ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/ssp.html DELETED
@@ -1,1647 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>REAL routines for symmetric, packed storage matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>REAL routines for symmetric, packed storage matrix</H1>
8
- <UL>
9
- <LI><A HREF="#sspcon">sspcon</A></LI>
10
- <LI><A HREF="#sspev">sspev</A></LI>
11
- <LI><A HREF="#sspevd">sspevd</A></LI>
12
- <LI><A HREF="#sspevx">sspevx</A></LI>
13
- <LI><A HREF="#sspgst">sspgst</A></LI>
14
- <LI><A HREF="#sspgv">sspgv</A></LI>
15
- <LI><A HREF="#sspgvd">sspgvd</A></LI>
16
- <LI><A HREF="#sspgvx">sspgvx</A></LI>
17
- <LI><A HREF="#ssprfs">ssprfs</A></LI>
18
- <LI><A HREF="#sspsv">sspsv</A></LI>
19
- <LI><A HREF="#sspsvx">sspsvx</A></LI>
20
- <LI><A HREF="#ssptrd">ssptrd</A></LI>
21
- <LI><A HREF="#ssptrf">ssptrf</A></LI>
22
- <LI><A HREF="#ssptri">ssptri</A></LI>
23
- <LI><A HREF="#ssptrs">ssptrs</A></LI>
24
- </UL>
25
-
26
- <A NAME="sspcon"></A>
27
- <H2>sspcon</H2>
28
- <PRE>
29
- USAGE:
30
- rcond, info = NumRu::Lapack.sspcon( uplo, ap, ipiv, anorm, [:usage => usage, :help => help])
31
-
32
-
33
- FORTRAN MANUAL
34
- SUBROUTINE SSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
35
-
36
- * Purpose
37
- * =======
38
- *
39
- * SSPCON estimates the reciprocal of the condition number (in the
40
- * 1-norm) of a real symmetric packed matrix A using the factorization
41
- * A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
42
- *
43
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
44
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
45
- *
46
-
47
- * Arguments
48
- * =========
49
- *
50
- * UPLO (input) CHARACTER*1
51
- * Specifies whether the details of the factorization are stored
52
- * as an upper or lower triangular matrix.
53
- * = 'U': Upper triangular, form is A = U*D*U**T;
54
- * = 'L': Lower triangular, form is A = L*D*L**T.
55
- *
56
- * N (input) INTEGER
57
- * The order of the matrix A. N >= 0.
58
- *
59
- * AP (input) REAL array, dimension (N*(N+1)/2)
60
- * The block diagonal matrix D and the multipliers used to
61
- * obtain the factor U or L as computed by SSPTRF, stored as a
62
- * packed triangular matrix.
63
- *
64
- * IPIV (input) INTEGER array, dimension (N)
65
- * Details of the interchanges and the block structure of D
66
- * as determined by SSPTRF.
67
- *
68
- * ANORM (input) REAL
69
- * The 1-norm of the original matrix A.
70
- *
71
- * RCOND (output) REAL
72
- * The reciprocal of the condition number of the matrix A,
73
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
74
- * estimate of the 1-norm of inv(A) computed in this routine.
75
- *
76
- * WORK (workspace) REAL array, dimension (2*N)
77
- *
78
- * IWORK (workspace) INTEGER array, dimension (N)
79
- *
80
- * INFO (output) INTEGER
81
- * = 0: successful exit
82
- * < 0: if INFO = -i, the i-th argument had an illegal value
83
- *
84
-
85
- * =====================================================================
86
- *
87
-
88
-
89
- </PRE>
90
- <A HREF="#top">go to the page top</A>
91
-
92
- <A NAME="sspev"></A>
93
- <H2>sspev</H2>
94
- <PRE>
95
- USAGE:
96
- w, z, info, ap = NumRu::Lapack.sspev( jobz, uplo, ap, [:usage => usage, :help => help])
97
-
98
-
99
- FORTRAN MANUAL
100
- SUBROUTINE SSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
101
-
102
- * Purpose
103
- * =======
104
- *
105
- * SSPEV computes all the eigenvalues and, optionally, eigenvectors of a
106
- * real symmetric matrix A in packed storage.
107
- *
108
-
109
- * Arguments
110
- * =========
111
- *
112
- * JOBZ (input) CHARACTER*1
113
- * = 'N': Compute eigenvalues only;
114
- * = 'V': Compute eigenvalues and eigenvectors.
115
- *
116
- * UPLO (input) CHARACTER*1
117
- * = 'U': Upper triangle of A is stored;
118
- * = 'L': Lower triangle of A is stored.
119
- *
120
- * N (input) INTEGER
121
- * The order of the matrix A. N >= 0.
122
- *
123
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
124
- * On entry, the upper or lower triangle of the symmetric matrix
125
- * A, packed columnwise in a linear array. The j-th column of A
126
- * is stored in the array AP as follows:
127
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
128
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
129
- *
130
- * On exit, AP is overwritten by values generated during the
131
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
132
- * and first superdiagonal of the tridiagonal matrix T overwrite
133
- * the corresponding elements of A, and if UPLO = 'L', the
134
- * diagonal and first subdiagonal of T overwrite the
135
- * corresponding elements of A.
136
- *
137
- * W (output) REAL array, dimension (N)
138
- * If INFO = 0, the eigenvalues in ascending order.
139
- *
140
- * Z (output) REAL array, dimension (LDZ, N)
141
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
142
- * eigenvectors of the matrix A, with the i-th column of Z
143
- * holding the eigenvector associated with W(i).
144
- * If JOBZ = 'N', then Z is not referenced.
145
- *
146
- * LDZ (input) INTEGER
147
- * The leading dimension of the array Z. LDZ >= 1, and if
148
- * JOBZ = 'V', LDZ >= max(1,N).
149
- *
150
- * WORK (workspace) REAL array, dimension (3*N)
151
- *
152
- * INFO (output) INTEGER
153
- * = 0: successful exit.
154
- * < 0: if INFO = -i, the i-th argument had an illegal value.
155
- * > 0: if INFO = i, the algorithm failed to converge; i
156
- * off-diagonal elements of an intermediate tridiagonal
157
- * form did not converge to zero.
158
- *
159
-
160
- * =====================================================================
161
- *
162
-
163
-
164
- </PRE>
165
- <A HREF="#top">go to the page top</A>
166
-
167
- <A NAME="sspevd"></A>
168
- <H2>sspevd</H2>
169
- <PRE>
170
- USAGE:
171
- w, z, work, iwork, info, ap = NumRu::Lapack.sspevd( jobz, uplo, ap, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
172
-
173
-
174
- FORTRAN MANUAL
175
- SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
176
-
177
- * Purpose
178
- * =======
179
- *
180
- * SSPEVD computes all the eigenvalues and, optionally, eigenvectors
181
- * of a real symmetric matrix A in packed storage. If eigenvectors are
182
- * desired, it uses a divide and conquer algorithm.
183
- *
184
- * The divide and conquer algorithm makes very mild assumptions about
185
- * floating point arithmetic. It will work on machines with a guard
186
- * digit in add/subtract, or on those binary machines without guard
187
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
188
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
189
- * without guard digits, but we know of none.
190
- *
191
-
192
- * Arguments
193
- * =========
194
- *
195
- * JOBZ (input) CHARACTER*1
196
- * = 'N': Compute eigenvalues only;
197
- * = 'V': Compute eigenvalues and eigenvectors.
198
- *
199
- * UPLO (input) CHARACTER*1
200
- * = 'U': Upper triangle of A is stored;
201
- * = 'L': Lower triangle of A is stored.
202
- *
203
- * N (input) INTEGER
204
- * The order of the matrix A. N >= 0.
205
- *
206
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
207
- * On entry, the upper or lower triangle of the symmetric matrix
208
- * A, packed columnwise in a linear array. The j-th column of A
209
- * is stored in the array AP as follows:
210
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
211
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
212
- *
213
- * On exit, AP is overwritten by values generated during the
214
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
215
- * and first superdiagonal of the tridiagonal matrix T overwrite
216
- * the corresponding elements of A, and if UPLO = 'L', the
217
- * diagonal and first subdiagonal of T overwrite the
218
- * corresponding elements of A.
219
- *
220
- * W (output) REAL array, dimension (N)
221
- * If INFO = 0, the eigenvalues in ascending order.
222
- *
223
- * Z (output) REAL array, dimension (LDZ, N)
224
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
225
- * eigenvectors of the matrix A, with the i-th column of Z
226
- * holding the eigenvector associated with W(i).
227
- * If JOBZ = 'N', then Z is not referenced.
228
- *
229
- * LDZ (input) INTEGER
230
- * The leading dimension of the array Z. LDZ >= 1, and if
231
- * JOBZ = 'V', LDZ >= max(1,N).
232
- *
233
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
234
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
235
- *
236
- * LWORK (input) INTEGER
237
- * The dimension of the array WORK.
238
- * If N <= 1, LWORK must be at least 1.
239
- * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
240
- * If JOBZ = 'V' and N > 1, LWORK must be at least
241
- * 1 + 6*N + N**2.
242
- *
243
- * If LWORK = -1, then a workspace query is assumed; the routine
244
- * only calculates the required sizes of the WORK and IWORK
245
- * arrays, returns these values as the first entries of the WORK
246
- * and IWORK arrays, and no error message related to LWORK or
247
- * LIWORK is issued by XERBLA.
248
- *
249
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
250
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
251
- *
252
- * LIWORK (input) INTEGER
253
- * The dimension of the array IWORK.
254
- * If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
255
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
256
- *
257
- * If LIWORK = -1, then a workspace query is assumed; the
258
- * routine only calculates the required sizes of the WORK and
259
- * IWORK arrays, returns these values as the first entries of
260
- * the WORK and IWORK arrays, and no error message related to
261
- * LWORK or LIWORK is issued by XERBLA.
262
- *
263
- * INFO (output) INTEGER
264
- * = 0: successful exit
265
- * < 0: if INFO = -i, the i-th argument had an illegal value.
266
- * > 0: if INFO = i, the algorithm failed to converge; i
267
- * off-diagonal elements of an intermediate tridiagonal
268
- * form did not converge to zero.
269
- *
270
-
271
- * =====================================================================
272
- *
273
-
274
-
275
- </PRE>
276
- <A HREF="#top">go to the page top</A>
277
-
278
- <A NAME="sspevx"></A>
279
- <H2>sspevx</H2>
280
- <PRE>
281
- USAGE:
282
- m, w, z, ifail, info, ap = NumRu::Lapack.sspevx( jobz, range, uplo, ap, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
283
-
284
-
285
- FORTRAN MANUAL
286
- SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
287
-
288
- * Purpose
289
- * =======
290
- *
291
- * SSPEVX computes selected eigenvalues and, optionally, eigenvectors
292
- * of a real symmetric matrix A in packed storage. Eigenvalues/vectors
293
- * can be selected by specifying either a range of values or a range of
294
- * indices for the desired eigenvalues.
295
- *
296
-
297
- * Arguments
298
- * =========
299
- *
300
- * JOBZ (input) CHARACTER*1
301
- * = 'N': Compute eigenvalues only;
302
- * = 'V': Compute eigenvalues and eigenvectors.
303
- *
304
- * RANGE (input) CHARACTER*1
305
- * = 'A': all eigenvalues will be found;
306
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
307
- * will be found;
308
- * = 'I': the IL-th through IU-th eigenvalues will be found.
309
- *
310
- * UPLO (input) CHARACTER*1
311
- * = 'U': Upper triangle of A is stored;
312
- * = 'L': Lower triangle of A is stored.
313
- *
314
- * N (input) INTEGER
315
- * The order of the matrix A. N >= 0.
316
- *
317
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
318
- * On entry, the upper or lower triangle of the symmetric matrix
319
- * A, packed columnwise in a linear array. The j-th column of A
320
- * is stored in the array AP as follows:
321
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
322
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
323
- *
324
- * On exit, AP is overwritten by values generated during the
325
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
326
- * and first superdiagonal of the tridiagonal matrix T overwrite
327
- * the corresponding elements of A, and if UPLO = 'L', the
328
- * diagonal and first subdiagonal of T overwrite the
329
- * corresponding elements of A.
330
- *
331
- * VL (input) REAL
332
- * VU (input) REAL
333
- * If RANGE='V', the lower and upper bounds of the interval to
334
- * be searched for eigenvalues. VL < VU.
335
- * Not referenced if RANGE = 'A' or 'I'.
336
- *
337
- * IL (input) INTEGER
338
- * IU (input) INTEGER
339
- * If RANGE='I', the indices (in ascending order) of the
340
- * smallest and largest eigenvalues to be returned.
341
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
342
- * Not referenced if RANGE = 'A' or 'V'.
343
- *
344
- * ABSTOL (input) REAL
345
- * The absolute error tolerance for the eigenvalues.
346
- * An approximate eigenvalue is accepted as converged
347
- * when it is determined to lie in an interval [a,b]
348
- * of width less than or equal to
349
- *
350
- * ABSTOL + EPS * max( |a|,|b| ) ,
351
- *
352
- * where EPS is the machine precision. If ABSTOL is less than
353
- * or equal to zero, then EPS*|T| will be used in its place,
354
- * where |T| is the 1-norm of the tridiagonal matrix obtained
355
- * by reducing AP to tridiagonal form.
356
- *
357
- * Eigenvalues will be computed most accurately when ABSTOL is
358
- * set to twice the underflow threshold 2*SLAMCH('S'), not zero.
359
- * If this routine returns with INFO>0, indicating that some
360
- * eigenvectors did not converge, try setting ABSTOL to
361
- * 2*SLAMCH('S').
362
- *
363
- * See "Computing Small Singular Values of Bidiagonal Matrices
364
- * with Guaranteed High Relative Accuracy," by Demmel and
365
- * Kahan, LAPACK Working Note #3.
366
- *
367
- * M (output) INTEGER
368
- * The total number of eigenvalues found. 0 <= M <= N.
369
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
370
- *
371
- * W (output) REAL array, dimension (N)
372
- * If INFO = 0, the selected eigenvalues in ascending order.
373
- *
374
- * Z (output) REAL array, dimension (LDZ, max(1,M))
375
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
376
- * contain the orthonormal eigenvectors of the matrix A
377
- * corresponding to the selected eigenvalues, with the i-th
378
- * column of Z holding the eigenvector associated with W(i).
379
- * If an eigenvector fails to converge, then that column of Z
380
- * contains the latest approximation to the eigenvector, and the
381
- * index of the eigenvector is returned in IFAIL.
382
- * If JOBZ = 'N', then Z is not referenced.
383
- * Note: the user must ensure that at least max(1,M) columns are
384
- * supplied in the array Z; if RANGE = 'V', the exact value of M
385
- * is not known in advance and an upper bound must be used.
386
- *
387
- * LDZ (input) INTEGER
388
- * The leading dimension of the array Z. LDZ >= 1, and if
389
- * JOBZ = 'V', LDZ >= max(1,N).
390
- *
391
- * WORK (workspace) REAL array, dimension (8*N)
392
- *
393
- * IWORK (workspace) INTEGER array, dimension (5*N)
394
- *
395
- * IFAIL (output) INTEGER array, dimension (N)
396
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
397
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
398
- * indices of the eigenvectors that failed to converge.
399
- * If JOBZ = 'N', then IFAIL is not referenced.
400
- *
401
- * INFO (output) INTEGER
402
- * = 0: successful exit
403
- * < 0: if INFO = -i, the i-th argument had an illegal value
404
- * > 0: if INFO = i, then i eigenvectors failed to converge.
405
- * Their indices are stored in array IFAIL.
406
- *
407
-
408
- * =====================================================================
409
- *
410
-
411
-
412
- </PRE>
413
- <A HREF="#top">go to the page top</A>
414
-
415
- <A NAME="sspgst"></A>
416
- <H2>sspgst</H2>
417
- <PRE>
418
- USAGE:
419
- info, ap = NumRu::Lapack.sspgst( itype, uplo, n, ap, bp, [:usage => usage, :help => help])
420
-
421
-
422
- FORTRAN MANUAL
423
- SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
424
-
425
- * Purpose
426
- * =======
427
- *
428
- * SSPGST reduces a real symmetric-definite generalized eigenproblem
429
- * to standard form, using packed storage.
430
- *
431
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
432
- * and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
433
- *
434
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
435
- * B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
436
- *
437
- * B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
438
- *
439
-
440
- * Arguments
441
- * =========
442
- *
443
- * ITYPE (input) INTEGER
444
- * = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
445
- * = 2 or 3: compute U*A*U**T or L**T*A*L.
446
- *
447
- * UPLO (input) CHARACTER*1
448
- * = 'U': Upper triangle of A is stored and B is factored as
449
- * U**T*U;
450
- * = 'L': Lower triangle of A is stored and B is factored as
451
- * L*L**T.
452
- *
453
- * N (input) INTEGER
454
- * The order of the matrices A and B. N >= 0.
455
- *
456
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
457
- * On entry, the upper or lower triangle of the symmetric matrix
458
- * A, packed columnwise in a linear array. The j-th column of A
459
- * is stored in the array AP as follows:
460
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
461
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
462
- *
463
- * On exit, if INFO = 0, the transformed matrix, stored in the
464
- * same format as A.
465
- *
466
- * BP (input) REAL array, dimension (N*(N+1)/2)
467
- * The triangular factor from the Cholesky factorization of B,
468
- * stored in the same format as A, as returned by SPPTRF.
469
- *
470
- * INFO (output) INTEGER
471
- * = 0: successful exit
472
- * < 0: if INFO = -i, the i-th argument had an illegal value
473
- *
474
-
475
- * =====================================================================
476
- *
477
-
478
-
479
- </PRE>
480
- <A HREF="#top">go to the page top</A>
481
-
482
- <A NAME="sspgv"></A>
483
- <H2>sspgv</H2>
484
- <PRE>
485
- USAGE:
486
- w, z, info, ap, bp = NumRu::Lapack.sspgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])
487
-
488
-
489
- FORTRAN MANUAL
490
- SUBROUTINE SSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )
491
-
492
- * Purpose
493
- * =======
494
- *
495
- * SSPGV computes all the eigenvalues and, optionally, the eigenvectors
496
- * of a real generalized symmetric-definite eigenproblem, of the form
497
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
498
- * Here A and B are assumed to be symmetric, stored in packed format,
499
- * and B is also positive definite.
500
- *
501
-
502
- * Arguments
503
- * =========
504
- *
505
- * ITYPE (input) INTEGER
506
- * Specifies the problem type to be solved:
507
- * = 1: A*x = (lambda)*B*x
508
- * = 2: A*B*x = (lambda)*x
509
- * = 3: B*A*x = (lambda)*x
510
- *
511
- * JOBZ (input) CHARACTER*1
512
- * = 'N': Compute eigenvalues only;
513
- * = 'V': Compute eigenvalues and eigenvectors.
514
- *
515
- * UPLO (input) CHARACTER*1
516
- * = 'U': Upper triangles of A and B are stored;
517
- * = 'L': Lower triangles of A and B are stored.
518
- *
519
- * N (input) INTEGER
520
- * The order of the matrices A and B. N >= 0.
521
- *
522
- * AP (input/output) REAL array, dimension
523
- * (N*(N+1)/2)
524
- * On entry, the upper or lower triangle of the symmetric matrix
525
- * A, packed columnwise in a linear array. The j-th column of A
526
- * is stored in the array AP as follows:
527
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
528
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
529
- *
530
- * On exit, the contents of AP are destroyed.
531
- *
532
- * BP (input/output) REAL array, dimension (N*(N+1)/2)
533
- * On entry, the upper or lower triangle of the symmetric matrix
534
- * B, packed columnwise in a linear array. The j-th column of B
535
- * is stored in the array BP as follows:
536
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
537
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
538
- *
539
- * On exit, the triangular factor U or L from the Cholesky
540
- * factorization B = U**T*U or B = L*L**T, in the same storage
541
- * format as B.
542
- *
543
- * W (output) REAL array, dimension (N)
544
- * If INFO = 0, the eigenvalues in ascending order.
545
- *
546
- * Z (output) REAL array, dimension (LDZ, N)
547
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
548
- * eigenvectors. The eigenvectors are normalized as follows:
549
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
550
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
551
- * If JOBZ = 'N', then Z is not referenced.
552
- *
553
- * LDZ (input) INTEGER
554
- * The leading dimension of the array Z. LDZ >= 1, and if
555
- * JOBZ = 'V', LDZ >= max(1,N).
556
- *
557
- * WORK (workspace) REAL array, dimension (3*N)
558
- *
559
- * INFO (output) INTEGER
560
- * = 0: successful exit
561
- * < 0: if INFO = -i, the i-th argument had an illegal value
562
- * > 0: SPPTRF or SSPEV returned an error code:
563
- * <= N: if INFO = i, SSPEV failed to converge;
564
- * i off-diagonal elements of an intermediate
565
- * tridiagonal form did not converge to zero.
566
- * > N: if INFO = n + i, for 1 <= i <= n, then the leading
567
- * minor of order i of B is not positive definite.
568
- * The factorization of B could not be completed and
569
- * no eigenvalues or eigenvectors were computed.
570
- *
571
-
572
- * =====================================================================
573
- *
574
- * .. Local Scalars ..
575
- LOGICAL UPPER, WANTZ
576
- CHARACTER TRANS
577
- INTEGER J, NEIG
578
- * ..
579
- * .. External Functions ..
580
- LOGICAL LSAME
581
- EXTERNAL LSAME
582
- * ..
583
- * .. External Subroutines ..
584
- EXTERNAL SPPTRF, SSPEV, SSPGST, STPMV, STPSV, XERBLA
585
- * ..
586
-
587
-
588
- </PRE>
589
- <A HREF="#top">go to the page top</A>
590
-
591
- <A NAME="sspgvd"></A>
592
- <H2>sspgvd</H2>
593
- <PRE>
594
- USAGE:
595
- w, z, work, iwork, info, ap, bp = NumRu::Lapack.sspgvd( itype, jobz, uplo, ap, bp, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
596
-
597
-
598
- FORTRAN MANUAL
599
- SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
600
-
601
- * Purpose
602
- * =======
603
- *
604
- * SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
605
- * of a real generalized symmetric-definite eigenproblem, of the form
606
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
607
- * B are assumed to be symmetric, stored in packed format, and B is also
608
- * positive definite.
609
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
610
- *
611
- * The divide and conquer algorithm makes very mild assumptions about
612
- * floating point arithmetic. It will work on machines with a guard
613
- * digit in add/subtract, or on those binary machines without guard
614
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
615
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
616
- * without guard digits, but we know of none.
617
- *
618
-
619
- * Arguments
620
- * =========
621
- *
622
- * ITYPE (input) INTEGER
623
- * Specifies the problem type to be solved:
624
- * = 1: A*x = (lambda)*B*x
625
- * = 2: A*B*x = (lambda)*x
626
- * = 3: B*A*x = (lambda)*x
627
- *
628
- * JOBZ (input) CHARACTER*1
629
- * = 'N': Compute eigenvalues only;
630
- * = 'V': Compute eigenvalues and eigenvectors.
631
- *
632
- * UPLO (input) CHARACTER*1
633
- * = 'U': Upper triangles of A and B are stored;
634
- * = 'L': Lower triangles of A and B are stored.
635
- *
636
- * N (input) INTEGER
637
- * The order of the matrices A and B. N >= 0.
638
- *
639
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
640
- * On entry, the upper or lower triangle of the symmetric matrix
641
- * A, packed columnwise in a linear array. The j-th column of A
642
- * is stored in the array AP as follows:
643
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
644
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
645
- *
646
- * On exit, the contents of AP are destroyed.
647
- *
648
- * BP (input/output) REAL array, dimension (N*(N+1)/2)
649
- * On entry, the upper or lower triangle of the symmetric matrix
650
- * B, packed columnwise in a linear array. The j-th column of B
651
- * is stored in the array BP as follows:
652
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
653
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
654
- *
655
- * On exit, the triangular factor U or L from the Cholesky
656
- * factorization B = U**T*U or B = L*L**T, in the same storage
657
- * format as B.
658
- *
659
- * W (output) REAL array, dimension (N)
660
- * If INFO = 0, the eigenvalues in ascending order.
661
- *
662
- * Z (output) REAL array, dimension (LDZ, N)
663
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
664
- * eigenvectors. The eigenvectors are normalized as follows:
665
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
666
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
667
- * If JOBZ = 'N', then Z is not referenced.
668
- *
669
- * LDZ (input) INTEGER
670
- * The leading dimension of the array Z. LDZ >= 1, and if
671
- * JOBZ = 'V', LDZ >= max(1,N).
672
- *
673
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
674
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
675
- *
676
- * LWORK (input) INTEGER
677
- * The dimension of the array WORK.
678
- * If N <= 1, LWORK >= 1.
679
- * If JOBZ = 'N' and N > 1, LWORK >= 2*N.
680
- * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
681
- *
682
- * If LWORK = -1, then a workspace query is assumed; the routine
683
- * only calculates the required sizes of the WORK and IWORK
684
- * arrays, returns these values as the first entries of the WORK
685
- * and IWORK arrays, and no error message related to LWORK or
686
- * LIWORK is issued by XERBLA.
687
- *
688
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
689
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
690
- *
691
- * LIWORK (input) INTEGER
692
- * The dimension of the array IWORK.
693
- * If JOBZ = 'N' or N <= 1, LIWORK >= 1.
694
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
695
- *
696
- * If LIWORK = -1, then a workspace query is assumed; the
697
- * routine only calculates the required sizes of the WORK and
698
- * IWORK arrays, returns these values as the first entries of
699
- * the WORK and IWORK arrays, and no error message related to
700
- * LWORK or LIWORK is issued by XERBLA.
701
- *
702
- * INFO (output) INTEGER
703
- * = 0: successful exit
704
- * < 0: if INFO = -i, the i-th argument had an illegal value
705
- * > 0: SPPTRF or SSPEVD returned an error code:
706
- * <= N: if INFO = i, SSPEVD failed to converge;
707
- * i off-diagonal elements of an intermediate
708
- * tridiagonal form did not converge to zero;
709
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
710
- * minor of order i of B is not positive definite.
711
- * The factorization of B could not be completed and
712
- * no eigenvalues or eigenvectors were computed.
713
- *
714
-
715
- * Further Details
716
- * ===============
717
- *
718
- * Based on contributions by
719
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
720
- *
721
- * =====================================================================
722
- *
723
-
724
-
725
- </PRE>
726
- <A HREF="#top">go to the page top</A>
727
-
728
- <A NAME="sspgvx"></A>
729
- <H2>sspgvx</H2>
730
- <PRE>
731
- USAGE:
732
- m, w, z, ifail, info, ap, bp = NumRu::Lapack.sspgvx( itype, jobz, range, uplo, ap, bp, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
733
-
734
-
735
- FORTRAN MANUAL
736
- SUBROUTINE SSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
737
-
738
- * Purpose
739
- * =======
740
- *
741
- * SSPGVX computes selected eigenvalues, and optionally, eigenvectors
742
- * of a real generalized symmetric-definite eigenproblem, of the form
743
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
744
- * and B are assumed to be symmetric, stored in packed storage, and B
745
- * is also positive definite. Eigenvalues and eigenvectors can be
746
- * selected by specifying either a range of values or a range of indices
747
- * for the desired eigenvalues.
748
- *
749
-
750
- * Arguments
751
- * =========
752
- *
753
- * ITYPE (input) INTEGER
754
- * Specifies the problem type to be solved:
755
- * = 1: A*x = (lambda)*B*x
756
- * = 2: A*B*x = (lambda)*x
757
- * = 3: B*A*x = (lambda)*x
758
- *
759
- * JOBZ (input) CHARACTER*1
760
- * = 'N': Compute eigenvalues only;
761
- * = 'V': Compute eigenvalues and eigenvectors.
762
- *
763
- * RANGE (input) CHARACTER*1
764
- * = 'A': all eigenvalues will be found.
765
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
766
- * will be found.
767
- * = 'I': the IL-th through IU-th eigenvalues will be found.
768
- *
769
- * UPLO (input) CHARACTER*1
770
- * = 'U': Upper triangle of A and B are stored;
771
- * = 'L': Lower triangle of A and B are stored.
772
- *
773
- * N (input) INTEGER
774
- * The order of the matrix pencil (A,B). N >= 0.
775
- *
776
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
777
- * On entry, the upper or lower triangle of the symmetric matrix
778
- * A, packed columnwise in a linear array. The j-th column of A
779
- * is stored in the array AP as follows:
780
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
781
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
782
- *
783
- * On exit, the contents of AP are destroyed.
784
- *
785
- * BP (input/output) REAL array, dimension (N*(N+1)/2)
786
- * On entry, the upper or lower triangle of the symmetric matrix
787
- * B, packed columnwise in a linear array. The j-th column of B
788
- * is stored in the array BP as follows:
789
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
790
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
791
- *
792
- * On exit, the triangular factor U or L from the Cholesky
793
- * factorization B = U**T*U or B = L*L**T, in the same storage
794
- * format as B.
795
- *
796
- * VL (input) REAL
797
- * VU (input) REAL
798
- * If RANGE='V', the lower and upper bounds of the interval to
799
- * be searched for eigenvalues. VL < VU.
800
- * Not referenced if RANGE = 'A' or 'I'.
801
- *
802
- * IL (input) INTEGER
803
- * IU (input) INTEGER
804
- * If RANGE='I', the indices (in ascending order) of the
805
- * smallest and largest eigenvalues to be returned.
806
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
807
- * Not referenced if RANGE = 'A' or 'V'.
808
- *
809
- * ABSTOL (input) REAL
810
- * The absolute error tolerance for the eigenvalues.
811
- * An approximate eigenvalue is accepted as converged
812
- * when it is determined to lie in an interval [a,b]
813
- * of width less than or equal to
814
- *
815
- * ABSTOL + EPS * max( |a|,|b| ) ,
816
- *
817
- * where EPS is the machine precision. If ABSTOL is less than
818
- * or equal to zero, then EPS*|T| will be used in its place,
819
- * where |T| is the 1-norm of the tridiagonal matrix obtained
820
- * by reducing A to tridiagonal form.
821
- *
822
- * Eigenvalues will be computed most accurately when ABSTOL is
823
- * set to twice the underflow threshold 2*SLAMCH('S'), not zero.
824
- * If this routine returns with INFO>0, indicating that some
825
- * eigenvectors did not converge, try setting ABSTOL to
826
- * 2*SLAMCH('S').
827
- *
828
- * M (output) INTEGER
829
- * The total number of eigenvalues found. 0 <= M <= N.
830
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
831
- *
832
- * W (output) REAL array, dimension (N)
833
- * On normal exit, the first M elements contain the selected
834
- * eigenvalues in ascending order.
835
- *
836
- * Z (output) REAL array, dimension (LDZ, max(1,M))
837
- * If JOBZ = 'N', then Z is not referenced.
838
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
839
- * contain the orthonormal eigenvectors of the matrix A
840
- * corresponding to the selected eigenvalues, with the i-th
841
- * column of Z holding the eigenvector associated with W(i).
842
- * The eigenvectors are normalized as follows:
843
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
844
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
845
- *
846
- * If an eigenvector fails to converge, then that column of Z
847
- * contains the latest approximation to the eigenvector, and the
848
- * index of the eigenvector is returned in IFAIL.
849
- * Note: the user must ensure that at least max(1,M) columns are
850
- * supplied in the array Z; if RANGE = 'V', the exact value of M
851
- * is not known in advance and an upper bound must be used.
852
- *
853
- * LDZ (input) INTEGER
854
- * The leading dimension of the array Z. LDZ >= 1, and if
855
- * JOBZ = 'V', LDZ >= max(1,N).
856
- *
857
- * WORK (workspace) REAL array, dimension (8*N)
858
- *
859
- * IWORK (workspace) INTEGER array, dimension (5*N)
860
- *
861
- * IFAIL (output) INTEGER array, dimension (N)
862
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
863
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
864
- * indices of the eigenvectors that failed to converge.
865
- * If JOBZ = 'N', then IFAIL is not referenced.
866
- *
867
- * INFO (output) INTEGER
868
- * = 0: successful exit
869
- * < 0: if INFO = -i, the i-th argument had an illegal value
870
- * > 0: SPPTRF or SSPEVX returned an error code:
871
- * <= N: if INFO = i, SSPEVX failed to converge;
872
- * i eigenvectors failed to converge. Their indices
873
- * are stored in array IFAIL.
874
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
875
- * minor of order i of B is not positive definite.
876
- * The factorization of B could not be completed and
877
- * no eigenvalues or eigenvectors were computed.
878
- *
879
-
880
- * Further Details
881
- * ===============
882
- *
883
- * Based on contributions by
884
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
885
- *
886
- * =====================================================================
887
- *
888
- * .. Local Scalars ..
889
- LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
890
- CHARACTER TRANS
891
- INTEGER J
892
- * ..
893
- * .. External Functions ..
894
- LOGICAL LSAME
895
- EXTERNAL LSAME
896
- * ..
897
- * .. External Subroutines ..
898
- EXTERNAL SPPTRF, SSPEVX, SSPGST, STPMV, STPSV, XERBLA
899
- * ..
900
- * .. Intrinsic Functions ..
901
- INTRINSIC MIN
902
- * ..
903
-
904
-
905
- </PRE>
906
- <A HREF="#top">go to the page top</A>
907
-
908
- <A NAME="ssprfs"></A>
909
- <H2>ssprfs</H2>
910
- <PRE>
911
- USAGE:
912
- ferr, berr, info, x = NumRu::Lapack.ssprfs( uplo, ap, afp, ipiv, b, x, [:usage => usage, :help => help])
913
-
914
-
915
- FORTRAN MANUAL
916
- SUBROUTINE SSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
917
-
918
- * Purpose
919
- * =======
920
- *
921
- * SSPRFS improves the computed solution to a system of linear
922
- * equations when the coefficient matrix is symmetric indefinite
923
- * and packed, and provides error bounds and backward error estimates
924
- * for the solution.
925
- *
926
-
927
- * Arguments
928
- * =========
929
- *
930
- * UPLO (input) CHARACTER*1
931
- * = 'U': Upper triangle of A is stored;
932
- * = 'L': Lower triangle of A is stored.
933
- *
934
- * N (input) INTEGER
935
- * The order of the matrix A. N >= 0.
936
- *
937
- * NRHS (input) INTEGER
938
- * The number of right hand sides, i.e., the number of columns
939
- * of the matrices B and X. NRHS >= 0.
940
- *
941
- * AP (input) REAL array, dimension (N*(N+1)/2)
942
- * The upper or lower triangle of the symmetric matrix A, packed
943
- * columnwise in a linear array. The j-th column of A is stored
944
- * in the array AP as follows:
945
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
946
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
947
- *
948
- * AFP (input) REAL array, dimension (N*(N+1)/2)
949
- * The factored form of the matrix A. AFP contains the block
950
- * diagonal matrix D and the multipliers used to obtain the
951
- * factor U or L from the factorization A = U*D*U**T or
952
- * A = L*D*L**T as computed by SSPTRF, stored as a packed
953
- * triangular matrix.
954
- *
955
- * IPIV (input) INTEGER array, dimension (N)
956
- * Details of the interchanges and the block structure of D
957
- * as determined by SSPTRF.
958
- *
959
- * B (input) REAL array, dimension (LDB,NRHS)
960
- * The right hand side matrix B.
961
- *
962
- * LDB (input) INTEGER
963
- * The leading dimension of the array B. LDB >= max(1,N).
964
- *
965
- * X (input/output) REAL array, dimension (LDX,NRHS)
966
- * On entry, the solution matrix X, as computed by SSPTRS.
967
- * On exit, the improved solution matrix X.
968
- *
969
- * LDX (input) INTEGER
970
- * The leading dimension of the array X. LDX >= max(1,N).
971
- *
972
- * FERR (output) REAL array, dimension (NRHS)
973
- * The estimated forward error bound for each solution vector
974
- * X(j) (the j-th column of the solution matrix X).
975
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
976
- * is an estimated upper bound for the magnitude of the largest
977
- * element in (X(j) - XTRUE) divided by the magnitude of the
978
- * largest element in X(j). The estimate is as reliable as
979
- * the estimate for RCOND, and is almost always a slight
980
- * overestimate of the true error.
981
- *
982
- * BERR (output) REAL array, dimension (NRHS)
983
- * The componentwise relative backward error of each solution
984
- * vector X(j) (i.e., the smallest relative change in
985
- * any element of A or B that makes X(j) an exact solution).
986
- *
987
- * WORK (workspace) REAL array, dimension (3*N)
988
- *
989
- * IWORK (workspace) INTEGER array, dimension (N)
990
- *
991
- * INFO (output) INTEGER
992
- * = 0: successful exit
993
- * < 0: if INFO = -i, the i-th argument had an illegal value
994
- *
995
- * Internal Parameters
996
- * ===================
997
- *
998
- * ITMAX is the maximum number of steps of iterative refinement.
999
- *
1000
-
1001
- * =====================================================================
1002
- *
1003
-
1004
-
1005
- </PRE>
1006
- <A HREF="#top">go to the page top</A>
1007
-
1008
- <A NAME="sspsv"></A>
1009
- <H2>sspsv</H2>
1010
- <PRE>
1011
- USAGE:
1012
- ipiv, info, ap, b = NumRu::Lapack.sspsv( uplo, ap, b, [:usage => usage, :help => help])
1013
-
1014
-
1015
- FORTRAN MANUAL
1016
- SUBROUTINE SSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1017
-
1018
- * Purpose
1019
- * =======
1020
- *
1021
- * SSPSV computes the solution to a real system of linear equations
1022
- * A * X = B,
1023
- * where A is an N-by-N symmetric matrix stored in packed format and X
1024
- * and B are N-by-NRHS matrices.
1025
- *
1026
- * The diagonal pivoting method is used to factor A as
1027
- * A = U * D * U**T, if UPLO = 'U', or
1028
- * A = L * D * L**T, if UPLO = 'L',
1029
- * where U (or L) is a product of permutation and unit upper (lower)
1030
- * triangular matrices, D is symmetric and block diagonal with 1-by-1
1031
- * and 2-by-2 diagonal blocks. The factored form of A is then used to
1032
- * solve the system of equations A * X = B.
1033
- *
1034
-
1035
- * Arguments
1036
- * =========
1037
- *
1038
- * UPLO (input) CHARACTER*1
1039
- * = 'U': Upper triangle of A is stored;
1040
- * = 'L': Lower triangle of A is stored.
1041
- *
1042
- * N (input) INTEGER
1043
- * The number of linear equations, i.e., the order of the
1044
- * matrix A. N >= 0.
1045
- *
1046
- * NRHS (input) INTEGER
1047
- * The number of right hand sides, i.e., the number of columns
1048
- * of the matrix B. NRHS >= 0.
1049
- *
1050
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
1051
- * On entry, the upper or lower triangle of the symmetric matrix
1052
- * A, packed columnwise in a linear array. The j-th column of A
1053
- * is stored in the array AP as follows:
1054
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1055
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1056
- * See below for further details.
1057
- *
1058
- * On exit, the block diagonal matrix D and the multipliers used
1059
- * to obtain the factor U or L from the factorization
1060
- * A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
1061
- * a packed triangular matrix in the same storage format as A.
1062
- *
1063
- * IPIV (output) INTEGER array, dimension (N)
1064
- * Details of the interchanges and the block structure of D, as
1065
- * determined by SSPTRF. If IPIV(k) > 0, then rows and columns
1066
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1067
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1068
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1069
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1070
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1071
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1072
- * diagonal block.
1073
- *
1074
- * B (input/output) REAL array, dimension (LDB,NRHS)
1075
- * On entry, the N-by-NRHS right hand side matrix B.
1076
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1077
- *
1078
- * LDB (input) INTEGER
1079
- * The leading dimension of the array B. LDB >= max(1,N).
1080
- *
1081
- * INFO (output) INTEGER
1082
- * = 0: successful exit
1083
- * < 0: if INFO = -i, the i-th argument had an illegal value
1084
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1085
- * has been completed, but the block diagonal matrix D is
1086
- * exactly singular, so the solution could not be
1087
- * computed.
1088
- *
1089
-
1090
- * Further Details
1091
- * ===============
1092
- *
1093
- * The packed storage scheme is illustrated by the following example
1094
- * when N = 4, UPLO = 'U':
1095
- *
1096
- * Two-dimensional storage of the symmetric matrix A:
1097
- *
1098
- * a11 a12 a13 a14
1099
- * a22 a23 a24
1100
- * a33 a34 (aij = aji)
1101
- * a44
1102
- *
1103
- * Packed storage of the upper triangle of A:
1104
- *
1105
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1106
- *
1107
- * =====================================================================
1108
- *
1109
- * .. External Functions ..
1110
- LOGICAL LSAME
1111
- EXTERNAL LSAME
1112
- * ..
1113
- * .. External Subroutines ..
1114
- EXTERNAL SSPTRF, SSPTRS, XERBLA
1115
- * ..
1116
- * .. Intrinsic Functions ..
1117
- INTRINSIC MAX
1118
- * ..
1119
-
1120
-
1121
- </PRE>
1122
- <A HREF="#top">go to the page top</A>
1123
-
1124
- <A NAME="sspsvx"></A>
1125
- <H2>sspsvx</H2>
1126
- <PRE>
1127
- USAGE:
1128
- x, rcond, ferr, berr, info, afp, ipiv = NumRu::Lapack.sspsvx( fact, uplo, ap, afp, ipiv, b, [:usage => usage, :help => help])
1129
-
1130
-
1131
- FORTRAN MANUAL
1132
- SUBROUTINE SSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
1133
-
1134
- * Purpose
1135
- * =======
1136
- *
1137
- * SSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
1138
- * A = L*D*L**T to compute the solution to a real system of linear
1139
- * equations A * X = B, where A is an N-by-N symmetric matrix stored
1140
- * in packed format and X and B are N-by-NRHS matrices.
1141
- *
1142
- * Error bounds on the solution and a condition estimate are also
1143
- * provided.
1144
- *
1145
- * Description
1146
- * ===========
1147
- *
1148
- * The following steps are performed:
1149
- *
1150
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
1151
- * A = U * D * U**T, if UPLO = 'U', or
1152
- * A = L * D * L**T, if UPLO = 'L',
1153
- * where U (or L) is a product of permutation and unit upper (lower)
1154
- * triangular matrices and D is symmetric and block diagonal with
1155
- * 1-by-1 and 2-by-2 diagonal blocks.
1156
- *
1157
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1158
- * returns with INFO = i. Otherwise, the factored form of A is used
1159
- * to estimate the condition number of the matrix A. If the
1160
- * reciprocal of the condition number is less than machine precision,
1161
- * INFO = N+1 is returned as a warning, but the routine still goes on
1162
- * to solve for X and compute error bounds as described below.
1163
- *
1164
- * 3. The system of equations is solved for X using the factored form
1165
- * of A.
1166
- *
1167
- * 4. Iterative refinement is applied to improve the computed solution
1168
- * matrix and calculate error bounds and backward error estimates
1169
- * for it.
1170
- *
1171
-
1172
- * Arguments
1173
- * =========
1174
- *
1175
- * FACT (input) CHARACTER*1
1176
- * Specifies whether or not the factored form of A has been
1177
- * supplied on entry.
1178
- * = 'F': On entry, AFP and IPIV contain the factored form of
1179
- * A. AP, AFP and IPIV will not be modified.
1180
- * = 'N': The matrix A will be copied to AFP and factored.
1181
- *
1182
- * UPLO (input) CHARACTER*1
1183
- * = 'U': Upper triangle of A is stored;
1184
- * = 'L': Lower triangle of A is stored.
1185
- *
1186
- * N (input) INTEGER
1187
- * The number of linear equations, i.e., the order of the
1188
- * matrix A. N >= 0.
1189
- *
1190
- * NRHS (input) INTEGER
1191
- * The number of right hand sides, i.e., the number of columns
1192
- * of the matrices B and X. NRHS >= 0.
1193
- *
1194
- * AP (input) REAL array, dimension (N*(N+1)/2)
1195
- * The upper or lower triangle of the symmetric matrix A, packed
1196
- * columnwise in a linear array. The j-th column of A is stored
1197
- * in the array AP as follows:
1198
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1199
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1200
- * See below for further details.
1201
- *
1202
- * AFP (input or output) REAL array, dimension
1203
- * (N*(N+1)/2)
1204
- * If FACT = 'F', then AFP is an input argument and on entry
1205
- * contains the block diagonal matrix D and the multipliers used
1206
- * to obtain the factor U or L from the factorization
1207
- * A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
1208
- * a packed triangular matrix in the same storage format as A.
1209
- *
1210
- * If FACT = 'N', then AFP is an output argument and on exit
1211
- * contains the block diagonal matrix D and the multipliers used
1212
- * to obtain the factor U or L from the factorization
1213
- * A = U*D*U**T or A = L*D*L**T as computed by SSPTRF, stored as
1214
- * a packed triangular matrix in the same storage format as A.
1215
- *
1216
- * IPIV (input or output) INTEGER array, dimension (N)
1217
- * If FACT = 'F', then IPIV is an input argument and on entry
1218
- * contains details of the interchanges and the block structure
1219
- * of D, as determined by SSPTRF.
1220
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1221
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1222
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1223
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1224
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1225
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1226
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1227
- *
1228
- * If FACT = 'N', then IPIV is an output argument and on exit
1229
- * contains details of the interchanges and the block structure
1230
- * of D, as determined by SSPTRF.
1231
- *
1232
- * B (input) REAL array, dimension (LDB,NRHS)
1233
- * The N-by-NRHS right hand side matrix B.
1234
- *
1235
- * LDB (input) INTEGER
1236
- * The leading dimension of the array B. LDB >= max(1,N).
1237
- *
1238
- * X (output) REAL array, dimension (LDX,NRHS)
1239
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
1240
- *
1241
- * LDX (input) INTEGER
1242
- * The leading dimension of the array X. LDX >= max(1,N).
1243
- *
1244
- * RCOND (output) REAL
1245
- * The estimate of the reciprocal condition number of the matrix
1246
- * A. If RCOND is less than the machine precision (in
1247
- * particular, if RCOND = 0), the matrix is singular to working
1248
- * precision. This condition is indicated by a return code of
1249
- * INFO > 0.
1250
- *
1251
- * FERR (output) REAL array, dimension (NRHS)
1252
- * The estimated forward error bound for each solution vector
1253
- * X(j) (the j-th column of the solution matrix X).
1254
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1255
- * is an estimated upper bound for the magnitude of the largest
1256
- * element in (X(j) - XTRUE) divided by the magnitude of the
1257
- * largest element in X(j). The estimate is as reliable as
1258
- * the estimate for RCOND, and is almost always a slight
1259
- * overestimate of the true error.
1260
- *
1261
- * BERR (output) REAL array, dimension (NRHS)
1262
- * The componentwise relative backward error of each solution
1263
- * vector X(j) (i.e., the smallest relative change in
1264
- * any element of A or B that makes X(j) an exact solution).
1265
- *
1266
- * WORK (workspace) REAL array, dimension (3*N)
1267
- *
1268
- * IWORK (workspace) INTEGER array, dimension (N)
1269
- *
1270
- * INFO (output) INTEGER
1271
- * = 0: successful exit
1272
- * < 0: if INFO = -i, the i-th argument had an illegal value
1273
- * > 0: if INFO = i, and i is
1274
- * <= N: D(i,i) is exactly zero. The factorization
1275
- * has been completed but the factor D is exactly
1276
- * singular, so the solution and error bounds could
1277
- * not be computed. RCOND = 0 is returned.
1278
- * = N+1: D is nonsingular, but RCOND is less than machine
1279
- * precision, meaning that the matrix is singular
1280
- * to working precision. Nevertheless, the
1281
- * solution and error bounds are computed because
1282
- * there are a number of situations where the
1283
- * computed solution can be more accurate than the
1284
- * value of RCOND would suggest.
1285
- *
1286
-
1287
- * Further Details
1288
- * ===============
1289
- *
1290
- * The packed storage scheme is illustrated by the following example
1291
- * when N = 4, UPLO = 'U':
1292
- *
1293
- * Two-dimensional storage of the symmetric matrix A:
1294
- *
1295
- * a11 a12 a13 a14
1296
- * a22 a23 a24
1297
- * a33 a34 (aij = aji)
1298
- * a44
1299
- *
1300
- * Packed storage of the upper triangle of A:
1301
- *
1302
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1303
- *
1304
- * =====================================================================
1305
- *
1306
-
1307
-
1308
- </PRE>
1309
- <A HREF="#top">go to the page top</A>
1310
-
1311
- <A NAME="ssptrd"></A>
1312
- <H2>ssptrd</H2>
1313
- <PRE>
1314
- USAGE:
1315
- d, e, tau, info, ap = NumRu::Lapack.ssptrd( uplo, ap, [:usage => usage, :help => help])
1316
-
1317
-
1318
- FORTRAN MANUAL
1319
- SUBROUTINE SSPTRD( UPLO, N, AP, D, E, TAU, INFO )
1320
-
1321
- * Purpose
1322
- * =======
1323
- *
1324
- * SSPTRD reduces a real symmetric matrix A stored in packed form to
1325
- * symmetric tridiagonal form T by an orthogonal similarity
1326
- * transformation: Q**T * A * Q = T.
1327
- *
1328
-
1329
- * Arguments
1330
- * =========
1331
- *
1332
- * UPLO (input) CHARACTER*1
1333
- * = 'U': Upper triangle of A is stored;
1334
- * = 'L': Lower triangle of A is stored.
1335
- *
1336
- * N (input) INTEGER
1337
- * The order of the matrix A. N >= 0.
1338
- *
1339
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
1340
- * On entry, the upper or lower triangle of the symmetric matrix
1341
- * A, packed columnwise in a linear array. The j-th column of A
1342
- * is stored in the array AP as follows:
1343
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1344
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1345
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
1346
- * of A are overwritten by the corresponding elements of the
1347
- * tridiagonal matrix T, and the elements above the first
1348
- * superdiagonal, with the array TAU, represent the orthogonal
1349
- * matrix Q as a product of elementary reflectors; if UPLO
1350
- * = 'L', the diagonal and first subdiagonal of A are over-
1351
- * written by the corresponding elements of the tridiagonal
1352
- * matrix T, and the elements below the first subdiagonal, with
1353
- * the array TAU, represent the orthogonal matrix Q as a product
1354
- * of elementary reflectors. See Further Details.
1355
- *
1356
- * D (output) REAL array, dimension (N)
1357
- * The diagonal elements of the tridiagonal matrix T:
1358
- * D(i) = A(i,i).
1359
- *
1360
- * E (output) REAL array, dimension (N-1)
1361
- * The off-diagonal elements of the tridiagonal matrix T:
1362
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
1363
- *
1364
- * TAU (output) REAL array, dimension (N-1)
1365
- * The scalar factors of the elementary reflectors (see Further
1366
- * Details).
1367
- *
1368
- * INFO (output) INTEGER
1369
- * = 0: successful exit
1370
- * < 0: if INFO = -i, the i-th argument had an illegal value
1371
- *
1372
-
1373
- * Further Details
1374
- * ===============
1375
- *
1376
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
1377
- * reflectors
1378
- *
1379
- * Q = H(n-1) . . . H(2) H(1).
1380
- *
1381
- * Each H(i) has the form
1382
- *
1383
- * H(i) = I - tau * v * v'
1384
- *
1385
- * where tau is a real scalar, and v is a real vector with
1386
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
1387
- * overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
1388
- *
1389
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
1390
- * reflectors
1391
- *
1392
- * Q = H(1) H(2) . . . H(n-1).
1393
- *
1394
- * Each H(i) has the form
1395
- *
1396
- * H(i) = I - tau * v * v'
1397
- *
1398
- * where tau is a real scalar, and v is a real vector with
1399
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
1400
- * overwriting A(i+2:n,i), and tau is stored in TAU(i).
1401
- *
1402
- * =====================================================================
1403
- *
1404
-
1405
-
1406
- </PRE>
1407
- <A HREF="#top">go to the page top</A>
1408
-
1409
- <A NAME="ssptrf"></A>
1410
- <H2>ssptrf</H2>
1411
- <PRE>
1412
- USAGE:
1413
- ipiv, info, ap = NumRu::Lapack.ssptrf( uplo, ap, [:usage => usage, :help => help])
1414
-
1415
-
1416
- FORTRAN MANUAL
1417
- SUBROUTINE SSPTRF( UPLO, N, AP, IPIV, INFO )
1418
-
1419
- * Purpose
1420
- * =======
1421
- *
1422
- * SSPTRF computes the factorization of a real symmetric matrix A stored
1423
- * in packed format using the Bunch-Kaufman diagonal pivoting method:
1424
- *
1425
- * A = U*D*U**T or A = L*D*L**T
1426
- *
1427
- * where U (or L) is a product of permutation and unit upper (lower)
1428
- * triangular matrices, and D is symmetric and block diagonal with
1429
- * 1-by-1 and 2-by-2 diagonal blocks.
1430
- *
1431
-
1432
- * Arguments
1433
- * =========
1434
- *
1435
- * UPLO (input) CHARACTER*1
1436
- * = 'U': Upper triangle of A is stored;
1437
- * = 'L': Lower triangle of A is stored.
1438
- *
1439
- * N (input) INTEGER
1440
- * The order of the matrix A. N >= 0.
1441
- *
1442
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
1443
- * On entry, the upper or lower triangle of the symmetric matrix
1444
- * A, packed columnwise in a linear array. The j-th column of A
1445
- * is stored in the array AP as follows:
1446
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1447
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1448
- *
1449
- * On exit, the block diagonal matrix D and the multipliers used
1450
- * to obtain the factor U or L, stored as a packed triangular
1451
- * matrix overwriting A (see below for further details).
1452
- *
1453
- * IPIV (output) INTEGER array, dimension (N)
1454
- * Details of the interchanges and the block structure of D.
1455
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1456
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1457
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1458
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1459
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1460
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1461
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1462
- *
1463
- * INFO (output) INTEGER
1464
- * = 0: successful exit
1465
- * < 0: if INFO = -i, the i-th argument had an illegal value
1466
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1467
- * has been completed, but the block diagonal matrix D is
1468
- * exactly singular, and division by zero will occur if it
1469
- * is used to solve a system of equations.
1470
- *
1471
-
1472
- * Further Details
1473
- * ===============
1474
- *
1475
- * 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
1476
- * Company
1477
- *
1478
- * If UPLO = 'U', then A = U*D*U', where
1479
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
1480
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1481
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1482
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1483
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
1484
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1485
- *
1486
- * ( I v 0 ) k-s
1487
- * U(k) = ( 0 I 0 ) s
1488
- * ( 0 0 I ) n-k
1489
- * k-s s n-k
1490
- *
1491
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
1492
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
1493
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
1494
- *
1495
- * If UPLO = 'L', then A = L*D*L', where
1496
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
1497
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
1498
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1499
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1500
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
1501
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1502
- *
1503
- * ( I 0 0 ) k-1
1504
- * L(k) = ( 0 I 0 ) s
1505
- * ( 0 v I ) n-k-s+1
1506
- * k-1 s n-k-s+1
1507
- *
1508
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
1509
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
1510
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
1511
- *
1512
- * =====================================================================
1513
- *
1514
-
1515
-
1516
- </PRE>
1517
- <A HREF="#top">go to the page top</A>
1518
-
1519
- <A NAME="ssptri"></A>
1520
- <H2>ssptri</H2>
1521
- <PRE>
1522
- USAGE:
1523
- info, ap = NumRu::Lapack.ssptri( uplo, ap, ipiv, [:usage => usage, :help => help])
1524
-
1525
-
1526
- FORTRAN MANUAL
1527
- SUBROUTINE SSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
1528
-
1529
- * Purpose
1530
- * =======
1531
- *
1532
- * SSPTRI computes the inverse of a real symmetric indefinite matrix
1533
- * A in packed storage using the factorization A = U*D*U**T or
1534
- * A = L*D*L**T computed by SSPTRF.
1535
- *
1536
-
1537
- * Arguments
1538
- * =========
1539
- *
1540
- * UPLO (input) CHARACTER*1
1541
- * Specifies whether the details of the factorization are stored
1542
- * as an upper or lower triangular matrix.
1543
- * = 'U': Upper triangular, form is A = U*D*U**T;
1544
- * = 'L': Lower triangular, form is A = L*D*L**T.
1545
- *
1546
- * N (input) INTEGER
1547
- * The order of the matrix A. N >= 0.
1548
- *
1549
- * AP (input/output) REAL array, dimension (N*(N+1)/2)
1550
- * On entry, the block diagonal matrix D and the multipliers
1551
- * used to obtain the factor U or L as computed by SSPTRF,
1552
- * stored as a packed triangular matrix.
1553
- *
1554
- * On exit, if INFO = 0, the (symmetric) inverse of the original
1555
- * matrix, stored as a packed triangular matrix. The j-th column
1556
- * of inv(A) is stored in the array AP as follows:
1557
- * if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
1558
- * if UPLO = 'L',
1559
- * AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
1560
- *
1561
- * IPIV (input) INTEGER array, dimension (N)
1562
- * Details of the interchanges and the block structure of D
1563
- * as determined by SSPTRF.
1564
- *
1565
- * WORK (workspace) REAL array, dimension (N)
1566
- *
1567
- * INFO (output) INTEGER
1568
- * = 0: successful exit
1569
- * < 0: if INFO = -i, the i-th argument had an illegal value
1570
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
1571
- * inverse could not be computed.
1572
- *
1573
-
1574
- * =====================================================================
1575
- *
1576
-
1577
-
1578
- </PRE>
1579
- <A HREF="#top">go to the page top</A>
1580
-
1581
- <A NAME="ssptrs"></A>
1582
- <H2>ssptrs</H2>
1583
- <PRE>
1584
- USAGE:
1585
- info, b = NumRu::Lapack.ssptrs( uplo, ap, ipiv, b, [:usage => usage, :help => help])
1586
-
1587
-
1588
- FORTRAN MANUAL
1589
- SUBROUTINE SSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1590
-
1591
- * Purpose
1592
- * =======
1593
- *
1594
- * SSPTRS solves a system of linear equations A*X = B with a real
1595
- * symmetric matrix A stored in packed format using the factorization
1596
- * A = U*D*U**T or A = L*D*L**T computed by SSPTRF.
1597
- *
1598
-
1599
- * Arguments
1600
- * =========
1601
- *
1602
- * UPLO (input) CHARACTER*1
1603
- * Specifies whether the details of the factorization are stored
1604
- * as an upper or lower triangular matrix.
1605
- * = 'U': Upper triangular, form is A = U*D*U**T;
1606
- * = 'L': Lower triangular, form is A = L*D*L**T.
1607
- *
1608
- * N (input) INTEGER
1609
- * The order of the matrix A. N >= 0.
1610
- *
1611
- * NRHS (input) INTEGER
1612
- * The number of right hand sides, i.e., the number of columns
1613
- * of the matrix B. NRHS >= 0.
1614
- *
1615
- * AP (input) REAL array, dimension (N*(N+1)/2)
1616
- * The block diagonal matrix D and the multipliers used to
1617
- * obtain the factor U or L as computed by SSPTRF, stored as a
1618
- * packed triangular matrix.
1619
- *
1620
- * IPIV (input) INTEGER array, dimension (N)
1621
- * Details of the interchanges and the block structure of D
1622
- * as determined by SSPTRF.
1623
- *
1624
- * B (input/output) REAL array, dimension (LDB,NRHS)
1625
- * On entry, the right hand side matrix B.
1626
- * On exit, the solution matrix X.
1627
- *
1628
- * LDB (input) INTEGER
1629
- * The leading dimension of the array B. LDB >= max(1,N).
1630
- *
1631
- * INFO (output) INTEGER
1632
- * = 0: successful exit
1633
- * < 0: if INFO = -i, the i-th argument had an illegal value
1634
- *
1635
-
1636
- * =====================================================================
1637
- *
1638
-
1639
-
1640
- </PRE>
1641
- <A HREF="#top">go to the page top</A>
1642
-
1643
- <HR />
1644
- <A HREF="s.html">back to matrix types</A><BR>
1645
- <A HREF="s.html">back to data types</A>
1646
- </BODY>
1647
- </HTML>