ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/dtb.html DELETED
@@ -1,284 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for triangular band matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for triangular band matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dtbcon">dtbcon</A></LI>
10
- <LI><A HREF="#dtbrfs">dtbrfs</A></LI>
11
- <LI><A HREF="#dtbtrs">dtbtrs</A></LI>
12
- </UL>
13
-
14
- <A NAME="dtbcon"></A>
15
- <H2>dtbcon</H2>
16
- <PRE>
17
- USAGE:
18
- rcond, info = NumRu::Lapack.dtbcon( norm, uplo, diag, kd, ab, [:usage => usage, :help => help])
19
-
20
-
21
- FORTRAN MANUAL
22
- SUBROUTINE DTBCON( NORM, UPLO, DIAG, N, KD, AB, LDAB, RCOND, WORK, IWORK, INFO )
23
-
24
- * Purpose
25
- * =======
26
- *
27
- * DTBCON estimates the reciprocal of the condition number of a
28
- * triangular band matrix A, in either the 1-norm or the infinity-norm.
29
- *
30
- * The norm of A is computed and an estimate is obtained for
31
- * norm(inv(A)), then the reciprocal of the condition number is
32
- * computed as
33
- * RCOND = 1 / ( norm(A) * norm(inv(A)) ).
34
- *
35
-
36
- * Arguments
37
- * =========
38
- *
39
- * NORM (input) CHARACTER*1
40
- * Specifies whether the 1-norm condition number or the
41
- * infinity-norm condition number is required:
42
- * = '1' or 'O': 1-norm;
43
- * = 'I': Infinity-norm.
44
- *
45
- * UPLO (input) CHARACTER*1
46
- * = 'U': A is upper triangular;
47
- * = 'L': A is lower triangular.
48
- *
49
- * DIAG (input) CHARACTER*1
50
- * = 'N': A is non-unit triangular;
51
- * = 'U': A is unit triangular.
52
- *
53
- * N (input) INTEGER
54
- * The order of the matrix A. N >= 0.
55
- *
56
- * KD (input) INTEGER
57
- * The number of superdiagonals or subdiagonals of the
58
- * triangular band matrix A. KD >= 0.
59
- *
60
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
61
- * The upper or lower triangular band matrix A, stored in the
62
- * first kd+1 rows of the array. The j-th column of A is stored
63
- * in the j-th column of the array AB as follows:
64
- * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
65
- * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
66
- * If DIAG = 'U', the diagonal elements of A are not referenced
67
- * and are assumed to be 1.
68
- *
69
- * LDAB (input) INTEGER
70
- * The leading dimension of the array AB. LDAB >= KD+1.
71
- *
72
- * RCOND (output) DOUBLE PRECISION
73
- * The reciprocal of the condition number of the matrix A,
74
- * computed as RCOND = 1/(norm(A) * norm(inv(A))).
75
- *
76
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
77
- *
78
- * IWORK (workspace) INTEGER array, dimension (N)
79
- *
80
- * INFO (output) INTEGER
81
- * = 0: successful exit
82
- * < 0: if INFO = -i, the i-th argument had an illegal value
83
- *
84
-
85
- * =====================================================================
86
- *
87
-
88
-
89
- </PRE>
90
- <A HREF="#top">go to the page top</A>
91
-
92
- <A NAME="dtbrfs"></A>
93
- <H2>dtbrfs</H2>
94
- <PRE>
95
- USAGE:
96
- ferr, berr, info = NumRu::Lapack.dtbrfs( uplo, trans, diag, kd, ab, b, x, [:usage => usage, :help => help])
97
-
98
-
99
- FORTRAN MANUAL
100
- SUBROUTINE DTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
101
-
102
- * Purpose
103
- * =======
104
- *
105
- * DTBRFS provides error bounds and backward error estimates for the
106
- * solution to a system of linear equations with a triangular band
107
- * coefficient matrix.
108
- *
109
- * The solution matrix X must be computed by DTBTRS or some other
110
- * means before entering this routine. DTBRFS does not do iterative
111
- * refinement because doing so cannot improve the backward error.
112
- *
113
-
114
- * Arguments
115
- * =========
116
- *
117
- * UPLO (input) CHARACTER*1
118
- * = 'U': A is upper triangular;
119
- * = 'L': A is lower triangular.
120
- *
121
- * TRANS (input) CHARACTER*1
122
- * Specifies the form of the system of equations:
123
- * = 'N': A * X = B (No transpose)
124
- * = 'T': A**T * X = B (Transpose)
125
- * = 'C': A**H * X = B (Conjugate transpose = Transpose)
126
- *
127
- * DIAG (input) CHARACTER*1
128
- * = 'N': A is non-unit triangular;
129
- * = 'U': A is unit triangular.
130
- *
131
- * N (input) INTEGER
132
- * The order of the matrix A. N >= 0.
133
- *
134
- * KD (input) INTEGER
135
- * The number of superdiagonals or subdiagonals of the
136
- * triangular band matrix A. KD >= 0.
137
- *
138
- * NRHS (input) INTEGER
139
- * The number of right hand sides, i.e., the number of columns
140
- * of the matrices B and X. NRHS >= 0.
141
- *
142
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
143
- * The upper or lower triangular band matrix A, stored in the
144
- * first kd+1 rows of the array. The j-th column of A is stored
145
- * in the j-th column of the array AB as follows:
146
- * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
147
- * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
148
- * If DIAG = 'U', the diagonal elements of A are not referenced
149
- * and are assumed to be 1.
150
- *
151
- * LDAB (input) INTEGER
152
- * The leading dimension of the array AB. LDAB >= KD+1.
153
- *
154
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
155
- * The right hand side matrix B.
156
- *
157
- * LDB (input) INTEGER
158
- * The leading dimension of the array B. LDB >= max(1,N).
159
- *
160
- * X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
161
- * The solution matrix X.
162
- *
163
- * LDX (input) INTEGER
164
- * The leading dimension of the array X. LDX >= max(1,N).
165
- *
166
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
167
- * The estimated forward error bound for each solution vector
168
- * X(j) (the j-th column of the solution matrix X).
169
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
170
- * is an estimated upper bound for the magnitude of the largest
171
- * element in (X(j) - XTRUE) divided by the magnitude of the
172
- * largest element in X(j). The estimate is as reliable as
173
- * the estimate for RCOND, and is almost always a slight
174
- * overestimate of the true error.
175
- *
176
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
177
- * The componentwise relative backward error of each solution
178
- * vector X(j) (i.e., the smallest relative change in
179
- * any element of A or B that makes X(j) an exact solution).
180
- *
181
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
182
- *
183
- * IWORK (workspace) INTEGER array, dimension (N)
184
- *
185
- * INFO (output) INTEGER
186
- * = 0: successful exit
187
- * < 0: if INFO = -i, the i-th argument had an illegal value
188
- *
189
-
190
- * =====================================================================
191
- *
192
-
193
-
194
- </PRE>
195
- <A HREF="#top">go to the page top</A>
196
-
197
- <A NAME="dtbtrs"></A>
198
- <H2>dtbtrs</H2>
199
- <PRE>
200
- USAGE:
201
- info, b = NumRu::Lapack.dtbtrs( uplo, trans, diag, kd, ab, b, [:usage => usage, :help => help])
202
-
203
-
204
- FORTRAN MANUAL
205
- SUBROUTINE DTBTRS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
206
-
207
- * Purpose
208
- * =======
209
- *
210
- * DTBTRS solves a triangular system of the form
211
- *
212
- * A * X = B or A**T * X = B,
213
- *
214
- * where A is a triangular band matrix of order N, and B is an
215
- * N-by NRHS matrix. A check is made to verify that A is nonsingular.
216
- *
217
-
218
- * Arguments
219
- * =========
220
- *
221
- * UPLO (input) CHARACTER*1
222
- * = 'U': A is upper triangular;
223
- * = 'L': A is lower triangular.
224
- *
225
- * TRANS (input) CHARACTER*1
226
- * Specifies the form the system of equations:
227
- * = 'N': A * X = B (No transpose)
228
- * = 'T': A**T * X = B (Transpose)
229
- * = 'C': A**H * X = B (Conjugate transpose = Transpose)
230
- *
231
- * DIAG (input) CHARACTER*1
232
- * = 'N': A is non-unit triangular;
233
- * = 'U': A is unit triangular.
234
- *
235
- * N (input) INTEGER
236
- * The order of the matrix A. N >= 0.
237
- *
238
- * KD (input) INTEGER
239
- * The number of superdiagonals or subdiagonals of the
240
- * triangular band matrix A. KD >= 0.
241
- *
242
- * NRHS (input) INTEGER
243
- * The number of right hand sides, i.e., the number of columns
244
- * of the matrix B. NRHS >= 0.
245
- *
246
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
247
- * The upper or lower triangular band matrix A, stored in the
248
- * first kd+1 rows of AB. The j-th column of A is stored
249
- * in the j-th column of the array AB as follows:
250
- * if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
251
- * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
252
- * If DIAG = 'U', the diagonal elements of A are not referenced
253
- * and are assumed to be 1.
254
- *
255
- * LDAB (input) INTEGER
256
- * The leading dimension of the array AB. LDAB >= KD+1.
257
- *
258
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
259
- * On entry, the right hand side matrix B.
260
- * On exit, if INFO = 0, the solution matrix X.
261
- *
262
- * LDB (input) INTEGER
263
- * The leading dimension of the array B. LDB >= max(1,N).
264
- *
265
- * INFO (output) INTEGER
266
- * = 0: successful exit
267
- * < 0: if INFO = -i, the i-th argument had an illegal value
268
- * > 0: if INFO = i, the i-th diagonal element of A is zero,
269
- * indicating that the matrix is singular and the
270
- * solutions X have not been computed.
271
- *
272
-
273
- * =====================================================================
274
- *
275
-
276
-
277
- </PRE>
278
- <A HREF="#top">go to the page top</A>
279
-
280
- <HR />
281
- <A HREF="d.html">back to matrix types</A><BR>
282
- <A HREF="d.html">back to data types</A>
283
- </BODY>
284
- </HTML>
data/doc/dtg.html DELETED
@@ -1,1730 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for triangular matrices, generalized problem (i.e., a pair of triangular matrices) matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for triangular matrices, generalized problem (i.e., a pair of triangular matrices) matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dtgevc">dtgevc</A></LI>
10
- <LI><A HREF="#dtgex2">dtgex2</A></LI>
11
- <LI><A HREF="#dtgexc">dtgexc</A></LI>
12
- <LI><A HREF="#dtgsen">dtgsen</A></LI>
13
- <LI><A HREF="#dtgsja">dtgsja</A></LI>
14
- <LI><A HREF="#dtgsna">dtgsna</A></LI>
15
- <LI><A HREF="#dtgsy2">dtgsy2</A></LI>
16
- <LI><A HREF="#dtgsyl">dtgsyl</A></LI>
17
- </UL>
18
-
19
- <A NAME="dtgevc"></A>
20
- <H2>dtgevc</H2>
21
- <PRE>
22
- USAGE:
23
- m, info, vl, vr = NumRu::Lapack.dtgevc( side, howmny, select, s, p, vl, vr, [:usage => usage, :help => help])
24
-
25
-
26
- FORTRAN MANUAL
27
- SUBROUTINE DTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, LDVL, VR, LDVR, MM, M, WORK, INFO )
28
-
29
- * Purpose
30
- * =======
31
- *
32
- * DTGEVC computes some or all of the right and/or left eigenvectors of
33
- * a pair of real matrices (S,P), where S is a quasi-triangular matrix
34
- * and P is upper triangular. Matrix pairs of this type are produced by
35
- * the generalized Schur factorization of a matrix pair (A,B):
36
- *
37
- * A = Q*S*Z**T, B = Q*P*Z**T
38
- *
39
- * as computed by DGGHRD + DHGEQZ.
40
- *
41
- * The right eigenvector x and the left eigenvector y of (S,P)
42
- * corresponding to an eigenvalue w are defined by:
43
- *
44
- * S*x = w*P*x, (y**H)*S = w*(y**H)*P,
45
- *
46
- * where y**H denotes the conjugate tranpose of y.
47
- * The eigenvalues are not input to this routine, but are computed
48
- * directly from the diagonal blocks of S and P.
49
- *
50
- * This routine returns the matrices X and/or Y of right and left
51
- * eigenvectors of (S,P), or the products Z*X and/or Q*Y,
52
- * where Z and Q are input matrices.
53
- * If Q and Z are the orthogonal factors from the generalized Schur
54
- * factorization of a matrix pair (A,B), then Z*X and Q*Y
55
- * are the matrices of right and left eigenvectors of (A,B).
56
- *
57
-
58
- * Arguments
59
- * =========
60
- *
61
- * SIDE (input) CHARACTER*1
62
- * = 'R': compute right eigenvectors only;
63
- * = 'L': compute left eigenvectors only;
64
- * = 'B': compute both right and left eigenvectors.
65
- *
66
- * HOWMNY (input) CHARACTER*1
67
- * = 'A': compute all right and/or left eigenvectors;
68
- * = 'B': compute all right and/or left eigenvectors,
69
- * backtransformed by the matrices in VR and/or VL;
70
- * = 'S': compute selected right and/or left eigenvectors,
71
- * specified by the logical array SELECT.
72
- *
73
- * SELECT (input) LOGICAL array, dimension (N)
74
- * If HOWMNY='S', SELECT specifies the eigenvectors to be
75
- * computed. If w(j) is a real eigenvalue, the corresponding
76
- * real eigenvector is computed if SELECT(j) is .TRUE..
77
- * If w(j) and w(j+1) are the real and imaginary parts of a
78
- * complex eigenvalue, the corresponding complex eigenvector
79
- * is computed if either SELECT(j) or SELECT(j+1) is .TRUE.,
80
- * and on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is
81
- * set to .FALSE..
82
- * Not referenced if HOWMNY = 'A' or 'B'.
83
- *
84
- * N (input) INTEGER
85
- * The order of the matrices S and P. N >= 0.
86
- *
87
- * S (input) DOUBLE PRECISION array, dimension (LDS,N)
88
- * The upper quasi-triangular matrix S from a generalized Schur
89
- * factorization, as computed by DHGEQZ.
90
- *
91
- * LDS (input) INTEGER
92
- * The leading dimension of array S. LDS >= max(1,N).
93
- *
94
- * P (input) DOUBLE PRECISION array, dimension (LDP,N)
95
- * The upper triangular matrix P from a generalized Schur
96
- * factorization, as computed by DHGEQZ.
97
- * 2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks
98
- * of S must be in positive diagonal form.
99
- *
100
- * LDP (input) INTEGER
101
- * The leading dimension of array P. LDP >= max(1,N).
102
- *
103
- * VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM)
104
- * On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
105
- * contain an N-by-N matrix Q (usually the orthogonal matrix Q
106
- * of left Schur vectors returned by DHGEQZ).
107
- * On exit, if SIDE = 'L' or 'B', VL contains:
108
- * if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
109
- * if HOWMNY = 'B', the matrix Q*Y;
110
- * if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
111
- * SELECT, stored consecutively in the columns of
112
- * VL, in the same order as their eigenvalues.
113
- *
114
- * A complex eigenvector corresponding to a complex eigenvalue
115
- * is stored in two consecutive columns, the first holding the
116
- * real part, and the second the imaginary part.
117
- *
118
- * Not referenced if SIDE = 'R'.
119
- *
120
- * LDVL (input) INTEGER
121
- * The leading dimension of array VL. LDVL >= 1, and if
122
- * SIDE = 'L' or 'B', LDVL >= N.
123
- *
124
- * VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM)
125
- * On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
126
- * contain an N-by-N matrix Z (usually the orthogonal matrix Z
127
- * of right Schur vectors returned by DHGEQZ).
128
- *
129
- * On exit, if SIDE = 'R' or 'B', VR contains:
130
- * if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
131
- * if HOWMNY = 'B' or 'b', the matrix Z*X;
132
- * if HOWMNY = 'S' or 's', the right eigenvectors of (S,P)
133
- * specified by SELECT, stored consecutively in the
134
- * columns of VR, in the same order as their
135
- * eigenvalues.
136
- *
137
- * A complex eigenvector corresponding to a complex eigenvalue
138
- * is stored in two consecutive columns, the first holding the
139
- * real part and the second the imaginary part.
140
- *
141
- * Not referenced if SIDE = 'L'.
142
- *
143
- * LDVR (input) INTEGER
144
- * The leading dimension of the array VR. LDVR >= 1, and if
145
- * SIDE = 'R' or 'B', LDVR >= N.
146
- *
147
- * MM (input) INTEGER
148
- * The number of columns in the arrays VL and/or VR. MM >= M.
149
- *
150
- * M (output) INTEGER
151
- * The number of columns in the arrays VL and/or VR actually
152
- * used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
153
- * is set to N. Each selected real eigenvector occupies one
154
- * column and each selected complex eigenvector occupies two
155
- * columns.
156
- *
157
- * WORK (workspace) DOUBLE PRECISION array, dimension (6*N)
158
- *
159
- * INFO (output) INTEGER
160
- * = 0: successful exit.
161
- * < 0: if INFO = -i, the i-th argument had an illegal value.
162
- * > 0: the 2-by-2 block (INFO:INFO+1) does not have a complex
163
- * eigenvalue.
164
- *
165
-
166
- * Further Details
167
- * ===============
168
- *
169
- * Allocation of workspace:
170
- * ---------- -- ---------
171
- *
172
- * WORK( j ) = 1-norm of j-th column of A, above the diagonal
173
- * WORK( N+j ) = 1-norm of j-th column of B, above the diagonal
174
- * WORK( 2*N+1:3*N ) = real part of eigenvector
175
- * WORK( 3*N+1:4*N ) = imaginary part of eigenvector
176
- * WORK( 4*N+1:5*N ) = real part of back-transformed eigenvector
177
- * WORK( 5*N+1:6*N ) = imaginary part of back-transformed eigenvector
178
- *
179
- * Rowwise vs. columnwise solution methods:
180
- * ------- -- ---------- -------- -------
181
- *
182
- * Finding a generalized eigenvector consists basically of solving the
183
- * singular triangular system
184
- *
185
- * (A - w B) x = 0 (for right) or: (A - w B)**H y = 0 (for left)
186
- *
187
- * Consider finding the i-th right eigenvector (assume all eigenvalues
188
- * are real). The equation to be solved is:
189
- * n i
190
- * 0 = sum C(j,k) v(k) = sum C(j,k) v(k) for j = i,. . .,1
191
- * k=j k=j
192
- *
193
- * where C = (A - w B) (The components v(i+1:n) are 0.)
194
- *
195
- * The "rowwise" method is:
196
- *
197
- * (1) v(i) := 1
198
- * for j = i-1,. . .,1:
199
- * i
200
- * (2) compute s = - sum C(j,k) v(k) and
201
- * k=j+1
202
- *
203
- * (3) v(j) := s / C(j,j)
204
- *
205
- * Step 2 is sometimes called the "dot product" step, since it is an
206
- * inner product between the j-th row and the portion of the eigenvector
207
- * that has been computed so far.
208
- *
209
- * The "columnwise" method consists basically in doing the sums
210
- * for all the rows in parallel. As each v(j) is computed, the
211
- * contribution of v(j) times the j-th column of C is added to the
212
- * partial sums. Since FORTRAN arrays are stored columnwise, this has
213
- * the advantage that at each step, the elements of C that are accessed
214
- * are adjacent to one another, whereas with the rowwise method, the
215
- * elements accessed at a step are spaced LDS (and LDP) words apart.
216
- *
217
- * When finding left eigenvectors, the matrix in question is the
218
- * transpose of the one in storage, so the rowwise method then
219
- * actually accesses columns of A and B at each step, and so is the
220
- * preferred method.
221
- *
222
- * =====================================================================
223
- *
224
-
225
-
226
- </PRE>
227
- <A HREF="#top">go to the page top</A>
228
-
229
- <A NAME="dtgex2"></A>
230
- <H2>dtgex2</H2>
231
- <PRE>
232
- USAGE:
233
- info, a, b, q, z = NumRu::Lapack.dtgex2( wantq, wantz, a, b, q, z, j1, n1, n2, [:lwork => lwork, :usage => usage, :help => help])
234
-
235
-
236
- FORTRAN MANUAL
237
- SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1, N1, N2, WORK, LWORK, INFO )
238
-
239
- * Purpose
240
- * =======
241
- *
242
- * DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
243
- * of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
244
- * (A, B) by an orthogonal equivalence transformation.
245
- *
246
- * (A, B) must be in generalized real Schur canonical form (as returned
247
- * by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
248
- * diagonal blocks. B is upper triangular.
249
- *
250
- * Optionally, the matrices Q and Z of generalized Schur vectors are
251
- * updated.
252
- *
253
- * Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
254
- * Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
255
- *
256
- *
257
-
258
- * Arguments
259
- * =========
260
- *
261
- * WANTQ (input) LOGICAL
262
- * .TRUE. : update the left transformation matrix Q;
263
- * .FALSE.: do not update Q.
264
- *
265
- * WANTZ (input) LOGICAL
266
- * .TRUE. : update the right transformation matrix Z;
267
- * .FALSE.: do not update Z.
268
- *
269
- * N (input) INTEGER
270
- * The order of the matrices A and B. N >= 0.
271
- *
272
- * A (input/output) DOUBLE PRECISION array, dimensions (LDA,N)
273
- * On entry, the matrix A in the pair (A, B).
274
- * On exit, the updated matrix A.
275
- *
276
- * LDA (input) INTEGER
277
- * The leading dimension of the array A. LDA >= max(1,N).
278
- *
279
- * B (input/output) DOUBLE PRECISION array, dimensions (LDB,N)
280
- * On entry, the matrix B in the pair (A, B).
281
- * On exit, the updated matrix B.
282
- *
283
- * LDB (input) INTEGER
284
- * The leading dimension of the array B. LDB >= max(1,N).
285
- *
286
- * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
287
- * On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
288
- * On exit, the updated matrix Q.
289
- * Not referenced if WANTQ = .FALSE..
290
- *
291
- * LDQ (input) INTEGER
292
- * The leading dimension of the array Q. LDQ >= 1.
293
- * If WANTQ = .TRUE., LDQ >= N.
294
- *
295
- * Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
296
- * On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
297
- * On exit, the updated matrix Z.
298
- * Not referenced if WANTZ = .FALSE..
299
- *
300
- * LDZ (input) INTEGER
301
- * The leading dimension of the array Z. LDZ >= 1.
302
- * If WANTZ = .TRUE., LDZ >= N.
303
- *
304
- * J1 (input) INTEGER
305
- * The index to the first block (A11, B11). 1 <= J1 <= N.
306
- *
307
- * N1 (input) INTEGER
308
- * The order of the first block (A11, B11). N1 = 0, 1 or 2.
309
- *
310
- * N2 (input) INTEGER
311
- * The order of the second block (A22, B22). N2 = 0, 1 or 2.
312
- *
313
- * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
314
- *
315
- * LWORK (input) INTEGER
316
- * The dimension of the array WORK.
317
- * LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
318
- *
319
- * INFO (output) INTEGER
320
- * =0: Successful exit
321
- * >0: If INFO = 1, the transformed matrix (A, B) would be
322
- * too far from generalized Schur form; the blocks are
323
- * not swapped and (A, B) and (Q, Z) are unchanged.
324
- * The problem of swapping is too ill-conditioned.
325
- * <0: If INFO = -16: LWORK is too small. Appropriate value
326
- * for LWORK is returned in WORK(1).
327
- *
328
-
329
- * Further Details
330
- * ===============
331
- *
332
- * Based on contributions by
333
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
334
- * Umea University, S-901 87 Umea, Sweden.
335
- *
336
- * In the current code both weak and strong stability tests are
337
- * performed. The user can omit the strong stability test by changing
338
- * the internal logical parameter WANDS to .FALSE.. See ref. [2] for
339
- * details.
340
- *
341
- * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
342
- * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
343
- * M.S. Moonen et al (eds), Linear Algebra for Large Scale and
344
- * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
345
- *
346
- * [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
347
- * Eigenvalues of a Regular Matrix Pair (A, B) and Condition
348
- * Estimation: Theory, Algorithms and Software,
349
- * Report UMINF - 94.04, Department of Computing Science, Umea
350
- * University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
351
- * Note 87. To appear in Numerical Algorithms, 1996.
352
- *
353
- * =====================================================================
354
- * Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
355
- * loops. Sven Hammarling, 1/5/02.
356
- *
357
-
358
-
359
- </PRE>
360
- <A HREF="#top">go to the page top</A>
361
-
362
- <A NAME="dtgexc"></A>
363
- <H2>dtgexc</H2>
364
- <PRE>
365
- USAGE:
366
- work, info, a, b, q, z, ifst, ilst = NumRu::Lapack.dtgexc( wantq, wantz, a, b, q, z, ifst, ilst, [:lwork => lwork, :usage => usage, :help => help])
367
-
368
-
369
- FORTRAN MANUAL
370
- SUBROUTINE DTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, WORK, LWORK, INFO )
371
-
372
- * Purpose
373
- * =======
374
- *
375
- * DTGEXC reorders the generalized real Schur decomposition of a real
376
- * matrix pair (A,B) using an orthogonal equivalence transformation
377
- *
378
- * (A, B) = Q * (A, B) * Z',
379
- *
380
- * so that the diagonal block of (A, B) with row index IFST is moved
381
- * to row ILST.
382
- *
383
- * (A, B) must be in generalized real Schur canonical form (as returned
384
- * by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
385
- * diagonal blocks. B is upper triangular.
386
- *
387
- * Optionally, the matrices Q and Z of generalized Schur vectors are
388
- * updated.
389
- *
390
- * Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
391
- * Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
392
- *
393
- *
394
-
395
- * Arguments
396
- * =========
397
- *
398
- * WANTQ (input) LOGICAL
399
- * .TRUE. : update the left transformation matrix Q;
400
- * .FALSE.: do not update Q.
401
- *
402
- * WANTZ (input) LOGICAL
403
- * .TRUE. : update the right transformation matrix Z;
404
- * .FALSE.: do not update Z.
405
- *
406
- * N (input) INTEGER
407
- * The order of the matrices A and B. N >= 0.
408
- *
409
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
410
- * On entry, the matrix A in generalized real Schur canonical
411
- * form.
412
- * On exit, the updated matrix A, again in generalized
413
- * real Schur canonical form.
414
- *
415
- * LDA (input) INTEGER
416
- * The leading dimension of the array A. LDA >= max(1,N).
417
- *
418
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
419
- * On entry, the matrix B in generalized real Schur canonical
420
- * form (A,B).
421
- * On exit, the updated matrix B, again in generalized
422
- * real Schur canonical form (A,B).
423
- *
424
- * LDB (input) INTEGER
425
- * The leading dimension of the array B. LDB >= max(1,N).
426
- *
427
- * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
428
- * On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
429
- * On exit, the updated matrix Q.
430
- * If WANTQ = .FALSE., Q is not referenced.
431
- *
432
- * LDQ (input) INTEGER
433
- * The leading dimension of the array Q. LDQ >= 1.
434
- * If WANTQ = .TRUE., LDQ >= N.
435
- *
436
- * Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
437
- * On entry, if WANTZ = .TRUE., the orthogonal matrix Z.
438
- * On exit, the updated matrix Z.
439
- * If WANTZ = .FALSE., Z is not referenced.
440
- *
441
- * LDZ (input) INTEGER
442
- * The leading dimension of the array Z. LDZ >= 1.
443
- * If WANTZ = .TRUE., LDZ >= N.
444
- *
445
- * IFST (input/output) INTEGER
446
- * ILST (input/output) INTEGER
447
- * Specify the reordering of the diagonal blocks of (A, B).
448
- * The block with row index IFST is moved to row ILST, by a
449
- * sequence of swapping between adjacent blocks.
450
- * On exit, if IFST pointed on entry to the second row of
451
- * a 2-by-2 block, it is changed to point to the first row;
452
- * ILST always points to the first row of the block in its
453
- * final position (which may differ from its input value by
454
- * +1 or -1). 1 <= IFST, ILST <= N.
455
- *
456
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
457
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
458
- *
459
- * LWORK (input) INTEGER
460
- * The dimension of the array WORK.
461
- * LWORK >= 1 when N <= 1, otherwise LWORK >= 4*N + 16.
462
- *
463
- * If LWORK = -1, then a workspace query is assumed; the routine
464
- * only calculates the optimal size of the WORK array, returns
465
- * this value as the first entry of the WORK array, and no error
466
- * message related to LWORK is issued by XERBLA.
467
- *
468
- * INFO (output) INTEGER
469
- * =0: successful exit.
470
- * <0: if INFO = -i, the i-th argument had an illegal value.
471
- * =1: The transformed matrix pair (A, B) would be too far
472
- * from generalized Schur form; the problem is ill-
473
- * conditioned. (A, B) may have been partially reordered,
474
- * and ILST points to the first row of the current
475
- * position of the block being moved.
476
- *
477
-
478
- * Further Details
479
- * ===============
480
- *
481
- * Based on contributions by
482
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
483
- * Umea University, S-901 87 Umea, Sweden.
484
- *
485
- * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
486
- * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
487
- * M.S. Moonen et al (eds), Linear Algebra for Large Scale and
488
- * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
489
- *
490
- * =====================================================================
491
- *
492
-
493
-
494
- </PRE>
495
- <A HREF="#top">go to the page top</A>
496
-
497
- <A NAME="dtgsen"></A>
498
- <H2>dtgsen</H2>
499
- <PRE>
500
- USAGE:
501
- alphar, alphai, beta, m, pl, pr, dif, work, iwork, info, a, b, q, z = NumRu::Lapack.dtgsen( ijob, wantq, wantz, select, a, b, q, z, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
502
-
503
-
504
- FORTRAN MANUAL
505
- SUBROUTINE DTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
506
-
507
- * Purpose
508
- * =======
509
- *
510
- * DTGSEN reorders the generalized real Schur decomposition of a real
511
- * matrix pair (A, B) (in terms of an orthonormal equivalence trans-
512
- * formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues
513
- * appears in the leading diagonal blocks of the upper quasi-triangular
514
- * matrix A and the upper triangular B. The leading columns of Q and
515
- * Z form orthonormal bases of the corresponding left and right eigen-
516
- * spaces (deflating subspaces). (A, B) must be in generalized real
517
- * Schur canonical form (as returned by DGGES), i.e. A is block upper
518
- * triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
519
- * triangular.
520
- *
521
- * DTGSEN also computes the generalized eigenvalues
522
- *
523
- * w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
524
- *
525
- * of the reordered matrix pair (A, B).
526
- *
527
- * Optionally, DTGSEN computes the estimates of reciprocal condition
528
- * numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
529
- * (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
530
- * between the matrix pairs (A11, B11) and (A22,B22) that correspond to
531
- * the selected cluster and the eigenvalues outside the cluster, resp.,
532
- * and norms of "projections" onto left and right eigenspaces w.r.t.
533
- * the selected cluster in the (1,1)-block.
534
- *
535
-
536
- * Arguments
537
- * =========
538
- *
539
- * IJOB (input) INTEGER
540
- * Specifies whether condition numbers are required for the
541
- * cluster of eigenvalues (PL and PR) or the deflating subspaces
542
- * (Difu and Difl):
543
- * =0: Only reorder w.r.t. SELECT. No extras.
544
- * =1: Reciprocal of norms of "projections" onto left and right
545
- * eigenspaces w.r.t. the selected cluster (PL and PR).
546
- * =2: Upper bounds on Difu and Difl. F-norm-based estimate
547
- * (DIF(1:2)).
548
- * =3: Estimate of Difu and Difl. 1-norm-based estimate
549
- * (DIF(1:2)).
550
- * About 5 times as expensive as IJOB = 2.
551
- * =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
552
- * version to get it all.
553
- * =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
554
- *
555
- * WANTQ (input) LOGICAL
556
- * .TRUE. : update the left transformation matrix Q;
557
- * .FALSE.: do not update Q.
558
- *
559
- * WANTZ (input) LOGICAL
560
- * .TRUE. : update the right transformation matrix Z;
561
- * .FALSE.: do not update Z.
562
- *
563
- * SELECT (input) LOGICAL array, dimension (N)
564
- * SELECT specifies the eigenvalues in the selected cluster.
565
- * To select a real eigenvalue w(j), SELECT(j) must be set to
566
- * .TRUE.. To select a complex conjugate pair of eigenvalues
567
- * w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
568
- * either SELECT(j) or SELECT(j+1) or both must be set to
569
- * .TRUE.; a complex conjugate pair of eigenvalues must be
570
- * either both included in the cluster or both excluded.
571
- *
572
- * N (input) INTEGER
573
- * The order of the matrices A and B. N >= 0.
574
- *
575
- * A (input/output) DOUBLE PRECISION array, dimension(LDA,N)
576
- * On entry, the upper quasi-triangular matrix A, with (A, B) in
577
- * generalized real Schur canonical form.
578
- * On exit, A is overwritten by the reordered matrix A.
579
- *
580
- * LDA (input) INTEGER
581
- * The leading dimension of the array A. LDA >= max(1,N).
582
- *
583
- * B (input/output) DOUBLE PRECISION array, dimension(LDB,N)
584
- * On entry, the upper triangular matrix B, with (A, B) in
585
- * generalized real Schur canonical form.
586
- * On exit, B is overwritten by the reordered matrix B.
587
- *
588
- * LDB (input) INTEGER
589
- * The leading dimension of the array B. LDB >= max(1,N).
590
- *
591
- * ALPHAR (output) DOUBLE PRECISION array, dimension (N)
592
- * ALPHAI (output) DOUBLE PRECISION array, dimension (N)
593
- * BETA (output) DOUBLE PRECISION array, dimension (N)
594
- * On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
595
- * be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i
596
- * and BETA(j),j=1,...,N are the diagonals of the complex Schur
597
- * form (S,T) that would result if the 2-by-2 diagonal blocks of
598
- * the real generalized Schur form of (A,B) were further reduced
599
- * to triangular form using complex unitary transformations.
600
- * If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
601
- * positive, then the j-th and (j+1)-st eigenvalues are a
602
- * complex conjugate pair, with ALPHAI(j+1) negative.
603
- *
604
- * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
605
- * On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
606
- * On exit, Q has been postmultiplied by the left orthogonal
607
- * transformation matrix which reorder (A, B); The leading M
608
- * columns of Q form orthonormal bases for the specified pair of
609
- * left eigenspaces (deflating subspaces).
610
- * If WANTQ = .FALSE., Q is not referenced.
611
- *
612
- * LDQ (input) INTEGER
613
- * The leading dimension of the array Q. LDQ >= 1;
614
- * and if WANTQ = .TRUE., LDQ >= N.
615
- *
616
- * Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
617
- * On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
618
- * On exit, Z has been postmultiplied by the left orthogonal
619
- * transformation matrix which reorder (A, B); The leading M
620
- * columns of Z form orthonormal bases for the specified pair of
621
- * left eigenspaces (deflating subspaces).
622
- * If WANTZ = .FALSE., Z is not referenced.
623
- *
624
- * LDZ (input) INTEGER
625
- * The leading dimension of the array Z. LDZ >= 1;
626
- * If WANTZ = .TRUE., LDZ >= N.
627
- *
628
- * M (output) INTEGER
629
- * The dimension of the specified pair of left and right eigen-
630
- * spaces (deflating subspaces). 0 <= M <= N.
631
- *
632
- * PL (output) DOUBLE PRECISION
633
- * PR (output) DOUBLE PRECISION
634
- * If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
635
- * reciprocal of the norm of "projections" onto left and right
636
- * eigenspaces with respect to the selected cluster.
637
- * 0 < PL, PR <= 1.
638
- * If M = 0 or M = N, PL = PR = 1.
639
- * If IJOB = 0, 2 or 3, PL and PR are not referenced.
640
- *
641
- * DIF (output) DOUBLE PRECISION array, dimension (2).
642
- * If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
643
- * If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
644
- * Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
645
- * estimates of Difu and Difl.
646
- * If M = 0 or N, DIF(1:2) = F-norm([A, B]).
647
- * If IJOB = 0 or 1, DIF is not referenced.
648
- *
649
- * WORK (workspace/output) DOUBLE PRECISION array,
650
- * dimension (MAX(1,LWORK))
651
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
652
- *
653
- * LWORK (input) INTEGER
654
- * The dimension of the array WORK. LWORK >= 4*N+16.
655
- * If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
656
- * If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
657
- *
658
- * If LWORK = -1, then a workspace query is assumed; the routine
659
- * only calculates the optimal size of the WORK array, returns
660
- * this value as the first entry of the WORK array, and no error
661
- * message related to LWORK is issued by XERBLA.
662
- *
663
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
664
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
665
- *
666
- * LIWORK (input) INTEGER
667
- * The dimension of the array IWORK. LIWORK >= 1.
668
- * If IJOB = 1, 2 or 4, LIWORK >= N+6.
669
- * If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
670
- *
671
- * If LIWORK = -1, then a workspace query is assumed; the
672
- * routine only calculates the optimal size of the IWORK array,
673
- * returns this value as the first entry of the IWORK array, and
674
- * no error message related to LIWORK is issued by XERBLA.
675
- *
676
- * INFO (output) INTEGER
677
- * =0: Successful exit.
678
- * <0: If INFO = -i, the i-th argument had an illegal value.
679
- * =1: Reordering of (A, B) failed because the transformed
680
- * matrix pair (A, B) would be too far from generalized
681
- * Schur form; the problem is very ill-conditioned.
682
- * (A, B) may have been partially reordered.
683
- * If requested, 0 is returned in DIF(*), PL and PR.
684
- *
685
-
686
- * Further Details
687
- * ===============
688
- *
689
- * DTGSEN first collects the selected eigenvalues by computing
690
- * orthogonal U and W that move them to the top left corner of (A, B).
691
- * In other words, the selected eigenvalues are the eigenvalues of
692
- * (A11, B11) in:
693
- *
694
- * U'*(A, B)*W = (A11 A12) (B11 B12) n1
695
- * ( 0 A22),( 0 B22) n2
696
- * n1 n2 n1 n2
697
- *
698
- * where N = n1+n2 and U' means the transpose of U. The first n1 columns
699
- * of U and W span the specified pair of left and right eigenspaces
700
- * (deflating subspaces) of (A, B).
701
- *
702
- * If (A, B) has been obtained from the generalized real Schur
703
- * decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
704
- * reordered generalized real Schur form of (C, D) is given by
705
- *
706
- * (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)',
707
- *
708
- * and the first n1 columns of Q*U and Z*W span the corresponding
709
- * deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
710
- *
711
- * Note that if the selected eigenvalue is sufficiently ill-conditioned,
712
- * then its value may differ significantly from its value before
713
- * reordering.
714
- *
715
- * The reciprocal condition numbers of the left and right eigenspaces
716
- * spanned by the first n1 columns of U and W (or Q*U and Z*W) may
717
- * be returned in DIF(1:2), corresponding to Difu and Difl, resp.
718
- *
719
- * The Difu and Difl are defined as:
720
- *
721
- * Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
722
- * and
723
- * Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
724
- *
725
- * where sigma-min(Zu) is the smallest singular value of the
726
- * (2*n1*n2)-by-(2*n1*n2) matrix
727
- *
728
- * Zu = [ kron(In2, A11) -kron(A22', In1) ]
729
- * [ kron(In2, B11) -kron(B22', In1) ].
730
- *
731
- * Here, Inx is the identity matrix of size nx and A22' is the
732
- * transpose of A22. kron(X, Y) is the Kronecker product between
733
- * the matrices X and Y.
734
- *
735
- * When DIF(2) is small, small changes in (A, B) can cause large changes
736
- * in the deflating subspace. An approximate (asymptotic) bound on the
737
- * maximum angular error in the computed deflating subspaces is
738
- *
739
- * EPS * norm((A, B)) / DIF(2),
740
- *
741
- * where EPS is the machine precision.
742
- *
743
- * The reciprocal norm of the projectors on the left and right
744
- * eigenspaces associated with (A11, B11) may be returned in PL and PR.
745
- * They are computed as follows. First we compute L and R so that
746
- * P*(A, B)*Q is block diagonal, where
747
- *
748
- * P = ( I -L ) n1 Q = ( I R ) n1
749
- * ( 0 I ) n2 and ( 0 I ) n2
750
- * n1 n2 n1 n2
751
- *
752
- * and (L, R) is the solution to the generalized Sylvester equation
753
- *
754
- * A11*R - L*A22 = -A12
755
- * B11*R - L*B22 = -B12
756
- *
757
- * Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
758
- * An approximate (asymptotic) bound on the average absolute error of
759
- * the selected eigenvalues is
760
- *
761
- * EPS * norm((A, B)) / PL.
762
- *
763
- * There are also global error bounds which valid for perturbations up
764
- * to a certain restriction: A lower bound (x) on the smallest
765
- * F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
766
- * coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
767
- * (i.e. (A + E, B + F), is
768
- *
769
- * x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
770
- *
771
- * An approximate bound on x can be computed from DIF(1:2), PL and PR.
772
- *
773
- * If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
774
- * (L', R') and unperturbed (L, R) left and right deflating subspaces
775
- * associated with the selected cluster in the (1,1)-blocks can be
776
- * bounded as
777
- *
778
- * max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
779
- * max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
780
- *
781
- * See LAPACK User's Guide section 4.11 or the following references
782
- * for more information.
783
- *
784
- * Note that if the default method for computing the Frobenius-norm-
785
- * based estimate DIF is not wanted (see DLATDF), then the parameter
786
- * IDIFJB (see below) should be changed from 3 to 4 (routine DLATDF
787
- * (IJOB = 2 will be used)). See DTGSYL for more details.
788
- *
789
- * Based on contributions by
790
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
791
- * Umea University, S-901 87 Umea, Sweden.
792
- *
793
- * References
794
- * ==========
795
- *
796
- * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
797
- * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
798
- * M.S. Moonen et al (eds), Linear Algebra for Large Scale and
799
- * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
800
- *
801
- * [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
802
- * Eigenvalues of a Regular Matrix Pair (A, B) and Condition
803
- * Estimation: Theory, Algorithms and Software,
804
- * Report UMINF - 94.04, Department of Computing Science, Umea
805
- * University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
806
- * Note 87. To appear in Numerical Algorithms, 1996.
807
- *
808
- * [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
809
- * for Solving the Generalized Sylvester Equation and Estimating the
810
- * Separation between Regular Matrix Pairs, Report UMINF - 93.23,
811
- * Department of Computing Science, Umea University, S-901 87 Umea,
812
- * Sweden, December 1993, Revised April 1994, Also as LAPACK Working
813
- * Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
814
- * 1996.
815
- *
816
- * =====================================================================
817
- *
818
-
819
-
820
- </PRE>
821
- <A HREF="#top">go to the page top</A>
822
-
823
- <A NAME="dtgsja"></A>
824
- <H2>dtgsja</H2>
825
- <PRE>
826
- USAGE:
827
- alpha, beta, ncycle, info, a, b, u, v, q = NumRu::Lapack.dtgsja( jobu, jobv, jobq, k, l, a, b, tola, tolb, u, v, q, [:usage => usage, :help => help])
828
-
829
-
830
- FORTRAN MANUAL
831
- SUBROUTINE DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO )
832
-
833
- * Purpose
834
- * =======
835
- *
836
- * DTGSJA computes the generalized singular value decomposition (GSVD)
837
- * of two real upper triangular (or trapezoidal) matrices A and B.
838
- *
839
- * On entry, it is assumed that matrices A and B have the following
840
- * forms, which may be obtained by the preprocessing subroutine DGGSVP
841
- * from a general M-by-N matrix A and P-by-N matrix B:
842
- *
843
- * N-K-L K L
844
- * A = K ( 0 A12 A13 ) if M-K-L >= 0;
845
- * L ( 0 0 A23 )
846
- * M-K-L ( 0 0 0 )
847
- *
848
- * N-K-L K L
849
- * A = K ( 0 A12 A13 ) if M-K-L < 0;
850
- * M-K ( 0 0 A23 )
851
- *
852
- * N-K-L K L
853
- * B = L ( 0 0 B13 )
854
- * P-L ( 0 0 0 )
855
- *
856
- * where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
857
- * upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
858
- * otherwise A23 is (M-K)-by-L upper trapezoidal.
859
- *
860
- * On exit,
861
- *
862
- * U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ),
863
- *
864
- * where U, V and Q are orthogonal matrices, Z' denotes the transpose
865
- * of Z, R is a nonsingular upper triangular matrix, and D1 and D2 are
866
- * ``diagonal'' matrices, which are of the following structures:
867
- *
868
- * If M-K-L >= 0,
869
- *
870
- * K L
871
- * D1 = K ( I 0 )
872
- * L ( 0 C )
873
- * M-K-L ( 0 0 )
874
- *
875
- * K L
876
- * D2 = L ( 0 S )
877
- * P-L ( 0 0 )
878
- *
879
- * N-K-L K L
880
- * ( 0 R ) = K ( 0 R11 R12 ) K
881
- * L ( 0 0 R22 ) L
882
- *
883
- * where
884
- *
885
- * C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
886
- * S = diag( BETA(K+1), ... , BETA(K+L) ),
887
- * C**2 + S**2 = I.
888
- *
889
- * R is stored in A(1:K+L,N-K-L+1:N) on exit.
890
- *
891
- * If M-K-L < 0,
892
- *
893
- * K M-K K+L-M
894
- * D1 = K ( I 0 0 )
895
- * M-K ( 0 C 0 )
896
- *
897
- * K M-K K+L-M
898
- * D2 = M-K ( 0 S 0 )
899
- * K+L-M ( 0 0 I )
900
- * P-L ( 0 0 0 )
901
- *
902
- * N-K-L K M-K K+L-M
903
- * ( 0 R ) = K ( 0 R11 R12 R13 )
904
- * M-K ( 0 0 R22 R23 )
905
- * K+L-M ( 0 0 0 R33 )
906
- *
907
- * where
908
- * C = diag( ALPHA(K+1), ... , ALPHA(M) ),
909
- * S = diag( BETA(K+1), ... , BETA(M) ),
910
- * C**2 + S**2 = I.
911
- *
912
- * R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
913
- * ( 0 R22 R23 )
914
- * in B(M-K+1:L,N+M-K-L+1:N) on exit.
915
- *
916
- * The computation of the orthogonal transformation matrices U, V or Q
917
- * is optional. These matrices may either be formed explicitly, or they
918
- * may be postmultiplied into input matrices U1, V1, or Q1.
919
- *
920
-
921
- * Arguments
922
- * =========
923
- *
924
- * JOBU (input) CHARACTER*1
925
- * = 'U': U must contain an orthogonal matrix U1 on entry, and
926
- * the product U1*U is returned;
927
- * = 'I': U is initialized to the unit matrix, and the
928
- * orthogonal matrix U is returned;
929
- * = 'N': U is not computed.
930
- *
931
- * JOBV (input) CHARACTER*1
932
- * = 'V': V must contain an orthogonal matrix V1 on entry, and
933
- * the product V1*V is returned;
934
- * = 'I': V is initialized to the unit matrix, and the
935
- * orthogonal matrix V is returned;
936
- * = 'N': V is not computed.
937
- *
938
- * JOBQ (input) CHARACTER*1
939
- * = 'Q': Q must contain an orthogonal matrix Q1 on entry, and
940
- * the product Q1*Q is returned;
941
- * = 'I': Q is initialized to the unit matrix, and the
942
- * orthogonal matrix Q is returned;
943
- * = 'N': Q is not computed.
944
- *
945
- * M (input) INTEGER
946
- * The number of rows of the matrix A. M >= 0.
947
- *
948
- * P (input) INTEGER
949
- * The number of rows of the matrix B. P >= 0.
950
- *
951
- * N (input) INTEGER
952
- * The number of columns of the matrices A and B. N >= 0.
953
- *
954
- * K (input) INTEGER
955
- * L (input) INTEGER
956
- * K and L specify the subblocks in the input matrices A and B:
957
- * A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
958
- * of A and B, whose GSVD is going to be computed by DTGSJA.
959
- * See Further Details.
960
- *
961
- * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
962
- * On entry, the M-by-N matrix A.
963
- * On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
964
- * matrix R or part of R. See Purpose for details.
965
- *
966
- * LDA (input) INTEGER
967
- * The leading dimension of the array A. LDA >= max(1,M).
968
- *
969
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,N)
970
- * On entry, the P-by-N matrix B.
971
- * On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
972
- * a part of R. See Purpose for details.
973
- *
974
- * LDB (input) INTEGER
975
- * The leading dimension of the array B. LDB >= max(1,P).
976
- *
977
- * TOLA (input) DOUBLE PRECISION
978
- * TOLB (input) DOUBLE PRECISION
979
- * TOLA and TOLB are the convergence criteria for the Jacobi-
980
- * Kogbetliantz iteration procedure. Generally, they are the
981
- * same as used in the preprocessing step, say
982
- * TOLA = max(M,N)*norm(A)*MAZHEPS,
983
- * TOLB = max(P,N)*norm(B)*MAZHEPS.
984
- *
985
- * ALPHA (output) DOUBLE PRECISION array, dimension (N)
986
- * BETA (output) DOUBLE PRECISION array, dimension (N)
987
- * On exit, ALPHA and BETA contain the generalized singular
988
- * value pairs of A and B;
989
- * ALPHA(1:K) = 1,
990
- * BETA(1:K) = 0,
991
- * and if M-K-L >= 0,
992
- * ALPHA(K+1:K+L) = diag(C),
993
- * BETA(K+1:K+L) = diag(S),
994
- * or if M-K-L < 0,
995
- * ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
996
- * BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
997
- * Furthermore, if K+L < N,
998
- * ALPHA(K+L+1:N) = 0 and
999
- * BETA(K+L+1:N) = 0.
1000
- *
1001
- * U (input/output) DOUBLE PRECISION array, dimension (LDU,M)
1002
- * On entry, if JOBU = 'U', U must contain a matrix U1 (usually
1003
- * the orthogonal matrix returned by DGGSVP).
1004
- * On exit,
1005
- * if JOBU = 'I', U contains the orthogonal matrix U;
1006
- * if JOBU = 'U', U contains the product U1*U.
1007
- * If JOBU = 'N', U is not referenced.
1008
- *
1009
- * LDU (input) INTEGER
1010
- * The leading dimension of the array U. LDU >= max(1,M) if
1011
- * JOBU = 'U'; LDU >= 1 otherwise.
1012
- *
1013
- * V (input/output) DOUBLE PRECISION array, dimension (LDV,P)
1014
- * On entry, if JOBV = 'V', V must contain a matrix V1 (usually
1015
- * the orthogonal matrix returned by DGGSVP).
1016
- * On exit,
1017
- * if JOBV = 'I', V contains the orthogonal matrix V;
1018
- * if JOBV = 'V', V contains the product V1*V.
1019
- * If JOBV = 'N', V is not referenced.
1020
- *
1021
- * LDV (input) INTEGER
1022
- * The leading dimension of the array V. LDV >= max(1,P) if
1023
- * JOBV = 'V'; LDV >= 1 otherwise.
1024
- *
1025
- * Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
1026
- * On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
1027
- * the orthogonal matrix returned by DGGSVP).
1028
- * On exit,
1029
- * if JOBQ = 'I', Q contains the orthogonal matrix Q;
1030
- * if JOBQ = 'Q', Q contains the product Q1*Q.
1031
- * If JOBQ = 'N', Q is not referenced.
1032
- *
1033
- * LDQ (input) INTEGER
1034
- * The leading dimension of the array Q. LDQ >= max(1,N) if
1035
- * JOBQ = 'Q'; LDQ >= 1 otherwise.
1036
- *
1037
- * WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
1038
- *
1039
- * NCYCLE (output) INTEGER
1040
- * The number of cycles required for convergence.
1041
- *
1042
- * INFO (output) INTEGER
1043
- * = 0: successful exit
1044
- * < 0: if INFO = -i, the i-th argument had an illegal value.
1045
- * = 1: the procedure does not converge after MAXIT cycles.
1046
- *
1047
- * Internal Parameters
1048
- * ===================
1049
- *
1050
- * MAXIT INTEGER
1051
- * MAXIT specifies the total loops that the iterative procedure
1052
- * may take. If after MAXIT cycles, the routine fails to
1053
- * converge, we return INFO = 1.
1054
- *
1055
-
1056
- * Further Details
1057
- * ===============
1058
- *
1059
- * DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
1060
- * min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
1061
- * matrix B13 to the form:
1062
- *
1063
- * U1'*A13*Q1 = C1*R1; V1'*B13*Q1 = S1*R1,
1064
- *
1065
- * where U1, V1 and Q1 are orthogonal matrix, and Z' is the transpose
1066
- * of Z. C1 and S1 are diagonal matrices satisfying
1067
- *
1068
- * C1**2 + S1**2 = I,
1069
- *
1070
- * and R1 is an L-by-L nonsingular upper triangular matrix.
1071
- *
1072
- * =====================================================================
1073
- *
1074
-
1075
-
1076
- </PRE>
1077
- <A HREF="#top">go to the page top</A>
1078
-
1079
- <A NAME="dtgsna"></A>
1080
- <H2>dtgsna</H2>
1081
- <PRE>
1082
- USAGE:
1083
- s, dif, m, work, info = NumRu::Lapack.dtgsna( job, howmny, select, a, b, vl, vr, [:lwork => lwork, :usage => usage, :help => help])
1084
-
1085
-
1086
- FORTRAN MANUAL
1087
- SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, IWORK, INFO )
1088
-
1089
- * Purpose
1090
- * =======
1091
- *
1092
- * DTGSNA estimates reciprocal condition numbers for specified
1093
- * eigenvalues and/or eigenvectors of a matrix pair (A, B) in
1094
- * generalized real Schur canonical form (or of any matrix pair
1095
- * (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where
1096
- * Z' denotes the transpose of Z.
1097
- *
1098
- * (A, B) must be in generalized real Schur form (as returned by DGGES),
1099
- * i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
1100
- * blocks. B is upper triangular.
1101
- *
1102
- *
1103
-
1104
- * Arguments
1105
- * =========
1106
- *
1107
- * JOB (input) CHARACTER*1
1108
- * Specifies whether condition numbers are required for
1109
- * eigenvalues (S) or eigenvectors (DIF):
1110
- * = 'E': for eigenvalues only (S);
1111
- * = 'V': for eigenvectors only (DIF);
1112
- * = 'B': for both eigenvalues and eigenvectors (S and DIF).
1113
- *
1114
- * HOWMNY (input) CHARACTER*1
1115
- * = 'A': compute condition numbers for all eigenpairs;
1116
- * = 'S': compute condition numbers for selected eigenpairs
1117
- * specified by the array SELECT.
1118
- *
1119
- * SELECT (input) LOGICAL array, dimension (N)
1120
- * If HOWMNY = 'S', SELECT specifies the eigenpairs for which
1121
- * condition numbers are required. To select condition numbers
1122
- * for the eigenpair corresponding to a real eigenvalue w(j),
1123
- * SELECT(j) must be set to .TRUE.. To select condition numbers
1124
- * corresponding to a complex conjugate pair of eigenvalues w(j)
1125
- * and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
1126
- * set to .TRUE..
1127
- * If HOWMNY = 'A', SELECT is not referenced.
1128
- *
1129
- * N (input) INTEGER
1130
- * The order of the square matrix pair (A, B). N >= 0.
1131
- *
1132
- * A (input) DOUBLE PRECISION array, dimension (LDA,N)
1133
- * The upper quasi-triangular matrix A in the pair (A,B).
1134
- *
1135
- * LDA (input) INTEGER
1136
- * The leading dimension of the array A. LDA >= max(1,N).
1137
- *
1138
- * B (input) DOUBLE PRECISION array, dimension (LDB,N)
1139
- * The upper triangular matrix B in the pair (A,B).
1140
- *
1141
- * LDB (input) INTEGER
1142
- * The leading dimension of the array B. LDB >= max(1,N).
1143
- *
1144
- * VL (input) DOUBLE PRECISION array, dimension (LDVL,M)
1145
- * If JOB = 'E' or 'B', VL must contain left eigenvectors of
1146
- * (A, B), corresponding to the eigenpairs specified by HOWMNY
1147
- * and SELECT. The eigenvectors must be stored in consecutive
1148
- * columns of VL, as returned by DTGEVC.
1149
- * If JOB = 'V', VL is not referenced.
1150
- *
1151
- * LDVL (input) INTEGER
1152
- * The leading dimension of the array VL. LDVL >= 1.
1153
- * If JOB = 'E' or 'B', LDVL >= N.
1154
- *
1155
- * VR (input) DOUBLE PRECISION array, dimension (LDVR,M)
1156
- * If JOB = 'E' or 'B', VR must contain right eigenvectors of
1157
- * (A, B), corresponding to the eigenpairs specified by HOWMNY
1158
- * and SELECT. The eigenvectors must be stored in consecutive
1159
- * columns ov VR, as returned by DTGEVC.
1160
- * If JOB = 'V', VR is not referenced.
1161
- *
1162
- * LDVR (input) INTEGER
1163
- * The leading dimension of the array VR. LDVR >= 1.
1164
- * If JOB = 'E' or 'B', LDVR >= N.
1165
- *
1166
- * S (output) DOUBLE PRECISION array, dimension (MM)
1167
- * If JOB = 'E' or 'B', the reciprocal condition numbers of the
1168
- * selected eigenvalues, stored in consecutive elements of the
1169
- * array. For a complex conjugate pair of eigenvalues two
1170
- * consecutive elements of S are set to the same value. Thus
1171
- * S(j), DIF(j), and the j-th columns of VL and VR all
1172
- * correspond to the same eigenpair (but not in general the
1173
- * j-th eigenpair, unless all eigenpairs are selected).
1174
- * If JOB = 'V', S is not referenced.
1175
- *
1176
- * DIF (output) DOUBLE PRECISION array, dimension (MM)
1177
- * If JOB = 'V' or 'B', the estimated reciprocal condition
1178
- * numbers of the selected eigenvectors, stored in consecutive
1179
- * elements of the array. For a complex eigenvector two
1180
- * consecutive elements of DIF are set to the same value. If
1181
- * the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
1182
- * is set to 0; this can only occur when the true value would be
1183
- * very small anyway.
1184
- * If JOB = 'E', DIF is not referenced.
1185
- *
1186
- * MM (input) INTEGER
1187
- * The number of elements in the arrays S and DIF. MM >= M.
1188
- *
1189
- * M (output) INTEGER
1190
- * The number of elements of the arrays S and DIF used to store
1191
- * the specified condition numbers; for each selected real
1192
- * eigenvalue one element is used, and for each selected complex
1193
- * conjugate pair of eigenvalues, two elements are used.
1194
- * If HOWMNY = 'A', M is set to N.
1195
- *
1196
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1197
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1198
- *
1199
- * LWORK (input) INTEGER
1200
- * The dimension of the array WORK. LWORK >= max(1,N).
1201
- * If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
1202
- *
1203
- * If LWORK = -1, then a workspace query is assumed; the routine
1204
- * only calculates the optimal size of the WORK array, returns
1205
- * this value as the first entry of the WORK array, and no error
1206
- * message related to LWORK is issued by XERBLA.
1207
- *
1208
- * IWORK (workspace) INTEGER array, dimension (N + 6)
1209
- * If JOB = 'E', IWORK is not referenced.
1210
- *
1211
- * INFO (output) INTEGER
1212
- * =0: Successful exit
1213
- * <0: If INFO = -i, the i-th argument had an illegal value
1214
- *
1215
- *
1216
-
1217
- * Further Details
1218
- * ===============
1219
- *
1220
- * The reciprocal of the condition number of a generalized eigenvalue
1221
- * w = (a, b) is defined as
1222
- *
1223
- * S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
1224
- *
1225
- * where u and v are the left and right eigenvectors of (A, B)
1226
- * corresponding to w; |z| denotes the absolute value of the complex
1227
- * number, and norm(u) denotes the 2-norm of the vector u.
1228
- * The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
1229
- * of the matrix pair (A, B). If both a and b equal zero, then (A B) is
1230
- * singular and S(I) = -1 is returned.
1231
- *
1232
- * An approximate error bound on the chordal distance between the i-th
1233
- * computed generalized eigenvalue w and the corresponding exact
1234
- * eigenvalue lambda is
1235
- *
1236
- * chord(w, lambda) <= EPS * norm(A, B) / S(I)
1237
- *
1238
- * where EPS is the machine precision.
1239
- *
1240
- * The reciprocal of the condition number DIF(i) of right eigenvector u
1241
- * and left eigenvector v corresponding to the generalized eigenvalue w
1242
- * is defined as follows:
1243
- *
1244
- * a) If the i-th eigenvalue w = (a,b) is real
1245
- *
1246
- * Suppose U and V are orthogonal transformations such that
1247
- *
1248
- * U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
1249
- * ( 0 S22 ),( 0 T22 ) n-1
1250
- * 1 n-1 1 n-1
1251
- *
1252
- * Then the reciprocal condition number DIF(i) is
1253
- *
1254
- * Difl((a, b), (S22, T22)) = sigma-min( Zl ),
1255
- *
1256
- * where sigma-min(Zl) denotes the smallest singular value of the
1257
- * 2(n-1)-by-2(n-1) matrix
1258
- *
1259
- * Zl = [ kron(a, In-1) -kron(1, S22) ]
1260
- * [ kron(b, In-1) -kron(1, T22) ] .
1261
- *
1262
- * Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
1263
- * Kronecker product between the matrices X and Y.
1264
- *
1265
- * Note that if the default method for computing DIF(i) is wanted
1266
- * (see DLATDF), then the parameter DIFDRI (see below) should be
1267
- * changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
1268
- * See DTGSYL for more details.
1269
- *
1270
- * b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
1271
- *
1272
- * Suppose U and V are orthogonal transformations such that
1273
- *
1274
- * U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
1275
- * ( 0 S22 ),( 0 T22) n-2
1276
- * 2 n-2 2 n-2
1277
- *
1278
- * and (S11, T11) corresponds to the complex conjugate eigenvalue
1279
- * pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
1280
- * that
1281
- *
1282
- * U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
1283
- * ( 0 s22 ) ( 0 t22 )
1284
- *
1285
- * where the generalized eigenvalues w = s11/t11 and
1286
- * conjg(w) = s22/t22.
1287
- *
1288
- * Then the reciprocal condition number DIF(i) is bounded by
1289
- *
1290
- * min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
1291
- *
1292
- * where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
1293
- * Z1 is the complex 2-by-2 matrix
1294
- *
1295
- * Z1 = [ s11 -s22 ]
1296
- * [ t11 -t22 ],
1297
- *
1298
- * This is done by computing (using real arithmetic) the
1299
- * roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
1300
- * where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
1301
- * the determinant of X.
1302
- *
1303
- * and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
1304
- * upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
1305
- *
1306
- * Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
1307
- * [ kron(T11', In-2) -kron(I2, T22) ]
1308
- *
1309
- * Note that if the default method for computing DIF is wanted (see
1310
- * DLATDF), then the parameter DIFDRI (see below) should be changed
1311
- * from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
1312
- * for more details.
1313
- *
1314
- * For each eigenvalue/vector specified by SELECT, DIF stores a
1315
- * Frobenius norm-based estimate of Difl.
1316
- *
1317
- * An approximate error bound for the i-th computed eigenvector VL(i) or
1318
- * VR(i) is given by
1319
- *
1320
- * EPS * norm(A, B) / DIF(i).
1321
- *
1322
- * See ref. [2-3] for more details and further references.
1323
- *
1324
- * Based on contributions by
1325
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
1326
- * Umea University, S-901 87 Umea, Sweden.
1327
- *
1328
- * References
1329
- * ==========
1330
- *
1331
- * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
1332
- * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
1333
- * M.S. Moonen et al (eds), Linear Algebra for Large Scale and
1334
- * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
1335
- *
1336
- * [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
1337
- * Eigenvalues of a Regular Matrix Pair (A, B) and Condition
1338
- * Estimation: Theory, Algorithms and Software,
1339
- * Report UMINF - 94.04, Department of Computing Science, Umea
1340
- * University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
1341
- * Note 87. To appear in Numerical Algorithms, 1996.
1342
- *
1343
- * [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
1344
- * for Solving the Generalized Sylvester Equation and Estimating the
1345
- * Separation between Regular Matrix Pairs, Report UMINF - 93.23,
1346
- * Department of Computing Science, Umea University, S-901 87 Umea,
1347
- * Sweden, December 1993, Revised April 1994, Also as LAPACK Working
1348
- * Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
1349
- * No 1, 1996.
1350
- *
1351
- * =====================================================================
1352
- *
1353
-
1354
-
1355
- </PRE>
1356
- <A HREF="#top">go to the page top</A>
1357
-
1358
- <A NAME="dtgsy2"></A>
1359
- <H2>dtgsy2</H2>
1360
- <PRE>
1361
- USAGE:
1362
- scale, pq, info, c, f, rdsum, rdscal = NumRu::Lapack.dtgsy2( trans, ijob, a, b, c, d, e, f, rdsum, rdscal, [:usage => usage, :help => help])
1363
-
1364
-
1365
- FORTRAN MANUAL
1366
- SUBROUTINE DTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, IWORK, PQ, INFO )
1367
-
1368
- * Purpose
1369
- * =======
1370
- *
1371
- * DTGSY2 solves the generalized Sylvester equation:
1372
- *
1373
- * A * R - L * B = scale * C (1)
1374
- * D * R - L * E = scale * F,
1375
- *
1376
- * using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices,
1377
- * (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
1378
- * N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E)
1379
- * must be in generalized Schur canonical form, i.e. A, B are upper
1380
- * quasi triangular and D, E are upper triangular. The solution (R, L)
1381
- * overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor
1382
- * chosen to avoid overflow.
1383
- *
1384
- * In matrix notation solving equation (1) corresponds to solve
1385
- * Z*x = scale*b, where Z is defined as
1386
- *
1387
- * Z = [ kron(In, A) -kron(B', Im) ] (2)
1388
- * [ kron(In, D) -kron(E', Im) ],
1389
- *
1390
- * Ik is the identity matrix of size k and X' is the transpose of X.
1391
- * kron(X, Y) is the Kronecker product between the matrices X and Y.
1392
- * In the process of solving (1), we solve a number of such systems
1393
- * where Dim(In), Dim(In) = 1 or 2.
1394
- *
1395
- * If TRANS = 'T', solve the transposed system Z'*y = scale*b for y,
1396
- * which is equivalent to solve for R and L in
1397
- *
1398
- * A' * R + D' * L = scale * C (3)
1399
- * R * B' + L * E' = scale * -F
1400
- *
1401
- * This case is used to compute an estimate of Dif[(A, D), (B, E)] =
1402
- * sigma_min(Z) using reverse communicaton with DLACON.
1403
- *
1404
- * DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL
1405
- * of an upper bound on the separation between to matrix pairs. Then
1406
- * the input (A, D), (B, E) are sub-pencils of the matrix pair in
1407
- * DTGSYL. See DTGSYL for details.
1408
- *
1409
-
1410
- * Arguments
1411
- * =========
1412
- *
1413
- * TRANS (input) CHARACTER*1
1414
- * = 'N', solve the generalized Sylvester equation (1).
1415
- * = 'T': solve the 'transposed' system (3).
1416
- *
1417
- * IJOB (input) INTEGER
1418
- * Specifies what kind of functionality to be performed.
1419
- * = 0: solve (1) only.
1420
- * = 1: A contribution from this subsystem to a Frobenius
1421
- * norm-based estimate of the separation between two matrix
1422
- * pairs is computed. (look ahead strategy is used).
1423
- * = 2: A contribution from this subsystem to a Frobenius
1424
- * norm-based estimate of the separation between two matrix
1425
- * pairs is computed. (DGECON on sub-systems is used.)
1426
- * Not referenced if TRANS = 'T'.
1427
- *
1428
- * M (input) INTEGER
1429
- * On entry, M specifies the order of A and D, and the row
1430
- * dimension of C, F, R and L.
1431
- *
1432
- * N (input) INTEGER
1433
- * On entry, N specifies the order of B and E, and the column
1434
- * dimension of C, F, R and L.
1435
- *
1436
- * A (input) DOUBLE PRECISION array, dimension (LDA, M)
1437
- * On entry, A contains an upper quasi triangular matrix.
1438
- *
1439
- * LDA (input) INTEGER
1440
- * The leading dimension of the matrix A. LDA >= max(1, M).
1441
- *
1442
- * B (input) DOUBLE PRECISION array, dimension (LDB, N)
1443
- * On entry, B contains an upper quasi triangular matrix.
1444
- *
1445
- * LDB (input) INTEGER
1446
- * The leading dimension of the matrix B. LDB >= max(1, N).
1447
- *
1448
- * C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
1449
- * On entry, C contains the right-hand-side of the first matrix
1450
- * equation in (1).
1451
- * On exit, if IJOB = 0, C has been overwritten by the
1452
- * solution R.
1453
- *
1454
- * LDC (input) INTEGER
1455
- * The leading dimension of the matrix C. LDC >= max(1, M).
1456
- *
1457
- * D (input) DOUBLE PRECISION array, dimension (LDD, M)
1458
- * On entry, D contains an upper triangular matrix.
1459
- *
1460
- * LDD (input) INTEGER
1461
- * The leading dimension of the matrix D. LDD >= max(1, M).
1462
- *
1463
- * E (input) DOUBLE PRECISION array, dimension (LDE, N)
1464
- * On entry, E contains an upper triangular matrix.
1465
- *
1466
- * LDE (input) INTEGER
1467
- * The leading dimension of the matrix E. LDE >= max(1, N).
1468
- *
1469
- * F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
1470
- * On entry, F contains the right-hand-side of the second matrix
1471
- * equation in (1).
1472
- * On exit, if IJOB = 0, F has been overwritten by the
1473
- * solution L.
1474
- *
1475
- * LDF (input) INTEGER
1476
- * The leading dimension of the matrix F. LDF >= max(1, M).
1477
- *
1478
- * SCALE (output) DOUBLE PRECISION
1479
- * On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
1480
- * R and L (C and F on entry) will hold the solutions to a
1481
- * slightly perturbed system but the input matrices A, B, D and
1482
- * E have not been changed. If SCALE = 0, R and L will hold the
1483
- * solutions to the homogeneous system with C = F = 0. Normally,
1484
- * SCALE = 1.
1485
- *
1486
- * RDSUM (input/output) DOUBLE PRECISION
1487
- * On entry, the sum of squares of computed contributions to
1488
- * the Dif-estimate under computation by DTGSYL, where the
1489
- * scaling factor RDSCAL (see below) has been factored out.
1490
- * On exit, the corresponding sum of squares updated with the
1491
- * contributions from the current sub-system.
1492
- * If TRANS = 'T' RDSUM is not touched.
1493
- * NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL.
1494
- *
1495
- * RDSCAL (input/output) DOUBLE PRECISION
1496
- * On entry, scaling factor used to prevent overflow in RDSUM.
1497
- * On exit, RDSCAL is updated w.r.t. the current contributions
1498
- * in RDSUM.
1499
- * If TRANS = 'T', RDSCAL is not touched.
1500
- * NOTE: RDSCAL only makes sense when DTGSY2 is called by
1501
- * DTGSYL.
1502
- *
1503
- * IWORK (workspace) INTEGER array, dimension (M+N+2)
1504
- *
1505
- * PQ (output) INTEGER
1506
- * On exit, the number of subsystems (of size 2-by-2, 4-by-4 and
1507
- * 8-by-8) solved by this routine.
1508
- *
1509
- * INFO (output) INTEGER
1510
- * On exit, if INFO is set to
1511
- * =0: Successful exit
1512
- * <0: If INFO = -i, the i-th argument had an illegal value.
1513
- * >0: The matrix pairs (A, D) and (B, E) have common or very
1514
- * close eigenvalues.
1515
- *
1516
-
1517
- * Further Details
1518
- * ===============
1519
- *
1520
- * Based on contributions by
1521
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
1522
- * Umea University, S-901 87 Umea, Sweden.
1523
- *
1524
- * =====================================================================
1525
- * Replaced various illegal calls to DCOPY by calls to DLASET.
1526
- * Sven Hammarling, 27/5/02.
1527
- *
1528
-
1529
-
1530
- </PRE>
1531
- <A HREF="#top">go to the page top</A>
1532
-
1533
- <A NAME="dtgsyl"></A>
1534
- <H2>dtgsyl</H2>
1535
- <PRE>
1536
- USAGE:
1537
- scale, dif, work, info, c, f = NumRu::Lapack.dtgsyl( trans, ijob, a, b, c, d, e, f, [:lwork => lwork, :usage => usage, :help => help])
1538
-
1539
-
1540
- FORTRAN MANUAL
1541
- SUBROUTINE DTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, IWORK, INFO )
1542
-
1543
- * Purpose
1544
- * =======
1545
- *
1546
- * DTGSYL solves the generalized Sylvester equation:
1547
- *
1548
- * A * R - L * B = scale * C (1)
1549
- * D * R - L * E = scale * F
1550
- *
1551
- * where R and L are unknown m-by-n matrices, (A, D), (B, E) and
1552
- * (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
1553
- * respectively, with real entries. (A, D) and (B, E) must be in
1554
- * generalized (real) Schur canonical form, i.e. A, B are upper quasi
1555
- * triangular and D, E are upper triangular.
1556
- *
1557
- * The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
1558
- * scaling factor chosen to avoid overflow.
1559
- *
1560
- * In matrix notation (1) is equivalent to solve Zx = scale b, where
1561
- * Z is defined as
1562
- *
1563
- * Z = [ kron(In, A) -kron(B', Im) ] (2)
1564
- * [ kron(In, D) -kron(E', Im) ].
1565
- *
1566
- * Here Ik is the identity matrix of size k and X' is the transpose of
1567
- * X. kron(X, Y) is the Kronecker product between the matrices X and Y.
1568
- *
1569
- * If TRANS = 'T', DTGSYL solves the transposed system Z'*y = scale*b,
1570
- * which is equivalent to solve for R and L in
1571
- *
1572
- * A' * R + D' * L = scale * C (3)
1573
- * R * B' + L * E' = scale * (-F)
1574
- *
1575
- * This case (TRANS = 'T') is used to compute an one-norm-based estimate
1576
- * of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
1577
- * and (B,E), using DLACON.
1578
- *
1579
- * If IJOB >= 1, DTGSYL computes a Frobenius norm-based estimate
1580
- * of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
1581
- * reciprocal of the smallest singular value of Z. See [1-2] for more
1582
- * information.
1583
- *
1584
- * This is a level 3 BLAS algorithm.
1585
- *
1586
-
1587
- * Arguments
1588
- * =========
1589
- *
1590
- * TRANS (input) CHARACTER*1
1591
- * = 'N', solve the generalized Sylvester equation (1).
1592
- * = 'T', solve the 'transposed' system (3).
1593
- *
1594
- * IJOB (input) INTEGER
1595
- * Specifies what kind of functionality to be performed.
1596
- * =0: solve (1) only.
1597
- * =1: The functionality of 0 and 3.
1598
- * =2: The functionality of 0 and 4.
1599
- * =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
1600
- * (look ahead strategy IJOB = 1 is used).
1601
- * =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
1602
- * ( DGECON on sub-systems is used ).
1603
- * Not referenced if TRANS = 'T'.
1604
- *
1605
- * M (input) INTEGER
1606
- * The order of the matrices A and D, and the row dimension of
1607
- * the matrices C, F, R and L.
1608
- *
1609
- * N (input) INTEGER
1610
- * The order of the matrices B and E, and the column dimension
1611
- * of the matrices C, F, R and L.
1612
- *
1613
- * A (input) DOUBLE PRECISION array, dimension (LDA, M)
1614
- * The upper quasi triangular matrix A.
1615
- *
1616
- * LDA (input) INTEGER
1617
- * The leading dimension of the array A. LDA >= max(1, M).
1618
- *
1619
- * B (input) DOUBLE PRECISION array, dimension (LDB, N)
1620
- * The upper quasi triangular matrix B.
1621
- *
1622
- * LDB (input) INTEGER
1623
- * The leading dimension of the array B. LDB >= max(1, N).
1624
- *
1625
- * C (input/output) DOUBLE PRECISION array, dimension (LDC, N)
1626
- * On entry, C contains the right-hand-side of the first matrix
1627
- * equation in (1) or (3).
1628
- * On exit, if IJOB = 0, 1 or 2, C has been overwritten by
1629
- * the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
1630
- * the solution achieved during the computation of the
1631
- * Dif-estimate.
1632
- *
1633
- * LDC (input) INTEGER
1634
- * The leading dimension of the array C. LDC >= max(1, M).
1635
- *
1636
- * D (input) DOUBLE PRECISION array, dimension (LDD, M)
1637
- * The upper triangular matrix D.
1638
- *
1639
- * LDD (input) INTEGER
1640
- * The leading dimension of the array D. LDD >= max(1, M).
1641
- *
1642
- * E (input) DOUBLE PRECISION array, dimension (LDE, N)
1643
- * The upper triangular matrix E.
1644
- *
1645
- * LDE (input) INTEGER
1646
- * The leading dimension of the array E. LDE >= max(1, N).
1647
- *
1648
- * F (input/output) DOUBLE PRECISION array, dimension (LDF, N)
1649
- * On entry, F contains the right-hand-side of the second matrix
1650
- * equation in (1) or (3).
1651
- * On exit, if IJOB = 0, 1 or 2, F has been overwritten by
1652
- * the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
1653
- * the solution achieved during the computation of the
1654
- * Dif-estimate.
1655
- *
1656
- * LDF (input) INTEGER
1657
- * The leading dimension of the array F. LDF >= max(1, M).
1658
- *
1659
- * DIF (output) DOUBLE PRECISION
1660
- * On exit DIF is the reciprocal of a lower bound of the
1661
- * reciprocal of the Dif-function, i.e. DIF is an upper bound of
1662
- * Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2).
1663
- * IF IJOB = 0 or TRANS = 'T', DIF is not touched.
1664
- *
1665
- * SCALE (output) DOUBLE PRECISION
1666
- * On exit SCALE is the scaling factor in (1) or (3).
1667
- * If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
1668
- * to a slightly perturbed system but the input matrices A, B, D
1669
- * and E have not been changed. If SCALE = 0, C and F hold the
1670
- * solutions R and L, respectively, to the homogeneous system
1671
- * with C = F = 0. Normally, SCALE = 1.
1672
- *
1673
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1674
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1675
- *
1676
- * LWORK (input) INTEGER
1677
- * The dimension of the array WORK. LWORK > = 1.
1678
- * If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
1679
- *
1680
- * If LWORK = -1, then a workspace query is assumed; the routine
1681
- * only calculates the optimal size of the WORK array, returns
1682
- * this value as the first entry of the WORK array, and no error
1683
- * message related to LWORK is issued by XERBLA.
1684
- *
1685
- * IWORK (workspace) INTEGER array, dimension (M+N+6)
1686
- *
1687
- * INFO (output) INTEGER
1688
- * =0: successful exit
1689
- * <0: If INFO = -i, the i-th argument had an illegal value.
1690
- * >0: (A, D) and (B, E) have common or close eigenvalues.
1691
- *
1692
-
1693
- * Further Details
1694
- * ===============
1695
- *
1696
- * Based on contributions by
1697
- * Bo Kagstrom and Peter Poromaa, Department of Computing Science,
1698
- * Umea University, S-901 87 Umea, Sweden.
1699
- *
1700
- * [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
1701
- * for Solving the Generalized Sylvester Equation and Estimating the
1702
- * Separation between Regular Matrix Pairs, Report UMINF - 93.23,
1703
- * Department of Computing Science, Umea University, S-901 87 Umea,
1704
- * Sweden, December 1993, Revised April 1994, Also as LAPACK Working
1705
- * Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
1706
- * No 1, 1996.
1707
- *
1708
- * [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
1709
- * Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
1710
- * Appl., 15(4):1045-1060, 1994
1711
- *
1712
- * [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
1713
- * Condition Estimators for Solving the Generalized Sylvester
1714
- * Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
1715
- * July 1989, pp 745-751.
1716
- *
1717
- * =====================================================================
1718
- * Replaced various illegal calls to DCOPY by calls to DLASET.
1719
- * Sven Hammarling, 1/5/02.
1720
- *
1721
-
1722
-
1723
- </PRE>
1724
- <A HREF="#top">go to the page top</A>
1725
-
1726
- <HR />
1727
- <A HREF="d.html">back to matrix types</A><BR>
1728
- <A HREF="d.html">back to data types</A>
1729
- </BODY>
1730
- </HTML>