-
2122
-
2123
- FORTRAN MANUAL
2124
- SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
2125
-
2126
- * Purpose
2127
- * =======
2128
- *
2129
- * DSYSVXX uses the diagonal pivoting factorization to compute the
2130
- * solution to a double precision system of linear equations A * X = B, where A
2131
- * is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
2132
- *
2133
- * If requested, both normwise and maximum componentwise error bounds
2134
- * are returned. DSYSVXX will return a solution with a tiny
2135
- * guaranteed error (O(eps) where eps is the working machine
2136
- * precision) unless the matrix is very ill-conditioned, in which
2137
- * case a warning is returned. Relevant condition numbers also are
2138
- * calculated and returned.
2139
- *
2140
- * DSYSVXX accepts user-provided factorizations and equilibration
2141
- * factors; see the definitions of the FACT and EQUED options.
2142
- * Solving with refinement and using a factorization from a previous
2143
- * DSYSVXX call will also produce a solution with either O(eps)
2144
- * errors or warnings, but we cannot make that claim for general
2145
- * user-provided factorizations and equilibration factors if they
2146
- * differ from what DSYSVXX would itself produce.
2147
- *
2148
- * Description
2149
- * ===========
2150
- *
2151
- * The following steps are performed:
2152
- *
2153
- * 1. If FACT = 'E', double precision scaling factors are computed to equilibrate
2154
- * the system:
2155
- *
2156
- * diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
2157
- *
2158
- * Whether or not the system will be equilibrated depends on the
2159
- * scaling of the matrix A, but if equilibration is used, A is
2160
- * overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2161
- *
2162
- * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
2163
- * the matrix A (after equilibration if FACT = 'E') as
2164
- *
2165
- * A = U * D * U**T, if UPLO = 'U', or
2166
- * A = L * D * L**T, if UPLO = 'L',
2167
- *
2168
- * where U (or L) is a product of permutation and unit upper (lower)
2169
- * triangular matrices, and D is symmetric and block diagonal with
2170
- * 1-by-1 and 2-by-2 diagonal blocks.
2171
- *
2172
- * 3. If some D(i,i)=0, so that D is exactly singular, then the
2173
- * routine returns with INFO = i. Otherwise, the factored form of A
2174
- * is used to estimate the condition number of the matrix A (see
2175
- * argument RCOND). If the reciprocal of the condition number is
2176
- * less than machine precision, the routine still goes on to solve
2177
- * for X and compute error bounds as described below.
2178
- *
2179
- * 4. The system of equations is solved for X using the factored form
2180
- * of A.
2181
- *
2182
- * 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
2183
- * the routine will use iterative refinement to try to get a small
2184
- * error and error bounds. Refinement calculates the residual to at
2185
- * least twice the working precision.
2186
- *
2187
- * 6. If equilibration was used, the matrix X is premultiplied by
2188
- * diag(R) so that it solves the original system before
2189
- * equilibration.
2190
- *
2191
-
2192
- * Arguments
2193
- * =========
2194
- *
2195
- * Some optional parameters are bundled in the PARAMS array. These
2196
- * settings determine how refinement is performed, but often the
2197
- * defaults are acceptable. If the defaults are acceptable, users
2198
- * can pass NPARAMS = 0 which prevents the source code from accessing
2199
- * the PARAMS argument.
2200
- *
2201
- * FACT (input) CHARACTER*1
2202
- * Specifies whether or not the factored form of the matrix A is
2203
- * supplied on entry, and if not, whether the matrix A should be
2204
- * equilibrated before it is factored.
2205
- * = 'F': On entry, AF and IPIV contain the factored form of A.
2206
- * If EQUED is not 'N', the matrix A has been
2207
- * equilibrated with scaling factors given by S.
2208
- * A, AF, and IPIV are not modified.
2209
- * = 'N': The matrix A will be copied to AF and factored.
2210
- * = 'E': The matrix A will be equilibrated if necessary, then
2211
- * copied to AF and factored.
2212
- *
2213
- * UPLO (input) CHARACTER*1
2214
- * = 'U': Upper triangle of A is stored;
2215
- * = 'L': Lower triangle of A is stored.
2216
- *
2217
- * N (input) INTEGER
2218
- * The number of linear equations, i.e., the order of the
2219
- * matrix A. N >= 0.
2220
- *
2221
- * NRHS (input) INTEGER
2222
- * The number of right hand sides, i.e., the number of columns
2223
- * of the matrices B and X. NRHS >= 0.
2224
- *
2225
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2226
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2227
- * upper triangular part of A contains the upper triangular
2228
- * part of the matrix A, and the strictly lower triangular
2229
- * part of A is not referenced. If UPLO = 'L', the leading
2230
- * N-by-N lower triangular part of A contains the lower
2231
- * triangular part of the matrix A, and the strictly upper
2232
- * triangular part of A is not referenced.
2233
- *
2234
- * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
2235
- * diag(S)*A*diag(S).
2236
- *
2237
- * LDA (input) INTEGER
2238
- * The leading dimension of the array A. LDA >= max(1,N).
2239
- *
2240
- * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
2241
- * If FACT = 'F', then AF is an input argument and on entry
2242
- * contains the block diagonal matrix D and the multipliers
2243
- * used to obtain the factor U or L from the factorization A =
2244
- * U*D*U**T or A = L*D*L**T as computed by DSYTRF.
2245
- *
2246
- * If FACT = 'N', then AF is an output argument and on exit
2247
- * returns the block diagonal matrix D and the multipliers
2248
- * used to obtain the factor U or L from the factorization A =
2249
- * U*D*U**T or A = L*D*L**T.
2250
- *
2251
- * LDAF (input) INTEGER
2252
- * The leading dimension of the array AF. LDAF >= max(1,N).
2253
- *
2254
- * IPIV (input or output) INTEGER array, dimension (N)
2255
- * If FACT = 'F', then IPIV is an input argument and on entry
2256
- * contains details of the interchanges and the block
2257
- * structure of D, as determined by DSYTRF. If IPIV(k) > 0,
2258
- * then rows and columns k and IPIV(k) were interchanged and
2259
- * D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
2260
- * IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
2261
- * -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
2262
- * diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
2263
- * then rows and columns k+1 and -IPIV(k) were interchanged
2264
- * and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2265
- *
2266
- * If FACT = 'N', then IPIV is an output argument and on exit
2267
- * contains details of the interchanges and the block
2268
- * structure of D, as determined by DSYTRF.
2269
- *
2270
- * EQUED (input or output) CHARACTER*1
2271
- * Specifies the form of equilibration that was done.
2272
- * = 'N': No equilibration (always true if FACT = 'N').
2273
- * = 'Y': Both row and column equilibration, i.e., A has been
2274
- * replaced by diag(S) * A * diag(S).
2275
- * EQUED is an input argument if FACT = 'F'; otherwise, it is an
2276
- * output argument.
2277
- *
2278
- * S (input or output) DOUBLE PRECISION array, dimension (N)
2279
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
2280
- * the left and right by diag(S). S is an input argument if FACT =
2281
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
2282
- * = 'Y', each element of S must be positive. If S is output, each
2283
- * element of S is a power of the radix. If S is input, each element
2284
- * of S should be a power of the radix to ensure a reliable solution
2285
- * and error estimates. Scaling by powers of the radix does not cause
2286
- * rounding errors unless the result underflows or overflows.
2287
- * Rounding errors during scaling lead to refining with a matrix that
2288
- * is not equivalent to the input matrix, producing error estimates
2289
- * that may not be reliable.
2290
- *
2291
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
2292
- * On entry, the N-by-NRHS right hand side matrix B.
2293
- * On exit,
2294
- * if EQUED = 'N', B is not modified;
2295
- * if EQUED = 'Y', B is overwritten by diag(S)*B;
2296
- *
2297
- * LDB (input) INTEGER
2298
- * The leading dimension of the array B. LDB >= max(1,N).
2299
- *
2300
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
2301
- * If INFO = 0, the N-by-NRHS solution matrix X to the original
2302
- * system of equations. Note that A and B are modified on exit if
2303
- * EQUED .ne. 'N', and the solution to the equilibrated system is
2304
- * inv(diag(S))*X.
2305
- *
2306
- * LDX (input) INTEGER
2307
- * The leading dimension of the array X. LDX >= max(1,N).
2308
- *
2309
- * RCOND (output) DOUBLE PRECISION
2310
- * Reciprocal scaled condition number. This is an estimate of the
2311
- * reciprocal Skeel condition number of the matrix A after
2312
- * equilibration (if done). If this is less than the machine
2313
- * precision (in particular, if it is zero), the matrix is singular
2314
- * to working precision. Note that the error may still be small even
2315
- * if this number is very small and the matrix appears ill-
2316
- * conditioned.
2317
- *
2318
- * RPVGRW (output) DOUBLE PRECISION
2319
- * Reciprocal pivot growth. On exit, this contains the reciprocal
2320
- * pivot growth factor norm(A)/norm(U). The "max absolute element"
2321
- * norm is used. If this is much less than 1, then the stability of
2322
- * the LU factorization of the (equilibrated) matrix A could be poor.
2323
- * This also means that the solution X, estimated condition numbers,
2324
- * and error bounds could be unreliable. If factorization fails with
2325
- * 0<INFO<=N, then this contains the reciprocal pivot growth factor
2326
- * for the leading INFO columns of A.
2327
- *
2328
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2329
- * Componentwise relative backward error. This is the
2330
- * componentwise relative backward error of each solution vector X(j)
2331
- * (i.e., the smallest relative change in any element of A or B that
2332
- * makes X(j) an exact solution).
2333
- *
2334
- * N_ERR_BNDS (input) INTEGER
2335
- * Number of error bounds to return for each right hand side
2336
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
2337
- * ERR_BNDS_COMP below.
2338
- *
2339
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2340
- * For each right-hand side, this array contains information about
2341
- * various error bounds and condition numbers corresponding to the
2342
- * normwise relative error, which is defined as follows:
2343
- *
2344
- * Normwise relative error in the ith solution vector:
2345
- * max_j (abs(XTRUE(j,i) - X(j,i)))
2346
- * ------------------------------
2347
- * max_j abs(X(j,i))
2348
- *
2349
- * The array is indexed by the type of error information as described
2350
- * below. There currently are up to three pieces of information
2351
- * returned.
2352
- *
2353
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
2354
- * right-hand side.
2355
- *
2356
- * The second index in ERR_BNDS_NORM(:,err) contains the following
2357
- * three fields:
2358
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2359
- * reciprocal condition number is less than the threshold
2360
- * sqrt(n) * dlamch('Epsilon').
2361
- *
2362
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2363
- * almost certainly within a factor of 10 of the true error
2364
- * so long as the next entry is greater than the threshold
2365
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
2366
- * be trusted if the previous boolean is true.
2367
- *
2368
- * err = 3 Reciprocal condition number: Estimated normwise
2369
- * reciprocal condition number. Compared with the threshold
2370
- * sqrt(n) * dlamch('Epsilon') to determine if the error
2371
- * estimate is "guaranteed". These reciprocal condition
2372
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2373
- * appropriately scaled matrix Z.
2374
- * Let Z = S*A, where S scales each row by a power of the
2375
- * radix so all absolute row sums of Z are approximately 1.
2376
- *
2377
- * See Lapack Working Note 165 for further details and extra
2378
- * cautions.
2379
- *
2380
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2381
- * For each right-hand side, this array contains information about
2382
- * various error bounds and condition numbers corresponding to the
2383
- * componentwise relative error, which is defined as follows:
2384
- *
2385
- * Componentwise relative error in the ith solution vector:
2386
- * abs(XTRUE(j,i) - X(j,i))
2387
- * max_j ----------------------
2388
- * abs(X(j,i))
2389
- *
2390
- * The array is indexed by the right-hand side i (on which the
2391
- * componentwise relative error depends), and the type of error
2392
- * information as described below. There currently are up to three
2393
- * pieces of information returned for each right-hand side. If
2394
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
2395
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
2396
- * the first (:,N_ERR_BNDS) entries are returned.
2397
- *
2398
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
2399
- * right-hand side.
2400
- *
2401
- * The second index in ERR_BNDS_COMP(:,err) contains the following
2402
- * three fields:
2403
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2404
- * reciprocal condition number is less than the threshold
2405
- * sqrt(n) * dlamch('Epsilon').
2406
- *
2407
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2408
- * almost certainly within a factor of 10 of the true error
2409
- * so long as the next entry is greater than the threshold
2410
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
2411
- * be trusted if the previous boolean is true.
2412
- *
2413
- * err = 3 Reciprocal condition number: Estimated componentwise
2414
- * reciprocal condition number. Compared with the threshold
2415
- * sqrt(n) * dlamch('Epsilon') to determine if the error
2416
- * estimate is "guaranteed". These reciprocal condition
2417
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2418
- * appropriately scaled matrix Z.
2419
- * Let Z = S*(A*diag(x)), where x is the solution for the
2420
- * current right-hand side and S scales each row of
2421
- * A*diag(x) by a power of the radix so all absolute row
2422
- * sums of Z are approximately 1.
2423
- *
2424
- * See Lapack Working Note 165 for further details and extra
2425
- * cautions.
2426
- *
2427
- * NPARAMS (input) INTEGER
2428
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
2429
- * PARAMS array is never referenced and default values are used.
2430
- *
2431
- * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
2432
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
2433
- * that entry will be filled with default value used for that
2434
- * parameter. Only positions up to NPARAMS are accessed; defaults
2435
- * are used for higher-numbered parameters.
2436
- *
2437
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
2438
- * refinement or not.
2439
- * Default: 1.0D+0
2440
- * = 0.0 : No refinement is performed, and no error bounds are
2441
- * computed.
2442
- * = 1.0 : Use the extra-precise refinement algorithm.
2443
- * (other values are reserved for future use)
2444
- *
2445
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
2446
- * computations allowed for refinement.
2447
- * Default: 10
2448
- * Aggressive: Set to 100 to permit convergence using approximate
2449
- * factorizations or factorizations other than LU. If
2450
- * the factorization uses a technique other than
2451
- * Gaussian elimination, the guarantees in
2452
- * err_bnds_norm and err_bnds_comp may no longer be
2453
- * trustworthy.
2454
- *
2455
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
2456
- * will attempt to find a solution with small componentwise
2457
- * relative error in the double-precision algorithm. Positive
2458
- * is true, 0.0 is false.
2459
- * Default: 1.0 (attempt componentwise convergence)
2460
- *
2461
- * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
2462
- *
2463
- * IWORK (workspace) INTEGER array, dimension (N)
2464
- *
2465
- * INFO (output) INTEGER
2466
- * = 0: Successful exit. The solution to every right-hand side is
2467
- * guaranteed.
2468
- * < 0: If INFO = -i, the i-th argument had an illegal value
2469
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
2470
- * has been completed, but the factor U is exactly singular, so
2471
- * the solution and error bounds could not be computed. RCOND = 0
2472
- * is returned.
2473
- * = N+J: The solution corresponding to the Jth right-hand side is
2474
- * not guaranteed. The solutions corresponding to other right-
2475
- * hand sides K with K > J may not be guaranteed as well, but
2476
- * only the first such right-hand side is reported. If a small
2477
- * componentwise error is not requested (PARAMS(3) = 0.0) then
2478
- * the Jth right-hand side is the first with a normwise error
2479
- * bound that is not guaranteed (the smallest J such
2480
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
2481
- * the Jth right-hand side is the first with either a normwise or
2482
- * componentwise error bound that is not guaranteed (the smallest
2483
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
2484
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
2485
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
2486
- * about all of the right-hand sides check ERR_BNDS_NORM or
2487
- * ERR_BNDS_COMP.
2488
- *
2489
-
2490
- * ==================================================================
2491
- *
2492
-
2493
-
2494
- </PRE>
2495
- <A HREF="#top">go to the page top</A>
2496
-
2497
- <A NAME="dsyswapr"></A>
2498
- <H2>dsyswapr</H2>
2499
- <PRE>
2500
- USAGE:
2501
- a = NumRu::Lapack.dsyswapr( uplo, a, i1, i2, [:usage => usage, :help => help])
2502
-
2503
-
2504
- FORTRAN MANUAL
2505
- SUBROUTINE DSYSWAPR( UPLO, N, A, I1, I2)
2506
-
2507
- * Purpose
2508
- * =======
2509
- *
2510
- * DSYSWAPR applies an elementary permutation on the rows and the columns of
2511
- * a symmetric matrix.
2512
- *
2513
-
2514
- * Arguments
2515
- * =========
2516
- *
2517
- * UPLO (input) CHARACTER*1
2518
- * Specifies whether the details of the factorization are stored
2519
- * as an upper or lower triangular matrix.
2520
- * = 'U': Upper triangular, form is A = U*D*U**T;
2521
- * = 'L': Lower triangular, form is A = L*D*L**T.
2522
- *
2523
- * N (input) INTEGER
2524
- * The order of the matrix A. N >= 0.
2525
- *
2526
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2527
- * On entry, the NB diagonal matrix D and the multipliers
2528
- * used to obtain the factor U or L as computed by DSYTRF.
2529
- *
2530
- * On exit, if INFO = 0, the (symmetric) inverse of the original
2531
- * matrix. If UPLO = 'U', the upper triangular part of the
2532
- * inverse is formed and the part of A below the diagonal is not
2533
- * referenced; if UPLO = 'L' the lower triangular part of the
2534
- * inverse is formed and the part of A above the diagonal is
2535
- * not referenced.
2536
- *
2537
- * I1 (input) INTEGER
2538
- * Index of the first row to swap
2539
- *
2540
- * I2 (input) INTEGER
2541
- * Index of the second row to swap
2542
- *
2543
-
2544
- * =====================================================================
2545
- *
2546
- * ..
2547
- * .. Local Scalars ..
2548
- LOGICAL UPPER
2549
- INTEGER I
2550
- DOUBLE PRECISION TMP
2551
- *
2552
- * .. External Functions ..
2553
- LOGICAL LSAME
2554
- EXTERNAL LSAME
2555
- * ..
2556
- * .. External Subroutines ..
2557
- EXTERNAL DSWAP
2558
- * ..
2559
-
2560
-
2561
- </PRE>
2562
- <A HREF="#top">go to the page top</A>
2563
-
2564
- <A NAME="dsytd2"></A>
2565
- <H2>dsytd2</H2>
2566
- <PRE>
2567
- USAGE:
2568
- d, e, tau, info, a = NumRu::Lapack.dsytd2( uplo, a, [:usage => usage, :help => help])
2569
-
2570
-
2571
- FORTRAN MANUAL
2572
- SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
2573
-
2574
- * Purpose
2575
- * =======
2576
- *
2577
- * DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
2578
- * form T by an orthogonal similarity transformation: Q' * A * Q = T.
2579
- *
2580
-
2581
- * Arguments
2582
- * =========
2583
- *
2584
- * UPLO (input) CHARACTER*1
2585
- * Specifies whether the upper or lower triangular part of the
2586
- * symmetric matrix A is stored:
2587
- * = 'U': Upper triangular
2588
- * = 'L': Lower triangular
2589
- *
2590
- * N (input) INTEGER
2591
- * The order of the matrix A. N >= 0.
2592
- *
2593
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2594
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2595
- * n-by-n upper triangular part of A contains the upper
2596
- * triangular part of the matrix A, and the strictly lower
2597
- * triangular part of A is not referenced. If UPLO = 'L', the
2598
- * leading n-by-n lower triangular part of A contains the lower
2599
- * triangular part of the matrix A, and the strictly upper
2600
- * triangular part of A is not referenced.
2601
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2602
- * of A are overwritten by the corresponding elements of the
2603
- * tridiagonal matrix T, and the elements above the first
2604
- * superdiagonal, with the array TAU, represent the orthogonal
2605
- * matrix Q as a product of elementary reflectors; if UPLO
2606
- * = 'L', the diagonal and first subdiagonal of A are over-
2607
- * written by the corresponding elements of the tridiagonal
2608
- * matrix T, and the elements below the first subdiagonal, with
2609
- * the array TAU, represent the orthogonal matrix Q as a product
2610
- * of elementary reflectors. See Further Details.
2611
- *
2612
- * LDA (input) INTEGER
2613
- * The leading dimension of the array A. LDA >= max(1,N).
2614
- *
2615
- * D (output) DOUBLE PRECISION array, dimension (N)
2616
- * The diagonal elements of the tridiagonal matrix T:
2617
- * D(i) = A(i,i).
2618
- *
2619
- * E (output) DOUBLE PRECISION array, dimension (N-1)
2620
- * The off-diagonal elements of the tridiagonal matrix T:
2621
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2622
- *
2623
- * TAU (output) DOUBLE PRECISION array, dimension (N-1)
2624
- * The scalar factors of the elementary reflectors (see Further
2625
- * Details).
2626
- *
2627
- * INFO (output) INTEGER
2628
- * = 0: successful exit
2629
- * < 0: if INFO = -i, the i-th argument had an illegal value.
2630
- *
2631
-
2632
- * Further Details
2633
- * ===============
2634
- *
2635
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2636
- * reflectors
2637
- *
2638
- * Q = H(n-1) . . . H(2) H(1).
2639
- *
2640
- * Each H(i) has the form
2641
- *
2642
- * H(i) = I - tau * v * v'
2643
- *
2644
- * where tau is a real scalar, and v is a real vector with
2645
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2646
- * A(1:i-1,i+1), and tau in TAU(i).
2647
- *
2648
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2649
- * reflectors
2650
- *
2651
- * Q = H(1) H(2) . . . H(n-1).
2652
- *
2653
- * Each H(i) has the form
2654
- *
2655
- * H(i) = I - tau * v * v'
2656
- *
2657
- * where tau is a real scalar, and v is a real vector with
2658
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2659
- * and tau in TAU(i).
2660
- *
2661
- * The contents of A on exit are illustrated by the following examples
2662
- * with n = 5:
2663
- *
2664
- * if UPLO = 'U': if UPLO = 'L':
2665
- *
2666
- * ( d e v2 v3 v4 ) ( d )
2667
- * ( d e v3 v4 ) ( e d )
2668
- * ( d e v4 ) ( v1 e d )
2669
- * ( d e ) ( v1 v2 e d )
2670
- * ( d ) ( v1 v2 v3 e d )
2671
- *
2672
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2673
- * denotes an element of the vector defining H(i).
2674
- *
2675
- * =====================================================================
2676
- *
2677
-
2678
-
2679
- </PRE>
2680
- <A HREF="#top">go to the page top</A>
2681
-
2682
- <A NAME="dsytf2"></A>
2683
- <H2>dsytf2</H2>
2684
- <PRE>
2685
- USAGE:
2686
- ipiv, info, a = NumRu::Lapack.dsytf2( uplo, a, [:usage => usage, :help => help])
2687
-
2688
-
2689
- FORTRAN MANUAL
2690
- SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
2691
-
2692
- * Purpose
2693
- * =======
2694
- *
2695
- * DSYTF2 computes the factorization of a real symmetric matrix A using
2696
- * the Bunch-Kaufman diagonal pivoting method:
2697
- *
2698
- * A = U*D*U' or A = L*D*L'
2699
- *
2700
- * where U (or L) is a product of permutation and unit upper (lower)
2701
- * triangular matrices, U' is the transpose of U, and D is symmetric and
2702
- * block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2703
- *
2704
- * This is the unblocked version of the algorithm, calling Level 2 BLAS.
2705
- *
2706
-
2707
- * Arguments
2708
- * =========
2709
- *
2710
- * UPLO (input) CHARACTER*1
2711
- * Specifies whether the upper or lower triangular part of the
2712
- * symmetric matrix A is stored:
2713
- * = 'U': Upper triangular
2714
- * = 'L': Lower triangular
2715
- *
2716
- * N (input) INTEGER
2717
- * The order of the matrix A. N >= 0.
2718
- *
2719
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2720
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2721
- * n-by-n upper triangular part of A contains the upper
2722
- * triangular part of the matrix A, and the strictly lower
2723
- * triangular part of A is not referenced. If UPLO = 'L', the
2724
- * leading n-by-n lower triangular part of A contains the lower
2725
- * triangular part of the matrix A, and the strictly upper
2726
- * triangular part of A is not referenced.
2727
- *
2728
- * On exit, the block diagonal matrix D and the multipliers used
2729
- * to obtain the factor U or L (see below for further details).
2730
- *
2731
- * LDA (input) INTEGER
2732
- * The leading dimension of the array A. LDA >= max(1,N).
2733
- *
2734
- * IPIV (output) INTEGER array, dimension (N)
2735
- * Details of the interchanges and the block structure of D.
2736
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2737
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2738
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2739
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2740
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2741
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2742
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2743
- *
2744
- * INFO (output) INTEGER
2745
- * = 0: successful exit
2746
- * < 0: if INFO = -k, the k-th argument had an illegal value
2747
- * > 0: if INFO = k, D(k,k) is exactly zero. The factorization
2748
- * has been completed, but the block diagonal matrix D is
2749
- * exactly singular, and division by zero will occur if it
2750
- * is used to solve a system of equations.
2751
- *
2752
-
2753
- * Further Details
2754
- * ===============
2755
- *
2756
- * 09-29-06 - patch from
2757
- * Bobby Cheng, MathWorks
2758
- *
2759
- * Replace l.204 and l.372
2760
- * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
2761
- * by
2762
- * IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
2763
- *
2764
- * 01-01-96 - Based on modifications by
2765
- * J. Lewis, Boeing Computer Services Company
2766
- * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
2767
- * 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
2768
- * Company
2769
- *
2770
- * If UPLO = 'U', then A = U*D*U', where
2771
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
2772
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
2773
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2774
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2775
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
2776
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2777
- *
2778
- * ( I v 0 ) k-s
2779
- * U(k) = ( 0 I 0 ) s
2780
- * ( 0 0 I ) n-k
2781
- * k-s s n-k
2782
- *
2783
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
2784
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
2785
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
2786
- *
2787
- * If UPLO = 'L', then A = L*D*L', where
2788
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
2789
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
2790
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2791
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2792
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
2793
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2794
- *
2795
- * ( I 0 0 ) k-1
2796
- * L(k) = ( 0 I 0 ) s
2797
- * ( 0 v I ) n-k-s+1
2798
- * k-1 s n-k-s+1
2799
- *
2800
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
2801
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
2802
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
2803
- *
2804
- * =====================================================================
2805
- *
2806
-
2807
-
2808
- </PRE>
2809
- <A HREF="#top">go to the page top</A>
2810
-
2811
- <A NAME="dsytrd"></A>
2812
- <H2>dsytrd</H2>
2813
- <PRE>
2814
- USAGE:
2815
- d, e, tau, work, info, a = NumRu::Lapack.dsytrd( uplo, a, lwork, [:usage => usage, :help => help])
2816
-
2817
-
2818
- FORTRAN MANUAL
2819
- SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
2820
-
2821
- * Purpose
2822
- * =======
2823
- *
2824
- * DSYTRD reduces a real symmetric matrix A to real symmetric
2825
- * tridiagonal form T by an orthogonal similarity transformation:
2826
- * Q**T * A * Q = T.
2827
- *
2828
-
2829
- * Arguments
2830
- * =========
2831
- *
2832
- * UPLO (input) CHARACTER*1
2833
- * = 'U': Upper triangle of A is stored;
2834
- * = 'L': Lower triangle of A is stored.
2835
- *
2836
- * N (input) INTEGER
2837
- * The order of the matrix A. N >= 0.
2838
- *
2839
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2840
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2841
- * N-by-N upper triangular part of A contains the upper
2842
- * triangular part of the matrix A, and the strictly lower
2843
- * triangular part of A is not referenced. If UPLO = 'L', the
2844
- * leading N-by-N lower triangular part of A contains the lower
2845
- * triangular part of the matrix A, and the strictly upper
2846
- * triangular part of A is not referenced.
2847
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2848
- * of A are overwritten by the corresponding elements of the
2849
- * tridiagonal matrix T, and the elements above the first
2850
- * superdiagonal, with the array TAU, represent the orthogonal
2851
- * matrix Q as a product of elementary reflectors; if UPLO
2852
- * = 'L', the diagonal and first subdiagonal of A are over-
2853
- * written by the corresponding elements of the tridiagonal
2854
- * matrix T, and the elements below the first subdiagonal, with
2855
- * the array TAU, represent the orthogonal matrix Q as a product
2856
- * of elementary reflectors. See Further Details.
2857
- *
2858
- * LDA (input) INTEGER
2859
- * The leading dimension of the array A. LDA >= max(1,N).
2860
- *
2861
- * D (output) DOUBLE PRECISION array, dimension (N)
2862
- * The diagonal elements of the tridiagonal matrix T:
2863
- * D(i) = A(i,i).
2864
- *
2865
- * E (output) DOUBLE PRECISION array, dimension (N-1)
2866
- * The off-diagonal elements of the tridiagonal matrix T:
2867
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2868
- *
2869
- * TAU (output) DOUBLE PRECISION array, dimension (N-1)
2870
- * The scalar factors of the elementary reflectors (see Further
2871
- * Details).
2872
- *
2873
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
2874
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2875
- *
2876
- * LWORK (input) INTEGER
2877
- * The dimension of the array WORK. LWORK >= 1.
2878
- * For optimum performance LWORK >= N*NB, where NB is the
2879
- * optimal blocksize.
2880
- *
2881
- * If LWORK = -1, then a workspace query is assumed; the routine
2882
- * only calculates the optimal size of the WORK array, returns
2883
- * this value as the first entry of the WORK array, and no error
2884
- * message related to LWORK is issued by XERBLA.
2885
- *
2886
- * INFO (output) INTEGER
2887
- * = 0: successful exit
2888
- * < 0: if INFO = -i, the i-th argument had an illegal value
2889
- *
2890
-
2891
- * Further Details
2892
- * ===============
2893
- *
2894
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2895
- * reflectors
2896
- *
2897
- * Q = H(n-1) . . . H(2) H(1).
2898
- *
2899
- * Each H(i) has the form
2900
- *
2901
- * H(i) = I - tau * v * v'
2902
- *
2903
- * where tau is a real scalar, and v is a real vector with
2904
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2905
- * A(1:i-1,i+1), and tau in TAU(i).
2906
- *
2907
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2908
- * reflectors
2909
- *
2910
- * Q = H(1) H(2) . . . H(n-1).
2911
- *
2912
- * Each H(i) has the form
2913
- *
2914
- * H(i) = I - tau * v * v'
2915
- *
2916
- * where tau is a real scalar, and v is a real vector with
2917
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2918
- * and tau in TAU(i).
2919
- *
2920
- * The contents of A on exit are illustrated by the following examples
2921
- * with n = 5:
2922
- *
2923
- * if UPLO = 'U': if UPLO = 'L':
2924
- *
2925
- * ( d e v2 v3 v4 ) ( d )
2926
- * ( d e v3 v4 ) ( e d )
2927
- * ( d e v4 ) ( v1 e d )
2928
- * ( d e ) ( v1 v2 e d )
2929
- * ( d ) ( v1 v2 v3 e d )
2930
- *
2931
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2932
- * denotes an element of the vector defining H(i).
2933
- *
2934
- * =====================================================================
2935
- *
2936
-
2937
-
2938
- </PRE>
2939
- <A HREF="#top">go to the page top</A>
2940
-
2941
- <A NAME="dsytrf"></A>
2942
- <H2>dsytrf</H2>
2943
- <PRE>
2944
- USAGE:
2945
- ipiv, work, info, a = NumRu::Lapack.dsytrf( uplo, a, lwork, [:usage => usage, :help => help])
2946
-
2947
-
2948
- FORTRAN MANUAL
2949
- SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
2950
-
2951
- * Purpose
2952
- * =======
2953
- *
2954
- * DSYTRF computes the factorization of a real symmetric matrix A using
2955
- * the Bunch-Kaufman diagonal pivoting method. The form of the
2956
- * factorization is
2957
- *
2958
- * A = U*D*U**T or A = L*D*L**T
2959
- *
2960
- * where U (or L) is a product of permutation and unit upper (lower)
2961
- * triangular matrices, and D is symmetric and block diagonal with
2962
- * 1-by-1 and 2-by-2 diagonal blocks.
2963
- *
2964
- * This is the blocked version of the algorithm, calling Level 3 BLAS.
2965
- *
2966
-
2967
- * Arguments
2968
- * =========
2969
- *
2970
- * UPLO (input) CHARACTER*1
2971
- * = 'U': Upper triangle of A is stored;
2972
- * = 'L': Lower triangle of A is stored.
2973
- *
2974
- * N (input) INTEGER
2975
- * The order of the matrix A. N >= 0.
2976
- *
2977
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2978
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2979
- * N-by-N upper triangular part of A contains the upper
2980
- * triangular part of the matrix A, and the strictly lower
2981
- * triangular part of A is not referenced. If UPLO = 'L', the
2982
- * leading N-by-N lower triangular part of A contains the lower
2983
- * triangular part of the matrix A, and the strictly upper
2984
- * triangular part of A is not referenced.
2985
- *
2986
- * On exit, the block diagonal matrix D and the multipliers used
2987
- * to obtain the factor U or L (see below for further details).
2988
- *
2989
- * LDA (input) INTEGER
2990
- * The leading dimension of the array A. LDA >= max(1,N).
2991
- *
2992
- * IPIV (output) INTEGER array, dimension (N)
2993
- * Details of the interchanges and the block structure of D.
2994
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2995
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2996
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2997
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2998
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2999
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
3000
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
3001
- *
3002
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
3003
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
3004
- *
3005
- * LWORK (input) INTEGER
3006
- * The length of WORK. LWORK >=1. For best performance
3007
- * LWORK >= N*NB, where NB is the block size returned by ILAENV.
3008
- *
3009
- * If LWORK = -1, then a workspace query is assumed; the routine
3010
- * only calculates the optimal size of the WORK array, returns
3011
- * this value as the first entry of the WORK array, and no error
3012
- * message related to LWORK is issued by XERBLA.
3013
- *
3014
- * INFO (output) INTEGER
3015
- * = 0: successful exit
3016
- * < 0: if INFO = -i, the i-th argument had an illegal value
3017
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
3018
- * has been completed, but the block diagonal matrix D is
3019
- * exactly singular, and division by zero will occur if it
3020
- * is used to solve a system of equations.
3021
- *
3022
-
3023
- * Further Details
3024
- * ===============
3025
- *
3026
- * If UPLO = 'U', then A = U*D*U', where
3027
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
3028
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
3029
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3030
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3031
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
3032
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3033
- *
3034
- * ( I v 0 ) k-s
3035
- * U(k) = ( 0 I 0 ) s
3036
- * ( 0 0 I ) n-k
3037
- * k-s s n-k
3038
- *
3039
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
3040
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
3041
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
3042
- *
3043
- * If UPLO = 'L', then A = L*D*L', where
3044
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
3045
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
3046
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3047
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3048
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
3049
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3050
- *
3051
- * ( I 0 0 ) k-1
3052
- * L(k) = ( 0 I 0 ) s
3053
- * ( 0 v I ) n-k-s+1
3054
- * k-1 s n-k-s+1
3055
- *
3056
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
3057
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
3058
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
3059
- *
3060
- * =====================================================================
3061
- *
3062
- * .. Local Scalars ..
3063
- LOGICAL LQUERY, UPPER
3064
- INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
3065
- * ..
3066
- * .. External Functions ..
3067
- LOGICAL LSAME
3068
- INTEGER ILAENV
3069
- EXTERNAL LSAME, ILAENV
3070
- * ..
3071
- * .. External Subroutines ..
3072
- EXTERNAL DLASYF, DSYTF2, XERBLA
3073
- * ..
3074
- * .. Intrinsic Functions ..
3075
- INTRINSIC MAX
3076
- * ..
3077
-
3078
-
3079
- </PRE>
3080
- <A HREF="#top">go to the page top</A>
3081
-
3082
- <A NAME="dsytri"></A>
3083
- <H2>dsytri</H2>
3084
- <PRE>
3085
- USAGE:
3086
- info, a = NumRu::Lapack.dsytri( uplo, a, ipiv, [:usage => usage, :help => help])
3087
-
3088
-
3089
- FORTRAN MANUAL
3090
- SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
3091
-
3092
- * Purpose
3093
- * =======
3094
- *
3095
- * DSYTRI computes the inverse of a real symmetric indefinite matrix
3096
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3097
- * DSYTRF.
3098
- *
3099
-
3100
- * Arguments
3101
- * =========
3102
- *
3103
- * UPLO (input) CHARACTER*1
3104
- * Specifies whether the details of the factorization are stored
3105
- * as an upper or lower triangular matrix.
3106
- * = 'U': Upper triangular, form is A = U*D*U**T;
3107
- * = 'L': Lower triangular, form is A = L*D*L**T.
3108
- *
3109
- * N (input) INTEGER
3110
- * The order of the matrix A. N >= 0.
3111
- *
3112
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3113
- * On entry, the block diagonal matrix D and the multipliers
3114
- * used to obtain the factor U or L as computed by DSYTRF.
3115
- *
3116
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3117
- * matrix. If UPLO = 'U', the upper triangular part of the
3118
- * inverse is formed and the part of A below the diagonal is not
3119
- * referenced; if UPLO = 'L' the lower triangular part of the
3120
- * inverse is formed and the part of A above the diagonal is
3121
- * not referenced.
3122
- *
3123
- * LDA (input) INTEGER
3124
- * The leading dimension of the array A. LDA >= max(1,N).
3125
- *
3126
- * IPIV (input) INTEGER array, dimension (N)
3127
- * Details of the interchanges and the block structure of D
3128
- * as determined by DSYTRF.
3129
- *
3130
- * WORK (workspace) DOUBLE PRECISION array, dimension (N)
3131
- *
3132
- * INFO (output) INTEGER
3133
- * = 0: successful exit
3134
- * < 0: if INFO = -i, the i-th argument had an illegal value
3135
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3136
- * inverse could not be computed.
3137
- *
3138
-
3139
- * =====================================================================
3140
- *
3141
-
3142
-
3143
- </PRE>
3144
- <A HREF="#top">go to the page top</A>
3145
-
3146
- <A NAME="dsytri2"></A>
3147
- <H2>dsytri2</H2>
3148
- <PRE>
3149
- USAGE:
3150
- info, a = NumRu::Lapack.dsytri2( uplo, a, ipiv, [:lwork => lwork, :usage => usage, :help => help])
3151
-
3152
-
3153
- FORTRAN MANUAL
3154
- SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
3155
-
3156
- * Purpose
3157
- * =======
3158
- *
3159
- * DSYTRI2 computes the inverse of a real symmetric indefinite matrix
3160
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3161
- * DSYTRF. DSYTRI2 sets the LEADING DIMENSION of the workspace
3162
- * before calling DSYTRI2X that actually computes the inverse.
3163
- *
3164
-
3165
- * Arguments
3166
- * =========
3167
- *
3168
- * UPLO (input) CHARACTER*1
3169
- * Specifies whether the details of the factorization are stored
3170
- * as an upper or lower triangular matrix.
3171
- * = 'U': Upper triangular, form is A = U*D*U**T;
3172
- * = 'L': Lower triangular, form is A = L*D*L**T.
3173
- *
3174
- * N (input) INTEGER
3175
- * The order of the matrix A. N >= 0.
3176
- *
3177
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3178
- * On entry, the NB diagonal matrix D and the multipliers
3179
- * used to obtain the factor U or L as computed by DSYTRF.
3180
- *
3181
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3182
- * matrix. If UPLO = 'U', the upper triangular part of the
3183
- * inverse is formed and the part of A below the diagonal is not
3184
- * referenced; if UPLO = 'L' the lower triangular part of the
3185
- * inverse is formed and the part of A above the diagonal is
3186
- * not referenced.
3187
- *
3188
- * LDA (input) INTEGER
3189
- * The leading dimension of the array A. LDA >= max(1,N).
3190
- *
3191
- * IPIV (input) INTEGER array, dimension (N)
3192
- * Details of the interchanges and the NB structure of D
3193
- * as determined by DSYTRF.
3194
- *
3195
- * WORK (workspace) DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3)
3196
- *
3197
- * LWORK (input) INTEGER
3198
- * The dimension of the array WORK.
3199
- * WORK is size >= (N+NB+1)*(NB+3)
3200
- * If LDWORK = -1, then a workspace query is assumed; the routine
3201
- * calculates:
3202
- * - the optimal size of the WORK array, returns
3203
- * this value as the first entry of the WORK array,
3204
- * - and no error message related to LDWORK is issued by XERBLA.
3205
- *
3206
- * INFO (output) INTEGER
3207
- * = 0: successful exit
3208
- * < 0: if INFO = -i, the i-th argument had an illegal value
3209
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3210
- * inverse could not be computed.
3211
- *
3212
-
3213
- * =====================================================================
3214
- *
3215
- * .. Local Scalars ..
3216
- LOGICAL UPPER, LQUERY
3217
- INTEGER MINSIZE, NBMAX
3218
- * ..
3219
- * .. External Functions ..
3220
- LOGICAL LSAME
3221
- INTEGER ILAENV
3222
- EXTERNAL LSAME, ILAENV
3223
- * ..
3224
- * .. External Subroutines ..
3225
- EXTERNAL DSYTRI2X
3226
- * ..
3227
-
3228
-
3229
- </PRE>
3230
- <A HREF="#top">go to the page top</A>
3231
-
3232
- <A NAME="dsytri2x"></A>
3233
- <H2>dsytri2x</H2>
3234
- <PRE>
3235
- USAGE:
3236
- info, a = NumRu::Lapack.dsytri2x( uplo, a, ipiv, nb, [:usage => usage, :help => help])
3237
-
3238
-
3239
- FORTRAN MANUAL
3240
- SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
3241
-
3242
- * Purpose
3243
- * =======
3244
- *
3245
- * DSYTRI2X computes the inverse of a real symmetric indefinite matrix
3246
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3247
- * DSYTRF.
3248
- *
3249
-
3250
- * Arguments
3251
- * =========
3252
- *
3253
- * UPLO (input) CHARACTER*1
3254
- * Specifies whether the details of the factorization are stored
3255
- * as an upper or lower triangular matrix.
3256
- * = 'U': Upper triangular, form is A = U*D*U**T;
3257
- * = 'L': Lower triangular, form is A = L*D*L**T.
3258
- *
3259
- * N (input) INTEGER
3260
- * The order of the matrix A. N >= 0.
3261
- *
3262
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3263
- * On entry, the NNB diagonal matrix D and the multipliers
3264
- * used to obtain the factor U or L as computed by DSYTRF.
3265
- *
3266
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3267
- * matrix. If UPLO = 'U', the upper triangular part of the
3268
- * inverse is formed and the part of A below the diagonal is not
3269
- * referenced; if UPLO = 'L' the lower triangular part of the
3270
- * inverse is formed and the part of A above the diagonal is
3271
- * not referenced.
3272
- *
3273
- * LDA (input) INTEGER
3274
- * The leading dimension of the array A. LDA >= max(1,N).
3275
- *
3276
- * IPIV (input) INTEGER array, dimension (N)
3277
- * Details of the interchanges and the NNB structure of D
3278
- * as determined by DSYTRF.
3279
- *
3280
- * WORK (workspace) DOUBLE PRECISION array, dimension (N+NNB+1,NNB+3)
3281
- *
3282
- * NB (input) INTEGER
3283
- * Block size
3284
- *
3285
- * INFO (output) INTEGER
3286
- * = 0: successful exit
3287
- * < 0: if INFO = -i, the i-th argument had an illegal value
3288
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3289
- * inverse could not be computed.
3290
- *
3291
-
3292
- * =====================================================================
3293
- *
3294
-
3295
-
3296
- </PRE>
3297
- <A HREF="#top">go to the page top</A>
3298
-
3299
- <A NAME="dsytrs"></A>
3300
- <H2>dsytrs</H2>
3301
- <PRE>
3302
- USAGE:
3303
- info, b = NumRu::Lapack.dsytrs( uplo, a, ipiv, b, [:usage => usage, :help => help])
3304
-
3305
-
3306
- FORTRAN MANUAL
3307
- SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
3308
-
3309
- * Purpose
3310
- * =======
3311
- *
3312
- * DSYTRS solves a system of linear equations A*X = B with a real
3313
- * symmetric matrix A using the factorization A = U*D*U**T or
3314
- * A = L*D*L**T computed by DSYTRF.
3315
- *
3316
-
3317
- * Arguments
3318
- * =========
3319
- *
3320
- * UPLO (input) CHARACTER*1
3321
- * Specifies whether the details of the factorization are stored
3322
- * as an upper or lower triangular matrix.
3323
- * = 'U': Upper triangular, form is A = U*D*U**T;
3324
- * = 'L': Lower triangular, form is A = L*D*L**T.
3325
- *
3326
- * N (input) INTEGER
3327
- * The order of the matrix A. N >= 0.
3328
- *
3329
- * NRHS (input) INTEGER
3330
- * The number of right hand sides, i.e., the number of columns
3331
- * of the matrix B. NRHS >= 0.
3332
- *
3333
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
3334
- * The block diagonal matrix D and the multipliers used to
3335
- * obtain the factor U or L as computed by DSYTRF.
3336
- *
3337
- * LDA (input) INTEGER
3338
- * The leading dimension of the array A. LDA >= max(1,N).
3339
- *
3340
- * IPIV (input) INTEGER array, dimension (N)
3341
- * Details of the interchanges and the block structure of D
3342
- * as determined by DSYTRF.
3343
- *
3344
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
3345
- * On entry, the right hand side matrix B.
3346
- * On exit, the solution matrix X.
3347
- *
3348
- * LDB (input) INTEGER
3349
- * The leading dimension of the array B. LDB >= max(1,N).
3350
- *
3351
- * INFO (output) INTEGER
3352
- * = 0: successful exit
3353
- * < 0: if INFO = -i, the i-th argument had an illegal value
3354
- *
3355
-
3356
- * =====================================================================
3357
- *
3358
-
3359
-
3360
- </PRE>
3361
- <A HREF="#top">go to the page top</A>
3362
-
3363
- <A NAME="dsytrs2"></A>
3364
- <H2>dsytrs2</H2>
3365
- <PRE>
3366
- USAGE:
3367
- info, b = NumRu::Lapack.dsytrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])
3368
-
3369
-
3370
- FORTRAN MANUAL
3371
- SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO )
3372
-
3373
- * Purpose
3374
- * =======
3375
- *
3376
- * DSYTRS2 solves a system of linear equations A*X = B with a real
3377
- * symmetric matrix A using the factorization A = U*D*U**T or
3378
- * A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
3379
- *
3380
-
3381
- * Arguments
3382
- * =========
3383
- *
3384
- * UPLO (input) CHARACTER*1
3385
- * Specifies whether the details of the factorization are stored
3386
- * as an upper or lower triangular matrix.
3387
- * = 'U': Upper triangular, form is A = U*D*U**T;
3388
- * = 'L': Lower triangular, form is A = L*D*L**T.
3389
- *
3390
- * N (input) INTEGER
3391
- * The order of the matrix A. N >= 0.
3392
- *
3393
- * NRHS (input) INTEGER
3394
- * The number of right hand sides, i.e., the number of columns
3395
- * of the matrix B. NRHS >= 0.
3396
- *
3397
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
3398
- * The block diagonal matrix D and the multipliers used to
3399
- * obtain the factor U or L as computed by DSYTRF.
3400
- *
3401
- * LDA (input) INTEGER
3402
- * The leading dimension of the array A. LDA >= max(1,N).
3403
- *
3404
- * IPIV (input) INTEGER array, dimension (N)
3405
- * Details of the interchanges and the block structure of D
3406
- * as determined by DSYTRF.
3407
- *
3408
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
3409
- * On entry, the right hand side matrix B.
3410
- * On exit, the solution matrix X.
3411
- *
3412
- * LDB (input) INTEGER
3413
- * The leading dimension of the array B. LDB >= max(1,N).
3414
- *
3415
- * WORK (workspace) REAL array, dimension (N)
3416
- *
3417
- * INFO (output) INTEGER
3418
- * = 0: successful exit
3419
- * < 0: if INFO = -i, the i-th argument had an illegal value
3420
- *
3421
-
3422
- * =====================================================================
3423
- *
3424
-
3425
-
3426
- </PRE>
3427
- <A HREF="#top">go to the page top</A>
3428
-
3429
- <HR />
3430
- <A HREF="d.html">back to matrix types</A><BR>
3431
- <A HREF="d.html">back to data types</A>
3432
- </BODY>
3433
- </HTML>