ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/ssy.html DELETED
@@ -1,3438 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>REAL routines for symmetric matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>REAL routines for symmetric matrix</H1>
8
- <UL>
9
- <LI><A HREF="#ssycon">ssycon</A></LI>
10
- <LI><A HREF="#ssyconv">ssyconv</A></LI>
11
- <LI><A HREF="#ssyequb">ssyequb</A></LI>
12
- <LI><A HREF="#ssyev">ssyev</A></LI>
13
- <LI><A HREF="#ssyevd">ssyevd</A></LI>
14
- <LI><A HREF="#ssyevr">ssyevr</A></LI>
15
- <LI><A HREF="#ssyevx">ssyevx</A></LI>
16
- <LI><A HREF="#ssygs2">ssygs2</A></LI>
17
- <LI><A HREF="#ssygst">ssygst</A></LI>
18
- <LI><A HREF="#ssygv">ssygv</A></LI>
19
- <LI><A HREF="#ssygvd">ssygvd</A></LI>
20
- <LI><A HREF="#ssygvx">ssygvx</A></LI>
21
- <LI><A HREF="#ssyrfs">ssyrfs</A></LI>
22
- <LI><A HREF="#ssyrfsx">ssyrfsx</A></LI>
23
- <LI><A HREF="#ssysv">ssysv</A></LI>
24
- <LI><A HREF="#ssysvx">ssysvx</A></LI>
25
- <LI><A HREF="#ssysvxx">ssysvxx</A></LI>
26
- <LI><A HREF="#ssyswapr">ssyswapr</A></LI>
27
- <LI><A HREF="#ssytd2">ssytd2</A></LI>
28
- <LI><A HREF="#ssytf2">ssytf2</A></LI>
29
- <LI><A HREF="#ssytrd">ssytrd</A></LI>
30
- <LI><A HREF="#ssytrf">ssytrf</A></LI>
31
- <LI><A HREF="#ssytri">ssytri</A></LI>
32
- <LI><A HREF="#ssytri2">ssytri2</A></LI>
33
- <LI><A HREF="#ssytri2x">ssytri2x</A></LI>
34
- <LI><A HREF="#ssytrs">ssytrs</A></LI>
35
- <LI><A HREF="#ssytrs2">ssytrs2</A></LI>
36
- </UL>
37
-
38
- <A NAME="ssycon"></A>
39
- <H2>ssycon</H2>
40
- <PRE>
41
- USAGE:
42
- rcond, info = NumRu::Lapack.ssycon( uplo, a, ipiv, anorm, [:usage => usage, :help => help])
43
-
44
-
45
- FORTRAN MANUAL
46
- SUBROUTINE SSYCON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
47
-
48
- * Purpose
49
- * =======
50
- *
51
- * SSYCON estimates the reciprocal of the condition number (in the
52
- * 1-norm) of a real symmetric matrix A using the factorization
53
- * A = U*D*U**T or A = L*D*L**T computed by SSYTRF.
54
- *
55
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
56
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
57
- *
58
-
59
- * Arguments
60
- * =========
61
- *
62
- * UPLO (input) CHARACTER*1
63
- * Specifies whether the details of the factorization are stored
64
- * as an upper or lower triangular matrix.
65
- * = 'U': Upper triangular, form is A = U*D*U**T;
66
- * = 'L': Lower triangular, form is A = L*D*L**T.
67
- *
68
- * N (input) INTEGER
69
- * The order of the matrix A. N >= 0.
70
- *
71
- * A (input) REAL array, dimension (LDA,N)
72
- * The block diagonal matrix D and the multipliers used to
73
- * obtain the factor U or L as computed by SSYTRF.
74
- *
75
- * LDA (input) INTEGER
76
- * The leading dimension of the array A. LDA >= max(1,N).
77
- *
78
- * IPIV (input) INTEGER array, dimension (N)
79
- * Details of the interchanges and the block structure of D
80
- * as determined by SSYTRF.
81
- *
82
- * ANORM (input) REAL
83
- * The 1-norm of the original matrix A.
84
- *
85
- * RCOND (output) REAL
86
- * The reciprocal of the condition number of the matrix A,
87
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
88
- * estimate of the 1-norm of inv(A) computed in this routine.
89
- *
90
- * WORK (workspace) REAL array, dimension (2*N)
91
- *
92
- * IWORK (workspace) INTEGER array, dimension (N)
93
- *
94
- * INFO (output) INTEGER
95
- * = 0: successful exit
96
- * < 0: if INFO = -i, the i-th argument had an illegal value
97
- *
98
-
99
- * =====================================================================
100
- *
101
-
102
-
103
- </PRE>
104
- <A HREF="#top">go to the page top</A>
105
-
106
- <A NAME="ssyconv"></A>
107
- <H2>ssyconv</H2>
108
- <PRE>
109
- USAGE:
110
- info = NumRu::Lapack.ssyconv( uplo, way, a, ipiv, [:usage => usage, :help => help])
111
-
112
-
113
- FORTRAN MANUAL
114
- SUBROUTINE SSYCONV( UPLO, WAY, N, A, LDA, IPIV, WORK, INFO )
115
-
116
- * Purpose
117
- * =======
118
- *
119
- * SSYCONV convert A given by TRF into L and D and vice-versa.
120
- * Get Non-diag elements of D (returned in workspace) and
121
- * apply or reverse permutation done in TRF.
122
- *
123
-
124
- * Arguments
125
- * =========
126
- *
127
- * UPLO (input) CHARACTER*1
128
- * Specifies whether the details of the factorization are stored
129
- * as an upper or lower triangular matrix.
130
- * = 'U': Upper triangular, form is A = U*D*U**T;
131
- * = 'L': Lower triangular, form is A = L*D*L**T.
132
- *
133
- * WAY (input) CHARACTER*1
134
- * = 'C': Convert
135
- * = 'R': Revert
136
- *
137
- * N (input) INTEGER
138
- * The order of the matrix A. N >= 0.
139
- *
140
- * A (input) REAL array, dimension (LDA,N)
141
- * The block diagonal matrix D and the multipliers used to
142
- * obtain the factor U or L as computed by SSYTRF.
143
- *
144
- * LDA (input) INTEGER
145
- * The leading dimension of the array A. LDA >= max(1,N).
146
- *
147
- * IPIV (input) INTEGER array, dimension (N)
148
- * Details of the interchanges and the block structure of D
149
- * as determined by SSYTRF.
150
- *
151
- * WORK (workspace) REAL array, dimension (N)
152
- *
153
- * LWORK (input) INTEGER
154
- * The length of WORK. LWORK >=1.
155
- * LWORK = N
156
- *
157
- * If LWORK = -1, then a workspace query is assumed; the routine
158
- * only calculates the optimal size of the WORK array, returns
159
- * this value as the first entry of the WORK array, and no error
160
- * message related to LWORK is issued by XERBLA.
161
- *
162
- * INFO (output) INTEGER
163
- * = 0: successful exit
164
- * < 0: if INFO = -i, the i-th argument had an illegal value
165
- *
166
-
167
- * =====================================================================
168
- *
169
-
170
-
171
- </PRE>
172
- <A HREF="#top">go to the page top</A>
173
-
174
- <A NAME="ssyequb"></A>
175
- <H2>ssyequb</H2>
176
- <PRE>
177
- USAGE:
178
- s, scond, amax, info = NumRu::Lapack.ssyequb( uplo, a, [:usage => usage, :help => help])
179
-
180
-
181
- FORTRAN MANUAL
182
- SUBROUTINE SSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
183
-
184
- * Purpose
185
- * =======
186
- *
187
- * SSYEQUB computes row and column scalings intended to equilibrate a
188
- * symmetric matrix A and reduce its condition number
189
- * (with respect to the two-norm). S contains the scale factors,
190
- * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
191
- * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
192
- * choice of S puts the condition number of B within a factor N of the
193
- * smallest possible condition number over all possible diagonal
194
- * scalings.
195
- *
196
-
197
- * Arguments
198
- * =========
199
- *
200
- * UPLO (input) CHARACTER*1
201
- * Specifies whether the details of the factorization are stored
202
- * as an upper or lower triangular matrix.
203
- * = 'U': Upper triangular, form is A = U*D*U**T;
204
- * = 'L': Lower triangular, form is A = L*D*L**T.
205
- *
206
- * N (input) INTEGER
207
- * The order of the matrix A. N >= 0.
208
- *
209
- * A (input) REAL array, dimension (LDA,N)
210
- * The N-by-N symmetric matrix whose scaling
211
- * factors are to be computed. Only the diagonal elements of A
212
- * are referenced.
213
- *
214
- * LDA (input) INTEGER
215
- * The leading dimension of the array A. LDA >= max(1,N).
216
- *
217
- * S (output) REAL array, dimension (N)
218
- * If INFO = 0, S contains the scale factors for A.
219
- *
220
- * SCOND (output) REAL
221
- * If INFO = 0, S contains the ratio of the smallest S(i) to
222
- * the largest S(i). If SCOND >= 0.1 and AMAX is neither too
223
- * large nor too small, it is not worth scaling by S.
224
- *
225
- * AMAX (output) REAL
226
- * Absolute value of largest matrix element. If AMAX is very
227
- * close to overflow or very close to underflow, the matrix
228
- * should be scaled.
229
- *
230
- * WORK (workspace) REAL array, dimension (3*N)
231
- *
232
- * INFO (output) INTEGER
233
- * = 0: successful exit
234
- * < 0: if INFO = -i, the i-th argument had an illegal value
235
- * > 0: if INFO = i, the i-th diagonal element is nonpositive.
236
- *
237
-
238
- * Further Details
239
- * ======= =======
240
- *
241
- * Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
242
- * Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
243
- * DOI 10.1023/B:NUMA.0000016606.32820.69
244
- * Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
245
- *
246
- * =====================================================================
247
- *
248
-
249
-
250
- </PRE>
251
- <A HREF="#top">go to the page top</A>
252
-
253
- <A NAME="ssyev"></A>
254
- <H2>ssyev</H2>
255
- <PRE>
256
- USAGE:
257
- w, work, info, a = NumRu::Lapack.ssyev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])
258
-
259
-
260
- FORTRAN MANUAL
261
- SUBROUTINE SSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
262
-
263
- * Purpose
264
- * =======
265
- *
266
- * SSYEV computes all eigenvalues and, optionally, eigenvectors of a
267
- * real symmetric matrix A.
268
- *
269
-
270
- * Arguments
271
- * =========
272
- *
273
- * JOBZ (input) CHARACTER*1
274
- * = 'N': Compute eigenvalues only;
275
- * = 'V': Compute eigenvalues and eigenvectors.
276
- *
277
- * UPLO (input) CHARACTER*1
278
- * = 'U': Upper triangle of A is stored;
279
- * = 'L': Lower triangle of A is stored.
280
- *
281
- * N (input) INTEGER
282
- * The order of the matrix A. N >= 0.
283
- *
284
- * A (input/output) REAL array, dimension (LDA, N)
285
- * On entry, the symmetric matrix A. If UPLO = 'U', the
286
- * leading N-by-N upper triangular part of A contains the
287
- * upper triangular part of the matrix A. If UPLO = 'L',
288
- * the leading N-by-N lower triangular part of A contains
289
- * the lower triangular part of the matrix A.
290
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
291
- * orthonormal eigenvectors of the matrix A.
292
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
293
- * or the upper triangle (if UPLO='U') of A, including the
294
- * diagonal, is destroyed.
295
- *
296
- * LDA (input) INTEGER
297
- * The leading dimension of the array A. LDA >= max(1,N).
298
- *
299
- * W (output) REAL array, dimension (N)
300
- * If INFO = 0, the eigenvalues in ascending order.
301
- *
302
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
303
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
304
- *
305
- * LWORK (input) INTEGER
306
- * The length of the array WORK. LWORK >= max(1,3*N-1).
307
- * For optimal efficiency, LWORK >= (NB+2)*N,
308
- * where NB is the blocksize for SSYTRD returned by ILAENV.
309
- *
310
- * If LWORK = -1, then a workspace query is assumed; the routine
311
- * only calculates the optimal size of the WORK array, returns
312
- * this value as the first entry of the WORK array, and no error
313
- * message related to LWORK is issued by XERBLA.
314
- *
315
- * INFO (output) INTEGER
316
- * = 0: successful exit
317
- * < 0: if INFO = -i, the i-th argument had an illegal value
318
- * > 0: if INFO = i, the algorithm failed to converge; i
319
- * off-diagonal elements of an intermediate tridiagonal
320
- * form did not converge to zero.
321
- *
322
-
323
- * =====================================================================
324
- *
325
-
326
-
327
- </PRE>
328
- <A HREF="#top">go to the page top</A>
329
-
330
- <A NAME="ssyevd"></A>
331
- <H2>ssyevd</H2>
332
- <PRE>
333
- USAGE:
334
- w, work, iwork, info, a = NumRu::Lapack.ssyevd( jobz, uplo, a, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
335
-
336
-
337
- FORTRAN MANUAL
338
- SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO )
339
-
340
- * Purpose
341
- * =======
342
- *
343
- * SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
344
- * real symmetric matrix A. If eigenvectors are desired, it uses a
345
- * divide and conquer algorithm.
346
- *
347
- * The divide and conquer algorithm makes very mild assumptions about
348
- * floating point arithmetic. It will work on machines with a guard
349
- * digit in add/subtract, or on those binary machines without guard
350
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
351
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
352
- * without guard digits, but we know of none.
353
- *
354
- * Because of large use of BLAS of level 3, SSYEVD needs N**2 more
355
- * workspace than SSYEVX.
356
- *
357
-
358
- * Arguments
359
- * =========
360
- *
361
- * JOBZ (input) CHARACTER*1
362
- * = 'N': Compute eigenvalues only;
363
- * = 'V': Compute eigenvalues and eigenvectors.
364
- *
365
- * UPLO (input) CHARACTER*1
366
- * = 'U': Upper triangle of A is stored;
367
- * = 'L': Lower triangle of A is stored.
368
- *
369
- * N (input) INTEGER
370
- * The order of the matrix A. N >= 0.
371
- *
372
- * A (input/output) REAL array, dimension (LDA, N)
373
- * On entry, the symmetric matrix A. If UPLO = 'U', the
374
- * leading N-by-N upper triangular part of A contains the
375
- * upper triangular part of the matrix A. If UPLO = 'L',
376
- * the leading N-by-N lower triangular part of A contains
377
- * the lower triangular part of the matrix A.
378
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
379
- * orthonormal eigenvectors of the matrix A.
380
- * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
381
- * or the upper triangle (if UPLO='U') of A, including the
382
- * diagonal, is destroyed.
383
- *
384
- * LDA (input) INTEGER
385
- * The leading dimension of the array A. LDA >= max(1,N).
386
- *
387
- * W (output) REAL array, dimension (N)
388
- * If INFO = 0, the eigenvalues in ascending order.
389
- *
390
- * WORK (workspace/output) REAL array,
391
- * dimension (LWORK)
392
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
393
- *
394
- * LWORK (input) INTEGER
395
- * The dimension of the array WORK.
396
- * If N <= 1, LWORK must be at least 1.
397
- * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
398
- * If JOBZ = 'V' and N > 1, LWORK must be at least
399
- * 1 + 6*N + 2*N**2.
400
- *
401
- * If LWORK = -1, then a workspace query is assumed; the routine
402
- * only calculates the optimal sizes of the WORK and IWORK
403
- * arrays, returns these values as the first entries of the WORK
404
- * and IWORK arrays, and no error message related to LWORK or
405
- * LIWORK is issued by XERBLA.
406
- *
407
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
408
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
409
- *
410
- * LIWORK (input) INTEGER
411
- * The dimension of the array IWORK.
412
- * If N <= 1, LIWORK must be at least 1.
413
- * If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
414
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
415
- *
416
- * If LIWORK = -1, then a workspace query is assumed; the
417
- * routine only calculates the optimal sizes of the WORK and
418
- * IWORK arrays, returns these values as the first entries of
419
- * the WORK and IWORK arrays, and no error message related to
420
- * LWORK or LIWORK is issued by XERBLA.
421
- *
422
- * INFO (output) INTEGER
423
- * = 0: successful exit
424
- * < 0: if INFO = -i, the i-th argument had an illegal value
425
- * > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
426
- * to converge; i off-diagonal elements of an intermediate
427
- * tridiagonal form did not converge to zero;
428
- * if INFO = i and JOBZ = 'V', then the algorithm failed
429
- * to compute an eigenvalue while working on the submatrix
430
- * lying in rows and columns INFO/(N+1) through
431
- * mod(INFO,N+1).
432
- *
433
-
434
- * Further Details
435
- * ===============
436
- *
437
- * Based on contributions by
438
- * Jeff Rutter, Computer Science Division, University of California
439
- * at Berkeley, USA
440
- * Modified by Francoise Tisseur, University of Tennessee.
441
- *
442
- * Modified description of INFO. Sven, 16 Feb 05.
443
- * =====================================================================
444
- *
445
-
446
-
447
- </PRE>
448
- <A HREF="#top">go to the page top</A>
449
-
450
- <A NAME="ssyevr"></A>
451
- <H2>ssyevr</H2>
452
- <PRE>
453
- USAGE:
454
- m, w, z, isuppz, work, iwork, info, a = NumRu::Lapack.ssyevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
455
-
456
-
457
- FORTRAN MANUAL
458
- SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
459
-
460
- * Purpose
461
- * =======
462
- *
463
- * SSYEVR computes selected eigenvalues and, optionally, eigenvectors
464
- * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
465
- * selected by specifying either a range of values or a range of
466
- * indices for the desired eigenvalues.
467
- *
468
- * SSYEVR first reduces the matrix A to tridiagonal form T with a call
469
- * to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute
470
- * the eigenspectrum using Relatively Robust Representations. SSTEMR
471
- * computes eigenvalues by the dqds algorithm, while orthogonal
472
- * eigenvectors are computed from various "good" L D L^T representations
473
- * (also known as Relatively Robust Representations). Gram-Schmidt
474
- * orthogonalization is avoided as far as possible. More specifically,
475
- * the various steps of the algorithm are as follows.
476
- *
477
- * For each unreduced block (submatrix) of T,
478
- * (a) Compute T - sigma I = L D L^T, so that L and D
479
- * define all the wanted eigenvalues to high relative accuracy.
480
- * This means that small relative changes in the entries of D and L
481
- * cause only small relative changes in the eigenvalues and
482
- * eigenvectors. The standard (unfactored) representation of the
483
- * tridiagonal matrix T does not have this property in general.
484
- * (b) Compute the eigenvalues to suitable accuracy.
485
- * If the eigenvectors are desired, the algorithm attains full
486
- * accuracy of the computed eigenvalues only right before
487
- * the corresponding vectors have to be computed, see steps c) and d).
488
- * (c) For each cluster of close eigenvalues, select a new
489
- * shift close to the cluster, find a new factorization, and refine
490
- * the shifted eigenvalues to suitable accuracy.
491
- * (d) For each eigenvalue with a large enough relative separation compute
492
- * the corresponding eigenvector by forming a rank revealing twisted
493
- * factorization. Go back to (c) for any clusters that remain.
494
- *
495
- * The desired accuracy of the output can be specified by the input
496
- * parameter ABSTOL.
497
- *
498
- * For more details, see SSTEMR's documentation and:
499
- * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
500
- * to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
501
- * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
502
- * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
503
- * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
504
- * 2004. Also LAPACK Working Note 154.
505
- * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
506
- * tridiagonal eigenvalue/eigenvector problem",
507
- * Computer Science Division Technical Report No. UCB/CSD-97-971,
508
- * UC Berkeley, May 1997.
509
- *
510
- *
511
- * Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
512
- * on machines which conform to the ieee-754 floating point standard.
513
- * SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
514
- * when partial spectrum requests are made.
515
- *
516
- * Normal execution of SSTEMR may create NaNs and infinities and
517
- * hence may abort due to a floating point exception in environments
518
- * which do not handle NaNs and infinities in the ieee standard default
519
- * manner.
520
- *
521
-
522
- * Arguments
523
- * =========
524
- *
525
- * JOBZ (input) CHARACTER*1
526
- * = 'N': Compute eigenvalues only;
527
- * = 'V': Compute eigenvalues and eigenvectors.
528
- *
529
- * RANGE (input) CHARACTER*1
530
- * = 'A': all eigenvalues will be found.
531
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
532
- * will be found.
533
- * = 'I': the IL-th through IU-th eigenvalues will be found.
534
- ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
535
- ********** SSTEIN are called
536
- *
537
- * UPLO (input) CHARACTER*1
538
- * = 'U': Upper triangle of A is stored;
539
- * = 'L': Lower triangle of A is stored.
540
- *
541
- * N (input) INTEGER
542
- * The order of the matrix A. N >= 0.
543
- *
544
- * A (input/output) REAL array, dimension (LDA, N)
545
- * On entry, the symmetric matrix A. If UPLO = 'U', the
546
- * leading N-by-N upper triangular part of A contains the
547
- * upper triangular part of the matrix A. If UPLO = 'L',
548
- * the leading N-by-N lower triangular part of A contains
549
- * the lower triangular part of the matrix A.
550
- * On exit, the lower triangle (if UPLO='L') or the upper
551
- * triangle (if UPLO='U') of A, including the diagonal, is
552
- * destroyed.
553
- *
554
- * LDA (input) INTEGER
555
- * The leading dimension of the array A. LDA >= max(1,N).
556
- *
557
- * VL (input) REAL
558
- * VU (input) REAL
559
- * If RANGE='V', the lower and upper bounds of the interval to
560
- * be searched for eigenvalues. VL < VU.
561
- * Not referenced if RANGE = 'A' or 'I'.
562
- *
563
- * IL (input) INTEGER
564
- * IU (input) INTEGER
565
- * If RANGE='I', the indices (in ascending order) of the
566
- * smallest and largest eigenvalues to be returned.
567
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
568
- * Not referenced if RANGE = 'A' or 'V'.
569
- *
570
- * ABSTOL (input) REAL
571
- * The absolute error tolerance for the eigenvalues.
572
- * An approximate eigenvalue is accepted as converged
573
- * when it is determined to lie in an interval [a,b]
574
- * of width less than or equal to
575
- *
576
- * ABSTOL + EPS * max( |a|,|b| ) ,
577
- *
578
- * where EPS is the machine precision. If ABSTOL is less than
579
- * or equal to zero, then EPS*|T| will be used in its place,
580
- * where |T| is the 1-norm of the tridiagonal matrix obtained
581
- * by reducing A to tridiagonal form.
582
- *
583
- * See "Computing Small Singular Values of Bidiagonal Matrices
584
- * with Guaranteed High Relative Accuracy," by Demmel and
585
- * Kahan, LAPACK Working Note #3.
586
- *
587
- * If high relative accuracy is important, set ABSTOL to
588
- * SLAMCH( 'Safe minimum' ). Doing so will guarantee that
589
- * eigenvalues are computed to high relative accuracy when
590
- * possible in future releases. The current code does not
591
- * make any guarantees about high relative accuracy, but
592
- * future releases will. See J. Barlow and J. Demmel,
593
- * "Computing Accurate Eigensystems of Scaled Diagonally
594
- * Dominant Matrices", LAPACK Working Note #7, for a discussion
595
- * of which matrices define their eigenvalues to high relative
596
- * accuracy.
597
- *
598
- * M (output) INTEGER
599
- * The total number of eigenvalues found. 0 <= M <= N.
600
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
601
- *
602
- * W (output) REAL array, dimension (N)
603
- * The first M elements contain the selected eigenvalues in
604
- * ascending order.
605
- *
606
- * Z (output) REAL array, dimension (LDZ, max(1,M))
607
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
608
- * contain the orthonormal eigenvectors of the matrix A
609
- * corresponding to the selected eigenvalues, with the i-th
610
- * column of Z holding the eigenvector associated with W(i).
611
- * If JOBZ = 'N', then Z is not referenced.
612
- * Note: the user must ensure that at least max(1,M) columns are
613
- * supplied in the array Z; if RANGE = 'V', the exact value of M
614
- * is not known in advance and an upper bound must be used.
615
- * Supplying N columns is always safe.
616
- *
617
- * LDZ (input) INTEGER
618
- * The leading dimension of the array Z. LDZ >= 1, and if
619
- * JOBZ = 'V', LDZ >= max(1,N).
620
- *
621
- * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
622
- * The support of the eigenvectors in Z, i.e., the indices
623
- * indicating the nonzero elements in Z. The i-th eigenvector
624
- * is nonzero only in elements ISUPPZ( 2*i-1 ) through
625
- * ISUPPZ( 2*i ).
626
- ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
627
- *
628
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
629
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
630
- *
631
- * LWORK (input) INTEGER
632
- * The dimension of the array WORK. LWORK >= max(1,26*N).
633
- * For optimal efficiency, LWORK >= (NB+6)*N,
634
- * where NB is the max of the blocksize for SSYTRD and SORMTR
635
- * returned by ILAENV.
636
- *
637
- * If LWORK = -1, then a workspace query is assumed; the routine
638
- * only calculates the optimal sizes of the WORK and IWORK
639
- * arrays, returns these values as the first entries of the WORK
640
- * and IWORK arrays, and no error message related to LWORK or
641
- * LIWORK is issued by XERBLA.
642
- *
643
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
644
- * On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
645
- *
646
- * LIWORK (input) INTEGER
647
- * The dimension of the array IWORK. LIWORK >= max(1,10*N).
648
- *
649
- * If LIWORK = -1, then a workspace query is assumed; the
650
- * routine only calculates the optimal sizes of the WORK and
651
- * IWORK arrays, returns these values as the first entries of
652
- * the WORK and IWORK arrays, and no error message related to
653
- * LWORK or LIWORK is issued by XERBLA.
654
- *
655
- * INFO (output) INTEGER
656
- * = 0: successful exit
657
- * < 0: if INFO = -i, the i-th argument had an illegal value
658
- * > 0: Internal error
659
- *
660
-
661
- * Further Details
662
- * ===============
663
- *
664
- * Based on contributions by
665
- * Inderjit Dhillon, IBM Almaden, USA
666
- * Osni Marques, LBNL/NERSC, USA
667
- * Ken Stanley, Computer Science Division, University of
668
- * California at Berkeley, USA
669
- * Jason Riedy, Computer Science Division, University of
670
- * California at Berkeley, USA
671
- *
672
- * =====================================================================
673
- *
674
-
675
-
676
- </PRE>
677
- <A HREF="#top">go to the page top</A>
678
-
679
- <A NAME="ssyevx"></A>
680
- <H2>ssyevx</H2>
681
- <PRE>
682
- USAGE:
683
- m, w, z, work, ifail, info, a = NumRu::Lapack.ssyevx( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
684
-
685
-
686
- FORTRAN MANUAL
687
- SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
688
-
689
- * Purpose
690
- * =======
691
- *
692
- * SSYEVX computes selected eigenvalues and, optionally, eigenvectors
693
- * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
694
- * selected by specifying either a range of values or a range of indices
695
- * for the desired eigenvalues.
696
- *
697
-
698
- * Arguments
699
- * =========
700
- *
701
- * JOBZ (input) CHARACTER*1
702
- * = 'N': Compute eigenvalues only;
703
- * = 'V': Compute eigenvalues and eigenvectors.
704
- *
705
- * RANGE (input) CHARACTER*1
706
- * = 'A': all eigenvalues will be found.
707
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
708
- * will be found.
709
- * = 'I': the IL-th through IU-th eigenvalues will be found.
710
- *
711
- * UPLO (input) CHARACTER*1
712
- * = 'U': Upper triangle of A is stored;
713
- * = 'L': Lower triangle of A is stored.
714
- *
715
- * N (input) INTEGER
716
- * The order of the matrix A. N >= 0.
717
- *
718
- * A (input/output) REAL array, dimension (LDA, N)
719
- * On entry, the symmetric matrix A. If UPLO = 'U', the
720
- * leading N-by-N upper triangular part of A contains the
721
- * upper triangular part of the matrix A. If UPLO = 'L',
722
- * the leading N-by-N lower triangular part of A contains
723
- * the lower triangular part of the matrix A.
724
- * On exit, the lower triangle (if UPLO='L') or the upper
725
- * triangle (if UPLO='U') of A, including the diagonal, is
726
- * destroyed.
727
- *
728
- * LDA (input) INTEGER
729
- * The leading dimension of the array A. LDA >= max(1,N).
730
- *
731
- * VL (input) REAL
732
- * VU (input) REAL
733
- * If RANGE='V', the lower and upper bounds of the interval to
734
- * be searched for eigenvalues. VL < VU.
735
- * Not referenced if RANGE = 'A' or 'I'.
736
- *
737
- * IL (input) INTEGER
738
- * IU (input) INTEGER
739
- * If RANGE='I', the indices (in ascending order) of the
740
- * smallest and largest eigenvalues to be returned.
741
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
742
- * Not referenced if RANGE = 'A' or 'V'.
743
- *
744
- * ABSTOL (input) REAL
745
- * The absolute error tolerance for the eigenvalues.
746
- * An approximate eigenvalue is accepted as converged
747
- * when it is determined to lie in an interval [a,b]
748
- * of width less than or equal to
749
- *
750
- * ABSTOL + EPS * max( |a|,|b| ) ,
751
- *
752
- * where EPS is the machine precision. If ABSTOL is less than
753
- * or equal to zero, then EPS*|T| will be used in its place,
754
- * where |T| is the 1-norm of the tridiagonal matrix obtained
755
- * by reducing A to tridiagonal form.
756
- *
757
- * Eigenvalues will be computed most accurately when ABSTOL is
758
- * set to twice the underflow threshold 2*SLAMCH('S'), not zero.
759
- * If this routine returns with INFO>0, indicating that some
760
- * eigenvectors did not converge, try setting ABSTOL to
761
- * 2*SLAMCH('S').
762
- *
763
- * See "Computing Small Singular Values of Bidiagonal Matrices
764
- * with Guaranteed High Relative Accuracy," by Demmel and
765
- * Kahan, LAPACK Working Note #3.
766
- *
767
- * M (output) INTEGER
768
- * The total number of eigenvalues found. 0 <= M <= N.
769
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
770
- *
771
- * W (output) REAL array, dimension (N)
772
- * On normal exit, the first M elements contain the selected
773
- * eigenvalues in ascending order.
774
- *
775
- * Z (output) REAL array, dimension (LDZ, max(1,M))
776
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
777
- * contain the orthonormal eigenvectors of the matrix A
778
- * corresponding to the selected eigenvalues, with the i-th
779
- * column of Z holding the eigenvector associated with W(i).
780
- * If an eigenvector fails to converge, then that column of Z
781
- * contains the latest approximation to the eigenvector, and the
782
- * index of the eigenvector is returned in IFAIL.
783
- * If JOBZ = 'N', then Z is not referenced.
784
- * Note: the user must ensure that at least max(1,M) columns are
785
- * supplied in the array Z; if RANGE = 'V', the exact value of M
786
- * is not known in advance and an upper bound must be used.
787
- *
788
- * LDZ (input) INTEGER
789
- * The leading dimension of the array Z. LDZ >= 1, and if
790
- * JOBZ = 'V', LDZ >= max(1,N).
791
- *
792
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
793
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
794
- *
795
- * LWORK (input) INTEGER
796
- * The length of the array WORK. LWORK >= 1, when N <= 1;
797
- * otherwise 8*N.
798
- * For optimal efficiency, LWORK >= (NB+3)*N,
799
- * where NB is the max of the blocksize for SSYTRD and SORMTR
800
- * returned by ILAENV.
801
- *
802
- * If LWORK = -1, then a workspace query is assumed; the routine
803
- * only calculates the optimal size of the WORK array, returns
804
- * this value as the first entry of the WORK array, and no error
805
- * message related to LWORK is issued by XERBLA.
806
- *
807
- * IWORK (workspace) INTEGER array, dimension (5*N)
808
- *
809
- * IFAIL (output) INTEGER array, dimension (N)
810
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
811
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
812
- * indices of the eigenvectors that failed to converge.
813
- * If JOBZ = 'N', then IFAIL is not referenced.
814
- *
815
- * INFO (output) INTEGER
816
- * = 0: successful exit
817
- * < 0: if INFO = -i, the i-th argument had an illegal value
818
- * > 0: if INFO = i, then i eigenvectors failed to converge.
819
- * Their indices are stored in array IFAIL.
820
- *
821
-
822
- * =====================================================================
823
- *
824
-
825
-
826
- </PRE>
827
- <A HREF="#top">go to the page top</A>
828
-
829
- <A NAME="ssygs2"></A>
830
- <H2>ssygs2</H2>
831
- <PRE>
832
- USAGE:
833
- info, a = NumRu::Lapack.ssygs2( itype, uplo, a, b, [:usage => usage, :help => help])
834
-
835
-
836
- FORTRAN MANUAL
837
- SUBROUTINE SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
838
-
839
- * Purpose
840
- * =======
841
- *
842
- * SSYGS2 reduces a real symmetric-definite generalized eigenproblem
843
- * to standard form.
844
- *
845
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
846
- * and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
847
- *
848
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
849
- * B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
850
- *
851
- * B must have been previously factorized as U'*U or L*L' by SPOTRF.
852
- *
853
-
854
- * Arguments
855
- * =========
856
- *
857
- * ITYPE (input) INTEGER
858
- * = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
859
- * = 2 or 3: compute U*A*U' or L'*A*L.
860
- *
861
- * UPLO (input) CHARACTER*1
862
- * Specifies whether the upper or lower triangular part of the
863
- * symmetric matrix A is stored, and how B has been factorized.
864
- * = 'U': Upper triangular
865
- * = 'L': Lower triangular
866
- *
867
- * N (input) INTEGER
868
- * The order of the matrices A and B. N >= 0.
869
- *
870
- * A (input/output) REAL array, dimension (LDA,N)
871
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
872
- * n by n upper triangular part of A contains the upper
873
- * triangular part of the matrix A, and the strictly lower
874
- * triangular part of A is not referenced. If UPLO = 'L', the
875
- * leading n by n lower triangular part of A contains the lower
876
- * triangular part of the matrix A, and the strictly upper
877
- * triangular part of A is not referenced.
878
- *
879
- * On exit, if INFO = 0, the transformed matrix, stored in the
880
- * same format as A.
881
- *
882
- * LDA (input) INTEGER
883
- * The leading dimension of the array A. LDA >= max(1,N).
884
- *
885
- * B (input) REAL array, dimension (LDB,N)
886
- * The triangular factor from the Cholesky factorization of B,
887
- * as returned by SPOTRF.
888
- *
889
- * LDB (input) INTEGER
890
- * The leading dimension of the array B. LDB >= max(1,N).
891
- *
892
- * INFO (output) INTEGER
893
- * = 0: successful exit.
894
- * < 0: if INFO = -i, the i-th argument had an illegal value.
895
- *
896
-
897
- * =====================================================================
898
- *
899
-
900
-
901
- </PRE>
902
- <A HREF="#top">go to the page top</A>
903
-
904
- <A NAME="ssygst"></A>
905
- <H2>ssygst</H2>
906
- <PRE>
907
- USAGE:
908
- info, a = NumRu::Lapack.ssygst( itype, uplo, a, b, [:usage => usage, :help => help])
909
-
910
-
911
- FORTRAN MANUAL
912
- SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
913
-
914
- * Purpose
915
- * =======
916
- *
917
- * SSYGST reduces a real symmetric-definite generalized eigenproblem
918
- * to standard form.
919
- *
920
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
921
- * and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
922
- *
923
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
924
- * B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
925
- *
926
- * B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
927
- *
928
-
929
- * Arguments
930
- * =========
931
- *
932
- * ITYPE (input) INTEGER
933
- * = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
934
- * = 2 or 3: compute U*A*U**T or L**T*A*L.
935
- *
936
- * UPLO (input) CHARACTER*1
937
- * = 'U': Upper triangle of A is stored and B is factored as
938
- * U**T*U;
939
- * = 'L': Lower triangle of A is stored and B is factored as
940
- * L*L**T.
941
- *
942
- * N (input) INTEGER
943
- * The order of the matrices A and B. N >= 0.
944
- *
945
- * A (input/output) REAL array, dimension (LDA,N)
946
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
947
- * N-by-N upper triangular part of A contains the upper
948
- * triangular part of the matrix A, and the strictly lower
949
- * triangular part of A is not referenced. If UPLO = 'L', the
950
- * leading N-by-N lower triangular part of A contains the lower
951
- * triangular part of the matrix A, and the strictly upper
952
- * triangular part of A is not referenced.
953
- *
954
- * On exit, if INFO = 0, the transformed matrix, stored in the
955
- * same format as A.
956
- *
957
- * LDA (input) INTEGER
958
- * The leading dimension of the array A. LDA >= max(1,N).
959
- *
960
- * B (input) REAL array, dimension (LDB,N)
961
- * The triangular factor from the Cholesky factorization of B,
962
- * as returned by SPOTRF.
963
- *
964
- * LDB (input) INTEGER
965
- * The leading dimension of the array B. LDB >= max(1,N).
966
- *
967
- * INFO (output) INTEGER
968
- * = 0: successful exit
969
- * < 0: if INFO = -i, the i-th argument had an illegal value
970
- *
971
-
972
- * =====================================================================
973
- *
974
-
975
-
976
- </PRE>
977
- <A HREF="#top">go to the page top</A>
978
-
979
- <A NAME="ssygv"></A>
980
- <H2>ssygv</H2>
981
- <PRE>
982
- USAGE:
983
- w, work, info, a, b = NumRu::Lapack.ssygv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
984
-
985
-
986
- FORTRAN MANUAL
987
- SUBROUTINE SSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )
988
-
989
- * Purpose
990
- * =======
991
- *
992
- * SSYGV computes all the eigenvalues, and optionally, the eigenvectors
993
- * of a real generalized symmetric-definite eigenproblem, of the form
994
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
995
- * Here A and B are assumed to be symmetric and B is also
996
- * positive definite.
997
- *
998
-
999
- * Arguments
1000
- * =========
1001
- *
1002
- * ITYPE (input) INTEGER
1003
- * Specifies the problem type to be solved:
1004
- * = 1: A*x = (lambda)*B*x
1005
- * = 2: A*B*x = (lambda)*x
1006
- * = 3: B*A*x = (lambda)*x
1007
- *
1008
- * JOBZ (input) CHARACTER*1
1009
- * = 'N': Compute eigenvalues only;
1010
- * = 'V': Compute eigenvalues and eigenvectors.
1011
- *
1012
- * UPLO (input) CHARACTER*1
1013
- * = 'U': Upper triangles of A and B are stored;
1014
- * = 'L': Lower triangles of A and B are stored.
1015
- *
1016
- * N (input) INTEGER
1017
- * The order of the matrices A and B. N >= 0.
1018
- *
1019
- * A (input/output) REAL array, dimension (LDA, N)
1020
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1021
- * leading N-by-N upper triangular part of A contains the
1022
- * upper triangular part of the matrix A. If UPLO = 'L',
1023
- * the leading N-by-N lower triangular part of A contains
1024
- * the lower triangular part of the matrix A.
1025
- *
1026
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1027
- * matrix Z of eigenvectors. The eigenvectors are normalized
1028
- * as follows:
1029
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1030
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1031
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1032
- * or the lower triangle (if UPLO='L') of A, including the
1033
- * diagonal, is destroyed.
1034
- *
1035
- * LDA (input) INTEGER
1036
- * The leading dimension of the array A. LDA >= max(1,N).
1037
- *
1038
- * B (input/output) REAL array, dimension (LDB, N)
1039
- * On entry, the symmetric positive definite matrix B.
1040
- * If UPLO = 'U', the leading N-by-N upper triangular part of B
1041
- * contains the upper triangular part of the matrix B.
1042
- * If UPLO = 'L', the leading N-by-N lower triangular part of B
1043
- * contains the lower triangular part of the matrix B.
1044
- *
1045
- * On exit, if INFO <= N, the part of B containing the matrix is
1046
- * overwritten by the triangular factor U or L from the Cholesky
1047
- * factorization B = U**T*U or B = L*L**T.
1048
- *
1049
- * LDB (input) INTEGER
1050
- * The leading dimension of the array B. LDB >= max(1,N).
1051
- *
1052
- * W (output) REAL array, dimension (N)
1053
- * If INFO = 0, the eigenvalues in ascending order.
1054
- *
1055
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
1056
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1057
- *
1058
- * LWORK (input) INTEGER
1059
- * The length of the array WORK. LWORK >= max(1,3*N-1).
1060
- * For optimal efficiency, LWORK >= (NB+2)*N,
1061
- * where NB is the blocksize for SSYTRD returned by ILAENV.
1062
- *
1063
- * If LWORK = -1, then a workspace query is assumed; the routine
1064
- * only calculates the optimal size of the WORK array, returns
1065
- * this value as the first entry of the WORK array, and no error
1066
- * message related to LWORK is issued by XERBLA.
1067
- *
1068
- * INFO (output) INTEGER
1069
- * = 0: successful exit
1070
- * < 0: if INFO = -i, the i-th argument had an illegal value
1071
- * > 0: SPOTRF or SSYEV returned an error code:
1072
- * <= N: if INFO = i, SSYEV failed to converge;
1073
- * i off-diagonal elements of an intermediate
1074
- * tridiagonal form did not converge to zero;
1075
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1076
- * minor of order i of B is not positive definite.
1077
- * The factorization of B could not be completed and
1078
- * no eigenvalues or eigenvectors were computed.
1079
- *
1080
-
1081
- * =====================================================================
1082
- *
1083
-
1084
-
1085
- </PRE>
1086
- <A HREF="#top">go to the page top</A>
1087
-
1088
- <A NAME="ssygvd"></A>
1089
- <H2>ssygvd</H2>
1090
- <PRE>
1091
- USAGE:
1092
- w, work, iwork, info, a, b = NumRu::Lapack.ssygvd( itype, jobz, uplo, a, b, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
1093
-
1094
-
1095
- FORTRAN MANUAL
1096
- SUBROUTINE SSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, IWORK, LIWORK, INFO )
1097
-
1098
- * Purpose
1099
- * =======
1100
- *
1101
- * SSYGVD computes all the eigenvalues, and optionally, the eigenvectors
1102
- * of a real generalized symmetric-definite eigenproblem, of the form
1103
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
1104
- * B are assumed to be symmetric and B is also positive definite.
1105
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
1106
- *
1107
- * The divide and conquer algorithm makes very mild assumptions about
1108
- * floating point arithmetic. It will work on machines with a guard
1109
- * digit in add/subtract, or on those binary machines without guard
1110
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
1111
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
1112
- * without guard digits, but we know of none.
1113
- *
1114
-
1115
- * Arguments
1116
- * =========
1117
- *
1118
- * ITYPE (input) INTEGER
1119
- * Specifies the problem type to be solved:
1120
- * = 1: A*x = (lambda)*B*x
1121
- * = 2: A*B*x = (lambda)*x
1122
- * = 3: B*A*x = (lambda)*x
1123
- *
1124
- * JOBZ (input) CHARACTER*1
1125
- * = 'N': Compute eigenvalues only;
1126
- * = 'V': Compute eigenvalues and eigenvectors.
1127
- *
1128
- * UPLO (input) CHARACTER*1
1129
- * = 'U': Upper triangles of A and B are stored;
1130
- * = 'L': Lower triangles of A and B are stored.
1131
- *
1132
- * N (input) INTEGER
1133
- * The order of the matrices A and B. N >= 0.
1134
- *
1135
- * A (input/output) REAL array, dimension (LDA, N)
1136
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1137
- * leading N-by-N upper triangular part of A contains the
1138
- * upper triangular part of the matrix A. If UPLO = 'L',
1139
- * the leading N-by-N lower triangular part of A contains
1140
- * the lower triangular part of the matrix A.
1141
- *
1142
- * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1143
- * matrix Z of eigenvectors. The eigenvectors are normalized
1144
- * as follows:
1145
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1146
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1147
- * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1148
- * or the lower triangle (if UPLO='L') of A, including the
1149
- * diagonal, is destroyed.
1150
- *
1151
- * LDA (input) INTEGER
1152
- * The leading dimension of the array A. LDA >= max(1,N).
1153
- *
1154
- * B (input/output) REAL array, dimension (LDB, N)
1155
- * On entry, the symmetric matrix B. If UPLO = 'U', the
1156
- * leading N-by-N upper triangular part of B contains the
1157
- * upper triangular part of the matrix B. If UPLO = 'L',
1158
- * the leading N-by-N lower triangular part of B contains
1159
- * the lower triangular part of the matrix B.
1160
- *
1161
- * On exit, if INFO <= N, the part of B containing the matrix is
1162
- * overwritten by the triangular factor U or L from the Cholesky
1163
- * factorization B = U**T*U or B = L*L**T.
1164
- *
1165
- * LDB (input) INTEGER
1166
- * The leading dimension of the array B. LDB >= max(1,N).
1167
- *
1168
- * W (output) REAL array, dimension (N)
1169
- * If INFO = 0, the eigenvalues in ascending order.
1170
- *
1171
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
1172
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1173
- *
1174
- * LWORK (input) INTEGER
1175
- * The dimension of the array WORK.
1176
- * If N <= 1, LWORK >= 1.
1177
- * If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
1178
- * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
1179
- *
1180
- * If LWORK = -1, then a workspace query is assumed; the routine
1181
- * only calculates the optimal sizes of the WORK and IWORK
1182
- * arrays, returns these values as the first entries of the WORK
1183
- * and IWORK arrays, and no error message related to LWORK or
1184
- * LIWORK is issued by XERBLA.
1185
- *
1186
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1187
- * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1188
- *
1189
- * LIWORK (input) INTEGER
1190
- * The dimension of the array IWORK.
1191
- * If N <= 1, LIWORK >= 1.
1192
- * If JOBZ = 'N' and N > 1, LIWORK >= 1.
1193
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
1194
- *
1195
- * If LIWORK = -1, then a workspace query is assumed; the
1196
- * routine only calculates the optimal sizes of the WORK and
1197
- * IWORK arrays, returns these values as the first entries of
1198
- * the WORK and IWORK arrays, and no error message related to
1199
- * LWORK or LIWORK is issued by XERBLA.
1200
- *
1201
- * INFO (output) INTEGER
1202
- * = 0: successful exit
1203
- * < 0: if INFO = -i, the i-th argument had an illegal value
1204
- * > 0: SPOTRF or SSYEVD returned an error code:
1205
- * <= N: if INFO = i and JOBZ = 'N', then the algorithm
1206
- * failed to converge; i off-diagonal elements of an
1207
- * intermediate tridiagonal form did not converge to
1208
- * zero;
1209
- * if INFO = i and JOBZ = 'V', then the algorithm
1210
- * failed to compute an eigenvalue while working on
1211
- * the submatrix lying in rows and columns INFO/(N+1)
1212
- * through mod(INFO,N+1);
1213
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1214
- * minor of order i of B is not positive definite.
1215
- * The factorization of B could not be completed and
1216
- * no eigenvalues or eigenvectors were computed.
1217
- *
1218
-
1219
- * Further Details
1220
- * ===============
1221
- *
1222
- * Based on contributions by
1223
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1224
- *
1225
- * Modified so that no backsubstitution is performed if SSYEVD fails to
1226
- * converge (NEIG in old code could be greater than N causing out of
1227
- * bounds reference to A - reported by Ralf Meyer). Also corrected the
1228
- * description of INFO and the test on ITYPE. Sven, 16 Feb 05.
1229
- * =====================================================================
1230
- *
1231
-
1232
-
1233
- </PRE>
1234
- <A HREF="#top">go to the page top</A>
1235
-
1236
- <A NAME="ssygvx"></A>
1237
- <H2>ssygvx</H2>
1238
- <PRE>
1239
- USAGE:
1240
- m, w, z, work, ifail, info, a, b = NumRu::Lapack.ssygvx( itype, jobz, range, uplo, a, b, ldb, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
1241
-
1242
-
1243
- FORTRAN MANUAL
1244
- SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
1245
-
1246
- * Purpose
1247
- * =======
1248
- *
1249
- * SSYGVX computes selected eigenvalues, and optionally, eigenvectors
1250
- * of a real generalized symmetric-definite eigenproblem, of the form
1251
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
1252
- * and B are assumed to be symmetric and B is also positive definite.
1253
- * Eigenvalues and eigenvectors can be selected by specifying either a
1254
- * range of values or a range of indices for the desired eigenvalues.
1255
- *
1256
-
1257
- * Arguments
1258
- * =========
1259
- *
1260
- * ITYPE (input) INTEGER
1261
- * Specifies the problem type to be solved:
1262
- * = 1: A*x = (lambda)*B*x
1263
- * = 2: A*B*x = (lambda)*x
1264
- * = 3: B*A*x = (lambda)*x
1265
- *
1266
- * JOBZ (input) CHARACTER*1
1267
- * = 'N': Compute eigenvalues only;
1268
- * = 'V': Compute eigenvalues and eigenvectors.
1269
- *
1270
- * RANGE (input) CHARACTER*1
1271
- * = 'A': all eigenvalues will be found.
1272
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
1273
- * will be found.
1274
- * = 'I': the IL-th through IU-th eigenvalues will be found.
1275
- *
1276
- * UPLO (input) CHARACTER*1
1277
- * = 'U': Upper triangle of A and B are stored;
1278
- * = 'L': Lower triangle of A and B are stored.
1279
- *
1280
- * N (input) INTEGER
1281
- * The order of the matrix pencil (A,B). N >= 0.
1282
- *
1283
- * A (input/output) REAL array, dimension (LDA, N)
1284
- * On entry, the symmetric matrix A. If UPLO = 'U', the
1285
- * leading N-by-N upper triangular part of A contains the
1286
- * upper triangular part of the matrix A. If UPLO = 'L',
1287
- * the leading N-by-N lower triangular part of A contains
1288
- * the lower triangular part of the matrix A.
1289
- *
1290
- * On exit, the lower triangle (if UPLO='L') or the upper
1291
- * triangle (if UPLO='U') of A, including the diagonal, is
1292
- * destroyed.
1293
- *
1294
- * LDA (input) INTEGER
1295
- * The leading dimension of the array A. LDA >= max(1,N).
1296
- *
1297
- * B (input/output) REAL array, dimension (LDA, N)
1298
- * On entry, the symmetric matrix B. If UPLO = 'U', the
1299
- * leading N-by-N upper triangular part of B contains the
1300
- * upper triangular part of the matrix B. If UPLO = 'L',
1301
- * the leading N-by-N lower triangular part of B contains
1302
- * the lower triangular part of the matrix B.
1303
- *
1304
- * On exit, if INFO <= N, the part of B containing the matrix is
1305
- * overwritten by the triangular factor U or L from the Cholesky
1306
- * factorization B = U**T*U or B = L*L**T.
1307
- *
1308
- * LDB (input) INTEGER
1309
- * The leading dimension of the array B. LDB >= max(1,N).
1310
- *
1311
- * VL (input) REAL
1312
- * VU (input) REAL
1313
- * If RANGE='V', the lower and upper bounds of the interval to
1314
- * be searched for eigenvalues. VL < VU.
1315
- * Not referenced if RANGE = 'A' or 'I'.
1316
- *
1317
- * IL (input) INTEGER
1318
- * IU (input) INTEGER
1319
- * If RANGE='I', the indices (in ascending order) of the
1320
- * smallest and largest eigenvalues to be returned.
1321
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1322
- * Not referenced if RANGE = 'A' or 'V'.
1323
- *
1324
- * ABSTOL (input) REAL
1325
- * The absolute error tolerance for the eigenvalues.
1326
- * An approximate eigenvalue is accepted as converged
1327
- * when it is determined to lie in an interval [a,b]
1328
- * of width less than or equal to
1329
- *
1330
- * ABSTOL + EPS * max( |a|,|b| ) ,
1331
- *
1332
- * where EPS is the machine precision. If ABSTOL is less than
1333
- * or equal to zero, then EPS*|T| will be used in its place,
1334
- * where |T| is the 1-norm of the tridiagonal matrix obtained
1335
- * by reducing A to tridiagonal form.
1336
- *
1337
- * Eigenvalues will be computed most accurately when ABSTOL is
1338
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
1339
- * If this routine returns with INFO>0, indicating that some
1340
- * eigenvectors did not converge, try setting ABSTOL to
1341
- * 2*SLAMCH('S').
1342
- *
1343
- * M (output) INTEGER
1344
- * The total number of eigenvalues found. 0 <= M <= N.
1345
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1346
- *
1347
- * W (output) REAL array, dimension (N)
1348
- * On normal exit, the first M elements contain the selected
1349
- * eigenvalues in ascending order.
1350
- *
1351
- * Z (output) REAL array, dimension (LDZ, max(1,M))
1352
- * If JOBZ = 'N', then Z is not referenced.
1353
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1354
- * contain the orthonormal eigenvectors of the matrix A
1355
- * corresponding to the selected eigenvalues, with the i-th
1356
- * column of Z holding the eigenvector associated with W(i).
1357
- * The eigenvectors are normalized as follows:
1358
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
1359
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
1360
- *
1361
- * If an eigenvector fails to converge, then that column of Z
1362
- * contains the latest approximation to the eigenvector, and the
1363
- * index of the eigenvector is returned in IFAIL.
1364
- * Note: the user must ensure that at least max(1,M) columns are
1365
- * supplied in the array Z; if RANGE = 'V', the exact value of M
1366
- * is not known in advance and an upper bound must be used.
1367
- *
1368
- * LDZ (input) INTEGER
1369
- * The leading dimension of the array Z. LDZ >= 1, and if
1370
- * JOBZ = 'V', LDZ >= max(1,N).
1371
- *
1372
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
1373
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1374
- *
1375
- * LWORK (input) INTEGER
1376
- * The length of the array WORK. LWORK >= max(1,8*N).
1377
- * For optimal efficiency, LWORK >= (NB+3)*N,
1378
- * where NB is the blocksize for SSYTRD returned by ILAENV.
1379
- *
1380
- * If LWORK = -1, then a workspace query is assumed; the routine
1381
- * only calculates the optimal size of the WORK array, returns
1382
- * this value as the first entry of the WORK array, and no error
1383
- * message related to LWORK is issued by XERBLA.
1384
- *
1385
- * IWORK (workspace) INTEGER array, dimension (5*N)
1386
- *
1387
- * IFAIL (output) INTEGER array, dimension (N)
1388
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
1389
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
1390
- * indices of the eigenvectors that failed to converge.
1391
- * If JOBZ = 'N', then IFAIL is not referenced.
1392
- *
1393
- * INFO (output) INTEGER
1394
- * = 0: successful exit
1395
- * < 0: if INFO = -i, the i-th argument had an illegal value
1396
- * > 0: SPOTRF or SSYEVX returned an error code:
1397
- * <= N: if INFO = i, SSYEVX failed to converge;
1398
- * i eigenvectors failed to converge. Their indices
1399
- * are stored in array IFAIL.
1400
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1401
- * minor of order i of B is not positive definite.
1402
- * The factorization of B could not be completed and
1403
- * no eigenvalues or eigenvectors were computed.
1404
- *
1405
-
1406
- * Further Details
1407
- * ===============
1408
- *
1409
- * Based on contributions by
1410
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1411
- *
1412
- * =====================================================================
1413
- *
1414
-
1415
-
1416
- </PRE>
1417
- <A HREF="#top">go to the page top</A>
1418
-
1419
- <A NAME="ssyrfs"></A>
1420
- <H2>ssyrfs</H2>
1421
- <PRE>
1422
- USAGE:
1423
- ferr, berr, info, x = NumRu::Lapack.ssyrfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])
1424
-
1425
-
1426
- FORTRAN MANUAL
1427
- SUBROUTINE SSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
1428
-
1429
- * Purpose
1430
- * =======
1431
- *
1432
- * SSYRFS improves the computed solution to a system of linear
1433
- * equations when the coefficient matrix is symmetric indefinite, and
1434
- * provides error bounds and backward error estimates for the solution.
1435
- *
1436
-
1437
- * Arguments
1438
- * =========
1439
- *
1440
- * UPLO (input) CHARACTER*1
1441
- * = 'U': Upper triangle of A is stored;
1442
- * = 'L': Lower triangle of A is stored.
1443
- *
1444
- * N (input) INTEGER
1445
- * The order of the matrix A. N >= 0.
1446
- *
1447
- * NRHS (input) INTEGER
1448
- * The number of right hand sides, i.e., the number of columns
1449
- * of the matrices B and X. NRHS >= 0.
1450
- *
1451
- * A (input) REAL array, dimension (LDA,N)
1452
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1453
- * upper triangular part of A contains the upper triangular part
1454
- * of the matrix A, and the strictly lower triangular part of A
1455
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
1456
- * triangular part of A contains the lower triangular part of
1457
- * the matrix A, and the strictly upper triangular part of A is
1458
- * not referenced.
1459
- *
1460
- * LDA (input) INTEGER
1461
- * The leading dimension of the array A. LDA >= max(1,N).
1462
- *
1463
- * AF (input) REAL array, dimension (LDAF,N)
1464
- * The factored form of the matrix A. AF contains the block
1465
- * diagonal matrix D and the multipliers used to obtain the
1466
- * factor U or L from the factorization A = U*D*U**T or
1467
- * A = L*D*L**T as computed by SSYTRF.
1468
- *
1469
- * LDAF (input) INTEGER
1470
- * The leading dimension of the array AF. LDAF >= max(1,N).
1471
- *
1472
- * IPIV (input) INTEGER array, dimension (N)
1473
- * Details of the interchanges and the block structure of D
1474
- * as determined by SSYTRF.
1475
- *
1476
- * B (input) REAL array, dimension (LDB,NRHS)
1477
- * The right hand side matrix B.
1478
- *
1479
- * LDB (input) INTEGER
1480
- * The leading dimension of the array B. LDB >= max(1,N).
1481
- *
1482
- * X (input/output) REAL array, dimension (LDX,NRHS)
1483
- * On entry, the solution matrix X, as computed by SSYTRS.
1484
- * On exit, the improved solution matrix X.
1485
- *
1486
- * LDX (input) INTEGER
1487
- * The leading dimension of the array X. LDX >= max(1,N).
1488
- *
1489
- * FERR (output) REAL array, dimension (NRHS)
1490
- * The estimated forward error bound for each solution vector
1491
- * X(j) (the j-th column of the solution matrix X).
1492
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1493
- * is an estimated upper bound for the magnitude of the largest
1494
- * element in (X(j) - XTRUE) divided by the magnitude of the
1495
- * largest element in X(j). The estimate is as reliable as
1496
- * the estimate for RCOND, and is almost always a slight
1497
- * overestimate of the true error.
1498
- *
1499
- * BERR (output) REAL array, dimension (NRHS)
1500
- * The componentwise relative backward error of each solution
1501
- * vector X(j) (i.e., the smallest relative change in
1502
- * any element of A or B that makes X(j) an exact solution).
1503
- *
1504
- * WORK (workspace) REAL array, dimension (3*N)
1505
- *
1506
- * IWORK (workspace) INTEGER array, dimension (N)
1507
- *
1508
- * INFO (output) INTEGER
1509
- * = 0: successful exit
1510
- * < 0: if INFO = -i, the i-th argument had an illegal value
1511
- *
1512
- * Internal Parameters
1513
- * ===================
1514
- *
1515
- * ITMAX is the maximum number of steps of iterative refinement.
1516
- *
1517
-
1518
- * =====================================================================
1519
- *
1520
-
1521
-
1522
- </PRE>
1523
- <A HREF="#top">go to the page top</A>
1524
-
1525
- <A NAME="ssyrfsx"></A>
1526
- <H2>ssyrfsx</H2>
1527
- <PRE>
1528
- USAGE:
1529
- rcond, berr, err_bnds_norm, err_bnds_comp, info, s, x, params = NumRu::Lapack.ssyrfsx( uplo, equed, a, af, ipiv, s, b, x, params, [:usage => usage, :help => help])
1530
-
1531
-
1532
- FORTRAN MANUAL
1533
- SUBROUTINE SSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
1534
-
1535
- * Purpose
1536
- * =======
1537
- *
1538
- * SSYRFSX improves the computed solution to a system of linear
1539
- * equations when the coefficient matrix is symmetric indefinite, and
1540
- * provides error bounds and backward error estimates for the
1541
- * solution. In addition to normwise error bound, the code provides
1542
- * maximum componentwise error bound if possible. See comments for
1543
- * ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
1544
- *
1545
- * The original system of linear equations may have been equilibrated
1546
- * before calling this routine, as described by arguments EQUED and S
1547
- * below. In this case, the solution and error bounds returned are
1548
- * for the original unequilibrated system.
1549
- *
1550
-
1551
- * Arguments
1552
- * =========
1553
- *
1554
- * Some optional parameters are bundled in the PARAMS array. These
1555
- * settings determine how refinement is performed, but often the
1556
- * defaults are acceptable. If the defaults are acceptable, users
1557
- * can pass NPARAMS = 0 which prevents the source code from accessing
1558
- * the PARAMS argument.
1559
- *
1560
- * UPLO (input) CHARACTER*1
1561
- * = 'U': Upper triangle of A is stored;
1562
- * = 'L': Lower triangle of A is stored.
1563
- *
1564
- * EQUED (input) CHARACTER*1
1565
- * Specifies the form of equilibration that was done to A
1566
- * before calling this routine. This is needed to compute
1567
- * the solution and error bounds correctly.
1568
- * = 'N': No equilibration
1569
- * = 'Y': Both row and column equilibration, i.e., A has been
1570
- * replaced by diag(S) * A * diag(S).
1571
- * The right hand side B has been changed accordingly.
1572
- *
1573
- * N (input) INTEGER
1574
- * The order of the matrix A. N >= 0.
1575
- *
1576
- * NRHS (input) INTEGER
1577
- * The number of right hand sides, i.e., the number of columns
1578
- * of the matrices B and X. NRHS >= 0.
1579
- *
1580
- * A (input) REAL array, dimension (LDA,N)
1581
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1582
- * upper triangular part of A contains the upper triangular
1583
- * part of the matrix A, and the strictly lower triangular
1584
- * part of A is not referenced. If UPLO = 'L', the leading
1585
- * N-by-N lower triangular part of A contains the lower
1586
- * triangular part of the matrix A, and the strictly upper
1587
- * triangular part of A is not referenced.
1588
- *
1589
- * LDA (input) INTEGER
1590
- * The leading dimension of the array A. LDA >= max(1,N).
1591
- *
1592
- * AF (input) REAL array, dimension (LDAF,N)
1593
- * The factored form of the matrix A. AF contains the block
1594
- * diagonal matrix D and the multipliers used to obtain the
1595
- * factor U or L from the factorization A = U*D*U**T or A =
1596
- * L*D*L**T as computed by SSYTRF.
1597
- *
1598
- * LDAF (input) INTEGER
1599
- * The leading dimension of the array AF. LDAF >= max(1,N).
1600
- *
1601
- * IPIV (input) INTEGER array, dimension (N)
1602
- * Details of the interchanges and the block structure of D
1603
- * as determined by SSYTRF.
1604
- *
1605
- * S (input or output) REAL array, dimension (N)
1606
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
1607
- * the left and right by diag(S). S is an input argument if FACT =
1608
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
1609
- * = 'Y', each element of S must be positive. If S is output, each
1610
- * element of S is a power of the radix. If S is input, each element
1611
- * of S should be a power of the radix to ensure a reliable solution
1612
- * and error estimates. Scaling by powers of the radix does not cause
1613
- * rounding errors unless the result underflows or overflows.
1614
- * Rounding errors during scaling lead to refining with a matrix that
1615
- * is not equivalent to the input matrix, producing error estimates
1616
- * that may not be reliable.
1617
- *
1618
- * B (input) REAL array, dimension (LDB,NRHS)
1619
- * The right hand side matrix B.
1620
- *
1621
- * LDB (input) INTEGER
1622
- * The leading dimension of the array B. LDB >= max(1,N).
1623
- *
1624
- * X (input/output) REAL array, dimension (LDX,NRHS)
1625
- * On entry, the solution matrix X, as computed by SGETRS.
1626
- * On exit, the improved solution matrix X.
1627
- *
1628
- * LDX (input) INTEGER
1629
- * The leading dimension of the array X. LDX >= max(1,N).
1630
- *
1631
- * RCOND (output) REAL
1632
- * Reciprocal scaled condition number. This is an estimate of the
1633
- * reciprocal Skeel condition number of the matrix A after
1634
- * equilibration (if done). If this is less than the machine
1635
- * precision (in particular, if it is zero), the matrix is singular
1636
- * to working precision. Note that the error may still be small even
1637
- * if this number is very small and the matrix appears ill-
1638
- * conditioned.
1639
- *
1640
- * BERR (output) REAL array, dimension (NRHS)
1641
- * Componentwise relative backward error. This is the
1642
- * componentwise relative backward error of each solution vector X(j)
1643
- * (i.e., the smallest relative change in any element of A or B that
1644
- * makes X(j) an exact solution).
1645
- *
1646
- * N_ERR_BNDS (input) INTEGER
1647
- * Number of error bounds to return for each right hand side
1648
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
1649
- * ERR_BNDS_COMP below.
1650
- *
1651
- * ERR_BNDS_NORM (output) REAL array, dimension (NRHS, N_ERR_BNDS)
1652
- * For each right-hand side, this array contains information about
1653
- * various error bounds and condition numbers corresponding to the
1654
- * normwise relative error, which is defined as follows:
1655
- *
1656
- * Normwise relative error in the ith solution vector:
1657
- * max_j (abs(XTRUE(j,i) - X(j,i)))
1658
- * ------------------------------
1659
- * max_j abs(X(j,i))
1660
- *
1661
- * The array is indexed by the type of error information as described
1662
- * below. There currently are up to three pieces of information
1663
- * returned.
1664
- *
1665
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
1666
- * right-hand side.
1667
- *
1668
- * The second index in ERR_BNDS_NORM(:,err) contains the following
1669
- * three fields:
1670
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1671
- * reciprocal condition number is less than the threshold
1672
- * sqrt(n) * slamch('Epsilon').
1673
- *
1674
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1675
- * almost certainly within a factor of 10 of the true error
1676
- * so long as the next entry is greater than the threshold
1677
- * sqrt(n) * slamch('Epsilon'). This error bound should only
1678
- * be trusted if the previous boolean is true.
1679
- *
1680
- * err = 3 Reciprocal condition number: Estimated normwise
1681
- * reciprocal condition number. Compared with the threshold
1682
- * sqrt(n) * slamch('Epsilon') to determine if the error
1683
- * estimate is "guaranteed". These reciprocal condition
1684
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1685
- * appropriately scaled matrix Z.
1686
- * Let Z = S*A, where S scales each row by a power of the
1687
- * radix so all absolute row sums of Z are approximately 1.
1688
- *
1689
- * See Lapack Working Note 165 for further details and extra
1690
- * cautions.
1691
- *
1692
- * ERR_BNDS_COMP (output) REAL array, dimension (NRHS, N_ERR_BNDS)
1693
- * For each right-hand side, this array contains information about
1694
- * various error bounds and condition numbers corresponding to the
1695
- * componentwise relative error, which is defined as follows:
1696
- *
1697
- * Componentwise relative error in the ith solution vector:
1698
- * abs(XTRUE(j,i) - X(j,i))
1699
- * max_j ----------------------
1700
- * abs(X(j,i))
1701
- *
1702
- * The array is indexed by the right-hand side i (on which the
1703
- * componentwise relative error depends), and the type of error
1704
- * information as described below. There currently are up to three
1705
- * pieces of information returned for each right-hand side. If
1706
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1707
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
1708
- * the first (:,N_ERR_BNDS) entries are returned.
1709
- *
1710
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
1711
- * right-hand side.
1712
- *
1713
- * The second index in ERR_BNDS_COMP(:,err) contains the following
1714
- * three fields:
1715
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1716
- * reciprocal condition number is less than the threshold
1717
- * sqrt(n) * slamch('Epsilon').
1718
- *
1719
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1720
- * almost certainly within a factor of 10 of the true error
1721
- * so long as the next entry is greater than the threshold
1722
- * sqrt(n) * slamch('Epsilon'). This error bound should only
1723
- * be trusted if the previous boolean is true.
1724
- *
1725
- * err = 3 Reciprocal condition number: Estimated componentwise
1726
- * reciprocal condition number. Compared with the threshold
1727
- * sqrt(n) * slamch('Epsilon') to determine if the error
1728
- * estimate is "guaranteed". These reciprocal condition
1729
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1730
- * appropriately scaled matrix Z.
1731
- * Let Z = S*(A*diag(x)), where x is the solution for the
1732
- * current right-hand side and S scales each row of
1733
- * A*diag(x) by a power of the radix so all absolute row
1734
- * sums of Z are approximately 1.
1735
- *
1736
- * See Lapack Working Note 165 for further details and extra
1737
- * cautions.
1738
- *
1739
- * NPARAMS (input) INTEGER
1740
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
1741
- * PARAMS array is never referenced and default values are used.
1742
- *
1743
- * PARAMS (input / output) REAL array, dimension NPARAMS
1744
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
1745
- * that entry will be filled with default value used for that
1746
- * parameter. Only positions up to NPARAMS are accessed; defaults
1747
- * are used for higher-numbered parameters.
1748
- *
1749
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
1750
- * refinement or not.
1751
- * Default: 1.0
1752
- * = 0.0 : No refinement is performed, and no error bounds are
1753
- * computed.
1754
- * = 1.0 : Use the double-precision refinement algorithm,
1755
- * possibly with doubled-single computations if the
1756
- * compilation environment does not support DOUBLE
1757
- * PRECISION.
1758
- * (other values are reserved for future use)
1759
- *
1760
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
1761
- * computations allowed for refinement.
1762
- * Default: 10
1763
- * Aggressive: Set to 100 to permit convergence using approximate
1764
- * factorizations or factorizations other than LU. If
1765
- * the factorization uses a technique other than
1766
- * Gaussian elimination, the guarantees in
1767
- * err_bnds_norm and err_bnds_comp may no longer be
1768
- * trustworthy.
1769
- *
1770
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
1771
- * will attempt to find a solution with small componentwise
1772
- * relative error in the double-precision algorithm. Positive
1773
- * is true, 0.0 is false.
1774
- * Default: 1.0 (attempt componentwise convergence)
1775
- *
1776
- * WORK (workspace) REAL array, dimension (4*N)
1777
- *
1778
- * IWORK (workspace) INTEGER array, dimension (N)
1779
- *
1780
- * INFO (output) INTEGER
1781
- * = 0: Successful exit. The solution to every right-hand side is
1782
- * guaranteed.
1783
- * < 0: If INFO = -i, the i-th argument had an illegal value
1784
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
1785
- * has been completed, but the factor U is exactly singular, so
1786
- * the solution and error bounds could not be computed. RCOND = 0
1787
- * is returned.
1788
- * = N+J: The solution corresponding to the Jth right-hand side is
1789
- * not guaranteed. The solutions corresponding to other right-
1790
- * hand sides K with K > J may not be guaranteed as well, but
1791
- * only the first such right-hand side is reported. If a small
1792
- * componentwise error is not requested (PARAMS(3) = 0.0) then
1793
- * the Jth right-hand side is the first with a normwise error
1794
- * bound that is not guaranteed (the smallest J such
1795
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
1796
- * the Jth right-hand side is the first with either a normwise or
1797
- * componentwise error bound that is not guaranteed (the smallest
1798
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
1799
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
1800
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
1801
- * about all of the right-hand sides check ERR_BNDS_NORM or
1802
- * ERR_BNDS_COMP.
1803
- *
1804
-
1805
- * ==================================================================
1806
- *
1807
-
1808
-
1809
- </PRE>
1810
- <A HREF="#top">go to the page top</A>
1811
-
1812
- <A NAME="ssysv"></A>
1813
- <H2>ssysv</H2>
1814
- <PRE>
1815
- USAGE:
1816
- ipiv, work, info, a, b = NumRu::Lapack.ssysv( uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
1817
-
1818
-
1819
- FORTRAN MANUAL
1820
- SUBROUTINE SSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )
1821
-
1822
- * Purpose
1823
- * =======
1824
- *
1825
- * SSYSV computes the solution to a real system of linear equations
1826
- * A * X = B,
1827
- * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1828
- * matrices.
1829
- *
1830
- * The diagonal pivoting method is used to factor A as
1831
- * A = U * D * U**T, if UPLO = 'U', or
1832
- * A = L * D * L**T, if UPLO = 'L',
1833
- * where U (or L) is a product of permutation and unit upper (lower)
1834
- * triangular matrices, and D is symmetric and block diagonal with
1835
- * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
1836
- * used to solve the system of equations A * X = B.
1837
- *
1838
-
1839
- * Arguments
1840
- * =========
1841
- *
1842
- * UPLO (input) CHARACTER*1
1843
- * = 'U': Upper triangle of A is stored;
1844
- * = 'L': Lower triangle of A is stored.
1845
- *
1846
- * N (input) INTEGER
1847
- * The number of linear equations, i.e., the order of the
1848
- * matrix A. N >= 0.
1849
- *
1850
- * NRHS (input) INTEGER
1851
- * The number of right hand sides, i.e., the number of columns
1852
- * of the matrix B. NRHS >= 0.
1853
- *
1854
- * A (input/output) REAL array, dimension (LDA,N)
1855
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
1856
- * N-by-N upper triangular part of A contains the upper
1857
- * triangular part of the matrix A, and the strictly lower
1858
- * triangular part of A is not referenced. If UPLO = 'L', the
1859
- * leading N-by-N lower triangular part of A contains the lower
1860
- * triangular part of the matrix A, and the strictly upper
1861
- * triangular part of A is not referenced.
1862
- *
1863
- * On exit, if INFO = 0, the block diagonal matrix D and the
1864
- * multipliers used to obtain the factor U or L from the
1865
- * factorization A = U*D*U**T or A = L*D*L**T as computed by
1866
- * SSYTRF.
1867
- *
1868
- * LDA (input) INTEGER
1869
- * The leading dimension of the array A. LDA >= max(1,N).
1870
- *
1871
- * IPIV (output) INTEGER array, dimension (N)
1872
- * Details of the interchanges and the block structure of D, as
1873
- * determined by SSYTRF. If IPIV(k) > 0, then rows and columns
1874
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1875
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1876
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1877
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1878
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1879
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1880
- * diagonal block.
1881
- *
1882
- * B (input/output) REAL array, dimension (LDB,NRHS)
1883
- * On entry, the N-by-NRHS right hand side matrix B.
1884
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1885
- *
1886
- * LDB (input) INTEGER
1887
- * The leading dimension of the array B. LDB >= max(1,N).
1888
- *
1889
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
1890
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1891
- *
1892
- * LWORK (input) INTEGER
1893
- * The length of WORK. LWORK >= 1, and for best performance
1894
- * LWORK >= max(1,N*NB), where NB is the optimal blocksize for
1895
- * SSYTRF.
1896
- *
1897
- * If LWORK = -1, then a workspace query is assumed; the routine
1898
- * only calculates the optimal size of the WORK array, returns
1899
- * this value as the first entry of the WORK array, and no error
1900
- * message related to LWORK is issued by XERBLA.
1901
- *
1902
- * INFO (output) INTEGER
1903
- * = 0: successful exit
1904
- * < 0: if INFO = -i, the i-th argument had an illegal value
1905
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1906
- * has been completed, but the block diagonal matrix D is
1907
- * exactly singular, so the solution could not be computed.
1908
- *
1909
-
1910
- * =====================================================================
1911
- *
1912
- * .. Local Scalars ..
1913
- LOGICAL LQUERY
1914
- INTEGER LWKOPT, NB
1915
- * ..
1916
- * .. External Functions ..
1917
- LOGICAL LSAME
1918
- INTEGER ILAENV
1919
- EXTERNAL ILAENV, LSAME
1920
- * ..
1921
- * .. External Subroutines ..
1922
- EXTERNAL SSYTRF, SSYTRS2, XERBLA
1923
- * ..
1924
- * .. Intrinsic Functions ..
1925
- INTRINSIC MAX
1926
- * ..
1927
-
1928
-
1929
- </PRE>
1930
- <A HREF="#top">go to the page top</A>
1931
-
1932
- <A NAME="ssysvx"></A>
1933
- <H2>ssysvx</H2>
1934
- <PRE>
1935
- USAGE:
1936
- x, rcond, ferr, berr, work, info, af, ipiv = NumRu::Lapack.ssysvx( fact, uplo, a, af, ipiv, b, [:lwork => lwork, :usage => usage, :help => help])
1937
-
1938
-
1939
- FORTRAN MANUAL
1940
- SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORK, INFO )
1941
-
1942
- * Purpose
1943
- * =======
1944
- *
1945
- * SSYSVX uses the diagonal pivoting factorization to compute the
1946
- * solution to a real system of linear equations A * X = B,
1947
- * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1948
- * matrices.
1949
- *
1950
- * Error bounds on the solution and a condition estimate are also
1951
- * provided.
1952
- *
1953
- * Description
1954
- * ===========
1955
- *
1956
- * The following steps are performed:
1957
- *
1958
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
1959
- * The form of the factorization is
1960
- * A = U * D * U**T, if UPLO = 'U', or
1961
- * A = L * D * L**T, if UPLO = 'L',
1962
- * where U (or L) is a product of permutation and unit upper (lower)
1963
- * triangular matrices, and D is symmetric and block diagonal with
1964
- * 1-by-1 and 2-by-2 diagonal blocks.
1965
- *
1966
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1967
- * returns with INFO = i. Otherwise, the factored form of A is used
1968
- * to estimate the condition number of the matrix A. If the
1969
- * reciprocal of the condition number is less than machine precision,
1970
- * INFO = N+1 is returned as a warning, but the routine still goes on
1971
- * to solve for X and compute error bounds as described below.
1972
- *
1973
- * 3. The system of equations is solved for X using the factored form
1974
- * of A.
1975
- *
1976
- * 4. Iterative refinement is applied to improve the computed solution
1977
- * matrix and calculate error bounds and backward error estimates
1978
- * for it.
1979
- *
1980
-
1981
- * Arguments
1982
- * =========
1983
- *
1984
- * FACT (input) CHARACTER*1
1985
- * Specifies whether or not the factored form of A has been
1986
- * supplied on entry.
1987
- * = 'F': On entry, AF and IPIV contain the factored form of
1988
- * A. AF and IPIV will not be modified.
1989
- * = 'N': The matrix A will be copied to AF and factored.
1990
- *
1991
- * UPLO (input) CHARACTER*1
1992
- * = 'U': Upper triangle of A is stored;
1993
- * = 'L': Lower triangle of A is stored.
1994
- *
1995
- * N (input) INTEGER
1996
- * The number of linear equations, i.e., the order of the
1997
- * matrix A. N >= 0.
1998
- *
1999
- * NRHS (input) INTEGER
2000
- * The number of right hand sides, i.e., the number of columns
2001
- * of the matrices B and X. NRHS >= 0.
2002
- *
2003
- * A (input) REAL array, dimension (LDA,N)
2004
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2005
- * upper triangular part of A contains the upper triangular part
2006
- * of the matrix A, and the strictly lower triangular part of A
2007
- * is not referenced. If UPLO = 'L', the leading N-by-N lower
2008
- * triangular part of A contains the lower triangular part of
2009
- * the matrix A, and the strictly upper triangular part of A is
2010
- * not referenced.
2011
- *
2012
- * LDA (input) INTEGER
2013
- * The leading dimension of the array A. LDA >= max(1,N).
2014
- *
2015
- * AF (input or output) REAL array, dimension (LDAF,N)
2016
- * If FACT = 'F', then AF is an input argument and on entry
2017
- * contains the block diagonal matrix D and the multipliers used
2018
- * to obtain the factor U or L from the factorization
2019
- * A = U*D*U**T or A = L*D*L**T as computed by SSYTRF.
2020
- *
2021
- * If FACT = 'N', then AF is an output argument and on exit
2022
- * returns the block diagonal matrix D and the multipliers used
2023
- * to obtain the factor U or L from the factorization
2024
- * A = U*D*U**T or A = L*D*L**T.
2025
- *
2026
- * LDAF (input) INTEGER
2027
- * The leading dimension of the array AF. LDAF >= max(1,N).
2028
- *
2029
- * IPIV (input or output) INTEGER array, dimension (N)
2030
- * If FACT = 'F', then IPIV is an input argument and on entry
2031
- * contains details of the interchanges and the block structure
2032
- * of D, as determined by SSYTRF.
2033
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2034
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2035
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2036
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2037
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2038
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2039
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2040
- *
2041
- * If FACT = 'N', then IPIV is an output argument and on exit
2042
- * contains details of the interchanges and the block structure
2043
- * of D, as determined by SSYTRF.
2044
- *
2045
- * B (input) REAL array, dimension (LDB,NRHS)
2046
- * The N-by-NRHS right hand side matrix B.
2047
- *
2048
- * LDB (input) INTEGER
2049
- * The leading dimension of the array B. LDB >= max(1,N).
2050
- *
2051
- * X (output) REAL array, dimension (LDX,NRHS)
2052
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
2053
- *
2054
- * LDX (input) INTEGER
2055
- * The leading dimension of the array X. LDX >= max(1,N).
2056
- *
2057
- * RCOND (output) REAL
2058
- * The estimate of the reciprocal condition number of the matrix
2059
- * A. If RCOND is less than the machine precision (in
2060
- * particular, if RCOND = 0), the matrix is singular to working
2061
- * precision. This condition is indicated by a return code of
2062
- * INFO > 0.
2063
- *
2064
- * FERR (output) REAL array, dimension (NRHS)
2065
- * The estimated forward error bound for each solution vector
2066
- * X(j) (the j-th column of the solution matrix X).
2067
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
2068
- * is an estimated upper bound for the magnitude of the largest
2069
- * element in (X(j) - XTRUE) divided by the magnitude of the
2070
- * largest element in X(j). The estimate is as reliable as
2071
- * the estimate for RCOND, and is almost always a slight
2072
- * overestimate of the true error.
2073
- *
2074
- * BERR (output) REAL array, dimension (NRHS)
2075
- * The componentwise relative backward error of each solution
2076
- * vector X(j) (i.e., the smallest relative change in
2077
- * any element of A or B that makes X(j) an exact solution).
2078
- *
2079
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
2080
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2081
- *
2082
- * LWORK (input) INTEGER
2083
- * The length of WORK. LWORK >= max(1,3*N), and for best
2084
- * performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
2085
- * NB is the optimal blocksize for SSYTRF.
2086
- *
2087
- * If LWORK = -1, then a workspace query is assumed; the routine
2088
- * only calculates the optimal size of the WORK array, returns
2089
- * this value as the first entry of the WORK array, and no error
2090
- * message related to LWORK is issued by XERBLA.
2091
- *
2092
- * IWORK (workspace) INTEGER array, dimension (N)
2093
- *
2094
- * INFO (output) INTEGER
2095
- * = 0: successful exit
2096
- * < 0: if INFO = -i, the i-th argument had an illegal value
2097
- * > 0: if INFO = i, and i is
2098
- * <= N: D(i,i) is exactly zero. The factorization
2099
- * has been completed but the factor D is exactly
2100
- * singular, so the solution and error bounds could
2101
- * not be computed. RCOND = 0 is returned.
2102
- * = N+1: D is nonsingular, but RCOND is less than machine
2103
- * precision, meaning that the matrix is singular
2104
- * to working precision. Nevertheless, the
2105
- * solution and error bounds are computed because
2106
- * there are a number of situations where the
2107
- * computed solution can be more accurate than the
2108
- * value of RCOND would suggest.
2109
- *
2110
-
2111
- * =====================================================================
2112
- *
2113
-
2114
-
2115
- </PRE>
2116
- <A HREF="#top">go to the page top</A>
2117
-
2118
- <A NAME="ssysvxx"></A>
2119
- <H2>ssysvxx</H2>
2120
- <PRE>
2121
- USAGE:
2122
- x, rcond, rpvgrw, berr, err_bnds_norm, err_bnds_comp, info, a, af, ipiv, equed, s, b, params = NumRu::Lapack.ssysvxx( fact, uplo, a, af, ipiv, equed, s, b, params, [:usage => usage, :help => help])
2123
-
2124
-
2125
- FORTRAN MANUAL
2126
- SUBROUTINE SSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
2127
-
2128
- * Purpose
2129
- * =======
2130
- *
2131
- * SSYSVXX uses the diagonal pivoting factorization to compute the
2132
- * solution to a real system of linear equations A * X = B, where A
2133
- * is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
2134
- *
2135
- * If requested, both normwise and maximum componentwise error bounds
2136
- * are returned. SSYSVXX will return a solution with a tiny
2137
- * guaranteed error (O(eps) where eps is the working machine
2138
- * precision) unless the matrix is very ill-conditioned, in which
2139
- * case a warning is returned. Relevant condition numbers also are
2140
- * calculated and returned.
2141
- *
2142
- * SSYSVXX accepts user-provided factorizations and equilibration
2143
- * factors; see the definitions of the FACT and EQUED options.
2144
- * Solving with refinement and using a factorization from a previous
2145
- * SSYSVXX call will also produce a solution with either O(eps)
2146
- * errors or warnings, but we cannot make that claim for general
2147
- * user-provided factorizations and equilibration factors if they
2148
- * differ from what SSYSVXX would itself produce.
2149
- *
2150
- * Description
2151
- * ===========
2152
- *
2153
- * The following steps are performed:
2154
- *
2155
- * 1. If FACT = 'E', real scaling factors are computed to equilibrate
2156
- * the system:
2157
- *
2158
- * diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
2159
- *
2160
- * Whether or not the system will be equilibrated depends on the
2161
- * scaling of the matrix A, but if equilibration is used, A is
2162
- * overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2163
- *
2164
- * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
2165
- * the matrix A (after equilibration if FACT = 'E') as
2166
- *
2167
- * A = U * D * U**T, if UPLO = 'U', or
2168
- * A = L * D * L**T, if UPLO = 'L',
2169
- *
2170
- * where U (or L) is a product of permutation and unit upper (lower)
2171
- * triangular matrices, and D is symmetric and block diagonal with
2172
- * 1-by-1 and 2-by-2 diagonal blocks.
2173
- *
2174
- * 3. If some D(i,i)=0, so that D is exactly singular, then the
2175
- * routine returns with INFO = i. Otherwise, the factored form of A
2176
- * is used to estimate the condition number of the matrix A (see
2177
- * argument RCOND). If the reciprocal of the condition number is
2178
- * less than machine precision, the routine still goes on to solve
2179
- * for X and compute error bounds as described below.
2180
- *
2181
- * 4. The system of equations is solved for X using the factored form
2182
- * of A.
2183
- *
2184
- * 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
2185
- * the routine will use iterative refinement to try to get a small
2186
- * error and error bounds. Refinement calculates the residual to at
2187
- * least twice the working precision.
2188
- *
2189
- * 6. If equilibration was used, the matrix X is premultiplied by
2190
- * diag(R) so that it solves the original system before
2191
- * equilibration.
2192
- *
2193
-
2194
- * Arguments
2195
- * =========
2196
- *
2197
- * Some optional parameters are bundled in the PARAMS array. These
2198
- * settings determine how refinement is performed, but often the
2199
- * defaults are acceptable. If the defaults are acceptable, users
2200
- * can pass NPARAMS = 0 which prevents the source code from accessing
2201
- * the PARAMS argument.
2202
- *
2203
- * FACT (input) CHARACTER*1
2204
- * Specifies whether or not the factored form of the matrix A is
2205
- * supplied on entry, and if not, whether the matrix A should be
2206
- * equilibrated before it is factored.
2207
- * = 'F': On entry, AF and IPIV contain the factored form of A.
2208
- * If EQUED is not 'N', the matrix A has been
2209
- * equilibrated with scaling factors given by S.
2210
- * A, AF, and IPIV are not modified.
2211
- * = 'N': The matrix A will be copied to AF and factored.
2212
- * = 'E': The matrix A will be equilibrated if necessary, then
2213
- * copied to AF and factored.
2214
- *
2215
- * UPLO (input) CHARACTER*1
2216
- * = 'U': Upper triangle of A is stored;
2217
- * = 'L': Lower triangle of A is stored.
2218
- *
2219
- * N (input) INTEGER
2220
- * The number of linear equations, i.e., the order of the
2221
- * matrix A. N >= 0.
2222
- *
2223
- * NRHS (input) INTEGER
2224
- * The number of right hand sides, i.e., the number of columns
2225
- * of the matrices B and X. NRHS >= 0.
2226
- *
2227
- * A (input/output) REAL array, dimension (LDA,N)
2228
- * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2229
- * upper triangular part of A contains the upper triangular
2230
- * part of the matrix A, and the strictly lower triangular
2231
- * part of A is not referenced. If UPLO = 'L', the leading
2232
- * N-by-N lower triangular part of A contains the lower
2233
- * triangular part of the matrix A, and the strictly upper
2234
- * triangular part of A is not referenced.
2235
- *
2236
- * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
2237
- * diag(S)*A*diag(S).
2238
- *
2239
- * LDA (input) INTEGER
2240
- * The leading dimension of the array A. LDA >= max(1,N).
2241
- *
2242
- * AF (input or output) REAL array, dimension (LDAF,N)
2243
- * If FACT = 'F', then AF is an input argument and on entry
2244
- * contains the block diagonal matrix D and the multipliers
2245
- * used to obtain the factor U or L from the factorization A =
2246
- * U*D*U**T or A = L*D*L**T as computed by SSYTRF.
2247
- *
2248
- * If FACT = 'N', then AF is an output argument and on exit
2249
- * returns the block diagonal matrix D and the multipliers
2250
- * used to obtain the factor U or L from the factorization A =
2251
- * U*D*U**T or A = L*D*L**T.
2252
- *
2253
- * LDAF (input) INTEGER
2254
- * The leading dimension of the array AF. LDAF >= max(1,N).
2255
- *
2256
- * IPIV (input or output) INTEGER array, dimension (N)
2257
- * If FACT = 'F', then IPIV is an input argument and on entry
2258
- * contains details of the interchanges and the block
2259
- * structure of D, as determined by SSYTRF. If IPIV(k) > 0,
2260
- * then rows and columns k and IPIV(k) were interchanged and
2261
- * D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
2262
- * IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
2263
- * -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
2264
- * diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
2265
- * then rows and columns k+1 and -IPIV(k) were interchanged
2266
- * and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2267
- *
2268
- * If FACT = 'N', then IPIV is an output argument and on exit
2269
- * contains details of the interchanges and the block
2270
- * structure of D, as determined by SSYTRF.
2271
- *
2272
- * EQUED (input or output) CHARACTER*1
2273
- * Specifies the form of equilibration that was done.
2274
- * = 'N': No equilibration (always true if FACT = 'N').
2275
- * = 'Y': Both row and column equilibration, i.e., A has been
2276
- * replaced by diag(S) * A * diag(S).
2277
- * EQUED is an input argument if FACT = 'F'; otherwise, it is an
2278
- * output argument.
2279
- *
2280
- * S (input or output) REAL array, dimension (N)
2281
- * The scale factors for A. If EQUED = 'Y', A is multiplied on
2282
- * the left and right by diag(S). S is an input argument if FACT =
2283
- * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
2284
- * = 'Y', each element of S must be positive. If S is output, each
2285
- * element of S is a power of the radix. If S is input, each element
2286
- * of S should be a power of the radix to ensure a reliable solution
2287
- * and error estimates. Scaling by powers of the radix does not cause
2288
- * rounding errors unless the result underflows or overflows.
2289
- * Rounding errors during scaling lead to refining with a matrix that
2290
- * is not equivalent to the input matrix, producing error estimates
2291
- * that may not be reliable.
2292
- *
2293
- * B (input/output) REAL array, dimension (LDB,NRHS)
2294
- * On entry, the N-by-NRHS right hand side matrix B.
2295
- * On exit,
2296
- * if EQUED = 'N', B is not modified;
2297
- * if EQUED = 'Y', B is overwritten by diag(S)*B;
2298
- *
2299
- * LDB (input) INTEGER
2300
- * The leading dimension of the array B. LDB >= max(1,N).
2301
- *
2302
- * X (output) REAL array, dimension (LDX,NRHS)
2303
- * If INFO = 0, the N-by-NRHS solution matrix X to the original
2304
- * system of equations. Note that A and B are modified on exit if
2305
- * EQUED .ne. 'N', and the solution to the equilibrated system is
2306
- * inv(diag(S))*X.
2307
- *
2308
- * LDX (input) INTEGER
2309
- * The leading dimension of the array X. LDX >= max(1,N).
2310
- *
2311
- * RCOND (output) REAL
2312
- * Reciprocal scaled condition number. This is an estimate of the
2313
- * reciprocal Skeel condition number of the matrix A after
2314
- * equilibration (if done). If this is less than the machine
2315
- * precision (in particular, if it is zero), the matrix is singular
2316
- * to working precision. Note that the error may still be small even
2317
- * if this number is very small and the matrix appears ill-
2318
- * conditioned.
2319
- *
2320
- * RPVGRW (output) REAL
2321
- * Reciprocal pivot growth. On exit, this contains the reciprocal
2322
- * pivot growth factor norm(A)/norm(U). The "max absolute element"
2323
- * norm is used. If this is much less than 1, then the stability of
2324
- * the LU factorization of the (equilibrated) matrix A could be poor.
2325
- * This also means that the solution X, estimated condition numbers,
2326
- * and error bounds could be unreliable. If factorization fails with
2327
- * 0<INFO<=N, then this contains the reciprocal pivot growth factor
2328
- * for the leading INFO columns of A.
2329
- *
2330
- * BERR (output) REAL array, dimension (NRHS)
2331
- * Componentwise relative backward error. This is the
2332
- * componentwise relative backward error of each solution vector X(j)
2333
- * (i.e., the smallest relative change in any element of A or B that
2334
- * makes X(j) an exact solution).
2335
- *
2336
- * N_ERR_BNDS (input) INTEGER
2337
- * Number of error bounds to return for each right hand side
2338
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
2339
- * ERR_BNDS_COMP below.
2340
- *
2341
- * ERR_BNDS_NORM (output) REAL array, dimension (NRHS, N_ERR_BNDS)
2342
- * For each right-hand side, this array contains information about
2343
- * various error bounds and condition numbers corresponding to the
2344
- * normwise relative error, which is defined as follows:
2345
- *
2346
- * Normwise relative error in the ith solution vector:
2347
- * max_j (abs(XTRUE(j,i) - X(j,i)))
2348
- * ------------------------------
2349
- * max_j abs(X(j,i))
2350
- *
2351
- * The array is indexed by the type of error information as described
2352
- * below. There currently are up to three pieces of information
2353
- * returned.
2354
- *
2355
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
2356
- * right-hand side.
2357
- *
2358
- * The second index in ERR_BNDS_NORM(:,err) contains the following
2359
- * three fields:
2360
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2361
- * reciprocal condition number is less than the threshold
2362
- * sqrt(n) * slamch('Epsilon').
2363
- *
2364
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2365
- * almost certainly within a factor of 10 of the true error
2366
- * so long as the next entry is greater than the threshold
2367
- * sqrt(n) * slamch('Epsilon'). This error bound should only
2368
- * be trusted if the previous boolean is true.
2369
- *
2370
- * err = 3 Reciprocal condition number: Estimated normwise
2371
- * reciprocal condition number. Compared with the threshold
2372
- * sqrt(n) * slamch('Epsilon') to determine if the error
2373
- * estimate is "guaranteed". These reciprocal condition
2374
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2375
- * appropriately scaled matrix Z.
2376
- * Let Z = S*A, where S scales each row by a power of the
2377
- * radix so all absolute row sums of Z are approximately 1.
2378
- *
2379
- * See Lapack Working Note 165 for further details and extra
2380
- * cautions.
2381
- *
2382
- * ERR_BNDS_COMP (output) REAL array, dimension (NRHS, N_ERR_BNDS)
2383
- * For each right-hand side, this array contains information about
2384
- * various error bounds and condition numbers corresponding to the
2385
- * componentwise relative error, which is defined as follows:
2386
- *
2387
- * Componentwise relative error in the ith solution vector:
2388
- * abs(XTRUE(j,i) - X(j,i))
2389
- * max_j ----------------------
2390
- * abs(X(j,i))
2391
- *
2392
- * The array is indexed by the right-hand side i (on which the
2393
- * componentwise relative error depends), and the type of error
2394
- * information as described below. There currently are up to three
2395
- * pieces of information returned for each right-hand side. If
2396
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
2397
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
2398
- * the first (:,N_ERR_BNDS) entries are returned.
2399
- *
2400
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
2401
- * right-hand side.
2402
- *
2403
- * The second index in ERR_BNDS_COMP(:,err) contains the following
2404
- * three fields:
2405
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2406
- * reciprocal condition number is less than the threshold
2407
- * sqrt(n) * slamch('Epsilon').
2408
- *
2409
- * err = 2 "Guaranteed" error bound: The estimated forward error,
2410
- * almost certainly within a factor of 10 of the true error
2411
- * so long as the next entry is greater than the threshold
2412
- * sqrt(n) * slamch('Epsilon'). This error bound should only
2413
- * be trusted if the previous boolean is true.
2414
- *
2415
- * err = 3 Reciprocal condition number: Estimated componentwise
2416
- * reciprocal condition number. Compared with the threshold
2417
- * sqrt(n) * slamch('Epsilon') to determine if the error
2418
- * estimate is "guaranteed". These reciprocal condition
2419
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2420
- * appropriately scaled matrix Z.
2421
- * Let Z = S*(A*diag(x)), where x is the solution for the
2422
- * current right-hand side and S scales each row of
2423
- * A*diag(x) by a power of the radix so all absolute row
2424
- * sums of Z are approximately 1.
2425
- *
2426
- * See Lapack Working Note 165 for further details and extra
2427
- * cautions.
2428
- *
2429
- * NPARAMS (input) INTEGER
2430
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
2431
- * PARAMS array is never referenced and default values are used.
2432
- *
2433
- * PARAMS (input / output) REAL array, dimension NPARAMS
2434
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
2435
- * that entry will be filled with default value used for that
2436
- * parameter. Only positions up to NPARAMS are accessed; defaults
2437
- * are used for higher-numbered parameters.
2438
- *
2439
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
2440
- * refinement or not.
2441
- * Default: 1.0
2442
- * = 0.0 : No refinement is performed, and no error bounds are
2443
- * computed.
2444
- * = 1.0 : Use the double-precision refinement algorithm,
2445
- * possibly with doubled-single computations if the
2446
- * compilation environment does not support DOUBLE
2447
- * PRECISION.
2448
- * (other values are reserved for future use)
2449
- *
2450
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
2451
- * computations allowed for refinement.
2452
- * Default: 10
2453
- * Aggressive: Set to 100 to permit convergence using approximate
2454
- * factorizations or factorizations other than LU. If
2455
- * the factorization uses a technique other than
2456
- * Gaussian elimination, the guarantees in
2457
- * err_bnds_norm and err_bnds_comp may no longer be
2458
- * trustworthy.
2459
- *
2460
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
2461
- * will attempt to find a solution with small componentwise
2462
- * relative error in the double-precision algorithm. Positive
2463
- * is true, 0.0 is false.
2464
- * Default: 1.0 (attempt componentwise convergence)
2465
- *
2466
- * WORK (workspace) REAL array, dimension (4*N)
2467
- *
2468
- * IWORK (workspace) INTEGER array, dimension (N)
2469
- *
2470
- * INFO (output) INTEGER
2471
- * = 0: Successful exit. The solution to every right-hand side is
2472
- * guaranteed.
2473
- * < 0: If INFO = -i, the i-th argument had an illegal value
2474
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
2475
- * has been completed, but the factor U is exactly singular, so
2476
- * the solution and error bounds could not be computed. RCOND = 0
2477
- * is returned.
2478
- * = N+J: The solution corresponding to the Jth right-hand side is
2479
- * not guaranteed. The solutions corresponding to other right-
2480
- * hand sides K with K > J may not be guaranteed as well, but
2481
- * only the first such right-hand side is reported. If a small
2482
- * componentwise error is not requested (PARAMS(3) = 0.0) then
2483
- * the Jth right-hand side is the first with a normwise error
2484
- * bound that is not guaranteed (the smallest J such
2485
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
2486
- * the Jth right-hand side is the first with either a normwise or
2487
- * componentwise error bound that is not guaranteed (the smallest
2488
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
2489
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
2490
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
2491
- * about all of the right-hand sides check ERR_BNDS_NORM or
2492
- * ERR_BNDS_COMP.
2493
- *
2494
-
2495
- * ==================================================================
2496
- *
2497
-
2498
-
2499
- </PRE>
2500
- <A HREF="#top">go to the page top</A>
2501
-
2502
- <A NAME="ssyswapr"></A>
2503
- <H2>ssyswapr</H2>
2504
- <PRE>
2505
- USAGE:
2506
- a = NumRu::Lapack.ssyswapr( uplo, a, i1, i2, [:usage => usage, :help => help])
2507
-
2508
-
2509
- FORTRAN MANUAL
2510
- SUBROUTINE SSYSWAPR( UPLO, N, A, I1, I2)
2511
-
2512
- * Purpose
2513
- * =======
2514
- *
2515
- * SSYSWAPR applies an elementary permutation on the rows and the columns of
2516
- * a symmetric matrix.
2517
- *
2518
-
2519
- * Arguments
2520
- * =========
2521
- *
2522
- * UPLO (input) CHARACTER*1
2523
- * Specifies whether the details of the factorization are stored
2524
- * as an upper or lower triangular matrix.
2525
- * = 'U': Upper triangular, form is A = U*D*U**T;
2526
- * = 'L': Lower triangular, form is A = L*D*L**T.
2527
- *
2528
- * N (input) INTEGER
2529
- * The order of the matrix A. N >= 0.
2530
- *
2531
- * A (input/output) REAL array, dimension (LDA,N)
2532
- * On entry, the NB diagonal matrix D and the multipliers
2533
- * used to obtain the factor U or L as computed by SSYTRF.
2534
- *
2535
- * On exit, if INFO = 0, the (symmetric) inverse of the original
2536
- * matrix. If UPLO = 'U', the upper triangular part of the
2537
- * inverse is formed and the part of A below the diagonal is not
2538
- * referenced; if UPLO = 'L' the lower triangular part of the
2539
- * inverse is formed and the part of A above the diagonal is
2540
- * not referenced.
2541
- *
2542
- * I1 (input) INTEGER
2543
- * Index of the first row to swap
2544
- *
2545
- * I2 (input) INTEGER
2546
- * Index of the second row to swap
2547
- *
2548
-
2549
- * =====================================================================
2550
- *
2551
- * ..
2552
- * .. Local Scalars ..
2553
- LOGICAL UPPER
2554
- INTEGER I
2555
- REAL TMP
2556
- *
2557
- * .. External Functions ..
2558
- LOGICAL LSAME
2559
- EXTERNAL LSAME
2560
- * ..
2561
- * .. External Subroutines ..
2562
- EXTERNAL SSWAP
2563
- * ..
2564
-
2565
-
2566
- </PRE>
2567
- <A HREF="#top">go to the page top</A>
2568
-
2569
- <A NAME="ssytd2"></A>
2570
- <H2>ssytd2</H2>
2571
- <PRE>
2572
- USAGE:
2573
- d, e, tau, info, a = NumRu::Lapack.ssytd2( uplo, a, [:usage => usage, :help => help])
2574
-
2575
-
2576
- FORTRAN MANUAL
2577
- SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
2578
-
2579
- * Purpose
2580
- * =======
2581
- *
2582
- * SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
2583
- * form T by an orthogonal similarity transformation: Q' * A * Q = T.
2584
- *
2585
-
2586
- * Arguments
2587
- * =========
2588
- *
2589
- * UPLO (input) CHARACTER*1
2590
- * Specifies whether the upper or lower triangular part of the
2591
- * symmetric matrix A is stored:
2592
- * = 'U': Upper triangular
2593
- * = 'L': Lower triangular
2594
- *
2595
- * N (input) INTEGER
2596
- * The order of the matrix A. N >= 0.
2597
- *
2598
- * A (input/output) REAL array, dimension (LDA,N)
2599
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2600
- * n-by-n upper triangular part of A contains the upper
2601
- * triangular part of the matrix A, and the strictly lower
2602
- * triangular part of A is not referenced. If UPLO = 'L', the
2603
- * leading n-by-n lower triangular part of A contains the lower
2604
- * triangular part of the matrix A, and the strictly upper
2605
- * triangular part of A is not referenced.
2606
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2607
- * of A are overwritten by the corresponding elements of the
2608
- * tridiagonal matrix T, and the elements above the first
2609
- * superdiagonal, with the array TAU, represent the orthogonal
2610
- * matrix Q as a product of elementary reflectors; if UPLO
2611
- * = 'L', the diagonal and first subdiagonal of A are over-
2612
- * written by the corresponding elements of the tridiagonal
2613
- * matrix T, and the elements below the first subdiagonal, with
2614
- * the array TAU, represent the orthogonal matrix Q as a product
2615
- * of elementary reflectors. See Further Details.
2616
- *
2617
- * LDA (input) INTEGER
2618
- * The leading dimension of the array A. LDA >= max(1,N).
2619
- *
2620
- * D (output) REAL array, dimension (N)
2621
- * The diagonal elements of the tridiagonal matrix T:
2622
- * D(i) = A(i,i).
2623
- *
2624
- * E (output) REAL array, dimension (N-1)
2625
- * The off-diagonal elements of the tridiagonal matrix T:
2626
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2627
- *
2628
- * TAU (output) REAL array, dimension (N-1)
2629
- * The scalar factors of the elementary reflectors (see Further
2630
- * Details).
2631
- *
2632
- * INFO (output) INTEGER
2633
- * = 0: successful exit
2634
- * < 0: if INFO = -i, the i-th argument had an illegal value.
2635
- *
2636
-
2637
- * Further Details
2638
- * ===============
2639
- *
2640
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2641
- * reflectors
2642
- *
2643
- * Q = H(n-1) . . . H(2) H(1).
2644
- *
2645
- * Each H(i) has the form
2646
- *
2647
- * H(i) = I - tau * v * v'
2648
- *
2649
- * where tau is a real scalar, and v is a real vector with
2650
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2651
- * A(1:i-1,i+1), and tau in TAU(i).
2652
- *
2653
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2654
- * reflectors
2655
- *
2656
- * Q = H(1) H(2) . . . H(n-1).
2657
- *
2658
- * Each H(i) has the form
2659
- *
2660
- * H(i) = I - tau * v * v'
2661
- *
2662
- * where tau is a real scalar, and v is a real vector with
2663
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2664
- * and tau in TAU(i).
2665
- *
2666
- * The contents of A on exit are illustrated by the following examples
2667
- * with n = 5:
2668
- *
2669
- * if UPLO = 'U': if UPLO = 'L':
2670
- *
2671
- * ( d e v2 v3 v4 ) ( d )
2672
- * ( d e v3 v4 ) ( e d )
2673
- * ( d e v4 ) ( v1 e d )
2674
- * ( d e ) ( v1 v2 e d )
2675
- * ( d ) ( v1 v2 v3 e d )
2676
- *
2677
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2678
- * denotes an element of the vector defining H(i).
2679
- *
2680
- * =====================================================================
2681
- *
2682
-
2683
-
2684
- </PRE>
2685
- <A HREF="#top">go to the page top</A>
2686
-
2687
- <A NAME="ssytf2"></A>
2688
- <H2>ssytf2</H2>
2689
- <PRE>
2690
- USAGE:
2691
- ipiv, info, a = NumRu::Lapack.ssytf2( uplo, a, [:usage => usage, :help => help])
2692
-
2693
-
2694
- FORTRAN MANUAL
2695
- SUBROUTINE SSYTF2( UPLO, N, A, LDA, IPIV, INFO )
2696
-
2697
- * Purpose
2698
- * =======
2699
- *
2700
- * SSYTF2 computes the factorization of a real symmetric matrix A using
2701
- * the Bunch-Kaufman diagonal pivoting method:
2702
- *
2703
- * A = U*D*U' or A = L*D*L'
2704
- *
2705
- * where U (or L) is a product of permutation and unit upper (lower)
2706
- * triangular matrices, U' is the transpose of U, and D is symmetric and
2707
- * block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2708
- *
2709
- * This is the unblocked version of the algorithm, calling Level 2 BLAS.
2710
- *
2711
-
2712
- * Arguments
2713
- * =========
2714
- *
2715
- * UPLO (input) CHARACTER*1
2716
- * Specifies whether the upper or lower triangular part of the
2717
- * symmetric matrix A is stored:
2718
- * = 'U': Upper triangular
2719
- * = 'L': Lower triangular
2720
- *
2721
- * N (input) INTEGER
2722
- * The order of the matrix A. N >= 0.
2723
- *
2724
- * A (input/output) REAL array, dimension (LDA,N)
2725
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2726
- * n-by-n upper triangular part of A contains the upper
2727
- * triangular part of the matrix A, and the strictly lower
2728
- * triangular part of A is not referenced. If UPLO = 'L', the
2729
- * leading n-by-n lower triangular part of A contains the lower
2730
- * triangular part of the matrix A, and the strictly upper
2731
- * triangular part of A is not referenced.
2732
- *
2733
- * On exit, the block diagonal matrix D and the multipliers used
2734
- * to obtain the factor U or L (see below for further details).
2735
- *
2736
- * LDA (input) INTEGER
2737
- * The leading dimension of the array A. LDA >= max(1,N).
2738
- *
2739
- * IPIV (output) INTEGER array, dimension (N)
2740
- * Details of the interchanges and the block structure of D.
2741
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2742
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
2743
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2744
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2745
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2746
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2747
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2748
- *
2749
- * INFO (output) INTEGER
2750
- * = 0: successful exit
2751
- * < 0: if INFO = -k, the k-th argument had an illegal value
2752
- * > 0: if INFO = k, D(k,k) is exactly zero. The factorization
2753
- * has been completed, but the block diagonal matrix D is
2754
- * exactly singular, and division by zero will occur if it
2755
- * is used to solve a system of equations.
2756
- *
2757
-
2758
- * Further Details
2759
- * ===============
2760
- *
2761
- * 09-29-06 - patch from
2762
- * Bobby Cheng, MathWorks
2763
- *
2764
- * Replace l.204 and l.372
2765
- * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
2766
- * by
2767
- * IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN
2768
- *
2769
- * 01-01-96 - Based on modifications by
2770
- * J. Lewis, Boeing Computer Services Company
2771
- * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
2772
- * 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
2773
- * Company
2774
- *
2775
- * If UPLO = 'U', then A = U*D*U', where
2776
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
2777
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
2778
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2779
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2780
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
2781
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2782
- *
2783
- * ( I v 0 ) k-s
2784
- * U(k) = ( 0 I 0 ) s
2785
- * ( 0 0 I ) n-k
2786
- * k-s s n-k
2787
- *
2788
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
2789
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
2790
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
2791
- *
2792
- * If UPLO = 'L', then A = L*D*L', where
2793
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
2794
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
2795
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2796
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2797
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
2798
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2799
- *
2800
- * ( I 0 0 ) k-1
2801
- * L(k) = ( 0 I 0 ) s
2802
- * ( 0 v I ) n-k-s+1
2803
- * k-1 s n-k-s+1
2804
- *
2805
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
2806
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
2807
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
2808
- *
2809
- * =====================================================================
2810
- *
2811
-
2812
-
2813
- </PRE>
2814
- <A HREF="#top">go to the page top</A>
2815
-
2816
- <A NAME="ssytrd"></A>
2817
- <H2>ssytrd</H2>
2818
- <PRE>
2819
- USAGE:
2820
- d, e, tau, work, info, a = NumRu::Lapack.ssytrd( uplo, a, lwork, [:usage => usage, :help => help])
2821
-
2822
-
2823
- FORTRAN MANUAL
2824
- SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
2825
-
2826
- * Purpose
2827
- * =======
2828
- *
2829
- * SSYTRD reduces a real symmetric matrix A to real symmetric
2830
- * tridiagonal form T by an orthogonal similarity transformation:
2831
- * Q**T * A * Q = T.
2832
- *
2833
-
2834
- * Arguments
2835
- * =========
2836
- *
2837
- * UPLO (input) CHARACTER*1
2838
- * = 'U': Upper triangle of A is stored;
2839
- * = 'L': Lower triangle of A is stored.
2840
- *
2841
- * N (input) INTEGER
2842
- * The order of the matrix A. N >= 0.
2843
- *
2844
- * A (input/output) REAL array, dimension (LDA,N)
2845
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2846
- * N-by-N upper triangular part of A contains the upper
2847
- * triangular part of the matrix A, and the strictly lower
2848
- * triangular part of A is not referenced. If UPLO = 'L', the
2849
- * leading N-by-N lower triangular part of A contains the lower
2850
- * triangular part of the matrix A, and the strictly upper
2851
- * triangular part of A is not referenced.
2852
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2853
- * of A are overwritten by the corresponding elements of the
2854
- * tridiagonal matrix T, and the elements above the first
2855
- * superdiagonal, with the array TAU, represent the orthogonal
2856
- * matrix Q as a product of elementary reflectors; if UPLO
2857
- * = 'L', the diagonal and first subdiagonal of A are over-
2858
- * written by the corresponding elements of the tridiagonal
2859
- * matrix T, and the elements below the first subdiagonal, with
2860
- * the array TAU, represent the orthogonal matrix Q as a product
2861
- * of elementary reflectors. See Further Details.
2862
- *
2863
- * LDA (input) INTEGER
2864
- * The leading dimension of the array A. LDA >= max(1,N).
2865
- *
2866
- * D (output) REAL array, dimension (N)
2867
- * The diagonal elements of the tridiagonal matrix T:
2868
- * D(i) = A(i,i).
2869
- *
2870
- * E (output) REAL array, dimension (N-1)
2871
- * The off-diagonal elements of the tridiagonal matrix T:
2872
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2873
- *
2874
- * TAU (output) REAL array, dimension (N-1)
2875
- * The scalar factors of the elementary reflectors (see Further
2876
- * Details).
2877
- *
2878
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
2879
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2880
- *
2881
- * LWORK (input) INTEGER
2882
- * The dimension of the array WORK. LWORK >= 1.
2883
- * For optimum performance LWORK >= N*NB, where NB is the
2884
- * optimal blocksize.
2885
- *
2886
- * If LWORK = -1, then a workspace query is assumed; the routine
2887
- * only calculates the optimal size of the WORK array, returns
2888
- * this value as the first entry of the WORK array, and no error
2889
- * message related to LWORK is issued by XERBLA.
2890
- *
2891
- * INFO (output) INTEGER
2892
- * = 0: successful exit
2893
- * < 0: if INFO = -i, the i-th argument had an illegal value
2894
- *
2895
-
2896
- * Further Details
2897
- * ===============
2898
- *
2899
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
2900
- * reflectors
2901
- *
2902
- * Q = H(n-1) . . . H(2) H(1).
2903
- *
2904
- * Each H(i) has the form
2905
- *
2906
- * H(i) = I - tau * v * v'
2907
- *
2908
- * where tau is a real scalar, and v is a real vector with
2909
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2910
- * A(1:i-1,i+1), and tau in TAU(i).
2911
- *
2912
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
2913
- * reflectors
2914
- *
2915
- * Q = H(1) H(2) . . . H(n-1).
2916
- *
2917
- * Each H(i) has the form
2918
- *
2919
- * H(i) = I - tau * v * v'
2920
- *
2921
- * where tau is a real scalar, and v is a real vector with
2922
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2923
- * and tau in TAU(i).
2924
- *
2925
- * The contents of A on exit are illustrated by the following examples
2926
- * with n = 5:
2927
- *
2928
- * if UPLO = 'U': if UPLO = 'L':
2929
- *
2930
- * ( d e v2 v3 v4 ) ( d )
2931
- * ( d e v3 v4 ) ( e d )
2932
- * ( d e v4 ) ( v1 e d )
2933
- * ( d e ) ( v1 v2 e d )
2934
- * ( d ) ( v1 v2 v3 e d )
2935
- *
2936
- * where d and e denote diagonal and off-diagonal elements of T, and vi
2937
- * denotes an element of the vector defining H(i).
2938
- *
2939
- * =====================================================================
2940
- *
2941
-
2942
-
2943
- </PRE>
2944
- <A HREF="#top">go to the page top</A>
2945
-
2946
- <A NAME="ssytrf"></A>
2947
- <H2>ssytrf</H2>
2948
- <PRE>
2949
- USAGE:
2950
- ipiv, work, info, a = NumRu::Lapack.ssytrf( uplo, a, lwork, [:usage => usage, :help => help])
2951
-
2952
-
2953
- FORTRAN MANUAL
2954
- SUBROUTINE SSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
2955
-
2956
- * Purpose
2957
- * =======
2958
- *
2959
- * SSYTRF computes the factorization of a real symmetric matrix A using
2960
- * the Bunch-Kaufman diagonal pivoting method. The form of the
2961
- * factorization is
2962
- *
2963
- * A = U*D*U**T or A = L*D*L**T
2964
- *
2965
- * where U (or L) is a product of permutation and unit upper (lower)
2966
- * triangular matrices, and D is symmetric and block diagonal with
2967
- * 1-by-1 and 2-by-2 diagonal blocks.
2968
- *
2969
- * This is the blocked version of the algorithm, calling Level 3 BLAS.
2970
- *
2971
-
2972
- * Arguments
2973
- * =========
2974
- *
2975
- * UPLO (input) CHARACTER*1
2976
- * = 'U': Upper triangle of A is stored;
2977
- * = 'L': Lower triangle of A is stored.
2978
- *
2979
- * N (input) INTEGER
2980
- * The order of the matrix A. N >= 0.
2981
- *
2982
- * A (input/output) REAL array, dimension (LDA,N)
2983
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2984
- * N-by-N upper triangular part of A contains the upper
2985
- * triangular part of the matrix A, and the strictly lower
2986
- * triangular part of A is not referenced. If UPLO = 'L', the
2987
- * leading N-by-N lower triangular part of A contains the lower
2988
- * triangular part of the matrix A, and the strictly upper
2989
- * triangular part of A is not referenced.
2990
- *
2991
- * On exit, the block diagonal matrix D and the multipliers used
2992
- * to obtain the factor U or L (see below for further details).
2993
- *
2994
- * LDA (input) INTEGER
2995
- * The leading dimension of the array A. LDA >= max(1,N).
2996
- *
2997
- * IPIV (output) INTEGER array, dimension (N)
2998
- * Details of the interchanges and the block structure of D.
2999
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
3000
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
3001
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
3002
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
3003
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
3004
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
3005
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
3006
- *
3007
- * WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))
3008
- * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
3009
- *
3010
- * LWORK (input) INTEGER
3011
- * The length of WORK. LWORK >=1. For best performance
3012
- * LWORK >= N*NB, where NB is the block size returned by ILAENV.
3013
- *
3014
- * If LWORK = -1, then a workspace query is assumed; the routine
3015
- * only calculates the optimal size of the WORK array, returns
3016
- * this value as the first entry of the WORK array, and no error
3017
- * message related to LWORK is issued by XERBLA.
3018
- *
3019
- * INFO (output) INTEGER
3020
- * = 0: successful exit
3021
- * < 0: if INFO = -i, the i-th argument had an illegal value
3022
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
3023
- * has been completed, but the block diagonal matrix D is
3024
- * exactly singular, and division by zero will occur if it
3025
- * is used to solve a system of equations.
3026
- *
3027
-
3028
- * Further Details
3029
- * ===============
3030
- *
3031
- * If UPLO = 'U', then A = U*D*U', where
3032
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
3033
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
3034
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3035
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3036
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
3037
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3038
- *
3039
- * ( I v 0 ) k-s
3040
- * U(k) = ( 0 I 0 ) s
3041
- * ( 0 0 I ) n-k
3042
- * k-s s n-k
3043
- *
3044
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
3045
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
3046
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
3047
- *
3048
- * If UPLO = 'L', then A = L*D*L', where
3049
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
3050
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
3051
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3052
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3053
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
3054
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3055
- *
3056
- * ( I 0 0 ) k-1
3057
- * L(k) = ( 0 I 0 ) s
3058
- * ( 0 v I ) n-k-s+1
3059
- * k-1 s n-k-s+1
3060
- *
3061
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
3062
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
3063
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
3064
- *
3065
- * =====================================================================
3066
- *
3067
- * .. Local Scalars ..
3068
- LOGICAL LQUERY, UPPER
3069
- INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
3070
- * ..
3071
- * .. External Functions ..
3072
- LOGICAL LSAME
3073
- INTEGER ILAENV
3074
- EXTERNAL LSAME, ILAENV
3075
- * ..
3076
- * .. External Subroutines ..
3077
- EXTERNAL SLASYF, SSYTF2, XERBLA
3078
- * ..
3079
- * .. Intrinsic Functions ..
3080
- INTRINSIC MAX
3081
- * ..
3082
-
3083
-
3084
- </PRE>
3085
- <A HREF="#top">go to the page top</A>
3086
-
3087
- <A NAME="ssytri"></A>
3088
- <H2>ssytri</H2>
3089
- <PRE>
3090
- USAGE:
3091
- info, a = NumRu::Lapack.ssytri( uplo, a, ipiv, [:usage => usage, :help => help])
3092
-
3093
-
3094
- FORTRAN MANUAL
3095
- SUBROUTINE SSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
3096
-
3097
- * Purpose
3098
- * =======
3099
- *
3100
- * SSYTRI computes the inverse of a real symmetric indefinite matrix
3101
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3102
- * SSYTRF.
3103
- *
3104
-
3105
- * Arguments
3106
- * =========
3107
- *
3108
- * UPLO (input) CHARACTER*1
3109
- * Specifies whether the details of the factorization are stored
3110
- * as an upper or lower triangular matrix.
3111
- * = 'U': Upper triangular, form is A = U*D*U**T;
3112
- * = 'L': Lower triangular, form is A = L*D*L**T.
3113
- *
3114
- * N (input) INTEGER
3115
- * The order of the matrix A. N >= 0.
3116
- *
3117
- * A (input/output) REAL array, dimension (LDA,N)
3118
- * On entry, the block diagonal matrix D and the multipliers
3119
- * used to obtain the factor U or L as computed by SSYTRF.
3120
- *
3121
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3122
- * matrix. If UPLO = 'U', the upper triangular part of the
3123
- * inverse is formed and the part of A below the diagonal is not
3124
- * referenced; if UPLO = 'L' the lower triangular part of the
3125
- * inverse is formed and the part of A above the diagonal is
3126
- * not referenced.
3127
- *
3128
- * LDA (input) INTEGER
3129
- * The leading dimension of the array A. LDA >= max(1,N).
3130
- *
3131
- * IPIV (input) INTEGER array, dimension (N)
3132
- * Details of the interchanges and the block structure of D
3133
- * as determined by SSYTRF.
3134
- *
3135
- * WORK (workspace) REAL array, dimension (N)
3136
- *
3137
- * INFO (output) INTEGER
3138
- * = 0: successful exit
3139
- * < 0: if INFO = -i, the i-th argument had an illegal value
3140
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3141
- * inverse could not be computed.
3142
- *
3143
-
3144
- * =====================================================================
3145
- *
3146
-
3147
-
3148
- </PRE>
3149
- <A HREF="#top">go to the page top</A>
3150
-
3151
- <A NAME="ssytri2"></A>
3152
- <H2>ssytri2</H2>
3153
- <PRE>
3154
- USAGE:
3155
- info, a, work = NumRu::Lapack.ssytri2( uplo, a, ipiv, work, [:lwork => lwork, :usage => usage, :help => help])
3156
-
3157
-
3158
- FORTRAN MANUAL
3159
- SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
3160
-
3161
- * Purpose
3162
- * =======
3163
- *
3164
- * SSYTRI2 computes the inverse of a real symmetric indefinite matrix
3165
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3166
- * SSYTRF. SSYTRI2 sets the LEADING DIMENSION of the workspace
3167
- * before calling SSYTRI2X that actually computes the inverse.
3168
- *
3169
-
3170
- * Arguments
3171
- * =========
3172
- *
3173
- * UPLO (input) CHARACTER*1
3174
- * Specifies whether the details of the factorization are stored
3175
- * as an upper or lower triangular matrix.
3176
- * = 'U': Upper triangular, form is A = U*D*U**T;
3177
- * = 'L': Lower triangular, form is A = L*D*L**T.
3178
- *
3179
- * N (input) INTEGER
3180
- * The order of the matrix A. N >= 0.
3181
- *
3182
- * A (input/output) REAL array, dimension (LDA,N)
3183
- * On entry, the NB diagonal matrix D and the multipliers
3184
- * used to obtain the factor U or L as computed by SSYTRF.
3185
- *
3186
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3187
- * matrix. If UPLO = 'U', the upper triangular part of the
3188
- * inverse is formed and the part of A below the diagonal is not
3189
- * referenced; if UPLO = 'L' the lower triangular part of the
3190
- * inverse is formed and the part of A above the diagonal is
3191
- * not referenced.
3192
- *
3193
- * LDA (input) INTEGER
3194
- * The leading dimension of the array A. LDA >= max(1,N).
3195
- *
3196
- * IPIV (input) INTEGER array, dimension (N)
3197
- * Details of the interchanges and the NB structure of D
3198
- * as determined by SSYTRF.
3199
- *
3200
- * WORK (workspace) REAL array, dimension (N+NB+1)*(NB+3)
3201
- *
3202
- * LWORK (input) INTEGER
3203
- * The dimension of the array WORK.
3204
- * WORK is size >= (N+NB+1)*(NB+3)
3205
- * If LDWORK = -1, then a workspace query is assumed; the routine
3206
- * calculates:
3207
- * - the optimal size of the WORK array, returns
3208
- * this value as the first entry of the WORK array,
3209
- * - and no error message related to LDWORK is issued by XERBLA.
3210
- *
3211
- * INFO (output) INTEGER
3212
- * = 0: successful exit
3213
- * < 0: if INFO = -i, the i-th argument had an illegal value
3214
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3215
- * inverse could not be computed.
3216
- *
3217
-
3218
- * =====================================================================
3219
- *
3220
- * .. Local Scalars ..
3221
- LOGICAL UPPER, LQUERY
3222
- INTEGER MINSIZE, NBMAX
3223
- * ..
3224
- * .. External Functions ..
3225
- LOGICAL LSAME
3226
- INTEGER ILAENV
3227
- EXTERNAL LSAME, ILAENV
3228
- * ..
3229
- * .. External Subroutines ..
3230
- EXTERNAL SSYTRI2X
3231
- * ..
3232
-
3233
-
3234
- </PRE>
3235
- <A HREF="#top">go to the page top</A>
3236
-
3237
- <A NAME="ssytri2x"></A>
3238
- <H2>ssytri2x</H2>
3239
- <PRE>
3240
- USAGE:
3241
- info, a = NumRu::Lapack.ssytri2x( uplo, a, ipiv, nb, [:usage => usage, :help => help])
3242
-
3243
-
3244
- FORTRAN MANUAL
3245
- SUBROUTINE SSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
3246
-
3247
- * Purpose
3248
- * =======
3249
- *
3250
- * SSYTRI2X computes the inverse of a real symmetric indefinite matrix
3251
- * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3252
- * SSYTRF.
3253
- *
3254
-
3255
- * Arguments
3256
- * =========
3257
- *
3258
- * UPLO (input) CHARACTER*1
3259
- * Specifies whether the details of the factorization are stored
3260
- * as an upper or lower triangular matrix.
3261
- * = 'U': Upper triangular, form is A = U*D*U**T;
3262
- * = 'L': Lower triangular, form is A = L*D*L**T.
3263
- *
3264
- * N (input) INTEGER
3265
- * The order of the matrix A. N >= 0.
3266
- *
3267
- * A (input/output) REAL array, dimension (LDA,N)
3268
- * On entry, the NNB diagonal matrix D and the multipliers
3269
- * used to obtain the factor U or L as computed by SSYTRF.
3270
- *
3271
- * On exit, if INFO = 0, the (symmetric) inverse of the original
3272
- * matrix. If UPLO = 'U', the upper triangular part of the
3273
- * inverse is formed and the part of A below the diagonal is not
3274
- * referenced; if UPLO = 'L' the lower triangular part of the
3275
- * inverse is formed and the part of A above the diagonal is
3276
- * not referenced.
3277
- *
3278
- * LDA (input) INTEGER
3279
- * The leading dimension of the array A. LDA >= max(1,N).
3280
- *
3281
- * IPIV (input) INTEGER array, dimension (N)
3282
- * Details of the interchanges and the NNB structure of D
3283
- * as determined by SSYTRF.
3284
- *
3285
- * WORK (workspace) REAL array, dimension (N+NNB+1,NNB+3)
3286
- *
3287
- * NB (input) INTEGER
3288
- * Block size
3289
- *
3290
- * INFO (output) INTEGER
3291
- * = 0: successful exit
3292
- * < 0: if INFO = -i, the i-th argument had an illegal value
3293
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3294
- * inverse could not be computed.
3295
- *
3296
-
3297
- * =====================================================================
3298
- *
3299
-
3300
-
3301
- </PRE>
3302
- <A HREF="#top">go to the page top</A>
3303
-
3304
- <A NAME="ssytrs"></A>
3305
- <H2>ssytrs</H2>
3306
- <PRE>
3307
- USAGE:
3308
- info, b = NumRu::Lapack.ssytrs( uplo, a, ipiv, b, [:usage => usage, :help => help])
3309
-
3310
-
3311
- FORTRAN MANUAL
3312
- SUBROUTINE SSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
3313
-
3314
- * Purpose
3315
- * =======
3316
- *
3317
- * SSYTRS solves a system of linear equations A*X = B with a real
3318
- * symmetric matrix A using the factorization A = U*D*U**T or
3319
- * A = L*D*L**T computed by SSYTRF.
3320
- *
3321
-
3322
- * Arguments
3323
- * =========
3324
- *
3325
- * UPLO (input) CHARACTER*1
3326
- * Specifies whether the details of the factorization are stored
3327
- * as an upper or lower triangular matrix.
3328
- * = 'U': Upper triangular, form is A = U*D*U**T;
3329
- * = 'L': Lower triangular, form is A = L*D*L**T.
3330
- *
3331
- * N (input) INTEGER
3332
- * The order of the matrix A. N >= 0.
3333
- *
3334
- * NRHS (input) INTEGER
3335
- * The number of right hand sides, i.e., the number of columns
3336
- * of the matrix B. NRHS >= 0.
3337
- *
3338
- * A (input) REAL array, dimension (LDA,N)
3339
- * The block diagonal matrix D and the multipliers used to
3340
- * obtain the factor U or L as computed by SSYTRF.
3341
- *
3342
- * LDA (input) INTEGER
3343
- * The leading dimension of the array A. LDA >= max(1,N).
3344
- *
3345
- * IPIV (input) INTEGER array, dimension (N)
3346
- * Details of the interchanges and the block structure of D
3347
- * as determined by SSYTRF.
3348
- *
3349
- * B (input/output) REAL array, dimension (LDB,NRHS)
3350
- * On entry, the right hand side matrix B.
3351
- * On exit, the solution matrix X.
3352
- *
3353
- * LDB (input) INTEGER
3354
- * The leading dimension of the array B. LDB >= max(1,N).
3355
- *
3356
- * INFO (output) INTEGER
3357
- * = 0: successful exit
3358
- * < 0: if INFO = -i, the i-th argument had an illegal value
3359
- *
3360
-
3361
- * =====================================================================
3362
- *
3363
-
3364
-
3365
- </PRE>
3366
- <A HREF="#top">go to the page top</A>
3367
-
3368
- <A NAME="ssytrs2"></A>
3369
- <H2>ssytrs2</H2>
3370
- <PRE>
3371
- USAGE:
3372
- info, b = NumRu::Lapack.ssytrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])
3373
-
3374
-
3375
- FORTRAN MANUAL
3376
- SUBROUTINE SSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO )
3377
-
3378
- * Purpose
3379
- * =======
3380
- *
3381
- * SSYTRS2 solves a system of linear equations A*X = B with a real
3382
- * symmetric matrix A using the factorization A = U*D*U**T or
3383
- * A = L*D*L**T computed by SSYTRF and converted by SSYCONV.
3384
- *
3385
-
3386
- * Arguments
3387
- * =========
3388
- *
3389
- * UPLO (input) CHARACTER*1
3390
- * Specifies whether the details of the factorization are stored
3391
- * as an upper or lower triangular matrix.
3392
- * = 'U': Upper triangular, form is A = U*D*U**T;
3393
- * = 'L': Lower triangular, form is A = L*D*L**T.
3394
- *
3395
- * N (input) INTEGER
3396
- * The order of the matrix A. N >= 0.
3397
- *
3398
- * NRHS (input) INTEGER
3399
- * The number of right hand sides, i.e., the number of columns
3400
- * of the matrix B. NRHS >= 0.
3401
- *
3402
- * A (input) REAL array, dimension (LDA,N)
3403
- * The block diagonal matrix D and the multipliers used to
3404
- * obtain the factor U or L as computed by SSYTRF.
3405
- *
3406
- * LDA (input) INTEGER
3407
- * The leading dimension of the array A. LDA >= max(1,N).
3408
- *
3409
- * IPIV (input) INTEGER array, dimension (N)
3410
- * Details of the interchanges and the block structure of D
3411
- * as determined by SSYTRF.
3412
- *
3413
- * B (input/output) REAL array, dimension (LDB,NRHS)
3414
- * On entry, the right hand side matrix B.
3415
- * On exit, the solution matrix X.
3416
- *
3417
- * LDB (input) INTEGER
3418
- * The leading dimension of the array B. LDB >= max(1,N).
3419
- *
3420
- * WORK (workspace) REAL array, dimension (N)
3421
- *
3422
- * INFO (output) INTEGER
3423
- * = 0: successful exit
3424
- * < 0: if INFO = -i, the i-th argument had an illegal value
3425
- *
3426
-
3427
- * =====================================================================
3428
- *
3429
-
3430
-
3431
- </PRE>
3432
- <A HREF="#top">go to the page top</A>
3433
-
3434
- <HR />
3435
- <A HREF="s.html">back to matrix types</A><BR>
3436
- <A HREF="s.html">back to data types</A>
3437
- </BODY>
3438
- </HTML>