ruby-lapack 1.4.1a → 1.5
Sign up to get free protection for your applications and to get access to all the features.
- data/Rakefile +1 -2
- data/ext/cbbcsd.c +34 -34
- data/ext/cbdsqr.c +20 -20
- data/ext/cgbbrd.c +12 -12
- data/ext/cgbcon.c +13 -13
- data/ext/cgbequ.c +3 -3
- data/ext/cgbequb.c +2 -2
- data/ext/cgbrfs.c +22 -22
- data/ext/cgbrfsx.c +43 -43
- data/ext/cgbsv.c +2 -2
- data/ext/cgbsvx.c +25 -25
- data/ext/cgbsvxx.c +36 -36
- data/ext/cgbtf2.c +3 -3
- data/ext/cgbtrf.c +3 -3
- data/ext/cgbtrs.c +11 -11
- data/ext/cgebak.c +11 -11
- data/ext/cgebal.c +1 -1
- data/ext/cgebd2.c +1 -1
- data/ext/cgebrd.c +1 -1
- data/ext/cgecon.c +1 -1
- data/ext/cgees.c +3 -3
- data/ext/cgeesx.c +4 -4
- data/ext/cgeev.c +4 -4
- data/ext/cgeevx.c +5 -5
- data/ext/cgegs.c +2 -2
- data/ext/cgegv.c +3 -3
- data/ext/cgehd2.c +1 -1
- data/ext/cgehrd.c +2 -2
- data/ext/cgelqf.c +6 -6
- data/ext/cgels.c +2 -2
- data/ext/cgelsd.c +9 -9
- data/ext/cgelss.c +2 -2
- data/ext/cgelsx.c +12 -12
- data/ext/cgelsy.c +12 -12
- data/ext/cgeql2.c +1 -1
- data/ext/cgeqlf.c +1 -1
- data/ext/cgeqp3.c +11 -11
- data/ext/cgeqpf.c +11 -11
- data/ext/cgeqr2.c +1 -1
- data/ext/cgeqr2p.c +1 -1
- data/ext/cgeqrf.c +1 -1
- data/ext/cgeqrfp.c +1 -1
- data/ext/cgerfs.c +31 -31
- data/ext/cgerfsx.c +25 -25
- data/ext/cgerqf.c +6 -6
- data/ext/cgesc2.c +13 -13
- data/ext/cgesdd.c +3 -3
- data/ext/cgesvd.c +4 -4
- data/ext/cgesvx.c +32 -32
- data/ext/cgesvxx.c +26 -26
- data/ext/cgetf2.c +1 -1
- data/ext/cgetrf.c +1 -1
- data/ext/cgetri.c +10 -10
- data/ext/cgetrs.c +10 -10
- data/ext/cggbak.c +11 -11
- data/ext/cggbal.c +11 -11
- data/ext/cgges.c +15 -15
- data/ext/cggesx.c +6 -6
- data/ext/cggev.c +3 -3
- data/ext/cggevx.c +5 -5
- data/ext/cgghrd.c +14 -14
- data/ext/cggqrf.c +9 -9
- data/ext/cggrqf.c +1 -1
- data/ext/cggsvd.c +3 -3
- data/ext/cggsvp.c +4 -4
- data/ext/cgtcon.c +20 -20
- data/ext/cgtrfs.c +48 -48
- data/ext/cgtsv.c +8 -8
- data/ext/cgtsvx.c +55 -55
- data/ext/cgttrs.c +19 -19
- data/ext/cgtts2.c +20 -20
- data/ext/chbev.c +3 -3
- data/ext/chbevd.c +9 -9
- data/ext/chbevx.c +7 -7
- data/ext/chbgst.c +15 -15
- data/ext/chbgv.c +15 -15
- data/ext/chbgvd.c +20 -20
- data/ext/chbgvx.c +9 -9
- data/ext/chbtrd.c +13 -13
- data/ext/checon.c +12 -12
- data/ext/cheequb.c +1 -1
- data/ext/cheev.c +2 -2
- data/ext/cheevd.c +7 -7
- data/ext/cheevr.c +12 -12
- data/ext/cheevx.c +7 -7
- data/ext/chegs2.c +2 -2
- data/ext/chegst.c +2 -2
- data/ext/chegv.c +13 -13
- data/ext/chegvd.c +18 -18
- data/ext/chegvx.c +19 -19
- data/ext/cherfs.c +31 -31
- data/ext/cherfsx.c +43 -43
- data/ext/chesv.c +10 -10
- data/ext/chesvx.c +15 -15
- data/ext/chesvxx.c +41 -41
- data/ext/chetd2.c +1 -1
- data/ext/chetf2.c +1 -1
- data/ext/chetrd.c +2 -2
- data/ext/chetrf.c +2 -2
- data/ext/chetri.c +1 -1
- data/ext/chetrs.c +10 -10
- data/ext/chetrs2.c +10 -10
- data/ext/chfrk.c +6 -6
- data/ext/chgeqz.c +27 -27
- data/ext/chpcon.c +1 -1
- data/ext/chpev.c +2 -2
- data/ext/chpevd.c +2 -2
- data/ext/chpevx.c +7 -7
- data/ext/chpgst.c +10 -10
- data/ext/chpgv.c +2 -2
- data/ext/chpgvd.c +11 -11
- data/ext/chpgvx.c +8 -8
- data/ext/chprfs.c +10 -10
- data/ext/chpsv.c +1 -1
- data/ext/chpsvx.c +20 -20
- data/ext/chptrd.c +1 -1
- data/ext/chptrf.c +1 -1
- data/ext/chptri.c +1 -1
- data/ext/chptrs.c +1 -1
- data/ext/chsein.c +21 -21
- data/ext/chseqr.c +4 -4
- data/ext/cla_gbamv.c +14 -14
- data/ext/cla_gbrcond_c.c +33 -33
- data/ext/cla_gbrcond_x.c +32 -32
- data/ext/cla_gbrfsx_extended.c +75 -75
- data/ext/cla_gbrpvgrw.c +13 -13
- data/ext/cla_geamv.c +6 -6
- data/ext/cla_gercond_c.c +31 -31
- data/ext/cla_gercond_x.c +30 -30
- data/ext/cla_gerfsx_extended.c +81 -81
- data/ext/cla_heamv.c +12 -12
- data/ext/cla_hercond_c.c +31 -31
- data/ext/cla_hercond_x.c +30 -30
- data/ext/cla_herfsx_extended.c +82 -82
- data/ext/cla_herpvgrw.c +14 -14
- data/ext/cla_lin_berr.c +14 -14
- data/ext/cla_porcond_c.c +23 -23
- data/ext/cla_porcond_x.c +22 -22
- data/ext/cla_porfsx_extended.c +74 -74
- data/ext/cla_porpvgrw.c +2 -2
- data/ext/cla_rpvgrw.c +12 -12
- data/ext/cla_syamv.c +13 -13
- data/ext/cla_syrcond_c.c +31 -31
- data/ext/cla_syrcond_x.c +30 -30
- data/ext/cla_syrfsx_extended.c +82 -82
- data/ext/cla_syrpvgrw.c +14 -14
- data/ext/cla_wwaddw.c +11 -11
- data/ext/clabrd.c +2 -2
- data/ext/clacn2.c +2 -2
- data/ext/clacp2.c +1 -1
- data/ext/clacpy.c +1 -1
- data/ext/clacrm.c +11 -11
- data/ext/clacrt.c +12 -12
- data/ext/claed7.c +42 -42
- data/ext/claed8.c +27 -27
- data/ext/claein.c +14 -14
- data/ext/clags2.c +5 -5
- data/ext/clagtm.c +21 -21
- data/ext/clahef.c +1 -1
- data/ext/clahqr.c +6 -6
- data/ext/clahr2.c +1 -1
- data/ext/clahrd.c +1 -1
- data/ext/claic1.c +12 -12
- data/ext/clals0.c +37 -37
- data/ext/clalsa.c +72 -72
- data/ext/clalsd.c +4 -4
- data/ext/clangb.c +3 -3
- data/ext/clange.c +1 -1
- data/ext/clangt.c +10 -10
- data/ext/clanhb.c +2 -2
- data/ext/clanhe.c +1 -1
- data/ext/clanhf.c +3 -3
- data/ext/clanhp.c +2 -2
- data/ext/clanhs.c +1 -1
- data/ext/clanht.c +1 -1
- data/ext/clansb.c +2 -2
- data/ext/clansp.c +2 -2
- data/ext/clansy.c +1 -1
- data/ext/clantb.c +3 -3
- data/ext/clantp.c +2 -2
- data/ext/clantr.c +3 -3
- data/ext/clapll.c +10 -10
- data/ext/clapmr.c +1 -1
- data/ext/clapmt.c +11 -11
- data/ext/claqgb.c +2 -2
- data/ext/claqge.c +10 -10
- data/ext/claqhb.c +2 -2
- data/ext/claqhe.c +12 -12
- data/ext/claqhp.c +2 -2
- data/ext/claqp2.c +10 -10
- data/ext/claqps.c +20 -20
- data/ext/claqr0.c +3 -3
- data/ext/claqr1.c +4 -4
- data/ext/claqr2.c +18 -18
- data/ext/claqr3.c +18 -18
- data/ext/claqr4.c +3 -3
- data/ext/claqr5.c +21 -21
- data/ext/claqsb.c +13 -13
- data/ext/claqsp.c +2 -2
- data/ext/claqsy.c +12 -12
- data/ext/clar1v.c +15 -15
- data/ext/clar2v.c +19 -19
- data/ext/clarf.c +2 -2
- data/ext/clarfb.c +16 -16
- data/ext/clarfg.c +1 -1
- data/ext/clarfgp.c +1 -1
- data/ext/clarft.c +2 -2
- data/ext/clarfx.c +3 -3
- data/ext/clargv.c +2 -2
- data/ext/clarnv.c +1 -1
- data/ext/clarrv.c +40 -40
- data/ext/clarscl2.c +8 -8
- data/ext/clartv.c +20 -20
- data/ext/clarz.c +11 -11
- data/ext/clarzb.c +14 -14
- data/ext/clarzt.c +2 -2
- data/ext/clascl.c +4 -4
- data/ext/clascl2.c +8 -8
- data/ext/claset.c +4 -4
- data/ext/clasr.c +2 -2
- data/ext/classq.c +2 -2
- data/ext/claswp.c +2 -2
- data/ext/clasyf.c +1 -1
- data/ext/clatbs.c +14 -14
- data/ext/clatdf.c +21 -21
- data/ext/clatps.c +12 -12
- data/ext/clatrd.c +1 -1
- data/ext/clatrs.c +15 -15
- data/ext/clatrz.c +1 -1
- data/ext/clatzm.c +3 -3
- data/ext/clauu2.c +1 -1
- data/ext/clauum.c +1 -1
- data/ext/cpbcon.c +3 -3
- data/ext/cpbequ.c +1 -1
- data/ext/cpbrfs.c +12 -12
- data/ext/cpbstf.c +1 -1
- data/ext/cpbsv.c +1 -1
- data/ext/cpbsvx.c +23 -23
- data/ext/cpbtf2.c +1 -1
- data/ext/cpbtrf.c +1 -1
- data/ext/cpbtrs.c +1 -1
- data/ext/cpftrf.c +2 -2
- data/ext/cpftri.c +2 -2
- data/ext/cpftrs.c +2 -2
- data/ext/cpocon.c +1 -1
- data/ext/cporfs.c +23 -23
- data/ext/cporfsx.c +22 -22
- data/ext/cposv.c +9 -9
- data/ext/cposvx.c +12 -12
- data/ext/cposvxx.c +20 -20
- data/ext/cpotf2.c +1 -1
- data/ext/cpotrf.c +1 -1
- data/ext/cpotri.c +1 -1
- data/ext/cpotrs.c +9 -9
- data/ext/cppcon.c +1 -1
- data/ext/cppequ.c +1 -1
- data/ext/cpprfs.c +20 -20
- data/ext/cppsv.c +1 -1
- data/ext/cppsvx.c +12 -12
- data/ext/cpptrf.c +1 -1
- data/ext/cpptri.c +1 -1
- data/ext/cpptrs.c +1 -1
- data/ext/cpstf2.c +2 -2
- data/ext/cpstrf.c +2 -2
- data/ext/cptcon.c +1 -1
- data/ext/cpteqr.c +10 -10
- data/ext/cptrfs.c +12 -12
- data/ext/cptsv.c +8 -8
- data/ext/cptsvx.c +19 -19
- data/ext/cpttrs.c +1 -1
- data/ext/cptts2.c +1 -1
- data/ext/crot.c +11 -11
- data/ext/cspcon.c +1 -1
- data/ext/cspmv.c +3 -3
- data/ext/cspr.c +11 -11
- data/ext/csprfs.c +10 -10
- data/ext/cspsv.c +1 -1
- data/ext/cspsvx.c +20 -20
- data/ext/csptrf.c +1 -1
- data/ext/csptri.c +1 -1
- data/ext/csptrs.c +1 -1
- data/ext/csrscl.c +2 -2
- data/ext/cstedc.c +10 -10
- data/ext/cstegr.c +18 -18
- data/ext/cstein.c +14 -14
- data/ext/cstemr.c +22 -22
- data/ext/csteqr.c +10 -10
- data/ext/csycon.c +12 -12
- data/ext/csyconv.c +12 -12
- data/ext/csyequb.c +1 -1
- data/ext/csymv.c +13 -13
- data/ext/csyr.c +4 -4
- data/ext/csyrfs.c +31 -31
- data/ext/csyrfsx.c +43 -43
- data/ext/csysv.c +10 -10
- data/ext/csysvx.c +15 -15
- data/ext/csysvxx.c +41 -41
- data/ext/csyswapr.c +2 -2
- data/ext/csytf2.c +1 -1
- data/ext/csytrf.c +2 -2
- data/ext/csytri.c +1 -1
- data/ext/csytri2.c +3 -3
- data/ext/csytri2x.c +2 -2
- data/ext/csytrs.c +10 -10
- data/ext/csytrs2.c +10 -10
- data/ext/ctbcon.c +3 -3
- data/ext/ctbrfs.c +14 -14
- data/ext/ctbtrs.c +2 -2
- data/ext/ctfsm.c +5 -5
- data/ext/ctftri.c +1 -1
- data/ext/ctfttp.c +1 -1
- data/ext/ctfttr.c +1 -1
- data/ext/ctgevc.c +32 -32
- data/ext/ctgex2.c +14 -14
- data/ext/ctgexc.c +25 -25
- data/ext/ctgsen.c +37 -37
- data/ext/ctgsja.c +26 -26
- data/ext/ctgsna.c +24 -24
- data/ext/ctgsy2.c +22 -22
- data/ext/ctgsyl.c +42 -42
- data/ext/ctpcon.c +2 -2
- data/ext/ctprfs.c +13 -13
- data/ext/ctptri.c +1 -1
- data/ext/ctptrs.c +3 -3
- data/ext/ctpttf.c +1 -1
- data/ext/ctpttr.c +1 -1
- data/ext/ctrcon.c +3 -3
- data/ext/ctrevc.c +12 -12
- data/ext/ctrexc.c +1 -1
- data/ext/ctrrfs.c +11 -11
- data/ext/ctrsen.c +13 -13
- data/ext/ctrsna.c +20 -20
- data/ext/ctrsyl.c +11 -11
- data/ext/ctrti2.c +1 -1
- data/ext/ctrtri.c +1 -1
- data/ext/ctrtrs.c +10 -10
- data/ext/ctrttf.c +1 -1
- data/ext/ctrttp.c +1 -1
- data/ext/cunbdb.c +15 -15
- data/ext/cuncsd.c +27 -27
- data/ext/cung2l.c +9 -9
- data/ext/cung2r.c +9 -9
- data/ext/cungbr.c +1 -1
- data/ext/cunghr.c +7 -7
- data/ext/cungl2.c +1 -1
- data/ext/cunglq.c +9 -9
- data/ext/cungql.c +9 -9
- data/ext/cungqr.c +9 -9
- data/ext/cungr2.c +1 -1
- data/ext/cungrq.c +9 -9
- data/ext/cungtr.c +6 -6
- data/ext/cunm2l.c +12 -12
- data/ext/cunm2r.c +12 -12
- data/ext/cunmbr.c +3 -3
- data/ext/cunmhr.c +12 -12
- data/ext/cunml2.c +1 -1
- data/ext/cunmlq.c +7 -7
- data/ext/cunmql.c +12 -12
- data/ext/cunmqr.c +12 -12
- data/ext/cunmr2.c +1 -1
- data/ext/cunmr3.c +10 -10
- data/ext/cunmrq.c +7 -7
- data/ext/cunmrz.c +10 -10
- data/ext/cunmtr.c +17 -17
- data/ext/cupgtr.c +8 -8
- data/ext/cupmtr.c +2 -2
- data/ext/dbbcsd.c +29 -29
- data/ext/dbdsdc.c +6 -6
- data/ext/dbdsqr.c +20 -20
- data/ext/ddisna.c +1 -1
- data/ext/dgbbrd.c +12 -12
- data/ext/dgbcon.c +13 -13
- data/ext/dgbequ.c +3 -3
- data/ext/dgbequb.c +2 -2
- data/ext/dgbrfs.c +22 -22
- data/ext/dgbrfsx.c +43 -43
- data/ext/dgbsv.c +2 -2
- data/ext/dgbsvx.c +25 -25
- data/ext/dgbsvxx.c +36 -36
- data/ext/dgbtf2.c +3 -3
- data/ext/dgbtrf.c +3 -3
- data/ext/dgbtrs.c +11 -11
- data/ext/dgebak.c +11 -11
- data/ext/dgebal.c +1 -1
- data/ext/dgebd2.c +1 -1
- data/ext/dgebrd.c +1 -1
- data/ext/dgecon.c +1 -1
- data/ext/dgees.c +3 -3
- data/ext/dgeesx.c +4 -4
- data/ext/dgeev.c +3 -3
- data/ext/dgeevx.c +5 -5
- data/ext/dgegs.c +2 -2
- data/ext/dgegv.c +3 -3
- data/ext/dgehd2.c +1 -1
- data/ext/dgehrd.c +2 -2
- data/ext/dgejsv.c +16 -16
- data/ext/dgelqf.c +6 -6
- data/ext/dgels.c +2 -2
- data/ext/dgelsd.c +7 -7
- data/ext/dgelss.c +2 -2
- data/ext/dgelsx.c +12 -12
- data/ext/dgelsy.c +12 -12
- data/ext/dgeql2.c +1 -1
- data/ext/dgeqlf.c +1 -1
- data/ext/dgeqp3.c +11 -11
- data/ext/dgeqpf.c +11 -11
- data/ext/dgeqr2.c +1 -1
- data/ext/dgeqr2p.c +1 -1
- data/ext/dgeqrf.c +1 -1
- data/ext/dgeqrfp.c +1 -1
- data/ext/dgerfs.c +31 -31
- data/ext/dgerfsx.c +25 -25
- data/ext/dgerqf.c +6 -6
- data/ext/dgesc2.c +13 -13
- data/ext/dgesdd.c +3 -3
- data/ext/dgesvd.c +4 -4
- data/ext/dgesvj.c +15 -15
- data/ext/dgesvx.c +32 -32
- data/ext/dgesvxx.c +26 -26
- data/ext/dgetf2.c +1 -1
- data/ext/dgetrf.c +1 -1
- data/ext/dgetri.c +10 -10
- data/ext/dgetrs.c +10 -10
- data/ext/dggbak.c +11 -11
- data/ext/dggbal.c +11 -11
- data/ext/dgges.c +15 -15
- data/ext/dggesx.c +6 -6
- data/ext/dggev.c +3 -3
- data/ext/dggevx.c +4 -4
- data/ext/dgghrd.c +14 -14
- data/ext/dggqrf.c +9 -9
- data/ext/dggrqf.c +1 -1
- data/ext/dggsvd.c +3 -3
- data/ext/dggsvp.c +4 -4
- data/ext/dgsvj0.c +20 -20
- data/ext/dgsvj1.c +26 -26
- data/ext/dgtcon.c +20 -20
- data/ext/dgtrfs.c +48 -48
- data/ext/dgtsv.c +8 -8
- data/ext/dgtsvx.c +55 -55
- data/ext/dgttrs.c +19 -19
- data/ext/dgtts2.c +20 -20
- data/ext/dhgeqz.c +27 -27
- data/ext/dhsein.c +42 -42
- data/ext/dhseqr.c +4 -4
- data/ext/dla_gbamv.c +16 -16
- data/ext/dla_gbrcond.c +25 -25
- data/ext/dla_gbrfsx_extended.c +56 -56
- data/ext/dla_gbrpvgrw.c +13 -13
- data/ext/dla_geamv.c +4 -4
- data/ext/dla_gercond.c +31 -31
- data/ext/dla_gerfsx_extended.c +70 -70
- data/ext/dla_lin_berr.c +14 -14
- data/ext/dla_porcond.c +15 -15
- data/ext/dla_porfsx_extended.c +74 -74
- data/ext/dla_porpvgrw.c +2 -2
- data/ext/dla_rpvgrw.c +12 -12
- data/ext/dla_syamv.c +12 -12
- data/ext/dla_syrcond.c +31 -31
- data/ext/dla_syrfsx_extended.c +82 -82
- data/ext/dla_syrpvgrw.c +14 -14
- data/ext/dla_wwaddw.c +11 -11
- data/ext/dlabad.c +1 -1
- data/ext/dlabrd.c +2 -2
- data/ext/dlacn2.c +2 -2
- data/ext/dlacpy.c +1 -1
- data/ext/dlaebz.c +43 -43
- data/ext/dlaed0.c +2 -2
- data/ext/dlaed1.c +20 -20
- data/ext/dlaed2.c +21 -21
- data/ext/dlaed3.c +30 -30
- data/ext/dlaed4.c +12 -12
- data/ext/dlaed5.c +11 -11
- data/ext/dlaed6.c +12 -12
- data/ext/dlaed7.c +35 -35
- data/ext/dlaed8.c +16 -16
- data/ext/dlaed9.c +14 -14
- data/ext/dlaeda.c +31 -31
- data/ext/dlaein.c +13 -13
- data/ext/dlaexc.c +14 -14
- data/ext/dlag2s.c +2 -2
- data/ext/dlags2.c +4 -4
- data/ext/dlagtf.c +10 -10
- data/ext/dlagtm.c +21 -21
- data/ext/dlagts.c +13 -13
- data/ext/dlahqr.c +6 -6
- data/ext/dlahr2.c +1 -1
- data/ext/dlahrd.c +1 -1
- data/ext/dlaic1.c +12 -12
- data/ext/dlaln2.c +16 -16
- data/ext/dlals0.c +37 -37
- data/ext/dlalsa.c +72 -72
- data/ext/dlalsd.c +4 -4
- data/ext/dlamrg.c +1 -1
- data/ext/dlaneg.c +1 -1
- data/ext/dlangb.c +3 -3
- data/ext/dlange.c +1 -1
- data/ext/dlangt.c +10 -10
- data/ext/dlanhs.c +1 -1
- data/ext/dlansb.c +2 -2
- data/ext/dlansf.c +3 -3
- data/ext/dlansp.c +3 -3
- data/ext/dlanst.c +1 -1
- data/ext/dlansy.c +2 -2
- data/ext/dlantb.c +2 -2
- data/ext/dlantp.c +2 -2
- data/ext/dlantr.c +3 -3
- data/ext/dlapll.c +10 -10
- data/ext/dlapmr.c +1 -1
- data/ext/dlapmt.c +11 -11
- data/ext/dlaqgb.c +2 -2
- data/ext/dlaqge.c +10 -10
- data/ext/dlaqp2.c +10 -10
- data/ext/dlaqps.c +20 -20
- data/ext/dlaqr0.c +3 -3
- data/ext/dlaqr1.c +2 -2
- data/ext/dlaqr2.c +18 -18
- data/ext/dlaqr3.c +18 -18
- data/ext/dlaqr4.c +3 -3
- data/ext/dlaqr5.c +9 -9
- data/ext/dlaqsb.c +13 -13
- data/ext/dlaqsp.c +2 -2
- data/ext/dlaqsy.c +12 -12
- data/ext/dlaqtr.c +12 -12
- data/ext/dlar1v.c +15 -15
- data/ext/dlar2v.c +19 -19
- data/ext/dlarf.c +2 -2
- data/ext/dlarfb.c +16 -16
- data/ext/dlarfg.c +1 -1
- data/ext/dlarfgp.c +1 -1
- data/ext/dlarft.c +2 -2
- data/ext/dlarfx.c +2 -2
- data/ext/dlargv.c +2 -2
- data/ext/dlarnv.c +1 -1
- data/ext/dlarra.c +20 -20
- data/ext/dlarrb.c +22 -22
- data/ext/dlarrc.c +13 -13
- data/ext/dlarrd.c +25 -25
- data/ext/dlarre.c +17 -17
- data/ext/dlarrf.c +21 -21
- data/ext/dlarrj.c +23 -23
- data/ext/dlarrk.c +3 -3
- data/ext/dlarrv.c +40 -40
- data/ext/dlarscl2.c +8 -8
- data/ext/dlartv.c +20 -20
- data/ext/dlaruv.c +1 -1
- data/ext/dlarz.c +11 -11
- data/ext/dlarzb.c +14 -14
- data/ext/dlarzt.c +2 -2
- data/ext/dlascl.c +4 -4
- data/ext/dlascl2.c +8 -8
- data/ext/dlasd0.c +3 -3
- data/ext/dlasd1.c +13 -13
- data/ext/dlasd2.c +18 -18
- data/ext/dlasd3.c +15 -15
- data/ext/dlasd4.c +12 -12
- data/ext/dlasd5.c +11 -11
- data/ext/dlasd6.c +14 -14
- data/ext/dlasd7.c +25 -25
- data/ext/dlasd8.c +27 -27
- data/ext/dlasda.c +5 -5
- data/ext/dlasdq.c +20 -20
- data/ext/dlaset.c +3 -3
- data/ext/dlasq3.c +8 -8
- data/ext/dlasq4.c +5 -5
- data/ext/dlasq5.c +3 -3
- data/ext/dlasq6.c +1 -1
- data/ext/dlasr.c +2 -2
- data/ext/dlasrt.c +1 -1
- data/ext/dlassq.c +2 -2
- data/ext/dlaswp.c +2 -2
- data/ext/dlasy2.c +24 -24
- data/ext/dlasyf.c +1 -1
- data/ext/dlat2s.c +1 -1
- data/ext/dlatbs.c +14 -14
- data/ext/dlatdf.c +21 -21
- data/ext/dlatps.c +12 -12
- data/ext/dlatrd.c +1 -1
- data/ext/dlatrs.c +15 -15
- data/ext/dlatrz.c +1 -1
- data/ext/dlatzm.c +2 -2
- data/ext/dlauu2.c +1 -1
- data/ext/dlauum.c +1 -1
- data/ext/dopgtr.c +8 -8
- data/ext/dopmtr.c +2 -2
- data/ext/dorbdb.c +15 -15
- data/ext/dorcsd.c +13 -13
- data/ext/dorg2l.c +9 -9
- data/ext/dorg2r.c +9 -9
- data/ext/dorgbr.c +1 -1
- data/ext/dorghr.c +7 -7
- data/ext/dorgl2.c +1 -1
- data/ext/dorglq.c +9 -9
- data/ext/dorgql.c +9 -9
- data/ext/dorgqr.c +9 -9
- data/ext/dorgr2.c +1 -1
- data/ext/dorgrq.c +9 -9
- data/ext/dorgtr.c +6 -6
- data/ext/dorm2l.c +12 -12
- data/ext/dorm2r.c +12 -12
- data/ext/dormbr.c +3 -3
- data/ext/dormhr.c +12 -12
- data/ext/dorml2.c +1 -1
- data/ext/dormlq.c +7 -7
- data/ext/dormql.c +12 -12
- data/ext/dormqr.c +12 -12
- data/ext/dormr2.c +1 -1
- data/ext/dormr3.c +10 -10
- data/ext/dormrq.c +7 -7
- data/ext/dormrz.c +10 -10
- data/ext/dormtr.c +17 -17
- data/ext/dpbcon.c +3 -3
- data/ext/dpbequ.c +1 -1
- data/ext/dpbrfs.c +12 -12
- data/ext/dpbstf.c +1 -1
- data/ext/dpbsv.c +1 -1
- data/ext/dpbsvx.c +23 -23
- data/ext/dpbtf2.c +1 -1
- data/ext/dpbtrf.c +1 -1
- data/ext/dpbtrs.c +1 -1
- data/ext/dpftrf.c +2 -2
- data/ext/dpftri.c +2 -2
- data/ext/dpftrs.c +2 -2
- data/ext/dpocon.c +1 -1
- data/ext/dporfs.c +23 -23
- data/ext/dporfsx.c +22 -22
- data/ext/dposv.c +9 -9
- data/ext/dposvx.c +12 -12
- data/ext/dposvxx.c +20 -20
- data/ext/dpotf2.c +1 -1
- data/ext/dpotrf.c +1 -1
- data/ext/dpotri.c +1 -1
- data/ext/dpotrs.c +9 -9
- data/ext/dppcon.c +1 -1
- data/ext/dppequ.c +1 -1
- data/ext/dpprfs.c +20 -20
- data/ext/dppsv.c +1 -1
- data/ext/dppsvx.c +12 -12
- data/ext/dpptrf.c +1 -1
- data/ext/dpptri.c +1 -1
- data/ext/dpptrs.c +1 -1
- data/ext/dpstf2.c +2 -2
- data/ext/dpstrf.c +2 -2
- data/ext/dptcon.c +1 -1
- data/ext/dpteqr.c +10 -10
- data/ext/dptrfs.c +30 -30
- data/ext/dptsv.c +8 -8
- data/ext/dptsvx.c +19 -19
- data/ext/dpttrs.c +8 -8
- data/ext/dptts2.c +8 -8
- data/ext/drscl.c +2 -2
- data/ext/dsbev.c +3 -3
- data/ext/dsbevd.c +9 -9
- data/ext/dsbevx.c +7 -7
- data/ext/dsbgst.c +15 -15
- data/ext/dsbgv.c +15 -15
- data/ext/dsbgvd.c +20 -20
- data/ext/dsbgvx.c +10 -10
- data/ext/dsbtrd.c +13 -13
- data/ext/dsfrk.c +5 -5
- data/ext/dspcon.c +1 -1
- data/ext/dspev.c +2 -2
- data/ext/dspevd.c +7 -7
- data/ext/dspevx.c +7 -7
- data/ext/dspgst.c +10 -10
- data/ext/dspgv.c +2 -2
- data/ext/dspgvd.c +7 -7
- data/ext/dspgvx.c +8 -8
- data/ext/dsposv.c +10 -10
- data/ext/dsprfs.c +10 -10
- data/ext/dspsv.c +1 -1
- data/ext/dspsvx.c +20 -20
- data/ext/dsptrd.c +1 -1
- data/ext/dsptrf.c +1 -1
- data/ext/dsptri.c +1 -1
- data/ext/dsptrs.c +1 -1
- data/ext/dstebz.c +5 -5
- data/ext/dstedc.c +5 -5
- data/ext/dstegr.c +18 -18
- data/ext/dstein.c +14 -14
- data/ext/dstemr.c +22 -22
- data/ext/dsteqr.c +10 -10
- data/ext/dstev.c +1 -1
- data/ext/dstevd.c +7 -7
- data/ext/dstevr.c +16 -16
- data/ext/dstevx.c +6 -6
- data/ext/dsycon.c +12 -12
- data/ext/dsyconv.c +12 -12
- data/ext/dsyequb.c +1 -1
- data/ext/dsyev.c +2 -2
- data/ext/dsyevd.c +1 -1
- data/ext/dsyevr.c +6 -6
- data/ext/dsyevx.c +7 -7
- data/ext/dsygs2.c +2 -2
- data/ext/dsygst.c +2 -2
- data/ext/dsygv.c +13 -13
- data/ext/dsygvd.c +18 -18
- data/ext/dsygvx.c +19 -19
- data/ext/dsyrfs.c +31 -31
- data/ext/dsyrfsx.c +43 -43
- data/ext/dsysv.c +10 -10
- data/ext/dsysvx.c +15 -15
- data/ext/dsysvxx.c +41 -41
- data/ext/dsyswapr.c +2 -2
- data/ext/dsytd2.c +1 -1
- data/ext/dsytf2.c +1 -1
- data/ext/dsytrd.c +2 -2
- data/ext/dsytrf.c +2 -2
- data/ext/dsytri.c +1 -1
- data/ext/dsytri2.c +3 -3
- data/ext/dsytri2x.c +2 -2
- data/ext/dsytrs.c +10 -10
- data/ext/dsytrs2.c +10 -10
- data/ext/dtbcon.c +3 -3
- data/ext/dtbrfs.c +14 -14
- data/ext/dtbtrs.c +2 -2
- data/ext/dtfsm.c +13 -13
- data/ext/dtftri.c +1 -1
- data/ext/dtfttp.c +1 -1
- data/ext/dtfttr.c +2 -2
- data/ext/dtgevc.c +32 -32
- data/ext/dtgex2.c +23 -23
- data/ext/dtgexc.c +24 -24
- data/ext/dtgsen.c +37 -37
- data/ext/dtgsja.c +26 -26
- data/ext/dtgsna.c +24 -24
- data/ext/dtgsy2.c +22 -22
- data/ext/dtgsyl.c +42 -42
- data/ext/dtpcon.c +2 -2
- data/ext/dtprfs.c +13 -13
- data/ext/dtptri.c +1 -1
- data/ext/dtptrs.c +3 -3
- data/ext/dtpttf.c +1 -1
- data/ext/dtpttr.c +1 -1
- data/ext/dtrcon.c +3 -3
- data/ext/dtrevc.c +12 -12
- data/ext/dtrexc.c +1 -1
- data/ext/dtrrfs.c +11 -11
- data/ext/dtrsen.c +13 -13
- data/ext/dtrsna.c +20 -20
- data/ext/dtrsyl.c +11 -11
- data/ext/dtrti2.c +1 -1
- data/ext/dtrtri.c +1 -1
- data/ext/dtrtrs.c +10 -10
- data/ext/dtrttf.c +1 -1
- data/ext/dtrttp.c +1 -1
- data/ext/dzsum1.c +1 -1
- data/ext/icmax1.c +1 -1
- data/ext/ieeeck.c +1 -1
- data/ext/ilaclc.c +1 -1
- data/ext/ilaclr.c +1 -1
- data/ext/iladlc.c +1 -1
- data/ext/iladlr.c +1 -1
- data/ext/ilaenv.c +4 -4
- data/ext/ilaslc.c +1 -1
- data/ext/ilaslr.c +1 -1
- data/ext/ilazlc.c +1 -1
- data/ext/ilazlr.c +1 -1
- data/ext/iparmq.c +3 -3
- data/ext/izmax1.c +1 -1
- data/ext/rb_lapack.c +3146 -3146
- data/ext/rb_lapack.h +1 -1
- data/ext/sbbcsd.c +29 -29
- data/ext/sbdsdc.c +10 -10
- data/ext/sbdsqr.c +20 -20
- data/ext/scsum1.c +1 -1
- data/ext/sdisna.c +1 -1
- data/ext/sgbbrd.c +12 -12
- data/ext/sgbcon.c +13 -13
- data/ext/sgbequ.c +3 -3
- data/ext/sgbequb.c +2 -2
- data/ext/sgbrfs.c +22 -22
- data/ext/sgbrfsx.c +43 -43
- data/ext/sgbsv.c +2 -2
- data/ext/sgbsvx.c +25 -25
- data/ext/sgbsvxx.c +36 -36
- data/ext/sgbtf2.c +3 -3
- data/ext/sgbtrf.c +3 -3
- data/ext/sgbtrs.c +11 -11
- data/ext/sgebak.c +11 -11
- data/ext/sgebal.c +1 -1
- data/ext/sgebd2.c +1 -1
- data/ext/sgebrd.c +1 -1
- data/ext/sgecon.c +1 -1
- data/ext/sgees.c +3 -3
- data/ext/sgeesx.c +4 -4
- data/ext/sgeev.c +3 -3
- data/ext/sgeevx.c +5 -5
- data/ext/sgegs.c +2 -2
- data/ext/sgegv.c +3 -3
- data/ext/sgehd2.c +1 -1
- data/ext/sgehrd.c +2 -2
- data/ext/sgejsv.c +16 -16
- data/ext/sgelqf.c +6 -6
- data/ext/sgels.c +2 -2
- data/ext/sgelsd.c +7 -7
- data/ext/sgelss.c +2 -2
- data/ext/sgelsx.c +12 -12
- data/ext/sgelsy.c +12 -12
- data/ext/sgeql2.c +1 -1
- data/ext/sgeqlf.c +1 -1
- data/ext/sgeqp3.c +11 -11
- data/ext/sgeqpf.c +11 -11
- data/ext/sgeqr2.c +1 -1
- data/ext/sgeqr2p.c +1 -1
- data/ext/sgeqrf.c +1 -1
- data/ext/sgeqrfp.c +1 -1
- data/ext/sgerfs.c +31 -31
- data/ext/sgerfsx.c +25 -25
- data/ext/sgerqf.c +6 -6
- data/ext/sgesc2.c +13 -13
- data/ext/sgesdd.c +3 -3
- data/ext/sgesvd.c +4 -4
- data/ext/sgesvj.c +15 -15
- data/ext/sgesvx.c +32 -32
- data/ext/sgesvxx.c +26 -26
- data/ext/sgetf2.c +1 -1
- data/ext/sgetrf.c +1 -1
- data/ext/sgetri.c +10 -10
- data/ext/sgetrs.c +10 -10
- data/ext/sggbak.c +11 -11
- data/ext/sggbal.c +11 -11
- data/ext/sgges.c +15 -15
- data/ext/sggesx.c +6 -6
- data/ext/sggev.c +3 -3
- data/ext/sggevx.c +4 -4
- data/ext/sgghrd.c +14 -14
- data/ext/sggqrf.c +9 -9
- data/ext/sggrqf.c +1 -1
- data/ext/sggsvd.c +3 -3
- data/ext/sggsvp.c +4 -4
- data/ext/sgsvj0.c +20 -20
- data/ext/sgsvj1.c +26 -26
- data/ext/sgtcon.c +20 -20
- data/ext/sgtrfs.c +48 -48
- data/ext/sgtsv.c +8 -8
- data/ext/sgtsvx.c +55 -55
- data/ext/sgttrs.c +19 -19
- data/ext/sgtts2.c +20 -20
- data/ext/shgeqz.c +27 -27
- data/ext/shsein.c +42 -42
- data/ext/shseqr.c +4 -4
- data/ext/sla_gbamv.c +16 -16
- data/ext/sla_gbrcond.c +25 -25
- data/ext/sla_gbrfsx_extended.c +66 -66
- data/ext/sla_gbrpvgrw.c +13 -13
- data/ext/sla_geamv.c +4 -4
- data/ext/sla_gercond.c +31 -31
- data/ext/sla_gerfsx_extended.c +82 -82
- data/ext/sla_lin_berr.c +14 -14
- data/ext/sla_porcond.c +15 -15
- data/ext/sla_porfsx_extended.c +74 -74
- data/ext/sla_porpvgrw.c +2 -2
- data/ext/sla_rpvgrw.c +12 -12
- data/ext/sla_syamv.c +12 -12
- data/ext/sla_syrcond.c +31 -31
- data/ext/sla_syrfsx_extended.c +82 -82
- data/ext/sla_syrpvgrw.c +14 -14
- data/ext/sla_wwaddw.c +11 -11
- data/ext/slabad.c +1 -1
- data/ext/slabrd.c +2 -2
- data/ext/slacn2.c +2 -2
- data/ext/slacpy.c +1 -1
- data/ext/slaebz.c +43 -43
- data/ext/slaed0.c +2 -2
- data/ext/slaed1.c +20 -20
- data/ext/slaed2.c +21 -21
- data/ext/slaed3.c +30 -30
- data/ext/slaed4.c +12 -12
- data/ext/slaed5.c +11 -11
- data/ext/slaed6.c +12 -12
- data/ext/slaed7.c +35 -35
- data/ext/slaed8.c +16 -16
- data/ext/slaed9.c +14 -14
- data/ext/slaeda.c +31 -31
- data/ext/slaein.c +13 -13
- data/ext/slaexc.c +14 -14
- data/ext/slags2.c +4 -4
- data/ext/slagtf.c +10 -10
- data/ext/slagtm.c +21 -21
- data/ext/slagts.c +13 -13
- data/ext/slahqr.c +6 -6
- data/ext/slahr2.c +1 -1
- data/ext/slahrd.c +3 -3
- data/ext/slaic1.c +12 -12
- data/ext/slaln2.c +16 -16
- data/ext/slals0.c +37 -37
- data/ext/slalsa.c +72 -72
- data/ext/slalsd.c +4 -4
- data/ext/slamrg.c +2 -2
- data/ext/slaneg.c +1 -1
- data/ext/slangb.c +3 -3
- data/ext/slange.c +1 -1
- data/ext/slangt.c +10 -10
- data/ext/slanhs.c +1 -1
- data/ext/slansb.c +2 -2
- data/ext/slansf.c +3 -3
- data/ext/slansp.c +3 -3
- data/ext/slanst.c +1 -1
- data/ext/slansy.c +2 -2
- data/ext/slantb.c +2 -2
- data/ext/slantp.c +2 -2
- data/ext/slantr.c +3 -3
- data/ext/slapll.c +10 -10
- data/ext/slapmr.c +1 -1
- data/ext/slapmt.c +11 -11
- data/ext/slaqgb.c +2 -2
- data/ext/slaqge.c +10 -10
- data/ext/slaqp2.c +10 -10
- data/ext/slaqps.c +20 -20
- data/ext/slaqr0.c +3 -3
- data/ext/slaqr1.c +2 -2
- data/ext/slaqr2.c +18 -18
- data/ext/slaqr3.c +18 -18
- data/ext/slaqr4.c +3 -3
- data/ext/slaqr5.c +9 -9
- data/ext/slaqsb.c +13 -13
- data/ext/slaqsp.c +2 -2
- data/ext/slaqsy.c +12 -12
- data/ext/slaqtr.c +12 -12
- data/ext/slar1v.c +15 -15
- data/ext/slar2v.c +19 -19
- data/ext/slarf.c +2 -2
- data/ext/slarfb.c +16 -16
- data/ext/slarfg.c +1 -1
- data/ext/slarfgp.c +1 -1
- data/ext/slarft.c +2 -2
- data/ext/slarfx.c +2 -2
- data/ext/slargv.c +2 -2
- data/ext/slarnv.c +1 -1
- data/ext/slarra.c +20 -20
- data/ext/slarrb.c +22 -22
- data/ext/slarrc.c +13 -13
- data/ext/slarrd.c +25 -25
- data/ext/slarre.c +17 -17
- data/ext/slarrf.c +21 -21
- data/ext/slarrj.c +23 -23
- data/ext/slarrk.c +3 -3
- data/ext/slarrv.c +40 -40
- data/ext/slarscl2.c +8 -8
- data/ext/slartv.c +20 -20
- data/ext/slaruv.c +1 -1
- data/ext/slarz.c +11 -11
- data/ext/slarzb.c +14 -14
- data/ext/slarzt.c +2 -2
- data/ext/slascl.c +4 -4
- data/ext/slascl2.c +8 -8
- data/ext/slasd0.c +3 -3
- data/ext/slasd1.c +12 -12
- data/ext/slasd2.c +18 -18
- data/ext/slasd3.c +15 -15
- data/ext/slasd4.c +12 -12
- data/ext/slasd5.c +11 -11
- data/ext/slasd6.c +14 -14
- data/ext/slasd7.c +25 -25
- data/ext/slasd8.c +27 -27
- data/ext/slasda.c +5 -5
- data/ext/slasdq.c +20 -20
- data/ext/slaset.c +3 -3
- data/ext/slasq3.c +8 -8
- data/ext/slasq4.c +5 -5
- data/ext/slasq5.c +3 -3
- data/ext/slasq6.c +1 -1
- data/ext/slasr.c +2 -2
- data/ext/slasrt.c +1 -1
- data/ext/slassq.c +2 -2
- data/ext/slaswp.c +2 -2
- data/ext/slasy2.c +24 -24
- data/ext/slasyf.c +1 -1
- data/ext/slatbs.c +14 -14
- data/ext/slatdf.c +21 -21
- data/ext/slatps.c +12 -12
- data/ext/slatrd.c +1 -1
- data/ext/slatrs.c +15 -15
- data/ext/slatrz.c +1 -1
- data/ext/slatzm.c +2 -2
- data/ext/slauu2.c +1 -1
- data/ext/slauum.c +1 -1
- data/ext/sopgtr.c +8 -8
- data/ext/sopmtr.c +2 -2
- data/ext/sorbdb.c +15 -15
- data/ext/sorcsd.c +13 -13
- data/ext/sorg2l.c +9 -9
- data/ext/sorg2r.c +9 -9
- data/ext/sorgbr.c +1 -1
- data/ext/sorghr.c +7 -7
- data/ext/sorgl2.c +1 -1
- data/ext/sorglq.c +9 -9
- data/ext/sorgql.c +9 -9
- data/ext/sorgqr.c +9 -9
- data/ext/sorgr2.c +1 -1
- data/ext/sorgrq.c +9 -9
- data/ext/sorgtr.c +6 -6
- data/ext/sorm2l.c +12 -12
- data/ext/sorm2r.c +12 -12
- data/ext/sormbr.c +3 -3
- data/ext/sormhr.c +12 -12
- data/ext/sorml2.c +1 -1
- data/ext/sormlq.c +7 -7
- data/ext/sormql.c +12 -12
- data/ext/sormqr.c +12 -12
- data/ext/sormr2.c +1 -1
- data/ext/sormr3.c +10 -10
- data/ext/sormrq.c +7 -7
- data/ext/sormrz.c +10 -10
- data/ext/sormtr.c +17 -17
- data/ext/spbcon.c +3 -3
- data/ext/spbequ.c +1 -1
- data/ext/spbrfs.c +12 -12
- data/ext/spbstf.c +1 -1
- data/ext/spbsv.c +1 -1
- data/ext/spbsvx.c +23 -23
- data/ext/spbtf2.c +1 -1
- data/ext/spbtrf.c +1 -1
- data/ext/spbtrs.c +1 -1
- data/ext/spftrf.c +2 -2
- data/ext/spftri.c +2 -2
- data/ext/spftrs.c +2 -2
- data/ext/spocon.c +1 -1
- data/ext/sporfs.c +23 -23
- data/ext/sporfsx.c +22 -22
- data/ext/sposv.c +9 -9
- data/ext/sposvx.c +12 -12
- data/ext/sposvxx.c +20 -20
- data/ext/spotf2.c +1 -1
- data/ext/spotrf.c +1 -1
- data/ext/spotri.c +1 -1
- data/ext/spotrs.c +9 -9
- data/ext/sppcon.c +1 -1
- data/ext/sppequ.c +1 -1
- data/ext/spprfs.c +20 -20
- data/ext/sppsv.c +1 -1
- data/ext/sppsvx.c +12 -12
- data/ext/spptrf.c +1 -1
- data/ext/spptri.c +1 -1
- data/ext/spptrs.c +1 -1
- data/ext/spstf2.c +2 -2
- data/ext/spstrf.c +2 -2
- data/ext/sptcon.c +1 -1
- data/ext/spteqr.c +10 -10
- data/ext/sptrfs.c +30 -30
- data/ext/sptsv.c +8 -8
- data/ext/sptsvx.c +19 -19
- data/ext/spttrs.c +8 -8
- data/ext/sptts2.c +8 -8
- data/ext/srscl.c +2 -2
- data/ext/ssbev.c +3 -3
- data/ext/ssbevd.c +9 -9
- data/ext/ssbevx.c +7 -7
- data/ext/ssbgst.c +15 -15
- data/ext/ssbgv.c +15 -15
- data/ext/ssbgvd.c +20 -20
- data/ext/ssbgvx.c +10 -10
- data/ext/ssbtrd.c +13 -13
- data/ext/ssfrk.c +5 -5
- data/ext/sspcon.c +1 -1
- data/ext/sspev.c +2 -2
- data/ext/sspevd.c +7 -7
- data/ext/sspevx.c +7 -7
- data/ext/sspgst.c +10 -10
- data/ext/sspgv.c +2 -2
- data/ext/sspgvd.c +7 -7
- data/ext/sspgvx.c +8 -8
- data/ext/ssprfs.c +10 -10
- data/ext/sspsv.c +1 -1
- data/ext/sspsvx.c +20 -20
- data/ext/ssptrd.c +1 -1
- data/ext/ssptrf.c +1 -1
- data/ext/ssptri.c +1 -1
- data/ext/ssptrs.c +1 -1
- data/ext/sstebz.c +5 -5
- data/ext/sstedc.c +5 -5
- data/ext/sstegr.c +18 -18
- data/ext/sstein.c +14 -14
- data/ext/sstemr.c +22 -22
- data/ext/ssteqr.c +10 -10
- data/ext/sstev.c +1 -1
- data/ext/sstevd.c +7 -7
- data/ext/sstevr.c +16 -16
- data/ext/sstevx.c +6 -6
- data/ext/ssycon.c +12 -12
- data/ext/ssyconv.c +12 -12
- data/ext/ssyequb.c +1 -1
- data/ext/ssyev.c +2 -2
- data/ext/ssyevd.c +1 -1
- data/ext/ssyevr.c +6 -6
- data/ext/ssyevx.c +7 -7
- data/ext/ssygs2.c +2 -2
- data/ext/ssygst.c +2 -2
- data/ext/ssygv.c +13 -13
- data/ext/ssygvd.c +18 -18
- data/ext/ssygvx.c +22 -22
- data/ext/ssyrfs.c +31 -31
- data/ext/ssyrfsx.c +43 -43
- data/ext/ssysv.c +10 -10
- data/ext/ssysvx.c +15 -15
- data/ext/ssysvxx.c +41 -41
- data/ext/ssyswapr.c +2 -2
- data/ext/ssytd2.c +1 -1
- data/ext/ssytf2.c +1 -1
- data/ext/ssytrd.c +2 -2
- data/ext/ssytrf.c +2 -2
- data/ext/ssytri.c +1 -1
- data/ext/ssytri2.c +11 -11
- data/ext/ssytri2x.c +2 -2
- data/ext/ssytrs.c +10 -10
- data/ext/ssytrs2.c +10 -10
- data/ext/stbcon.c +3 -3
- data/ext/stbrfs.c +14 -14
- data/ext/stbtrs.c +2 -2
- data/ext/stfsm.c +13 -13
- data/ext/stftri.c +1 -1
- data/ext/stfttp.c +1 -1
- data/ext/stfttr.c +1 -1
- data/ext/stgevc.c +32 -32
- data/ext/stgex2.c +16 -16
- data/ext/stgexc.c +26 -26
- data/ext/stgsen.c +37 -37
- data/ext/stgsja.c +26 -26
- data/ext/stgsna.c +24 -24
- data/ext/stgsy2.c +22 -22
- data/ext/stgsyl.c +42 -42
- data/ext/stpcon.c +2 -2
- data/ext/stprfs.c +13 -13
- data/ext/stptri.c +1 -1
- data/ext/stptrs.c +3 -3
- data/ext/stpttf.c +1 -1
- data/ext/stpttr.c +1 -1
- data/ext/strcon.c +3 -3
- data/ext/strevc.c +12 -12
- data/ext/strexc.c +1 -1
- data/ext/strrfs.c +11 -11
- data/ext/strsen.c +13 -13
- data/ext/strsna.c +20 -20
- data/ext/strsyl.c +11 -11
- data/ext/strti2.c +1 -1
- data/ext/strtri.c +1 -1
- data/ext/strtrs.c +10 -10
- data/ext/strttf.c +1 -1
- data/ext/strttp.c +1 -1
- data/ext/xerbla_array.c +1 -1
- data/ext/zbbcsd.c +34 -34
- data/ext/zbdsqr.c +20 -20
- data/ext/zcposv.c +10 -10
- data/ext/zdrscl.c +2 -2
- data/ext/zgbbrd.c +12 -12
- data/ext/zgbcon.c +13 -13
- data/ext/zgbequ.c +3 -3
- data/ext/zgbequb.c +2 -2
- data/ext/zgbrfs.c +22 -22
- data/ext/zgbrfsx.c +43 -43
- data/ext/zgbsv.c +2 -2
- data/ext/zgbsvx.c +25 -25
- data/ext/zgbsvxx.c +36 -36
- data/ext/zgbtf2.c +3 -3
- data/ext/zgbtrf.c +3 -3
- data/ext/zgbtrs.c +11 -11
- data/ext/zgebak.c +11 -11
- data/ext/zgebal.c +1 -1
- data/ext/zgebd2.c +1 -1
- data/ext/zgebrd.c +1 -1
- data/ext/zgecon.c +1 -1
- data/ext/zgees.c +3 -3
- data/ext/zgeesx.c +4 -4
- data/ext/zgeev.c +4 -4
- data/ext/zgeevx.c +5 -5
- data/ext/zgegs.c +2 -2
- data/ext/zgegv.c +3 -3
- data/ext/zgehd2.c +1 -1
- data/ext/zgehrd.c +2 -2
- data/ext/zgelqf.c +6 -6
- data/ext/zgels.c +2 -2
- data/ext/zgelsd.c +9 -9
- data/ext/zgelss.c +2 -2
- data/ext/zgelsx.c +12 -12
- data/ext/zgelsy.c +12 -12
- data/ext/zgeql2.c +1 -1
- data/ext/zgeqlf.c +1 -1
- data/ext/zgeqp3.c +11 -11
- data/ext/zgeqpf.c +11 -11
- data/ext/zgeqr2.c +1 -1
- data/ext/zgeqr2p.c +1 -1
- data/ext/zgeqrf.c +1 -1
- data/ext/zgeqrfp.c +1 -1
- data/ext/zgerfs.c +31 -31
- data/ext/zgerfsx.c +25 -25
- data/ext/zgerqf.c +6 -6
- data/ext/zgesc2.c +13 -13
- data/ext/zgesdd.c +3 -3
- data/ext/zgesvd.c +4 -4
- data/ext/zgesvx.c +32 -32
- data/ext/zgesvxx.c +26 -26
- data/ext/zgetf2.c +1 -1
- data/ext/zgetrf.c +1 -1
- data/ext/zgetri.c +10 -10
- data/ext/zgetrs.c +10 -10
- data/ext/zggbak.c +11 -11
- data/ext/zggbal.c +11 -11
- data/ext/zgges.c +15 -15
- data/ext/zggesx.c +6 -6
- data/ext/zggev.c +3 -3
- data/ext/zggevx.c +5 -5
- data/ext/zgghrd.c +14 -14
- data/ext/zggqrf.c +9 -9
- data/ext/zggrqf.c +1 -1
- data/ext/zggsvd.c +3 -3
- data/ext/zggsvp.c +4 -4
- data/ext/zgtcon.c +20 -20
- data/ext/zgtrfs.c +48 -48
- data/ext/zgtsv.c +8 -8
- data/ext/zgtsvx.c +55 -55
- data/ext/zgttrs.c +19 -19
- data/ext/zgtts2.c +20 -20
- data/ext/zhbev.c +3 -3
- data/ext/zhbevd.c +9 -9
- data/ext/zhbevx.c +7 -7
- data/ext/zhbgst.c +15 -15
- data/ext/zhbgv.c +15 -15
- data/ext/zhbgvd.c +20 -20
- data/ext/zhbgvx.c +9 -9
- data/ext/zhbtrd.c +13 -13
- data/ext/zhecon.c +12 -12
- data/ext/zheequb.c +1 -1
- data/ext/zheev.c +2 -2
- data/ext/zheevd.c +7 -7
- data/ext/zheevr.c +12 -12
- data/ext/zheevx.c +7 -7
- data/ext/zhegs2.c +2 -2
- data/ext/zhegst.c +2 -2
- data/ext/zhegv.c +13 -13
- data/ext/zhegvd.c +18 -18
- data/ext/zhegvx.c +19 -19
- data/ext/zherfs.c +31 -31
- data/ext/zherfsx.c +43 -43
- data/ext/zhesv.c +10 -10
- data/ext/zhesvx.c +15 -15
- data/ext/zhesvxx.c +41 -41
- data/ext/zhetd2.c +1 -1
- data/ext/zhetf2.c +1 -1
- data/ext/zhetrd.c +2 -2
- data/ext/zhetrf.c +2 -2
- data/ext/zhetri.c +1 -1
- data/ext/zhetrs.c +10 -10
- data/ext/zhetrs2.c +10 -10
- data/ext/zhfrk.c +6 -6
- data/ext/zhgeqz.c +27 -27
- data/ext/zhpcon.c +1 -1
- data/ext/zhpev.c +2 -2
- data/ext/zhpevd.c +2 -2
- data/ext/zhpevx.c +7 -7
- data/ext/zhpgst.c +10 -10
- data/ext/zhpgv.c +2 -2
- data/ext/zhpgvd.c +11 -11
- data/ext/zhpgvx.c +8 -8
- data/ext/zhprfs.c +10 -10
- data/ext/zhpsv.c +1 -1
- data/ext/zhpsvx.c +20 -20
- data/ext/zhptrd.c +1 -1
- data/ext/zhptrf.c +1 -1
- data/ext/zhptri.c +1 -1
- data/ext/zhptrs.c +1 -1
- data/ext/zhsein.c +21 -21
- data/ext/zhseqr.c +4 -4
- data/ext/zla_gbamv.c +14 -14
- data/ext/zla_gbrcond_c.c +33 -33
- data/ext/zla_gbrcond_x.c +32 -32
- data/ext/zla_gbrfsx_extended.c +78 -78
- data/ext/zla_gbrpvgrw.c +13 -13
- data/ext/zla_geamv.c +4 -4
- data/ext/zla_gercond_c.c +31 -31
- data/ext/zla_gercond_x.c +30 -30
- data/ext/zla_gerfsx_extended.c +70 -70
- data/ext/zla_heamv.c +12 -12
- data/ext/zla_hercond_c.c +31 -31
- data/ext/zla_hercond_x.c +30 -30
- data/ext/zla_herfsx_extended.c +82 -82
- data/ext/zla_herpvgrw.c +14 -14
- data/ext/zla_lin_berr.c +14 -14
- data/ext/zla_porcond_c.c +23 -23
- data/ext/zla_porcond_x.c +22 -22
- data/ext/zla_porfsx_extended.c +74 -74
- data/ext/zla_porpvgrw.c +2 -2
- data/ext/zla_rpvgrw.c +12 -12
- data/ext/zla_syamv.c +12 -12
- data/ext/zla_syrcond_c.c +31 -31
- data/ext/zla_syrcond_x.c +30 -30
- data/ext/zla_syrfsx_extended.c +82 -82
- data/ext/zla_syrpvgrw.c +14 -14
- data/ext/zla_wwaddw.c +11 -11
- data/ext/zlabrd.c +2 -2
- data/ext/zlacn2.c +2 -2
- data/ext/zlacp2.c +1 -1
- data/ext/zlacpy.c +1 -1
- data/ext/zlacrm.c +11 -11
- data/ext/zlacrt.c +12 -12
- data/ext/zlaed7.c +42 -42
- data/ext/zlaed8.c +27 -27
- data/ext/zlaein.c +14 -14
- data/ext/zlag2c.c +2 -2
- data/ext/zlags2.c +5 -5
- data/ext/zlagtm.c +21 -21
- data/ext/zlahef.c +1 -1
- data/ext/zlahqr.c +6 -6
- data/ext/zlahr2.c +1 -1
- data/ext/zlahrd.c +1 -1
- data/ext/zlaic1.c +12 -12
- data/ext/zlals0.c +37 -37
- data/ext/zlalsa.c +72 -72
- data/ext/zlalsd.c +4 -4
- data/ext/zlangb.c +3 -3
- data/ext/zlange.c +1 -1
- data/ext/zlangt.c +10 -10
- data/ext/zlanhb.c +2 -2
- data/ext/zlanhe.c +2 -2
- data/ext/zlanhf.c +3 -3
- data/ext/zlanhp.c +3 -3
- data/ext/zlanhs.c +1 -1
- data/ext/zlanht.c +1 -1
- data/ext/zlansb.c +2 -2
- data/ext/zlansp.c +3 -3
- data/ext/zlansy.c +2 -2
- data/ext/zlantb.c +2 -2
- data/ext/zlantp.c +2 -2
- data/ext/zlantr.c +3 -3
- data/ext/zlapll.c +10 -10
- data/ext/zlapmr.c +1 -1
- data/ext/zlapmt.c +11 -11
- data/ext/zlaqgb.c +2 -2
- data/ext/zlaqge.c +10 -10
- data/ext/zlaqhb.c +2 -2
- data/ext/zlaqhe.c +12 -12
- data/ext/zlaqhp.c +2 -2
- data/ext/zlaqp2.c +10 -10
- data/ext/zlaqps.c +20 -20
- data/ext/zlaqr0.c +17 -17
- data/ext/zlaqr1.c +4 -4
- data/ext/zlaqr2.c +18 -18
- data/ext/zlaqr3.c +18 -18
- data/ext/zlaqr4.c +7 -7
- data/ext/zlaqr5.c +21 -21
- data/ext/zlaqsb.c +13 -13
- data/ext/zlaqsp.c +2 -2
- data/ext/zlaqsy.c +12 -12
- data/ext/zlar1v.c +15 -15
- data/ext/zlar2v.c +19 -19
- data/ext/zlarf.c +2 -2
- data/ext/zlarfb.c +16 -16
- data/ext/zlarfg.c +1 -1
- data/ext/zlarfgp.c +1 -1
- data/ext/zlarft.c +2 -2
- data/ext/zlarfx.c +3 -3
- data/ext/zlargv.c +2 -2
- data/ext/zlarnv.c +1 -1
- data/ext/zlarrv.c +40 -40
- data/ext/zlarscl2.c +8 -8
- data/ext/zlartv.c +20 -20
- data/ext/zlarz.c +11 -11
- data/ext/zlarzb.c +14 -14
- data/ext/zlarzt.c +2 -2
- data/ext/zlascl.c +4 -4
- data/ext/zlascl2.c +8 -8
- data/ext/zlaset.c +4 -4
- data/ext/zlasr.c +2 -2
- data/ext/zlassq.c +2 -2
- data/ext/zlaswp.c +2 -2
- data/ext/zlasyf.c +1 -1
- data/ext/zlat2c.c +1 -1
- data/ext/zlatbs.c +14 -14
- data/ext/zlatdf.c +21 -21
- data/ext/zlatps.c +12 -12
- data/ext/zlatrd.c +1 -1
- data/ext/zlatrs.c +15 -15
- data/ext/zlatrz.c +1 -1
- data/ext/zlatzm.c +3 -3
- data/ext/zlauu2.c +1 -1
- data/ext/zlauum.c +1 -1
- data/ext/zpbcon.c +3 -3
- data/ext/zpbequ.c +1 -1
- data/ext/zpbrfs.c +12 -12
- data/ext/zpbstf.c +1 -1
- data/ext/zpbsv.c +1 -1
- data/ext/zpbsvx.c +23 -23
- data/ext/zpbtf2.c +1 -1
- data/ext/zpbtrf.c +1 -1
- data/ext/zpbtrs.c +1 -1
- data/ext/zpftrf.c +2 -2
- data/ext/zpftri.c +2 -2
- data/ext/zpftrs.c +2 -2
- data/ext/zpocon.c +1 -1
- data/ext/zporfs.c +23 -23
- data/ext/zporfsx.c +22 -22
- data/ext/zposv.c +9 -9
- data/ext/zposvx.c +12 -12
- data/ext/zposvxx.c +20 -20
- data/ext/zpotf2.c +1 -1
- data/ext/zpotrf.c +1 -1
- data/ext/zpotri.c +1 -1
- data/ext/zpotrs.c +9 -9
- data/ext/zppcon.c +1 -1
- data/ext/zppequ.c +1 -1
- data/ext/zpprfs.c +20 -20
- data/ext/zppsv.c +1 -1
- data/ext/zppsvx.c +12 -12
- data/ext/zpptrf.c +1 -1
- data/ext/zpptri.c +1 -1
- data/ext/zpptrs.c +1 -1
- data/ext/zpstf2.c +2 -2
- data/ext/zpstrf.c +2 -2
- data/ext/zptcon.c +1 -1
- data/ext/zpteqr.c +10 -10
- data/ext/zptrfs.c +12 -12
- data/ext/zptsv.c +1 -1
- data/ext/zptsvx.c +19 -19
- data/ext/zpttrs.c +1 -1
- data/ext/zptts2.c +1 -1
- data/ext/zrot.c +11 -11
- data/ext/zspcon.c +1 -1
- data/ext/zspmv.c +15 -15
- data/ext/zspr.c +11 -11
- data/ext/zsprfs.c +10 -10
- data/ext/zspsv.c +1 -1
- data/ext/zspsvx.c +20 -20
- data/ext/zsptrf.c +1 -1
- data/ext/zsptri.c +1 -1
- data/ext/zsptrs.c +1 -1
- data/ext/zstedc.c +10 -10
- data/ext/zstegr.c +18 -18
- data/ext/zstein.c +14 -14
- data/ext/zstemr.c +22 -22
- data/ext/zsteqr.c +10 -10
- data/ext/zsycon.c +12 -12
- data/ext/zsyconv.c +12 -12
- data/ext/zsyequb.c +1 -1
- data/ext/zsymv.c +13 -13
- data/ext/zsyr.c +4 -4
- data/ext/zsyrfs.c +31 -31
- data/ext/zsyrfsx.c +43 -43
- data/ext/zsysv.c +10 -10
- data/ext/zsysvx.c +15 -15
- data/ext/zsysvxx.c +41 -41
- data/ext/zsyswapr.c +2 -2
- data/ext/zsytf2.c +1 -1
- data/ext/zsytrf.c +2 -2
- data/ext/zsytri.c +1 -1
- data/ext/zsytri2.c +3 -3
- data/ext/zsytri2x.c +2 -2
- data/ext/zsytrs.c +10 -10
- data/ext/zsytrs2.c +10 -10
- data/ext/ztbcon.c +3 -3
- data/ext/ztbrfs.c +14 -14
- data/ext/ztbtrs.c +2 -2
- data/ext/ztfsm.c +5 -5
- data/ext/ztftri.c +1 -1
- data/ext/ztfttp.c +1 -1
- data/ext/ztfttr.c +1 -1
- data/ext/ztgevc.c +32 -32
- data/ext/ztgex2.c +14 -14
- data/ext/ztgexc.c +25 -25
- data/ext/ztgsen.c +37 -37
- data/ext/ztgsja.c +26 -26
- data/ext/ztgsna.c +24 -24
- data/ext/ztgsy2.c +22 -22
- data/ext/ztgsyl.c +42 -42
- data/ext/ztpcon.c +2 -2
- data/ext/ztprfs.c +13 -13
- data/ext/ztptri.c +1 -1
- data/ext/ztptrs.c +3 -3
- data/ext/ztpttf.c +1 -1
- data/ext/ztpttr.c +1 -1
- data/ext/ztrcon.c +3 -3
- data/ext/ztrevc.c +12 -12
- data/ext/ztrexc.c +1 -1
- data/ext/ztrrfs.c +11 -11
- data/ext/ztrsen.c +13 -13
- data/ext/ztrsna.c +20 -20
- data/ext/ztrsyl.c +11 -11
- data/ext/ztrti2.c +1 -1
- data/ext/ztrtri.c +1 -1
- data/ext/ztrtrs.c +10 -10
- data/ext/ztrttf.c +1 -1
- data/ext/ztrttp.c +1 -1
- data/ext/zunbdb.c +15 -15
- data/ext/zuncsd.c +27 -27
- data/ext/zung2l.c +9 -9
- data/ext/zung2r.c +9 -9
- data/ext/zungbr.c +1 -1
- data/ext/zunghr.c +7 -7
- data/ext/zungl2.c +1 -1
- data/ext/zunglq.c +9 -9
- data/ext/zungql.c +9 -9
- data/ext/zungqr.c +9 -9
- data/ext/zungr2.c +1 -1
- data/ext/zungrq.c +9 -9
- data/ext/zungtr.c +6 -6
- data/ext/zunm2l.c +12 -12
- data/ext/zunm2r.c +12 -12
- data/ext/zunmbr.c +3 -3
- data/ext/zunmhr.c +12 -12
- data/ext/zunml2.c +1 -1
- data/ext/zunmlq.c +7 -7
- data/ext/zunmql.c +12 -12
- data/ext/zunmqr.c +12 -12
- data/ext/zunmr2.c +1 -1
- data/ext/zunmr3.c +10 -10
- data/ext/zunmrq.c +7 -7
- data/ext/zunmrz.c +10 -10
- data/ext/zunmtr.c +17 -17
- data/ext/zupgtr.c +8 -8
- data/ext/zupmtr.c +2 -2
- metadata +3183 -3329
- data/doc/bd.html +0 -16
- data/doc/c.html +0 -36
- data/doc/cbd.html +0 -161
- data/doc/cgb.html +0 -1865
- data/doc/cge.html +0 -5261
- data/doc/cgg.html +0 -2027
- data/doc/cgt.html +0 -711
- data/doc/chb.html +0 -1031
- data/doc/che.html +0 -3165
- data/doc/chg.html +0 -201
- data/doc/chp.html +0 -1696
- data/doc/chs.html +0 -386
- data/doc/cpb.html +0 -994
- data/doc/cpo.html +0 -1520
- data/doc/cpp.html +0 -770
- data/doc/cpt.html +0 -706
- data/doc/csp.html +0 -905
- data/doc/cst.html +0 -742
- data/doc/csy.html +0 -2194
- data/doc/ctb.html +0 -284
- data/doc/ctg.html +0 -1544
- data/doc/ctp.html +0 -553
- data/doc/ctr.html +0 -1281
- data/doc/ctz.html +0 -211
- data/doc/cun.html +0 -2553
- data/doc/cup.html +0 -166
- data/doc/d.html +0 -35
- data/doc/dbd.html +0 -304
- data/doc/ddi.html +0 -87
- data/doc/dgb.html +0 -1857
- data/doc/dge.html +0 -7267
- data/doc/dgg.html +0 -2102
- data/doc/dgt.html +0 -713
- data/doc/dhg.html +0 -225
- data/doc/dhs.html +0 -414
- data/doc/di.html +0 -14
- data/doc/dop.html +0 -166
- data/doc/dor.html +0 -2540
- data/doc/dpb.html +0 -992
- data/doc/dpo.html +0 -1517
- data/doc/dpp.html +0 -770
- data/doc/dpt.html +0 -675
- data/doc/dsb.html +0 -995
- data/doc/dsp.html +0 -1777
- data/doc/dst.html +0 -1422
- data/doc/dsy.html +0 -3433
- data/doc/dtb.html +0 -284
- data/doc/dtg.html +0 -1730
- data/doc/dtp.html +0 -532
- data/doc/dtr.html +0 -1346
- data/doc/dtz.html +0 -211
- data/doc/gb.html +0 -16
- data/doc/ge.html +0 -16
- data/doc/gg.html +0 -16
- data/doc/gt.html +0 -16
- data/doc/hb.html +0 -14
- data/doc/he.html +0 -14
- data/doc/hg.html +0 -16
- data/doc/hp.html +0 -14
- data/doc/hs.html +0 -16
- data/doc/index.html +0 -53
- data/doc/op.html +0 -14
- data/doc/or.html +0 -14
- data/doc/others.html +0 -1142
- data/doc/pb.html +0 -16
- data/doc/po.html +0 -16
- data/doc/pp.html +0 -16
- data/doc/pt.html +0 -16
- data/doc/s.html +0 -35
- data/doc/sb.html +0 -14
- data/doc/sbd.html +0 -303
- data/doc/sdi.html +0 -87
- data/doc/sgb.html +0 -1863
- data/doc/sge.html +0 -7263
- data/doc/sgg.html +0 -2102
- data/doc/sgt.html +0 -713
- data/doc/shg.html +0 -225
- data/doc/shs.html +0 -414
- data/doc/sop.html +0 -166
- data/doc/sor.html +0 -2540
- data/doc/sp.html +0 -16
- data/doc/spb.html +0 -992
- data/doc/spo.html +0 -1520
- data/doc/spp.html +0 -770
- data/doc/spt.html +0 -675
- data/doc/ssb.html +0 -995
- data/doc/ssp.html +0 -1647
- data/doc/sst.html +0 -1423
- data/doc/ssy.html +0 -3438
- data/doc/st.html +0 -16
- data/doc/stb.html +0 -284
- data/doc/stg.html +0 -1729
- data/doc/stp.html +0 -532
- data/doc/str.html +0 -1346
- data/doc/stz.html +0 -211
- data/doc/sy.html +0 -16
- data/doc/tb.html +0 -16
- data/doc/tg.html +0 -16
- data/doc/tp.html +0 -16
- data/doc/tr.html +0 -16
- data/doc/tz.html +0 -16
- data/doc/un.html +0 -14
- data/doc/up.html +0 -14
- data/doc/z.html +0 -36
- data/doc/zbd.html +0 -161
- data/doc/zgb.html +0 -1862
- data/doc/zge.html +0 -5258
- data/doc/zgg.html +0 -2027
- data/doc/zgt.html +0 -711
- data/doc/zhb.html +0 -1031
- data/doc/zhe.html +0 -3162
- data/doc/zhg.html +0 -201
- data/doc/zhp.html +0 -1697
- data/doc/zhs.html +0 -386
- data/doc/zpb.html +0 -994
- data/doc/zpo.html +0 -1517
- data/doc/zpp.html +0 -770
- data/doc/zpt.html +0 -706
- data/doc/zsp.html +0 -905
- data/doc/zst.html +0 -743
- data/doc/zsy.html +0 -2191
- data/doc/ztb.html +0 -284
- data/doc/ztg.html +0 -1544
- data/doc/ztp.html +0 -553
- data/doc/ztr.html +0 -1281
- data/doc/ztz.html +0 -211
- data/doc/zun.html +0 -2553
- data/doc/zup.html +0 -166
data/doc/di.html
DELETED
@@ -1,14 +0,0 @@
|
|
1
|
-
<HTML>
|
2
|
-
<HEAD>
|
3
|
-
<TITLE>diagonal routines</TITLE>
|
4
|
-
</HEAD>
|
5
|
-
<BODY>
|
6
|
-
<H1>diagonal routines</H1>
|
7
|
-
<UL>
|
8
|
-
<LI><A HREF="sdi.html">S: REAL</A></LI>
|
9
|
-
<LI><A HREF="ddi.html">D: DOUBLE PRECISION</A></LI>
|
10
|
-
</UL>
|
11
|
-
<HR />
|
12
|
-
<A HREF="index.html">back to index.html</A>
|
13
|
-
</BODY>
|
14
|
-
</HTML>
|
data/doc/dop.html
DELETED
@@ -1,166 +0,0 @@
|
|
1
|
-
<HTML>
|
2
|
-
<HEAD>
|
3
|
-
<TITLE>DOUBLE PRECISION routines for (real) orthogonal, packed storage matrix</TITLE>
|
4
|
-
</HEAD>
|
5
|
-
<BODY>
|
6
|
-
<A NAME="top"></A>
|
7
|
-
<H1>DOUBLE PRECISION routines for (real) orthogonal, packed storage matrix</H1>
|
8
|
-
<UL>
|
9
|
-
<LI><A HREF="#dopgtr">dopgtr</A></LI>
|
10
|
-
<LI><A HREF="#dopmtr">dopmtr</A></LI>
|
11
|
-
</UL>
|
12
|
-
|
13
|
-
<A NAME="dopgtr"></A>
|
14
|
-
<H2>dopgtr</H2>
|
15
|
-
<PRE>
|
16
|
-
USAGE:
|
17
|
-
q, info = NumRu::Lapack.dopgtr( uplo, ap, tau, [:usage => usage, :help => help])
|
18
|
-
|
19
|
-
|
20
|
-
FORTRAN MANUAL
|
21
|
-
SUBROUTINE DOPGTR( UPLO, N, AP, TAU, Q, LDQ, WORK, INFO )
|
22
|
-
|
23
|
-
* Purpose
|
24
|
-
* =======
|
25
|
-
*
|
26
|
-
* DOPGTR generates a real orthogonal matrix Q which is defined as the
|
27
|
-
* product of n-1 elementary reflectors H(i) of order n, as returned by
|
28
|
-
* DSPTRD using packed storage:
|
29
|
-
*
|
30
|
-
* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
|
31
|
-
*
|
32
|
-
* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
|
33
|
-
*
|
34
|
-
|
35
|
-
* Arguments
|
36
|
-
* =========
|
37
|
-
*
|
38
|
-
* UPLO (input) CHARACTER*1
|
39
|
-
* = 'U': Upper triangular packed storage used in previous
|
40
|
-
* call to DSPTRD;
|
41
|
-
* = 'L': Lower triangular packed storage used in previous
|
42
|
-
* call to DSPTRD.
|
43
|
-
*
|
44
|
-
* N (input) INTEGER
|
45
|
-
* The order of the matrix Q. N >= 0.
|
46
|
-
*
|
47
|
-
* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
|
48
|
-
* The vectors which define the elementary reflectors, as
|
49
|
-
* returned by DSPTRD.
|
50
|
-
*
|
51
|
-
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
|
52
|
-
* TAU(i) must contain the scalar factor of the elementary
|
53
|
-
* reflector H(i), as returned by DSPTRD.
|
54
|
-
*
|
55
|
-
* Q (output) DOUBLE PRECISION array, dimension (LDQ,N)
|
56
|
-
* The N-by-N orthogonal matrix Q.
|
57
|
-
*
|
58
|
-
* LDQ (input) INTEGER
|
59
|
-
* The leading dimension of the array Q. LDQ >= max(1,N).
|
60
|
-
*
|
61
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (N-1)
|
62
|
-
*
|
63
|
-
* INFO (output) INTEGER
|
64
|
-
* = 0: successful exit
|
65
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
66
|
-
*
|
67
|
-
|
68
|
-
* =====================================================================
|
69
|
-
*
|
70
|
-
|
71
|
-
|
72
|
-
</PRE>
|
73
|
-
<A HREF="#top">go to the page top</A>
|
74
|
-
|
75
|
-
<A NAME="dopmtr"></A>
|
76
|
-
<H2>dopmtr</H2>
|
77
|
-
<PRE>
|
78
|
-
USAGE:
|
79
|
-
info, c = NumRu::Lapack.dopmtr( side, uplo, trans, m, ap, tau, c, [:usage => usage, :help => help])
|
80
|
-
|
81
|
-
|
82
|
-
FORTRAN MANUAL
|
83
|
-
SUBROUTINE DOPMTR( SIDE, UPLO, TRANS, M, N, AP, TAU, C, LDC, WORK, INFO )
|
84
|
-
|
85
|
-
* Purpose
|
86
|
-
* =======
|
87
|
-
*
|
88
|
-
* DOPMTR overwrites the general real M-by-N matrix C with
|
89
|
-
*
|
90
|
-
* SIDE = 'L' SIDE = 'R'
|
91
|
-
* TRANS = 'N': Q * C C * Q
|
92
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
93
|
-
*
|
94
|
-
* where Q is a real orthogonal matrix of order nq, with nq = m if
|
95
|
-
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
|
96
|
-
* nq-1 elementary reflectors, as returned by DSPTRD using packed
|
97
|
-
* storage:
|
98
|
-
*
|
99
|
-
* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
|
100
|
-
*
|
101
|
-
* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
|
102
|
-
*
|
103
|
-
|
104
|
-
* Arguments
|
105
|
-
* =========
|
106
|
-
*
|
107
|
-
* SIDE (input) CHARACTER*1
|
108
|
-
* = 'L': apply Q or Q**T from the Left;
|
109
|
-
* = 'R': apply Q or Q**T from the Right.
|
110
|
-
*
|
111
|
-
* UPLO (input) CHARACTER*1
|
112
|
-
* = 'U': Upper triangular packed storage used in previous
|
113
|
-
* call to DSPTRD;
|
114
|
-
* = 'L': Lower triangular packed storage used in previous
|
115
|
-
* call to DSPTRD.
|
116
|
-
*
|
117
|
-
* TRANS (input) CHARACTER*1
|
118
|
-
* = 'N': No transpose, apply Q;
|
119
|
-
* = 'T': Transpose, apply Q**T.
|
120
|
-
*
|
121
|
-
* M (input) INTEGER
|
122
|
-
* The number of rows of the matrix C. M >= 0.
|
123
|
-
*
|
124
|
-
* N (input) INTEGER
|
125
|
-
* The number of columns of the matrix C. N >= 0.
|
126
|
-
*
|
127
|
-
* AP (input) DOUBLE PRECISION array, dimension
|
128
|
-
* (M*(M+1)/2) if SIDE = 'L'
|
129
|
-
* (N*(N+1)/2) if SIDE = 'R'
|
130
|
-
* The vectors which define the elementary reflectors, as
|
131
|
-
* returned by DSPTRD. AP is modified by the routine but
|
132
|
-
* restored on exit.
|
133
|
-
*
|
134
|
-
* TAU (input) DOUBLE PRECISION array, dimension (M-1) if SIDE = 'L'
|
135
|
-
* or (N-1) if SIDE = 'R'
|
136
|
-
* TAU(i) must contain the scalar factor of the elementary
|
137
|
-
* reflector H(i), as returned by DSPTRD.
|
138
|
-
*
|
139
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
140
|
-
* On entry, the M-by-N matrix C.
|
141
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
142
|
-
*
|
143
|
-
* LDC (input) INTEGER
|
144
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
145
|
-
*
|
146
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
147
|
-
* (N) if SIDE = 'L'
|
148
|
-
* (M) if SIDE = 'R'
|
149
|
-
*
|
150
|
-
* INFO (output) INTEGER
|
151
|
-
* = 0: successful exit
|
152
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
153
|
-
*
|
154
|
-
|
155
|
-
* =====================================================================
|
156
|
-
*
|
157
|
-
|
158
|
-
|
159
|
-
</PRE>
|
160
|
-
<A HREF="#top">go to the page top</A>
|
161
|
-
|
162
|
-
<HR />
|
163
|
-
<A HREF="d.html">back to matrix types</A><BR>
|
164
|
-
<A HREF="d.html">back to data types</A>
|
165
|
-
</BODY>
|
166
|
-
</HTML>
|
data/doc/dor.html
DELETED
@@ -1,2540 +0,0 @@
|
|
1
|
-
<HTML>
|
2
|
-
<HEAD>
|
3
|
-
<TITLE>DOUBLE PRECISION routines for (real) orthogonal matrix</TITLE>
|
4
|
-
</HEAD>
|
5
|
-
<BODY>
|
6
|
-
<A NAME="top"></A>
|
7
|
-
<H1>DOUBLE PRECISION routines for (real) orthogonal matrix</H1>
|
8
|
-
<UL>
|
9
|
-
<LI><A HREF="#dorbdb">dorbdb</A></LI>
|
10
|
-
<LI><A HREF="#dorcsd">dorcsd</A></LI>
|
11
|
-
<LI><A HREF="#dorg2l">dorg2l</A></LI>
|
12
|
-
<LI><A HREF="#dorg2r">dorg2r</A></LI>
|
13
|
-
<LI><A HREF="#dorgbr">dorgbr</A></LI>
|
14
|
-
<LI><A HREF="#dorghr">dorghr</A></LI>
|
15
|
-
<LI><A HREF="#dorgl2">dorgl2</A></LI>
|
16
|
-
<LI><A HREF="#dorglq">dorglq</A></LI>
|
17
|
-
<LI><A HREF="#dorgql">dorgql</A></LI>
|
18
|
-
<LI><A HREF="#dorgqr">dorgqr</A></LI>
|
19
|
-
<LI><A HREF="#dorgr2">dorgr2</A></LI>
|
20
|
-
<LI><A HREF="#dorgrq">dorgrq</A></LI>
|
21
|
-
<LI><A HREF="#dorgtr">dorgtr</A></LI>
|
22
|
-
<LI><A HREF="#dorm2l">dorm2l</A></LI>
|
23
|
-
<LI><A HREF="#dorm2r">dorm2r</A></LI>
|
24
|
-
<LI><A HREF="#dormbr">dormbr</A></LI>
|
25
|
-
<LI><A HREF="#dormhr">dormhr</A></LI>
|
26
|
-
<LI><A HREF="#dorml2">dorml2</A></LI>
|
27
|
-
<LI><A HREF="#dormlq">dormlq</A></LI>
|
28
|
-
<LI><A HREF="#dormql">dormql</A></LI>
|
29
|
-
<LI><A HREF="#dormqr">dormqr</A></LI>
|
30
|
-
<LI><A HREF="#dormr2">dormr2</A></LI>
|
31
|
-
<LI><A HREF="#dormr3">dormr3</A></LI>
|
32
|
-
<LI><A HREF="#dormrq">dormrq</A></LI>
|
33
|
-
<LI><A HREF="#dormrz">dormrz</A></LI>
|
34
|
-
<LI><A HREF="#dormtr">dormtr</A></LI>
|
35
|
-
</UL>
|
36
|
-
|
37
|
-
<A NAME="dorbdb"></A>
|
38
|
-
<H2>dorbdb</H2>
|
39
|
-
<PRE>
|
40
|
-
USAGE:
|
41
|
-
theta, phi, taup1, taup2, tauq1, tauq2, info, x11, x12, x21, x22 = NumRu::Lapack.dorbdb( trans, signs, m, x11, x12, x21, x22, [:lwork => lwork, :usage => usage, :help => help])
|
42
|
-
|
43
|
-
|
44
|
-
FORTRAN MANUAL
|
45
|
-
SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO )
|
46
|
-
|
47
|
-
* Purpose
|
48
|
-
* =======
|
49
|
-
*
|
50
|
-
* DORBDB simultaneously bidiagonalizes the blocks of an M-by-M
|
51
|
-
* partitioned orthogonal matrix X:
|
52
|
-
*
|
53
|
-
* [ B11 | B12 0 0 ]
|
54
|
-
* [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T
|
55
|
-
* X = [-----------] = [---------] [----------------] [---------] .
|
56
|
-
* [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ]
|
57
|
-
* [ 0 | 0 0 I ]
|
58
|
-
*
|
59
|
-
* X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is
|
60
|
-
* not the case, then X must be transposed and/or permuted. This can be
|
61
|
-
* done in constant time using the TRANS and SIGNS options. See DORCSD
|
62
|
-
* for details.)
|
63
|
-
*
|
64
|
-
* The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by-
|
65
|
-
* (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are
|
66
|
-
* represented implicitly by Householder vectors.
|
67
|
-
*
|
68
|
-
* B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented
|
69
|
-
* implicitly by angles THETA, PHI.
|
70
|
-
*
|
71
|
-
|
72
|
-
* Arguments
|
73
|
-
* =========
|
74
|
-
*
|
75
|
-
* TRANS (input) CHARACTER
|
76
|
-
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
|
77
|
-
* order;
|
78
|
-
* otherwise: X, U1, U2, V1T, and V2T are stored in column-
|
79
|
-
* major order.
|
80
|
-
*
|
81
|
-
* SIGNS (input) CHARACTER
|
82
|
-
* = 'O': The lower-left block is made nonpositive (the
|
83
|
-
* "other" convention);
|
84
|
-
* otherwise: The upper-right block is made nonpositive (the
|
85
|
-
* "default" convention).
|
86
|
-
*
|
87
|
-
* M (input) INTEGER
|
88
|
-
* The number of rows and columns in X.
|
89
|
-
*
|
90
|
-
* P (input) INTEGER
|
91
|
-
* The number of rows in X11 and X12. 0 <= P <= M.
|
92
|
-
*
|
93
|
-
* Q (input) INTEGER
|
94
|
-
* The number of columns in X11 and X21. 0 <= Q <=
|
95
|
-
* MIN(P,M-P,M-Q).
|
96
|
-
*
|
97
|
-
* X11 (input/output) DOUBLE PRECISION array, dimension (LDX11,Q)
|
98
|
-
* On entry, the top-left block of the orthogonal matrix to be
|
99
|
-
* reduced. On exit, the form depends on TRANS:
|
100
|
-
* If TRANS = 'N', then
|
101
|
-
* the columns of tril(X11) specify reflectors for P1,
|
102
|
-
* the rows of triu(X11,1) specify reflectors for Q1;
|
103
|
-
* else TRANS = 'T', and
|
104
|
-
* the rows of triu(X11) specify reflectors for P1,
|
105
|
-
* the columns of tril(X11,-1) specify reflectors for Q1.
|
106
|
-
*
|
107
|
-
* LDX11 (input) INTEGER
|
108
|
-
* The leading dimension of X11. If TRANS = 'N', then LDX11 >=
|
109
|
-
* P; else LDX11 >= Q.
|
110
|
-
*
|
111
|
-
* X12 (input/output) DOUBLE PRECISION array, dimension (LDX12,M-Q)
|
112
|
-
* On entry, the top-right block of the orthogonal matrix to
|
113
|
-
* be reduced. On exit, the form depends on TRANS:
|
114
|
-
* If TRANS = 'N', then
|
115
|
-
* the rows of triu(X12) specify the first P reflectors for
|
116
|
-
* Q2;
|
117
|
-
* else TRANS = 'T', and
|
118
|
-
* the columns of tril(X12) specify the first P reflectors
|
119
|
-
* for Q2.
|
120
|
-
*
|
121
|
-
* LDX12 (input) INTEGER
|
122
|
-
* The leading dimension of X12. If TRANS = 'N', then LDX12 >=
|
123
|
-
* P; else LDX11 >= M-Q.
|
124
|
-
*
|
125
|
-
* X21 (input/output) DOUBLE PRECISION array, dimension (LDX21,Q)
|
126
|
-
* On entry, the bottom-left block of the orthogonal matrix to
|
127
|
-
* be reduced. On exit, the form depends on TRANS:
|
128
|
-
* If TRANS = 'N', then
|
129
|
-
* the columns of tril(X21) specify reflectors for P2;
|
130
|
-
* else TRANS = 'T', and
|
131
|
-
* the rows of triu(X21) specify reflectors for P2.
|
132
|
-
*
|
133
|
-
* LDX21 (input) INTEGER
|
134
|
-
* The leading dimension of X21. If TRANS = 'N', then LDX21 >=
|
135
|
-
* M-P; else LDX21 >= Q.
|
136
|
-
*
|
137
|
-
* X22 (input/output) DOUBLE PRECISION array, dimension (LDX22,M-Q)
|
138
|
-
* On entry, the bottom-right block of the orthogonal matrix to
|
139
|
-
* be reduced. On exit, the form depends on TRANS:
|
140
|
-
* If TRANS = 'N', then
|
141
|
-
* the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last
|
142
|
-
* M-P-Q reflectors for Q2,
|
143
|
-
* else TRANS = 'T', and
|
144
|
-
* the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last
|
145
|
-
* M-P-Q reflectors for P2.
|
146
|
-
*
|
147
|
-
* LDX22 (input) INTEGER
|
148
|
-
* The leading dimension of X22. If TRANS = 'N', then LDX22 >=
|
149
|
-
* M-P; else LDX22 >= M-Q.
|
150
|
-
*
|
151
|
-
* THETA (output) DOUBLE PRECISION array, dimension (Q)
|
152
|
-
* The entries of the bidiagonal blocks B11, B12, B21, B22 can
|
153
|
-
* be computed from the angles THETA and PHI. See Further
|
154
|
-
* Details.
|
155
|
-
*
|
156
|
-
* PHI (output) DOUBLE PRECISION array, dimension (Q-1)
|
157
|
-
* The entries of the bidiagonal blocks B11, B12, B21, B22 can
|
158
|
-
* be computed from the angles THETA and PHI. See Further
|
159
|
-
* Details.
|
160
|
-
*
|
161
|
-
* TAUP1 (output) DOUBLE PRECISION array, dimension (P)
|
162
|
-
* The scalar factors of the elementary reflectors that define
|
163
|
-
* P1.
|
164
|
-
*
|
165
|
-
* TAUP2 (output) DOUBLE PRECISION array, dimension (M-P)
|
166
|
-
* The scalar factors of the elementary reflectors that define
|
167
|
-
* P2.
|
168
|
-
*
|
169
|
-
* TAUQ1 (output) DOUBLE PRECISION array, dimension (Q)
|
170
|
-
* The scalar factors of the elementary reflectors that define
|
171
|
-
* Q1.
|
172
|
-
*
|
173
|
-
* TAUQ2 (output) DOUBLE PRECISION array, dimension (M-Q)
|
174
|
-
* The scalar factors of the elementary reflectors that define
|
175
|
-
* Q2.
|
176
|
-
*
|
177
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
|
178
|
-
*
|
179
|
-
* LWORK (input) INTEGER
|
180
|
-
* The dimension of the array WORK. LWORK >= M-Q.
|
181
|
-
*
|
182
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
183
|
-
* only calculates the optimal size of the WORK array, returns
|
184
|
-
* this value as the first entry of the WORK array, and no error
|
185
|
-
* message related to LWORK is issued by XERBLA.
|
186
|
-
*
|
187
|
-
* INFO (output) INTEGER
|
188
|
-
* = 0: successful exit.
|
189
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value.
|
190
|
-
*
|
191
|
-
|
192
|
-
* Further Details
|
193
|
-
* ===============
|
194
|
-
*
|
195
|
-
* The bidiagonal blocks B11, B12, B21, and B22 are represented
|
196
|
-
* implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ...,
|
197
|
-
* PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are
|
198
|
-
* lower bidiagonal. Every entry in each bidiagonal band is a product
|
199
|
-
* of a sine or cosine of a THETA with a sine or cosine of a PHI. See
|
200
|
-
* [1] or DORCSD for details.
|
201
|
-
*
|
202
|
-
* P1, P2, Q1, and Q2 are represented as products of elementary
|
203
|
-
* reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2
|
204
|
-
* using DORGQR and DORGLQ.
|
205
|
-
*
|
206
|
-
* Reference
|
207
|
-
* =========
|
208
|
-
*
|
209
|
-
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
210
|
-
* Algorithms, 50(1):33-65, 2009.
|
211
|
-
*
|
212
|
-
* ====================================================================
|
213
|
-
*
|
214
|
-
|
215
|
-
|
216
|
-
</PRE>
|
217
|
-
<A HREF="#top">go to the page top</A>
|
218
|
-
|
219
|
-
<A NAME="dorcsd"></A>
|
220
|
-
<H2>dorcsd</H2>
|
221
|
-
<PRE>
|
222
|
-
USAGE:
|
223
|
-
theta, u1, u2, v1t, v2t, info = NumRu::Lapack.dorcsd( jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, x11, x12, x21, x22, lwork, [:usage => usage, :help => help])
|
224
|
-
|
225
|
-
|
226
|
-
FORTRAN MANUAL
|
227
|
-
RECURSIVE SUBROUTINE DORCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, WORK, LWORK, IWORK, INFO )
|
228
|
-
|
229
|
-
* Purpose
|
230
|
-
* =======
|
231
|
-
*
|
232
|
-
* DORCSD computes the CS decomposition of an M-by-M partitioned
|
233
|
-
* orthogonal matrix X:
|
234
|
-
*
|
235
|
-
* [ I 0 0 | 0 0 0 ]
|
236
|
-
* [ 0 C 0 | 0 -S 0 ]
|
237
|
-
* [ X11 | X12 ] [ U1 | ] [ 0 0 0 | 0 0 -I ] [ V1 | ]**T
|
238
|
-
* X = [-----------] = [---------] [---------------------] [---------] .
|
239
|
-
* [ X21 | X22 ] [ | U2 ] [ 0 0 0 | I 0 0 ] [ | V2 ]
|
240
|
-
* [ 0 S 0 | 0 C 0 ]
|
241
|
-
* [ 0 0 I | 0 0 0 ]
|
242
|
-
*
|
243
|
-
* X11 is P-by-Q. The orthogonal matrices U1, U2, V1, and V2 are P-by-P,
|
244
|
-
* (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
|
245
|
-
* R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
|
246
|
-
* which R = MIN(P,M-P,Q,M-Q).
|
247
|
-
*
|
248
|
-
|
249
|
-
* Arguments
|
250
|
-
* =========
|
251
|
-
*
|
252
|
-
* JOBU1 (input) CHARACTER
|
253
|
-
* = 'Y': U1 is computed;
|
254
|
-
* otherwise: U1 is not computed.
|
255
|
-
*
|
256
|
-
* JOBU2 (input) CHARACTER
|
257
|
-
* = 'Y': U2 is computed;
|
258
|
-
* otherwise: U2 is not computed.
|
259
|
-
*
|
260
|
-
* JOBV1T (input) CHARACTER
|
261
|
-
* = 'Y': V1T is computed;
|
262
|
-
* otherwise: V1T is not computed.
|
263
|
-
*
|
264
|
-
* JOBV2T (input) CHARACTER
|
265
|
-
* = 'Y': V2T is computed;
|
266
|
-
* otherwise: V2T is not computed.
|
267
|
-
*
|
268
|
-
* TRANS (input) CHARACTER
|
269
|
-
* = 'T': X, U1, U2, V1T, and V2T are stored in row-major
|
270
|
-
* order;
|
271
|
-
* otherwise: X, U1, U2, V1T, and V2T are stored in column-
|
272
|
-
* major order.
|
273
|
-
*
|
274
|
-
* SIGNS (input) CHARACTER
|
275
|
-
* = 'O': The lower-left block is made nonpositive (the
|
276
|
-
* "other" convention);
|
277
|
-
* otherwise: The upper-right block is made nonpositive (the
|
278
|
-
* "default" convention).
|
279
|
-
*
|
280
|
-
* M (input) INTEGER
|
281
|
-
* The number of rows and columns in X.
|
282
|
-
*
|
283
|
-
* P (input) INTEGER
|
284
|
-
* The number of rows in X11 and X12. 0 <= P <= M.
|
285
|
-
*
|
286
|
-
* Q (input) INTEGER
|
287
|
-
* The number of columns in X11 and X21. 0 <= Q <= M.
|
288
|
-
*
|
289
|
-
* X (input/workspace) DOUBLE PRECISION array, dimension (LDX,M)
|
290
|
-
* On entry, the orthogonal matrix whose CSD is desired.
|
291
|
-
*
|
292
|
-
* LDX (input) INTEGER
|
293
|
-
* The leading dimension of X. LDX >= MAX(1,M).
|
294
|
-
*
|
295
|
-
* THETA (output) DOUBLE PRECISION array, dimension (R), in which R =
|
296
|
-
* MIN(P,M-P,Q,M-Q).
|
297
|
-
* C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
|
298
|
-
* S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
|
299
|
-
*
|
300
|
-
* U1 (output) DOUBLE PRECISION array, dimension (P)
|
301
|
-
* If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1.
|
302
|
-
*
|
303
|
-
* LDU1 (input) INTEGER
|
304
|
-
* The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
|
305
|
-
* MAX(1,P).
|
306
|
-
*
|
307
|
-
* U2 (output) DOUBLE PRECISION array, dimension (M-P)
|
308
|
-
* If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal
|
309
|
-
* matrix U2.
|
310
|
-
*
|
311
|
-
* LDU2 (input) INTEGER
|
312
|
-
* The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
|
313
|
-
* MAX(1,M-P).
|
314
|
-
*
|
315
|
-
* V1T (output) DOUBLE PRECISION array, dimension (Q)
|
316
|
-
* If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal
|
317
|
-
* matrix V1**T.
|
318
|
-
*
|
319
|
-
* LDV1T (input) INTEGER
|
320
|
-
* The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
|
321
|
-
* MAX(1,Q).
|
322
|
-
*
|
323
|
-
* V2T (output) DOUBLE PRECISION array, dimension (M-Q)
|
324
|
-
* If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) orthogonal
|
325
|
-
* matrix V2**T.
|
326
|
-
*
|
327
|
-
* LDV2T (input) INTEGER
|
328
|
-
* The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
|
329
|
-
* MAX(1,M-Q).
|
330
|
-
*
|
331
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
332
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
333
|
-
* If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
|
334
|
-
* ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
|
335
|
-
* define the matrix in intermediate bidiagonal-block form
|
336
|
-
* remaining after nonconvergence. INFO specifies the number
|
337
|
-
* of nonzero PHI's.
|
338
|
-
*
|
339
|
-
* LWORK (input) INTEGER
|
340
|
-
* The dimension of the array WORK.
|
341
|
-
*
|
342
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
343
|
-
* only calculates the optimal size of the WORK array, returns
|
344
|
-
* this value as the first entry of the work array, and no error
|
345
|
-
* message related to LWORK is issued by XERBLA.
|
346
|
-
*
|
347
|
-
* IWORK (workspace) INTEGER array, dimension (M-Q)
|
348
|
-
*
|
349
|
-
* INFO (output) INTEGER
|
350
|
-
* = 0: successful exit.
|
351
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value.
|
352
|
-
* > 0: DBBCSD did not converge. See the description of WORK
|
353
|
-
* above for details.
|
354
|
-
*
|
355
|
-
* Reference
|
356
|
-
* =========
|
357
|
-
*
|
358
|
-
* [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
|
359
|
-
* Algorithms, 50(1):33-65, 2009.
|
360
|
-
*
|
361
|
-
|
362
|
-
* ===================================================================
|
363
|
-
*
|
364
|
-
|
365
|
-
|
366
|
-
</PRE>
|
367
|
-
<A HREF="#top">go to the page top</A>
|
368
|
-
|
369
|
-
<A NAME="dorg2l"></A>
|
370
|
-
<H2>dorg2l</H2>
|
371
|
-
<PRE>
|
372
|
-
USAGE:
|
373
|
-
info, a = NumRu::Lapack.dorg2l( m, a, tau, [:usage => usage, :help => help])
|
374
|
-
|
375
|
-
|
376
|
-
FORTRAN MANUAL
|
377
|
-
SUBROUTINE DORG2L( M, N, K, A, LDA, TAU, WORK, INFO )
|
378
|
-
|
379
|
-
* Purpose
|
380
|
-
* =======
|
381
|
-
*
|
382
|
-
* DORG2L generates an m by n real matrix Q with orthonormal columns,
|
383
|
-
* which is defined as the last n columns of a product of k elementary
|
384
|
-
* reflectors of order m
|
385
|
-
*
|
386
|
-
* Q = H(k) . . . H(2) H(1)
|
387
|
-
*
|
388
|
-
* as returned by DGEQLF.
|
389
|
-
*
|
390
|
-
|
391
|
-
* Arguments
|
392
|
-
* =========
|
393
|
-
*
|
394
|
-
* M (input) INTEGER
|
395
|
-
* The number of rows of the matrix Q. M >= 0.
|
396
|
-
*
|
397
|
-
* N (input) INTEGER
|
398
|
-
* The number of columns of the matrix Q. M >= N >= 0.
|
399
|
-
*
|
400
|
-
* K (input) INTEGER
|
401
|
-
* The number of elementary reflectors whose product defines the
|
402
|
-
* matrix Q. N >= K >= 0.
|
403
|
-
*
|
404
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
405
|
-
* On entry, the (n-k+i)-th column must contain the vector which
|
406
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
407
|
-
* returned by DGEQLF in the last k columns of its array
|
408
|
-
* argument A.
|
409
|
-
* On exit, the m by n matrix Q.
|
410
|
-
*
|
411
|
-
* LDA (input) INTEGER
|
412
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
413
|
-
*
|
414
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
415
|
-
* TAU(i) must contain the scalar factor of the elementary
|
416
|
-
* reflector H(i), as returned by DGEQLF.
|
417
|
-
*
|
418
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
|
419
|
-
*
|
420
|
-
* INFO (output) INTEGER
|
421
|
-
* = 0: successful exit
|
422
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
423
|
-
*
|
424
|
-
|
425
|
-
* =====================================================================
|
426
|
-
*
|
427
|
-
|
428
|
-
|
429
|
-
</PRE>
|
430
|
-
<A HREF="#top">go to the page top</A>
|
431
|
-
|
432
|
-
<A NAME="dorg2r"></A>
|
433
|
-
<H2>dorg2r</H2>
|
434
|
-
<PRE>
|
435
|
-
USAGE:
|
436
|
-
info, a = NumRu::Lapack.dorg2r( m, a, tau, [:usage => usage, :help => help])
|
437
|
-
|
438
|
-
|
439
|
-
FORTRAN MANUAL
|
440
|
-
SUBROUTINE DORG2R( M, N, K, A, LDA, TAU, WORK, INFO )
|
441
|
-
|
442
|
-
* Purpose
|
443
|
-
* =======
|
444
|
-
*
|
445
|
-
* DORG2R generates an m by n real matrix Q with orthonormal columns,
|
446
|
-
* which is defined as the first n columns of a product of k elementary
|
447
|
-
* reflectors of order m
|
448
|
-
*
|
449
|
-
* Q = H(1) H(2) . . . H(k)
|
450
|
-
*
|
451
|
-
* as returned by DGEQRF.
|
452
|
-
*
|
453
|
-
|
454
|
-
* Arguments
|
455
|
-
* =========
|
456
|
-
*
|
457
|
-
* M (input) INTEGER
|
458
|
-
* The number of rows of the matrix Q. M >= 0.
|
459
|
-
*
|
460
|
-
* N (input) INTEGER
|
461
|
-
* The number of columns of the matrix Q. M >= N >= 0.
|
462
|
-
*
|
463
|
-
* K (input) INTEGER
|
464
|
-
* The number of elementary reflectors whose product defines the
|
465
|
-
* matrix Q. N >= K >= 0.
|
466
|
-
*
|
467
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
468
|
-
* On entry, the i-th column must contain the vector which
|
469
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
470
|
-
* returned by DGEQRF in the first k columns of its array
|
471
|
-
* argument A.
|
472
|
-
* On exit, the m-by-n matrix Q.
|
473
|
-
*
|
474
|
-
* LDA (input) INTEGER
|
475
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
476
|
-
*
|
477
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
478
|
-
* TAU(i) must contain the scalar factor of the elementary
|
479
|
-
* reflector H(i), as returned by DGEQRF.
|
480
|
-
*
|
481
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (N)
|
482
|
-
*
|
483
|
-
* INFO (output) INTEGER
|
484
|
-
* = 0: successful exit
|
485
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
486
|
-
*
|
487
|
-
|
488
|
-
* =====================================================================
|
489
|
-
*
|
490
|
-
|
491
|
-
|
492
|
-
</PRE>
|
493
|
-
<A HREF="#top">go to the page top</A>
|
494
|
-
|
495
|
-
<A NAME="dorgbr"></A>
|
496
|
-
<H2>dorgbr</H2>
|
497
|
-
<PRE>
|
498
|
-
USAGE:
|
499
|
-
work, info, a = NumRu::Lapack.dorgbr( vect, m, k, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
500
|
-
|
501
|
-
|
502
|
-
FORTRAN MANUAL
|
503
|
-
SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
504
|
-
|
505
|
-
* Purpose
|
506
|
-
* =======
|
507
|
-
*
|
508
|
-
* DORGBR generates one of the real orthogonal matrices Q or P**T
|
509
|
-
* determined by DGEBRD when reducing a real matrix A to bidiagonal
|
510
|
-
* form: A = Q * B * P**T. Q and P**T are defined as products of
|
511
|
-
* elementary reflectors H(i) or G(i) respectively.
|
512
|
-
*
|
513
|
-
* If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
|
514
|
-
* is of order M:
|
515
|
-
* if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
|
516
|
-
* columns of Q, where m >= n >= k;
|
517
|
-
* if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
|
518
|
-
* M-by-M matrix.
|
519
|
-
*
|
520
|
-
* If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
|
521
|
-
* is of order N:
|
522
|
-
* if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
|
523
|
-
* rows of P**T, where n >= m >= k;
|
524
|
-
* if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
|
525
|
-
* an N-by-N matrix.
|
526
|
-
*
|
527
|
-
|
528
|
-
* Arguments
|
529
|
-
* =========
|
530
|
-
*
|
531
|
-
* VECT (input) CHARACTER*1
|
532
|
-
* Specifies whether the matrix Q or the matrix P**T is
|
533
|
-
* required, as defined in the transformation applied by DGEBRD:
|
534
|
-
* = 'Q': generate Q;
|
535
|
-
* = 'P': generate P**T.
|
536
|
-
*
|
537
|
-
* M (input) INTEGER
|
538
|
-
* The number of rows of the matrix Q or P**T to be returned.
|
539
|
-
* M >= 0.
|
540
|
-
*
|
541
|
-
* N (input) INTEGER
|
542
|
-
* The number of columns of the matrix Q or P**T to be returned.
|
543
|
-
* N >= 0.
|
544
|
-
* If VECT = 'Q', M >= N >= min(M,K);
|
545
|
-
* if VECT = 'P', N >= M >= min(N,K).
|
546
|
-
*
|
547
|
-
* K (input) INTEGER
|
548
|
-
* If VECT = 'Q', the number of columns in the original M-by-K
|
549
|
-
* matrix reduced by DGEBRD.
|
550
|
-
* If VECT = 'P', the number of rows in the original K-by-N
|
551
|
-
* matrix reduced by DGEBRD.
|
552
|
-
* K >= 0.
|
553
|
-
*
|
554
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
555
|
-
* On entry, the vectors which define the elementary reflectors,
|
556
|
-
* as returned by DGEBRD.
|
557
|
-
* On exit, the M-by-N matrix Q or P**T.
|
558
|
-
*
|
559
|
-
* LDA (input) INTEGER
|
560
|
-
* The leading dimension of the array A. LDA >= max(1,M).
|
561
|
-
*
|
562
|
-
* TAU (input) DOUBLE PRECISION array, dimension
|
563
|
-
* (min(M,K)) if VECT = 'Q'
|
564
|
-
* (min(N,K)) if VECT = 'P'
|
565
|
-
* TAU(i) must contain the scalar factor of the elementary
|
566
|
-
* reflector H(i) or G(i), which determines Q or P**T, as
|
567
|
-
* returned by DGEBRD in its array argument TAUQ or TAUP.
|
568
|
-
*
|
569
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
570
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
571
|
-
*
|
572
|
-
* LWORK (input) INTEGER
|
573
|
-
* The dimension of the array WORK. LWORK >= max(1,min(M,N)).
|
574
|
-
* For optimum performance LWORK >= min(M,N)*NB, where NB
|
575
|
-
* is the optimal blocksize.
|
576
|
-
*
|
577
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
578
|
-
* only calculates the optimal size of the WORK array, returns
|
579
|
-
* this value as the first entry of the WORK array, and no error
|
580
|
-
* message related to LWORK is issued by XERBLA.
|
581
|
-
*
|
582
|
-
* INFO (output) INTEGER
|
583
|
-
* = 0: successful exit
|
584
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
585
|
-
*
|
586
|
-
|
587
|
-
* =====================================================================
|
588
|
-
*
|
589
|
-
|
590
|
-
|
591
|
-
</PRE>
|
592
|
-
<A HREF="#top">go to the page top</A>
|
593
|
-
|
594
|
-
<A NAME="dorghr"></A>
|
595
|
-
<H2>dorghr</H2>
|
596
|
-
<PRE>
|
597
|
-
USAGE:
|
598
|
-
work, info, a = NumRu::Lapack.dorghr( ilo, ihi, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
599
|
-
|
600
|
-
|
601
|
-
FORTRAN MANUAL
|
602
|
-
SUBROUTINE DORGHR( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
|
603
|
-
|
604
|
-
* Purpose
|
605
|
-
* =======
|
606
|
-
*
|
607
|
-
* DORGHR generates a real orthogonal matrix Q which is defined as the
|
608
|
-
* product of IHI-ILO elementary reflectors of order N, as returned by
|
609
|
-
* DGEHRD:
|
610
|
-
*
|
611
|
-
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
|
612
|
-
*
|
613
|
-
|
614
|
-
* Arguments
|
615
|
-
* =========
|
616
|
-
*
|
617
|
-
* N (input) INTEGER
|
618
|
-
* The order of the matrix Q. N >= 0.
|
619
|
-
*
|
620
|
-
* ILO (input) INTEGER
|
621
|
-
* IHI (input) INTEGER
|
622
|
-
* ILO and IHI must have the same values as in the previous call
|
623
|
-
* of DGEHRD. Q is equal to the unit matrix except in the
|
624
|
-
* submatrix Q(ilo+1:ihi,ilo+1:ihi).
|
625
|
-
* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
|
626
|
-
*
|
627
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
628
|
-
* On entry, the vectors which define the elementary reflectors,
|
629
|
-
* as returned by DGEHRD.
|
630
|
-
* On exit, the N-by-N orthogonal matrix Q.
|
631
|
-
*
|
632
|
-
* LDA (input) INTEGER
|
633
|
-
* The leading dimension of the array A. LDA >= max(1,N).
|
634
|
-
*
|
635
|
-
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
|
636
|
-
* TAU(i) must contain the scalar factor of the elementary
|
637
|
-
* reflector H(i), as returned by DGEHRD.
|
638
|
-
*
|
639
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
640
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
641
|
-
*
|
642
|
-
* LWORK (input) INTEGER
|
643
|
-
* The dimension of the array WORK. LWORK >= IHI-ILO.
|
644
|
-
* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is
|
645
|
-
* the optimal blocksize.
|
646
|
-
*
|
647
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
648
|
-
* only calculates the optimal size of the WORK array, returns
|
649
|
-
* this value as the first entry of the WORK array, and no error
|
650
|
-
* message related to LWORK is issued by XERBLA.
|
651
|
-
*
|
652
|
-
* INFO (output) INTEGER
|
653
|
-
* = 0: successful exit
|
654
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
655
|
-
*
|
656
|
-
|
657
|
-
* =====================================================================
|
658
|
-
*
|
659
|
-
|
660
|
-
|
661
|
-
</PRE>
|
662
|
-
<A HREF="#top">go to the page top</A>
|
663
|
-
|
664
|
-
<A NAME="dorgl2"></A>
|
665
|
-
<H2>dorgl2</H2>
|
666
|
-
<PRE>
|
667
|
-
USAGE:
|
668
|
-
info, a = NumRu::Lapack.dorgl2( a, tau, [:usage => usage, :help => help])
|
669
|
-
|
670
|
-
|
671
|
-
FORTRAN MANUAL
|
672
|
-
SUBROUTINE DORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
|
673
|
-
|
674
|
-
* Purpose
|
675
|
-
* =======
|
676
|
-
*
|
677
|
-
* DORGL2 generates an m by n real matrix Q with orthonormal rows,
|
678
|
-
* which is defined as the first m rows of a product of k elementary
|
679
|
-
* reflectors of order n
|
680
|
-
*
|
681
|
-
* Q = H(k) . . . H(2) H(1)
|
682
|
-
*
|
683
|
-
* as returned by DGELQF.
|
684
|
-
*
|
685
|
-
|
686
|
-
* Arguments
|
687
|
-
* =========
|
688
|
-
*
|
689
|
-
* M (input) INTEGER
|
690
|
-
* The number of rows of the matrix Q. M >= 0.
|
691
|
-
*
|
692
|
-
* N (input) INTEGER
|
693
|
-
* The number of columns of the matrix Q. N >= M.
|
694
|
-
*
|
695
|
-
* K (input) INTEGER
|
696
|
-
* The number of elementary reflectors whose product defines the
|
697
|
-
* matrix Q. M >= K >= 0.
|
698
|
-
*
|
699
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
700
|
-
* On entry, the i-th row must contain the vector which defines
|
701
|
-
* the elementary reflector H(i), for i = 1,2,...,k, as returned
|
702
|
-
* by DGELQF in the first k rows of its array argument A.
|
703
|
-
* On exit, the m-by-n matrix Q.
|
704
|
-
*
|
705
|
-
* LDA (input) INTEGER
|
706
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
707
|
-
*
|
708
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
709
|
-
* TAU(i) must contain the scalar factor of the elementary
|
710
|
-
* reflector H(i), as returned by DGELQF.
|
711
|
-
*
|
712
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (M)
|
713
|
-
*
|
714
|
-
* INFO (output) INTEGER
|
715
|
-
* = 0: successful exit
|
716
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
717
|
-
*
|
718
|
-
|
719
|
-
* =====================================================================
|
720
|
-
*
|
721
|
-
|
722
|
-
|
723
|
-
</PRE>
|
724
|
-
<A HREF="#top">go to the page top</A>
|
725
|
-
|
726
|
-
<A NAME="dorglq"></A>
|
727
|
-
<H2>dorglq</H2>
|
728
|
-
<PRE>
|
729
|
-
USAGE:
|
730
|
-
work, info, a = NumRu::Lapack.dorglq( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
731
|
-
|
732
|
-
|
733
|
-
FORTRAN MANUAL
|
734
|
-
SUBROUTINE DORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
735
|
-
|
736
|
-
* Purpose
|
737
|
-
* =======
|
738
|
-
*
|
739
|
-
* DORGLQ generates an M-by-N real matrix Q with orthonormal rows,
|
740
|
-
* which is defined as the first M rows of a product of K elementary
|
741
|
-
* reflectors of order N
|
742
|
-
*
|
743
|
-
* Q = H(k) . . . H(2) H(1)
|
744
|
-
*
|
745
|
-
* as returned by DGELQF.
|
746
|
-
*
|
747
|
-
|
748
|
-
* Arguments
|
749
|
-
* =========
|
750
|
-
*
|
751
|
-
* M (input) INTEGER
|
752
|
-
* The number of rows of the matrix Q. M >= 0.
|
753
|
-
*
|
754
|
-
* N (input) INTEGER
|
755
|
-
* The number of columns of the matrix Q. N >= M.
|
756
|
-
*
|
757
|
-
* K (input) INTEGER
|
758
|
-
* The number of elementary reflectors whose product defines the
|
759
|
-
* matrix Q. M >= K >= 0.
|
760
|
-
*
|
761
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
762
|
-
* On entry, the i-th row must contain the vector which defines
|
763
|
-
* the elementary reflector H(i), for i = 1,2,...,k, as returned
|
764
|
-
* by DGELQF in the first k rows of its array argument A.
|
765
|
-
* On exit, the M-by-N matrix Q.
|
766
|
-
*
|
767
|
-
* LDA (input) INTEGER
|
768
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
769
|
-
*
|
770
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
771
|
-
* TAU(i) must contain the scalar factor of the elementary
|
772
|
-
* reflector H(i), as returned by DGELQF.
|
773
|
-
*
|
774
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
775
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
776
|
-
*
|
777
|
-
* LWORK (input) INTEGER
|
778
|
-
* The dimension of the array WORK. LWORK >= max(1,M).
|
779
|
-
* For optimum performance LWORK >= M*NB, where NB is
|
780
|
-
* the optimal blocksize.
|
781
|
-
*
|
782
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
783
|
-
* only calculates the optimal size of the WORK array, returns
|
784
|
-
* this value as the first entry of the WORK array, and no error
|
785
|
-
* message related to LWORK is issued by XERBLA.
|
786
|
-
*
|
787
|
-
* INFO (output) INTEGER
|
788
|
-
* = 0: successful exit
|
789
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
790
|
-
*
|
791
|
-
|
792
|
-
* =====================================================================
|
793
|
-
*
|
794
|
-
|
795
|
-
|
796
|
-
</PRE>
|
797
|
-
<A HREF="#top">go to the page top</A>
|
798
|
-
|
799
|
-
<A NAME="dorgql"></A>
|
800
|
-
<H2>dorgql</H2>
|
801
|
-
<PRE>
|
802
|
-
USAGE:
|
803
|
-
work, info, a = NumRu::Lapack.dorgql( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
804
|
-
|
805
|
-
|
806
|
-
FORTRAN MANUAL
|
807
|
-
SUBROUTINE DORGQL( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
808
|
-
|
809
|
-
* Purpose
|
810
|
-
* =======
|
811
|
-
*
|
812
|
-
* DORGQL generates an M-by-N real matrix Q with orthonormal columns,
|
813
|
-
* which is defined as the last N columns of a product of K elementary
|
814
|
-
* reflectors of order M
|
815
|
-
*
|
816
|
-
* Q = H(k) . . . H(2) H(1)
|
817
|
-
*
|
818
|
-
* as returned by DGEQLF.
|
819
|
-
*
|
820
|
-
|
821
|
-
* Arguments
|
822
|
-
* =========
|
823
|
-
*
|
824
|
-
* M (input) INTEGER
|
825
|
-
* The number of rows of the matrix Q. M >= 0.
|
826
|
-
*
|
827
|
-
* N (input) INTEGER
|
828
|
-
* The number of columns of the matrix Q. M >= N >= 0.
|
829
|
-
*
|
830
|
-
* K (input) INTEGER
|
831
|
-
* The number of elementary reflectors whose product defines the
|
832
|
-
* matrix Q. N >= K >= 0.
|
833
|
-
*
|
834
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
835
|
-
* On entry, the (n-k+i)-th column must contain the vector which
|
836
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
837
|
-
* returned by DGEQLF in the last k columns of its array
|
838
|
-
* argument A.
|
839
|
-
* On exit, the M-by-N matrix Q.
|
840
|
-
*
|
841
|
-
* LDA (input) INTEGER
|
842
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
843
|
-
*
|
844
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
845
|
-
* TAU(i) must contain the scalar factor of the elementary
|
846
|
-
* reflector H(i), as returned by DGEQLF.
|
847
|
-
*
|
848
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
849
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
850
|
-
*
|
851
|
-
* LWORK (input) INTEGER
|
852
|
-
* The dimension of the array WORK. LWORK >= max(1,N).
|
853
|
-
* For optimum performance LWORK >= N*NB, where NB is the
|
854
|
-
* optimal blocksize.
|
855
|
-
*
|
856
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
857
|
-
* only calculates the optimal size of the WORK array, returns
|
858
|
-
* this value as the first entry of the WORK array, and no error
|
859
|
-
* message related to LWORK is issued by XERBLA.
|
860
|
-
*
|
861
|
-
* INFO (output) INTEGER
|
862
|
-
* = 0: successful exit
|
863
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
864
|
-
*
|
865
|
-
|
866
|
-
* =====================================================================
|
867
|
-
*
|
868
|
-
|
869
|
-
|
870
|
-
</PRE>
|
871
|
-
<A HREF="#top">go to the page top</A>
|
872
|
-
|
873
|
-
<A NAME="dorgqr"></A>
|
874
|
-
<H2>dorgqr</H2>
|
875
|
-
<PRE>
|
876
|
-
USAGE:
|
877
|
-
work, info, a = NumRu::Lapack.dorgqr( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
878
|
-
|
879
|
-
|
880
|
-
FORTRAN MANUAL
|
881
|
-
SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
882
|
-
|
883
|
-
* Purpose
|
884
|
-
* =======
|
885
|
-
*
|
886
|
-
* DORGQR generates an M-by-N real matrix Q with orthonormal columns,
|
887
|
-
* which is defined as the first N columns of a product of K elementary
|
888
|
-
* reflectors of order M
|
889
|
-
*
|
890
|
-
* Q = H(1) H(2) . . . H(k)
|
891
|
-
*
|
892
|
-
* as returned by DGEQRF.
|
893
|
-
*
|
894
|
-
|
895
|
-
* Arguments
|
896
|
-
* =========
|
897
|
-
*
|
898
|
-
* M (input) INTEGER
|
899
|
-
* The number of rows of the matrix Q. M >= 0.
|
900
|
-
*
|
901
|
-
* N (input) INTEGER
|
902
|
-
* The number of columns of the matrix Q. M >= N >= 0.
|
903
|
-
*
|
904
|
-
* K (input) INTEGER
|
905
|
-
* The number of elementary reflectors whose product defines the
|
906
|
-
* matrix Q. N >= K >= 0.
|
907
|
-
*
|
908
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
909
|
-
* On entry, the i-th column must contain the vector which
|
910
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
911
|
-
* returned by DGEQRF in the first k columns of its array
|
912
|
-
* argument A.
|
913
|
-
* On exit, the M-by-N matrix Q.
|
914
|
-
*
|
915
|
-
* LDA (input) INTEGER
|
916
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
917
|
-
*
|
918
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
919
|
-
* TAU(i) must contain the scalar factor of the elementary
|
920
|
-
* reflector H(i), as returned by DGEQRF.
|
921
|
-
*
|
922
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
923
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
924
|
-
*
|
925
|
-
* LWORK (input) INTEGER
|
926
|
-
* The dimension of the array WORK. LWORK >= max(1,N).
|
927
|
-
* For optimum performance LWORK >= N*NB, where NB is the
|
928
|
-
* optimal blocksize.
|
929
|
-
*
|
930
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
931
|
-
* only calculates the optimal size of the WORK array, returns
|
932
|
-
* this value as the first entry of the WORK array, and no error
|
933
|
-
* message related to LWORK is issued by XERBLA.
|
934
|
-
*
|
935
|
-
* INFO (output) INTEGER
|
936
|
-
* = 0: successful exit
|
937
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
938
|
-
*
|
939
|
-
|
940
|
-
* =====================================================================
|
941
|
-
*
|
942
|
-
|
943
|
-
|
944
|
-
</PRE>
|
945
|
-
<A HREF="#top">go to the page top</A>
|
946
|
-
|
947
|
-
<A NAME="dorgr2"></A>
|
948
|
-
<H2>dorgr2</H2>
|
949
|
-
<PRE>
|
950
|
-
USAGE:
|
951
|
-
info, a = NumRu::Lapack.dorgr2( a, tau, [:usage => usage, :help => help])
|
952
|
-
|
953
|
-
|
954
|
-
FORTRAN MANUAL
|
955
|
-
SUBROUTINE DORGR2( M, N, K, A, LDA, TAU, WORK, INFO )
|
956
|
-
|
957
|
-
* Purpose
|
958
|
-
* =======
|
959
|
-
*
|
960
|
-
* DORGR2 generates an m by n real matrix Q with orthonormal rows,
|
961
|
-
* which is defined as the last m rows of a product of k elementary
|
962
|
-
* reflectors of order n
|
963
|
-
*
|
964
|
-
* Q = H(1) H(2) . . . H(k)
|
965
|
-
*
|
966
|
-
* as returned by DGERQF.
|
967
|
-
*
|
968
|
-
|
969
|
-
* Arguments
|
970
|
-
* =========
|
971
|
-
*
|
972
|
-
* M (input) INTEGER
|
973
|
-
* The number of rows of the matrix Q. M >= 0.
|
974
|
-
*
|
975
|
-
* N (input) INTEGER
|
976
|
-
* The number of columns of the matrix Q. N >= M.
|
977
|
-
*
|
978
|
-
* K (input) INTEGER
|
979
|
-
* The number of elementary reflectors whose product defines the
|
980
|
-
* matrix Q. M >= K >= 0.
|
981
|
-
*
|
982
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
983
|
-
* On entry, the (m-k+i)-th row must contain the vector which
|
984
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
985
|
-
* returned by DGERQF in the last k rows of its array argument
|
986
|
-
* A.
|
987
|
-
* On exit, the m by n matrix Q.
|
988
|
-
*
|
989
|
-
* LDA (input) INTEGER
|
990
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
991
|
-
*
|
992
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
993
|
-
* TAU(i) must contain the scalar factor of the elementary
|
994
|
-
* reflector H(i), as returned by DGERQF.
|
995
|
-
*
|
996
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension (M)
|
997
|
-
*
|
998
|
-
* INFO (output) INTEGER
|
999
|
-
* = 0: successful exit
|
1000
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
1001
|
-
*
|
1002
|
-
|
1003
|
-
* =====================================================================
|
1004
|
-
*
|
1005
|
-
|
1006
|
-
|
1007
|
-
</PRE>
|
1008
|
-
<A HREF="#top">go to the page top</A>
|
1009
|
-
|
1010
|
-
<A NAME="dorgrq"></A>
|
1011
|
-
<H2>dorgrq</H2>
|
1012
|
-
<PRE>
|
1013
|
-
USAGE:
|
1014
|
-
work, info, a = NumRu::Lapack.dorgrq( m, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
1015
|
-
|
1016
|
-
|
1017
|
-
FORTRAN MANUAL
|
1018
|
-
SUBROUTINE DORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
|
1019
|
-
|
1020
|
-
* Purpose
|
1021
|
-
* =======
|
1022
|
-
*
|
1023
|
-
* DORGRQ generates an M-by-N real matrix Q with orthonormal rows,
|
1024
|
-
* which is defined as the last M rows of a product of K elementary
|
1025
|
-
* reflectors of order N
|
1026
|
-
*
|
1027
|
-
* Q = H(1) H(2) . . . H(k)
|
1028
|
-
*
|
1029
|
-
* as returned by DGERQF.
|
1030
|
-
*
|
1031
|
-
|
1032
|
-
* Arguments
|
1033
|
-
* =========
|
1034
|
-
*
|
1035
|
-
* M (input) INTEGER
|
1036
|
-
* The number of rows of the matrix Q. M >= 0.
|
1037
|
-
*
|
1038
|
-
* N (input) INTEGER
|
1039
|
-
* The number of columns of the matrix Q. N >= M.
|
1040
|
-
*
|
1041
|
-
* K (input) INTEGER
|
1042
|
-
* The number of elementary reflectors whose product defines the
|
1043
|
-
* matrix Q. M >= K >= 0.
|
1044
|
-
*
|
1045
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
1046
|
-
* On entry, the (m-k+i)-th row must contain the vector which
|
1047
|
-
* defines the elementary reflector H(i), for i = 1,2,...,k, as
|
1048
|
-
* returned by DGERQF in the last k rows of its array argument
|
1049
|
-
* A.
|
1050
|
-
* On exit, the M-by-N matrix Q.
|
1051
|
-
*
|
1052
|
-
* LDA (input) INTEGER
|
1053
|
-
* The first dimension of the array A. LDA >= max(1,M).
|
1054
|
-
*
|
1055
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1056
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1057
|
-
* reflector H(i), as returned by DGERQF.
|
1058
|
-
*
|
1059
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1060
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1061
|
-
*
|
1062
|
-
* LWORK (input) INTEGER
|
1063
|
-
* The dimension of the array WORK. LWORK >= max(1,M).
|
1064
|
-
* For optimum performance LWORK >= M*NB, where NB is the
|
1065
|
-
* optimal blocksize.
|
1066
|
-
*
|
1067
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1068
|
-
* only calculates the optimal size of the WORK array, returns
|
1069
|
-
* this value as the first entry of the WORK array, and no error
|
1070
|
-
* message related to LWORK is issued by XERBLA.
|
1071
|
-
*
|
1072
|
-
* INFO (output) INTEGER
|
1073
|
-
* = 0: successful exit
|
1074
|
-
* < 0: if INFO = -i, the i-th argument has an illegal value
|
1075
|
-
*
|
1076
|
-
|
1077
|
-
* =====================================================================
|
1078
|
-
*
|
1079
|
-
|
1080
|
-
|
1081
|
-
</PRE>
|
1082
|
-
<A HREF="#top">go to the page top</A>
|
1083
|
-
|
1084
|
-
<A NAME="dorgtr"></A>
|
1085
|
-
<H2>dorgtr</H2>
|
1086
|
-
<PRE>
|
1087
|
-
USAGE:
|
1088
|
-
work, info, a = NumRu::Lapack.dorgtr( uplo, a, tau, [:lwork => lwork, :usage => usage, :help => help])
|
1089
|
-
|
1090
|
-
|
1091
|
-
FORTRAN MANUAL
|
1092
|
-
SUBROUTINE DORGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
|
1093
|
-
|
1094
|
-
* Purpose
|
1095
|
-
* =======
|
1096
|
-
*
|
1097
|
-
* DORGTR generates a real orthogonal matrix Q which is defined as the
|
1098
|
-
* product of n-1 elementary reflectors of order N, as returned by
|
1099
|
-
* DSYTRD:
|
1100
|
-
*
|
1101
|
-
* if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
|
1102
|
-
*
|
1103
|
-
* if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
|
1104
|
-
*
|
1105
|
-
|
1106
|
-
* Arguments
|
1107
|
-
* =========
|
1108
|
-
*
|
1109
|
-
* UPLO (input) CHARACTER*1
|
1110
|
-
* = 'U': Upper triangle of A contains elementary reflectors
|
1111
|
-
* from DSYTRD;
|
1112
|
-
* = 'L': Lower triangle of A contains elementary reflectors
|
1113
|
-
* from DSYTRD.
|
1114
|
-
*
|
1115
|
-
* N (input) INTEGER
|
1116
|
-
* The order of the matrix Q. N >= 0.
|
1117
|
-
*
|
1118
|
-
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
1119
|
-
* On entry, the vectors which define the elementary reflectors,
|
1120
|
-
* as returned by DSYTRD.
|
1121
|
-
* On exit, the N-by-N orthogonal matrix Q.
|
1122
|
-
*
|
1123
|
-
* LDA (input) INTEGER
|
1124
|
-
* The leading dimension of the array A. LDA >= max(1,N).
|
1125
|
-
*
|
1126
|
-
* TAU (input) DOUBLE PRECISION array, dimension (N-1)
|
1127
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1128
|
-
* reflector H(i), as returned by DSYTRD.
|
1129
|
-
*
|
1130
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1131
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1132
|
-
*
|
1133
|
-
* LWORK (input) INTEGER
|
1134
|
-
* The dimension of the array WORK. LWORK >= max(1,N-1).
|
1135
|
-
* For optimum performance LWORK >= (N-1)*NB, where NB is
|
1136
|
-
* the optimal blocksize.
|
1137
|
-
*
|
1138
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1139
|
-
* only calculates the optimal size of the WORK array, returns
|
1140
|
-
* this value as the first entry of the WORK array, and no error
|
1141
|
-
* message related to LWORK is issued by XERBLA.
|
1142
|
-
*
|
1143
|
-
* INFO (output) INTEGER
|
1144
|
-
* = 0: successful exit
|
1145
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1146
|
-
*
|
1147
|
-
|
1148
|
-
* =====================================================================
|
1149
|
-
*
|
1150
|
-
|
1151
|
-
|
1152
|
-
</PRE>
|
1153
|
-
<A HREF="#top">go to the page top</A>
|
1154
|
-
|
1155
|
-
<A NAME="dorm2l"></A>
|
1156
|
-
<H2>dorm2l</H2>
|
1157
|
-
<PRE>
|
1158
|
-
USAGE:
|
1159
|
-
info, c = NumRu::Lapack.dorm2l( side, trans, m, a, tau, c, [:usage => usage, :help => help])
|
1160
|
-
|
1161
|
-
|
1162
|
-
FORTRAN MANUAL
|
1163
|
-
SUBROUTINE DORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )
|
1164
|
-
|
1165
|
-
* Purpose
|
1166
|
-
* =======
|
1167
|
-
*
|
1168
|
-
* DORM2L overwrites the general real m by n matrix C with
|
1169
|
-
*
|
1170
|
-
* Q * C if SIDE = 'L' and TRANS = 'N', or
|
1171
|
-
*
|
1172
|
-
* Q'* C if SIDE = 'L' and TRANS = 'T', or
|
1173
|
-
*
|
1174
|
-
* C * Q if SIDE = 'R' and TRANS = 'N', or
|
1175
|
-
*
|
1176
|
-
* C * Q' if SIDE = 'R' and TRANS = 'T',
|
1177
|
-
*
|
1178
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1179
|
-
* elementary reflectors
|
1180
|
-
*
|
1181
|
-
* Q = H(k) . . . H(2) H(1)
|
1182
|
-
*
|
1183
|
-
* as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n
|
1184
|
-
* if SIDE = 'R'.
|
1185
|
-
*
|
1186
|
-
|
1187
|
-
* Arguments
|
1188
|
-
* =========
|
1189
|
-
*
|
1190
|
-
* SIDE (input) CHARACTER*1
|
1191
|
-
* = 'L': apply Q or Q' from the Left
|
1192
|
-
* = 'R': apply Q or Q' from the Right
|
1193
|
-
*
|
1194
|
-
* TRANS (input) CHARACTER*1
|
1195
|
-
* = 'N': apply Q (No transpose)
|
1196
|
-
* = 'T': apply Q' (Transpose)
|
1197
|
-
*
|
1198
|
-
* M (input) INTEGER
|
1199
|
-
* The number of rows of the matrix C. M >= 0.
|
1200
|
-
*
|
1201
|
-
* N (input) INTEGER
|
1202
|
-
* The number of columns of the matrix C. N >= 0.
|
1203
|
-
*
|
1204
|
-
* K (input) INTEGER
|
1205
|
-
* The number of elementary reflectors whose product defines
|
1206
|
-
* the matrix Q.
|
1207
|
-
* If SIDE = 'L', M >= K >= 0;
|
1208
|
-
* if SIDE = 'R', N >= K >= 0.
|
1209
|
-
*
|
1210
|
-
* A (input) DOUBLE PRECISION array, dimension (LDA,K)
|
1211
|
-
* The i-th column must contain the vector which defines the
|
1212
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1213
|
-
* DGEQLF in the last k columns of its array argument A.
|
1214
|
-
* A is modified by the routine but restored on exit.
|
1215
|
-
*
|
1216
|
-
* LDA (input) INTEGER
|
1217
|
-
* The leading dimension of the array A.
|
1218
|
-
* If SIDE = 'L', LDA >= max(1,M);
|
1219
|
-
* if SIDE = 'R', LDA >= max(1,N).
|
1220
|
-
*
|
1221
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1222
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1223
|
-
* reflector H(i), as returned by DGEQLF.
|
1224
|
-
*
|
1225
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1226
|
-
* On entry, the m by n matrix C.
|
1227
|
-
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
1228
|
-
*
|
1229
|
-
* LDC (input) INTEGER
|
1230
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1231
|
-
*
|
1232
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
1233
|
-
* (N) if SIDE = 'L',
|
1234
|
-
* (M) if SIDE = 'R'
|
1235
|
-
*
|
1236
|
-
* INFO (output) INTEGER
|
1237
|
-
* = 0: successful exit
|
1238
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1239
|
-
*
|
1240
|
-
|
1241
|
-
* =====================================================================
|
1242
|
-
*
|
1243
|
-
|
1244
|
-
|
1245
|
-
</PRE>
|
1246
|
-
<A HREF="#top">go to the page top</A>
|
1247
|
-
|
1248
|
-
<A NAME="dorm2r"></A>
|
1249
|
-
<H2>dorm2r</H2>
|
1250
|
-
<PRE>
|
1251
|
-
USAGE:
|
1252
|
-
info, c = NumRu::Lapack.dorm2r( side, trans, m, a, tau, c, [:usage => usage, :help => help])
|
1253
|
-
|
1254
|
-
|
1255
|
-
FORTRAN MANUAL
|
1256
|
-
SUBROUTINE DORM2R( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )
|
1257
|
-
|
1258
|
-
* Purpose
|
1259
|
-
* =======
|
1260
|
-
*
|
1261
|
-
* DORM2R overwrites the general real m by n matrix C with
|
1262
|
-
*
|
1263
|
-
* Q * C if SIDE = 'L' and TRANS = 'N', or
|
1264
|
-
*
|
1265
|
-
* Q'* C if SIDE = 'L' and TRANS = 'T', or
|
1266
|
-
*
|
1267
|
-
* C * Q if SIDE = 'R' and TRANS = 'N', or
|
1268
|
-
*
|
1269
|
-
* C * Q' if SIDE = 'R' and TRANS = 'T',
|
1270
|
-
*
|
1271
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1272
|
-
* elementary reflectors
|
1273
|
-
*
|
1274
|
-
* Q = H(1) H(2) . . . H(k)
|
1275
|
-
*
|
1276
|
-
* as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
|
1277
|
-
* if SIDE = 'R'.
|
1278
|
-
*
|
1279
|
-
|
1280
|
-
* Arguments
|
1281
|
-
* =========
|
1282
|
-
*
|
1283
|
-
* SIDE (input) CHARACTER*1
|
1284
|
-
* = 'L': apply Q or Q' from the Left
|
1285
|
-
* = 'R': apply Q or Q' from the Right
|
1286
|
-
*
|
1287
|
-
* TRANS (input) CHARACTER*1
|
1288
|
-
* = 'N': apply Q (No transpose)
|
1289
|
-
* = 'T': apply Q' (Transpose)
|
1290
|
-
*
|
1291
|
-
* M (input) INTEGER
|
1292
|
-
* The number of rows of the matrix C. M >= 0.
|
1293
|
-
*
|
1294
|
-
* N (input) INTEGER
|
1295
|
-
* The number of columns of the matrix C. N >= 0.
|
1296
|
-
*
|
1297
|
-
* K (input) INTEGER
|
1298
|
-
* The number of elementary reflectors whose product defines
|
1299
|
-
* the matrix Q.
|
1300
|
-
* If SIDE = 'L', M >= K >= 0;
|
1301
|
-
* if SIDE = 'R', N >= K >= 0.
|
1302
|
-
*
|
1303
|
-
* A (input) DOUBLE PRECISION array, dimension (LDA,K)
|
1304
|
-
* The i-th column must contain the vector which defines the
|
1305
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1306
|
-
* DGEQRF in the first k columns of its array argument A.
|
1307
|
-
* A is modified by the routine but restored on exit.
|
1308
|
-
*
|
1309
|
-
* LDA (input) INTEGER
|
1310
|
-
* The leading dimension of the array A.
|
1311
|
-
* If SIDE = 'L', LDA >= max(1,M);
|
1312
|
-
* if SIDE = 'R', LDA >= max(1,N).
|
1313
|
-
*
|
1314
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1315
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1316
|
-
* reflector H(i), as returned by DGEQRF.
|
1317
|
-
*
|
1318
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1319
|
-
* On entry, the m by n matrix C.
|
1320
|
-
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
1321
|
-
*
|
1322
|
-
* LDC (input) INTEGER
|
1323
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1324
|
-
*
|
1325
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
1326
|
-
* (N) if SIDE = 'L',
|
1327
|
-
* (M) if SIDE = 'R'
|
1328
|
-
*
|
1329
|
-
* INFO (output) INTEGER
|
1330
|
-
* = 0: successful exit
|
1331
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1332
|
-
*
|
1333
|
-
|
1334
|
-
* =====================================================================
|
1335
|
-
*
|
1336
|
-
|
1337
|
-
|
1338
|
-
</PRE>
|
1339
|
-
<A HREF="#top">go to the page top</A>
|
1340
|
-
|
1341
|
-
<A NAME="dormbr"></A>
|
1342
|
-
<H2>dormbr</H2>
|
1343
|
-
<PRE>
|
1344
|
-
USAGE:
|
1345
|
-
work, info, c = NumRu::Lapack.dormbr( vect, side, trans, m, k, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
1346
|
-
|
1347
|
-
|
1348
|
-
FORTRAN MANUAL
|
1349
|
-
SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
1350
|
-
|
1351
|
-
* Purpose
|
1352
|
-
* =======
|
1353
|
-
*
|
1354
|
-
* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
|
1355
|
-
* with
|
1356
|
-
* SIDE = 'L' SIDE = 'R'
|
1357
|
-
* TRANS = 'N': Q * C C * Q
|
1358
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
1359
|
-
*
|
1360
|
-
* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
|
1361
|
-
* with
|
1362
|
-
* SIDE = 'L' SIDE = 'R'
|
1363
|
-
* TRANS = 'N': P * C C * P
|
1364
|
-
* TRANS = 'T': P**T * C C * P**T
|
1365
|
-
*
|
1366
|
-
* Here Q and P**T are the orthogonal matrices determined by DGEBRD when
|
1367
|
-
* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
|
1368
|
-
* P**T are defined as products of elementary reflectors H(i) and G(i)
|
1369
|
-
* respectively.
|
1370
|
-
*
|
1371
|
-
* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
|
1372
|
-
* order of the orthogonal matrix Q or P**T that is applied.
|
1373
|
-
*
|
1374
|
-
* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
|
1375
|
-
* if nq >= k, Q = H(1) H(2) . . . H(k);
|
1376
|
-
* if nq < k, Q = H(1) H(2) . . . H(nq-1).
|
1377
|
-
*
|
1378
|
-
* If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
|
1379
|
-
* if k < nq, P = G(1) G(2) . . . G(k);
|
1380
|
-
* if k >= nq, P = G(1) G(2) . . . G(nq-1).
|
1381
|
-
*
|
1382
|
-
|
1383
|
-
* Arguments
|
1384
|
-
* =========
|
1385
|
-
*
|
1386
|
-
* VECT (input) CHARACTER*1
|
1387
|
-
* = 'Q': apply Q or Q**T;
|
1388
|
-
* = 'P': apply P or P**T.
|
1389
|
-
*
|
1390
|
-
* SIDE (input) CHARACTER*1
|
1391
|
-
* = 'L': apply Q, Q**T, P or P**T from the Left;
|
1392
|
-
* = 'R': apply Q, Q**T, P or P**T from the Right.
|
1393
|
-
*
|
1394
|
-
* TRANS (input) CHARACTER*1
|
1395
|
-
* = 'N': No transpose, apply Q or P;
|
1396
|
-
* = 'T': Transpose, apply Q**T or P**T.
|
1397
|
-
*
|
1398
|
-
* M (input) INTEGER
|
1399
|
-
* The number of rows of the matrix C. M >= 0.
|
1400
|
-
*
|
1401
|
-
* N (input) INTEGER
|
1402
|
-
* The number of columns of the matrix C. N >= 0.
|
1403
|
-
*
|
1404
|
-
* K (input) INTEGER
|
1405
|
-
* If VECT = 'Q', the number of columns in the original
|
1406
|
-
* matrix reduced by DGEBRD.
|
1407
|
-
* If VECT = 'P', the number of rows in the original
|
1408
|
-
* matrix reduced by DGEBRD.
|
1409
|
-
* K >= 0.
|
1410
|
-
*
|
1411
|
-
* A (input) DOUBLE PRECISION array, dimension
|
1412
|
-
* (LDA,min(nq,K)) if VECT = 'Q'
|
1413
|
-
* (LDA,nq) if VECT = 'P'
|
1414
|
-
* The vectors which define the elementary reflectors H(i) and
|
1415
|
-
* G(i), whose products determine the matrices Q and P, as
|
1416
|
-
* returned by DGEBRD.
|
1417
|
-
*
|
1418
|
-
* LDA (input) INTEGER
|
1419
|
-
* The leading dimension of the array A.
|
1420
|
-
* If VECT = 'Q', LDA >= max(1,nq);
|
1421
|
-
* if VECT = 'P', LDA >= max(1,min(nq,K)).
|
1422
|
-
*
|
1423
|
-
* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
|
1424
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1425
|
-
* reflector H(i) or G(i) which determines Q or P, as returned
|
1426
|
-
* by DGEBRD in the array argument TAUQ or TAUP.
|
1427
|
-
*
|
1428
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1429
|
-
* On entry, the M-by-N matrix C.
|
1430
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
|
1431
|
-
* or P*C or P**T*C or C*P or C*P**T.
|
1432
|
-
*
|
1433
|
-
* LDC (input) INTEGER
|
1434
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1435
|
-
*
|
1436
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1437
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1438
|
-
*
|
1439
|
-
* LWORK (input) INTEGER
|
1440
|
-
* The dimension of the array WORK.
|
1441
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
1442
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
1443
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
1444
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
1445
|
-
* blocksize.
|
1446
|
-
*
|
1447
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1448
|
-
* only calculates the optimal size of the WORK array, returns
|
1449
|
-
* this value as the first entry of the WORK array, and no error
|
1450
|
-
* message related to LWORK is issued by XERBLA.
|
1451
|
-
*
|
1452
|
-
* INFO (output) INTEGER
|
1453
|
-
* = 0: successful exit
|
1454
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1455
|
-
*
|
1456
|
-
|
1457
|
-
* =====================================================================
|
1458
|
-
*
|
1459
|
-
* .. Local Scalars ..
|
1460
|
-
LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
|
1461
|
-
CHARACTER TRANST
|
1462
|
-
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
|
1463
|
-
* ..
|
1464
|
-
* .. External Functions ..
|
1465
|
-
LOGICAL LSAME
|
1466
|
-
INTEGER ILAENV
|
1467
|
-
EXTERNAL LSAME, ILAENV
|
1468
|
-
* ..
|
1469
|
-
* .. External Subroutines ..
|
1470
|
-
EXTERNAL DORMLQ, DORMQR, XERBLA
|
1471
|
-
* ..
|
1472
|
-
* .. Intrinsic Functions ..
|
1473
|
-
INTRINSIC MAX, MIN
|
1474
|
-
* ..
|
1475
|
-
|
1476
|
-
|
1477
|
-
</PRE>
|
1478
|
-
<A HREF="#top">go to the page top</A>
|
1479
|
-
|
1480
|
-
<A NAME="dormhr"></A>
|
1481
|
-
<H2>dormhr</H2>
|
1482
|
-
<PRE>
|
1483
|
-
USAGE:
|
1484
|
-
work, info, c = NumRu::Lapack.dormhr( side, trans, ilo, ihi, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
1485
|
-
|
1486
|
-
|
1487
|
-
FORTRAN MANUAL
|
1488
|
-
SUBROUTINE DORMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
1489
|
-
|
1490
|
-
* Purpose
|
1491
|
-
* =======
|
1492
|
-
*
|
1493
|
-
* DORMHR overwrites the general real M-by-N matrix C with
|
1494
|
-
*
|
1495
|
-
* SIDE = 'L' SIDE = 'R'
|
1496
|
-
* TRANS = 'N': Q * C C * Q
|
1497
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
1498
|
-
*
|
1499
|
-
* where Q is a real orthogonal matrix of order nq, with nq = m if
|
1500
|
-
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
|
1501
|
-
* IHI-ILO elementary reflectors, as returned by DGEHRD:
|
1502
|
-
*
|
1503
|
-
* Q = H(ilo) H(ilo+1) . . . H(ihi-1).
|
1504
|
-
*
|
1505
|
-
|
1506
|
-
* Arguments
|
1507
|
-
* =========
|
1508
|
-
*
|
1509
|
-
* SIDE (input) CHARACTER*1
|
1510
|
-
* = 'L': apply Q or Q**T from the Left;
|
1511
|
-
* = 'R': apply Q or Q**T from the Right.
|
1512
|
-
*
|
1513
|
-
* TRANS (input) CHARACTER*1
|
1514
|
-
* = 'N': No transpose, apply Q;
|
1515
|
-
* = 'T': Transpose, apply Q**T.
|
1516
|
-
*
|
1517
|
-
* M (input) INTEGER
|
1518
|
-
* The number of rows of the matrix C. M >= 0.
|
1519
|
-
*
|
1520
|
-
* N (input) INTEGER
|
1521
|
-
* The number of columns of the matrix C. N >= 0.
|
1522
|
-
*
|
1523
|
-
* ILO (input) INTEGER
|
1524
|
-
* IHI (input) INTEGER
|
1525
|
-
* ILO and IHI must have the same values as in the previous call
|
1526
|
-
* of DGEHRD. Q is equal to the unit matrix except in the
|
1527
|
-
* submatrix Q(ilo+1:ihi,ilo+1:ihi).
|
1528
|
-
* If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
|
1529
|
-
* ILO = 1 and IHI = 0, if M = 0;
|
1530
|
-
* if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
|
1531
|
-
* ILO = 1 and IHI = 0, if N = 0.
|
1532
|
-
*
|
1533
|
-
* A (input) DOUBLE PRECISION array, dimension
|
1534
|
-
* (LDA,M) if SIDE = 'L'
|
1535
|
-
* (LDA,N) if SIDE = 'R'
|
1536
|
-
* The vectors which define the elementary reflectors, as
|
1537
|
-
* returned by DGEHRD.
|
1538
|
-
*
|
1539
|
-
* LDA (input) INTEGER
|
1540
|
-
* The leading dimension of the array A.
|
1541
|
-
* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
|
1542
|
-
*
|
1543
|
-
* TAU (input) DOUBLE PRECISION array, dimension
|
1544
|
-
* (M-1) if SIDE = 'L'
|
1545
|
-
* (N-1) if SIDE = 'R'
|
1546
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1547
|
-
* reflector H(i), as returned by DGEHRD.
|
1548
|
-
*
|
1549
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1550
|
-
* On entry, the M-by-N matrix C.
|
1551
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
1552
|
-
*
|
1553
|
-
* LDC (input) INTEGER
|
1554
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1555
|
-
*
|
1556
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1557
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1558
|
-
*
|
1559
|
-
* LWORK (input) INTEGER
|
1560
|
-
* The dimension of the array WORK.
|
1561
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
1562
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
1563
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
1564
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
1565
|
-
* blocksize.
|
1566
|
-
*
|
1567
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1568
|
-
* only calculates the optimal size of the WORK array, returns
|
1569
|
-
* this value as the first entry of the WORK array, and no error
|
1570
|
-
* message related to LWORK is issued by XERBLA.
|
1571
|
-
*
|
1572
|
-
* INFO (output) INTEGER
|
1573
|
-
* = 0: successful exit
|
1574
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1575
|
-
*
|
1576
|
-
|
1577
|
-
* =====================================================================
|
1578
|
-
*
|
1579
|
-
* .. Local Scalars ..
|
1580
|
-
LOGICAL LEFT, LQUERY
|
1581
|
-
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW
|
1582
|
-
* ..
|
1583
|
-
* .. External Functions ..
|
1584
|
-
LOGICAL LSAME
|
1585
|
-
INTEGER ILAENV
|
1586
|
-
EXTERNAL LSAME, ILAENV
|
1587
|
-
* ..
|
1588
|
-
* .. External Subroutines ..
|
1589
|
-
EXTERNAL DORMQR, XERBLA
|
1590
|
-
* ..
|
1591
|
-
* .. Intrinsic Functions ..
|
1592
|
-
INTRINSIC MAX, MIN
|
1593
|
-
* ..
|
1594
|
-
|
1595
|
-
|
1596
|
-
</PRE>
|
1597
|
-
<A HREF="#top">go to the page top</A>
|
1598
|
-
|
1599
|
-
<A NAME="dorml2"></A>
|
1600
|
-
<H2>dorml2</H2>
|
1601
|
-
<PRE>
|
1602
|
-
USAGE:
|
1603
|
-
info, c = NumRu::Lapack.dorml2( side, trans, a, tau, c, [:usage => usage, :help => help])
|
1604
|
-
|
1605
|
-
|
1606
|
-
FORTRAN MANUAL
|
1607
|
-
SUBROUTINE DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )
|
1608
|
-
|
1609
|
-
* Purpose
|
1610
|
-
* =======
|
1611
|
-
*
|
1612
|
-
* DORML2 overwrites the general real m by n matrix C with
|
1613
|
-
*
|
1614
|
-
* Q * C if SIDE = 'L' and TRANS = 'N', or
|
1615
|
-
*
|
1616
|
-
* Q'* C if SIDE = 'L' and TRANS = 'T', or
|
1617
|
-
*
|
1618
|
-
* C * Q if SIDE = 'R' and TRANS = 'N', or
|
1619
|
-
*
|
1620
|
-
* C * Q' if SIDE = 'R' and TRANS = 'T',
|
1621
|
-
*
|
1622
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1623
|
-
* elementary reflectors
|
1624
|
-
*
|
1625
|
-
* Q = H(k) . . . H(2) H(1)
|
1626
|
-
*
|
1627
|
-
* as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
|
1628
|
-
* if SIDE = 'R'.
|
1629
|
-
*
|
1630
|
-
|
1631
|
-
* Arguments
|
1632
|
-
* =========
|
1633
|
-
*
|
1634
|
-
* SIDE (input) CHARACTER*1
|
1635
|
-
* = 'L': apply Q or Q' from the Left
|
1636
|
-
* = 'R': apply Q or Q' from the Right
|
1637
|
-
*
|
1638
|
-
* TRANS (input) CHARACTER*1
|
1639
|
-
* = 'N': apply Q (No transpose)
|
1640
|
-
* = 'T': apply Q' (Transpose)
|
1641
|
-
*
|
1642
|
-
* M (input) INTEGER
|
1643
|
-
* The number of rows of the matrix C. M >= 0.
|
1644
|
-
*
|
1645
|
-
* N (input) INTEGER
|
1646
|
-
* The number of columns of the matrix C. N >= 0.
|
1647
|
-
*
|
1648
|
-
* K (input) INTEGER
|
1649
|
-
* The number of elementary reflectors whose product defines
|
1650
|
-
* the matrix Q.
|
1651
|
-
* If SIDE = 'L', M >= K >= 0;
|
1652
|
-
* if SIDE = 'R', N >= K >= 0.
|
1653
|
-
*
|
1654
|
-
* A (input) DOUBLE PRECISION array, dimension
|
1655
|
-
* (LDA,M) if SIDE = 'L',
|
1656
|
-
* (LDA,N) if SIDE = 'R'
|
1657
|
-
* The i-th row must contain the vector which defines the
|
1658
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1659
|
-
* DGELQF in the first k rows of its array argument A.
|
1660
|
-
* A is modified by the routine but restored on exit.
|
1661
|
-
*
|
1662
|
-
* LDA (input) INTEGER
|
1663
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
1664
|
-
*
|
1665
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1666
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1667
|
-
* reflector H(i), as returned by DGELQF.
|
1668
|
-
*
|
1669
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1670
|
-
* On entry, the m by n matrix C.
|
1671
|
-
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
1672
|
-
*
|
1673
|
-
* LDC (input) INTEGER
|
1674
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1675
|
-
*
|
1676
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
1677
|
-
* (N) if SIDE = 'L',
|
1678
|
-
* (M) if SIDE = 'R'
|
1679
|
-
*
|
1680
|
-
* INFO (output) INTEGER
|
1681
|
-
* = 0: successful exit
|
1682
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1683
|
-
*
|
1684
|
-
|
1685
|
-
* =====================================================================
|
1686
|
-
*
|
1687
|
-
|
1688
|
-
|
1689
|
-
</PRE>
|
1690
|
-
<A HREF="#top">go to the page top</A>
|
1691
|
-
|
1692
|
-
<A NAME="dormlq"></A>
|
1693
|
-
<H2>dormlq</H2>
|
1694
|
-
<PRE>
|
1695
|
-
USAGE:
|
1696
|
-
work, info, c = NumRu::Lapack.dormlq( side, trans, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
1697
|
-
|
1698
|
-
|
1699
|
-
FORTRAN MANUAL
|
1700
|
-
SUBROUTINE DORMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
1701
|
-
|
1702
|
-
* Purpose
|
1703
|
-
* =======
|
1704
|
-
*
|
1705
|
-
* DORMLQ overwrites the general real M-by-N matrix C with
|
1706
|
-
*
|
1707
|
-
* SIDE = 'L' SIDE = 'R'
|
1708
|
-
* TRANS = 'N': Q * C C * Q
|
1709
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
1710
|
-
*
|
1711
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1712
|
-
* elementary reflectors
|
1713
|
-
*
|
1714
|
-
* Q = H(k) . . . H(2) H(1)
|
1715
|
-
*
|
1716
|
-
* as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N
|
1717
|
-
* if SIDE = 'R'.
|
1718
|
-
*
|
1719
|
-
|
1720
|
-
* Arguments
|
1721
|
-
* =========
|
1722
|
-
*
|
1723
|
-
* SIDE (input) CHARACTER*1
|
1724
|
-
* = 'L': apply Q or Q**T from the Left;
|
1725
|
-
* = 'R': apply Q or Q**T from the Right.
|
1726
|
-
*
|
1727
|
-
* TRANS (input) CHARACTER*1
|
1728
|
-
* = 'N': No transpose, apply Q;
|
1729
|
-
* = 'T': Transpose, apply Q**T.
|
1730
|
-
*
|
1731
|
-
* M (input) INTEGER
|
1732
|
-
* The number of rows of the matrix C. M >= 0.
|
1733
|
-
*
|
1734
|
-
* N (input) INTEGER
|
1735
|
-
* The number of columns of the matrix C. N >= 0.
|
1736
|
-
*
|
1737
|
-
* K (input) INTEGER
|
1738
|
-
* The number of elementary reflectors whose product defines
|
1739
|
-
* the matrix Q.
|
1740
|
-
* If SIDE = 'L', M >= K >= 0;
|
1741
|
-
* if SIDE = 'R', N >= K >= 0.
|
1742
|
-
*
|
1743
|
-
* A (input) DOUBLE PRECISION array, dimension
|
1744
|
-
* (LDA,M) if SIDE = 'L',
|
1745
|
-
* (LDA,N) if SIDE = 'R'
|
1746
|
-
* The i-th row must contain the vector which defines the
|
1747
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1748
|
-
* DGELQF in the first k rows of its array argument A.
|
1749
|
-
* A is modified by the routine but restored on exit.
|
1750
|
-
*
|
1751
|
-
* LDA (input) INTEGER
|
1752
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
1753
|
-
*
|
1754
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1755
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1756
|
-
* reflector H(i), as returned by DGELQF.
|
1757
|
-
*
|
1758
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1759
|
-
* On entry, the M-by-N matrix C.
|
1760
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
1761
|
-
*
|
1762
|
-
* LDC (input) INTEGER
|
1763
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1764
|
-
*
|
1765
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1766
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1767
|
-
*
|
1768
|
-
* LWORK (input) INTEGER
|
1769
|
-
* The dimension of the array WORK.
|
1770
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
1771
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
1772
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
1773
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
1774
|
-
* blocksize.
|
1775
|
-
*
|
1776
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1777
|
-
* only calculates the optimal size of the WORK array, returns
|
1778
|
-
* this value as the first entry of the WORK array, and no error
|
1779
|
-
* message related to LWORK is issued by XERBLA.
|
1780
|
-
*
|
1781
|
-
* INFO (output) INTEGER
|
1782
|
-
* = 0: successful exit
|
1783
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1784
|
-
*
|
1785
|
-
|
1786
|
-
* =====================================================================
|
1787
|
-
*
|
1788
|
-
|
1789
|
-
|
1790
|
-
</PRE>
|
1791
|
-
<A HREF="#top">go to the page top</A>
|
1792
|
-
|
1793
|
-
<A NAME="dormql"></A>
|
1794
|
-
<H2>dormql</H2>
|
1795
|
-
<PRE>
|
1796
|
-
USAGE:
|
1797
|
-
work, info, c = NumRu::Lapack.dormql( side, trans, m, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
1798
|
-
|
1799
|
-
|
1800
|
-
FORTRAN MANUAL
|
1801
|
-
SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
1802
|
-
|
1803
|
-
* Purpose
|
1804
|
-
* =======
|
1805
|
-
*
|
1806
|
-
* DORMQL overwrites the general real M-by-N matrix C with
|
1807
|
-
*
|
1808
|
-
* SIDE = 'L' SIDE = 'R'
|
1809
|
-
* TRANS = 'N': Q * C C * Q
|
1810
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
1811
|
-
*
|
1812
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1813
|
-
* elementary reflectors
|
1814
|
-
*
|
1815
|
-
* Q = H(k) . . . H(2) H(1)
|
1816
|
-
*
|
1817
|
-
* as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N
|
1818
|
-
* if SIDE = 'R'.
|
1819
|
-
*
|
1820
|
-
|
1821
|
-
* Arguments
|
1822
|
-
* =========
|
1823
|
-
*
|
1824
|
-
* SIDE (input) CHARACTER*1
|
1825
|
-
* = 'L': apply Q or Q**T from the Left;
|
1826
|
-
* = 'R': apply Q or Q**T from the Right.
|
1827
|
-
*
|
1828
|
-
* TRANS (input) CHARACTER*1
|
1829
|
-
* = 'N': No transpose, apply Q;
|
1830
|
-
* = 'T': Transpose, apply Q**T.
|
1831
|
-
*
|
1832
|
-
* M (input) INTEGER
|
1833
|
-
* The number of rows of the matrix C. M >= 0.
|
1834
|
-
*
|
1835
|
-
* N (input) INTEGER
|
1836
|
-
* The number of columns of the matrix C. N >= 0.
|
1837
|
-
*
|
1838
|
-
* K (input) INTEGER
|
1839
|
-
* The number of elementary reflectors whose product defines
|
1840
|
-
* the matrix Q.
|
1841
|
-
* If SIDE = 'L', M >= K >= 0;
|
1842
|
-
* if SIDE = 'R', N >= K >= 0.
|
1843
|
-
*
|
1844
|
-
* A (input) DOUBLE PRECISION array, dimension (LDA,K)
|
1845
|
-
* The i-th column must contain the vector which defines the
|
1846
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1847
|
-
* DGEQLF in the last k columns of its array argument A.
|
1848
|
-
* A is modified by the routine but restored on exit.
|
1849
|
-
*
|
1850
|
-
* LDA (input) INTEGER
|
1851
|
-
* The leading dimension of the array A.
|
1852
|
-
* If SIDE = 'L', LDA >= max(1,M);
|
1853
|
-
* if SIDE = 'R', LDA >= max(1,N).
|
1854
|
-
*
|
1855
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1856
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1857
|
-
* reflector H(i), as returned by DGEQLF.
|
1858
|
-
*
|
1859
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1860
|
-
* On entry, the M-by-N matrix C.
|
1861
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
1862
|
-
*
|
1863
|
-
* LDC (input) INTEGER
|
1864
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1865
|
-
*
|
1866
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1867
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1868
|
-
*
|
1869
|
-
* LWORK (input) INTEGER
|
1870
|
-
* The dimension of the array WORK.
|
1871
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
1872
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
1873
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
1874
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
1875
|
-
* blocksize.
|
1876
|
-
*
|
1877
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1878
|
-
* only calculates the optimal size of the WORK array, returns
|
1879
|
-
* this value as the first entry of the WORK array, and no error
|
1880
|
-
* message related to LWORK is issued by XERBLA.
|
1881
|
-
*
|
1882
|
-
* INFO (output) INTEGER
|
1883
|
-
* = 0: successful exit
|
1884
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1885
|
-
*
|
1886
|
-
|
1887
|
-
* =====================================================================
|
1888
|
-
*
|
1889
|
-
|
1890
|
-
|
1891
|
-
</PRE>
|
1892
|
-
<A HREF="#top">go to the page top</A>
|
1893
|
-
|
1894
|
-
<A NAME="dormqr"></A>
|
1895
|
-
<H2>dormqr</H2>
|
1896
|
-
<PRE>
|
1897
|
-
USAGE:
|
1898
|
-
work, info, c = NumRu::Lapack.dormqr( side, trans, m, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
1899
|
-
|
1900
|
-
|
1901
|
-
FORTRAN MANUAL
|
1902
|
-
SUBROUTINE DORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
1903
|
-
|
1904
|
-
* Purpose
|
1905
|
-
* =======
|
1906
|
-
*
|
1907
|
-
* DORMQR overwrites the general real M-by-N matrix C with
|
1908
|
-
*
|
1909
|
-
* SIDE = 'L' SIDE = 'R'
|
1910
|
-
* TRANS = 'N': Q * C C * Q
|
1911
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
1912
|
-
*
|
1913
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
1914
|
-
* elementary reflectors
|
1915
|
-
*
|
1916
|
-
* Q = H(1) H(2) . . . H(k)
|
1917
|
-
*
|
1918
|
-
* as returned by DGEQRF. Q is of order M if SIDE = 'L' and of order N
|
1919
|
-
* if SIDE = 'R'.
|
1920
|
-
*
|
1921
|
-
|
1922
|
-
* Arguments
|
1923
|
-
* =========
|
1924
|
-
*
|
1925
|
-
* SIDE (input) CHARACTER*1
|
1926
|
-
* = 'L': apply Q or Q**T from the Left;
|
1927
|
-
* = 'R': apply Q or Q**T from the Right.
|
1928
|
-
*
|
1929
|
-
* TRANS (input) CHARACTER*1
|
1930
|
-
* = 'N': No transpose, apply Q;
|
1931
|
-
* = 'T': Transpose, apply Q**T.
|
1932
|
-
*
|
1933
|
-
* M (input) INTEGER
|
1934
|
-
* The number of rows of the matrix C. M >= 0.
|
1935
|
-
*
|
1936
|
-
* N (input) INTEGER
|
1937
|
-
* The number of columns of the matrix C. N >= 0.
|
1938
|
-
*
|
1939
|
-
* K (input) INTEGER
|
1940
|
-
* The number of elementary reflectors whose product defines
|
1941
|
-
* the matrix Q.
|
1942
|
-
* If SIDE = 'L', M >= K >= 0;
|
1943
|
-
* if SIDE = 'R', N >= K >= 0.
|
1944
|
-
*
|
1945
|
-
* A (input) DOUBLE PRECISION array, dimension (LDA,K)
|
1946
|
-
* The i-th column must contain the vector which defines the
|
1947
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
1948
|
-
* DGEQRF in the first k columns of its array argument A.
|
1949
|
-
* A is modified by the routine but restored on exit.
|
1950
|
-
*
|
1951
|
-
* LDA (input) INTEGER
|
1952
|
-
* The leading dimension of the array A.
|
1953
|
-
* If SIDE = 'L', LDA >= max(1,M);
|
1954
|
-
* if SIDE = 'R', LDA >= max(1,N).
|
1955
|
-
*
|
1956
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
1957
|
-
* TAU(i) must contain the scalar factor of the elementary
|
1958
|
-
* reflector H(i), as returned by DGEQRF.
|
1959
|
-
*
|
1960
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
1961
|
-
* On entry, the M-by-N matrix C.
|
1962
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
1963
|
-
*
|
1964
|
-
* LDC (input) INTEGER
|
1965
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
1966
|
-
*
|
1967
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
1968
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
1969
|
-
*
|
1970
|
-
* LWORK (input) INTEGER
|
1971
|
-
* The dimension of the array WORK.
|
1972
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
1973
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
1974
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
1975
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
1976
|
-
* blocksize.
|
1977
|
-
*
|
1978
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
1979
|
-
* only calculates the optimal size of the WORK array, returns
|
1980
|
-
* this value as the first entry of the WORK array, and no error
|
1981
|
-
* message related to LWORK is issued by XERBLA.
|
1982
|
-
*
|
1983
|
-
* INFO (output) INTEGER
|
1984
|
-
* = 0: successful exit
|
1985
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
1986
|
-
*
|
1987
|
-
|
1988
|
-
* =====================================================================
|
1989
|
-
*
|
1990
|
-
|
1991
|
-
|
1992
|
-
</PRE>
|
1993
|
-
<A HREF="#top">go to the page top</A>
|
1994
|
-
|
1995
|
-
<A NAME="dormr2"></A>
|
1996
|
-
<H2>dormr2</H2>
|
1997
|
-
<PRE>
|
1998
|
-
USAGE:
|
1999
|
-
info, c = NumRu::Lapack.dormr2( side, trans, a, tau, c, [:usage => usage, :help => help])
|
2000
|
-
|
2001
|
-
|
2002
|
-
FORTRAN MANUAL
|
2003
|
-
SUBROUTINE DORMR2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO )
|
2004
|
-
|
2005
|
-
* Purpose
|
2006
|
-
* =======
|
2007
|
-
*
|
2008
|
-
* DORMR2 overwrites the general real m by n matrix C with
|
2009
|
-
*
|
2010
|
-
* Q * C if SIDE = 'L' and TRANS = 'N', or
|
2011
|
-
*
|
2012
|
-
* Q'* C if SIDE = 'L' and TRANS = 'T', or
|
2013
|
-
*
|
2014
|
-
* C * Q if SIDE = 'R' and TRANS = 'N', or
|
2015
|
-
*
|
2016
|
-
* C * Q' if SIDE = 'R' and TRANS = 'T',
|
2017
|
-
*
|
2018
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
2019
|
-
* elementary reflectors
|
2020
|
-
*
|
2021
|
-
* Q = H(1) H(2) . . . H(k)
|
2022
|
-
*
|
2023
|
-
* as returned by DGERQF. Q is of order m if SIDE = 'L' and of order n
|
2024
|
-
* if SIDE = 'R'.
|
2025
|
-
*
|
2026
|
-
|
2027
|
-
* Arguments
|
2028
|
-
* =========
|
2029
|
-
*
|
2030
|
-
* SIDE (input) CHARACTER*1
|
2031
|
-
* = 'L': apply Q or Q' from the Left
|
2032
|
-
* = 'R': apply Q or Q' from the Right
|
2033
|
-
*
|
2034
|
-
* TRANS (input) CHARACTER*1
|
2035
|
-
* = 'N': apply Q (No transpose)
|
2036
|
-
* = 'T': apply Q' (Transpose)
|
2037
|
-
*
|
2038
|
-
* M (input) INTEGER
|
2039
|
-
* The number of rows of the matrix C. M >= 0.
|
2040
|
-
*
|
2041
|
-
* N (input) INTEGER
|
2042
|
-
* The number of columns of the matrix C. N >= 0.
|
2043
|
-
*
|
2044
|
-
* K (input) INTEGER
|
2045
|
-
* The number of elementary reflectors whose product defines
|
2046
|
-
* the matrix Q.
|
2047
|
-
* If SIDE = 'L', M >= K >= 0;
|
2048
|
-
* if SIDE = 'R', N >= K >= 0.
|
2049
|
-
*
|
2050
|
-
* A (input) DOUBLE PRECISION array, dimension
|
2051
|
-
* (LDA,M) if SIDE = 'L',
|
2052
|
-
* (LDA,N) if SIDE = 'R'
|
2053
|
-
* The i-th row must contain the vector which defines the
|
2054
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
2055
|
-
* DGERQF in the last k rows of its array argument A.
|
2056
|
-
* A is modified by the routine but restored on exit.
|
2057
|
-
*
|
2058
|
-
* LDA (input) INTEGER
|
2059
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
2060
|
-
*
|
2061
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
2062
|
-
* TAU(i) must contain the scalar factor of the elementary
|
2063
|
-
* reflector H(i), as returned by DGERQF.
|
2064
|
-
*
|
2065
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
2066
|
-
* On entry, the m by n matrix C.
|
2067
|
-
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
2068
|
-
*
|
2069
|
-
* LDC (input) INTEGER
|
2070
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
2071
|
-
*
|
2072
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
2073
|
-
* (N) if SIDE = 'L',
|
2074
|
-
* (M) if SIDE = 'R'
|
2075
|
-
*
|
2076
|
-
* INFO (output) INTEGER
|
2077
|
-
* = 0: successful exit
|
2078
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
2079
|
-
*
|
2080
|
-
|
2081
|
-
* =====================================================================
|
2082
|
-
*
|
2083
|
-
|
2084
|
-
|
2085
|
-
</PRE>
|
2086
|
-
<A HREF="#top">go to the page top</A>
|
2087
|
-
|
2088
|
-
<A NAME="dormr3"></A>
|
2089
|
-
<H2>dormr3</H2>
|
2090
|
-
<PRE>
|
2091
|
-
USAGE:
|
2092
|
-
info, c = NumRu::Lapack.dormr3( side, trans, l, a, tau, c, [:usage => usage, :help => help])
|
2093
|
-
|
2094
|
-
|
2095
|
-
FORTRAN MANUAL
|
2096
|
-
SUBROUTINE DORMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, INFO )
|
2097
|
-
|
2098
|
-
* Purpose
|
2099
|
-
* =======
|
2100
|
-
*
|
2101
|
-
* DORMR3 overwrites the general real m by n matrix C with
|
2102
|
-
*
|
2103
|
-
* Q * C if SIDE = 'L' and TRANS = 'N', or
|
2104
|
-
*
|
2105
|
-
* Q'* C if SIDE = 'L' and TRANS = 'T', or
|
2106
|
-
*
|
2107
|
-
* C * Q if SIDE = 'R' and TRANS = 'N', or
|
2108
|
-
*
|
2109
|
-
* C * Q' if SIDE = 'R' and TRANS = 'T',
|
2110
|
-
*
|
2111
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
2112
|
-
* elementary reflectors
|
2113
|
-
*
|
2114
|
-
* Q = H(1) H(2) . . . H(k)
|
2115
|
-
*
|
2116
|
-
* as returned by DTZRZF. Q is of order m if SIDE = 'L' and of order n
|
2117
|
-
* if SIDE = 'R'.
|
2118
|
-
*
|
2119
|
-
|
2120
|
-
* Arguments
|
2121
|
-
* =========
|
2122
|
-
*
|
2123
|
-
* SIDE (input) CHARACTER*1
|
2124
|
-
* = 'L': apply Q or Q' from the Left
|
2125
|
-
* = 'R': apply Q or Q' from the Right
|
2126
|
-
*
|
2127
|
-
* TRANS (input) CHARACTER*1
|
2128
|
-
* = 'N': apply Q (No transpose)
|
2129
|
-
* = 'T': apply Q' (Transpose)
|
2130
|
-
*
|
2131
|
-
* M (input) INTEGER
|
2132
|
-
* The number of rows of the matrix C. M >= 0.
|
2133
|
-
*
|
2134
|
-
* N (input) INTEGER
|
2135
|
-
* The number of columns of the matrix C. N >= 0.
|
2136
|
-
*
|
2137
|
-
* K (input) INTEGER
|
2138
|
-
* The number of elementary reflectors whose product defines
|
2139
|
-
* the matrix Q.
|
2140
|
-
* If SIDE = 'L', M >= K >= 0;
|
2141
|
-
* if SIDE = 'R', N >= K >= 0.
|
2142
|
-
*
|
2143
|
-
* L (input) INTEGER
|
2144
|
-
* The number of columns of the matrix A containing
|
2145
|
-
* the meaningful part of the Householder reflectors.
|
2146
|
-
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
|
2147
|
-
*
|
2148
|
-
* A (input) DOUBLE PRECISION array, dimension
|
2149
|
-
* (LDA,M) if SIDE = 'L',
|
2150
|
-
* (LDA,N) if SIDE = 'R'
|
2151
|
-
* The i-th row must contain the vector which defines the
|
2152
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
2153
|
-
* DTZRZF in the last k rows of its array argument A.
|
2154
|
-
* A is modified by the routine but restored on exit.
|
2155
|
-
*
|
2156
|
-
* LDA (input) INTEGER
|
2157
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
2158
|
-
*
|
2159
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
2160
|
-
* TAU(i) must contain the scalar factor of the elementary
|
2161
|
-
* reflector H(i), as returned by DTZRZF.
|
2162
|
-
*
|
2163
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
2164
|
-
* On entry, the m-by-n matrix C.
|
2165
|
-
* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
2166
|
-
*
|
2167
|
-
* LDC (input) INTEGER
|
2168
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
2169
|
-
*
|
2170
|
-
* WORK (workspace) DOUBLE PRECISION array, dimension
|
2171
|
-
* (N) if SIDE = 'L',
|
2172
|
-
* (M) if SIDE = 'R'
|
2173
|
-
*
|
2174
|
-
* INFO (output) INTEGER
|
2175
|
-
* = 0: successful exit
|
2176
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
2177
|
-
*
|
2178
|
-
|
2179
|
-
* Further Details
|
2180
|
-
* ===============
|
2181
|
-
*
|
2182
|
-
* Based on contributions by
|
2183
|
-
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
2184
|
-
*
|
2185
|
-
* =====================================================================
|
2186
|
-
*
|
2187
|
-
* .. Local Scalars ..
|
2188
|
-
LOGICAL LEFT, NOTRAN
|
2189
|
-
INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
|
2190
|
-
* ..
|
2191
|
-
* .. External Functions ..
|
2192
|
-
LOGICAL LSAME
|
2193
|
-
EXTERNAL LSAME
|
2194
|
-
* ..
|
2195
|
-
* .. External Subroutines ..
|
2196
|
-
EXTERNAL DLARZ, XERBLA
|
2197
|
-
* ..
|
2198
|
-
* .. Intrinsic Functions ..
|
2199
|
-
INTRINSIC MAX
|
2200
|
-
* ..
|
2201
|
-
|
2202
|
-
|
2203
|
-
</PRE>
|
2204
|
-
<A HREF="#top">go to the page top</A>
|
2205
|
-
|
2206
|
-
<A NAME="dormrq"></A>
|
2207
|
-
<H2>dormrq</H2>
|
2208
|
-
<PRE>
|
2209
|
-
USAGE:
|
2210
|
-
work, info, c = NumRu::Lapack.dormrq( side, trans, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
2211
|
-
|
2212
|
-
|
2213
|
-
FORTRAN MANUAL
|
2214
|
-
SUBROUTINE DORMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
2215
|
-
|
2216
|
-
* Purpose
|
2217
|
-
* =======
|
2218
|
-
*
|
2219
|
-
* DORMRQ overwrites the general real M-by-N matrix C with
|
2220
|
-
*
|
2221
|
-
* SIDE = 'L' SIDE = 'R'
|
2222
|
-
* TRANS = 'N': Q * C C * Q
|
2223
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
2224
|
-
*
|
2225
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
2226
|
-
* elementary reflectors
|
2227
|
-
*
|
2228
|
-
* Q = H(1) H(2) . . . H(k)
|
2229
|
-
*
|
2230
|
-
* as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N
|
2231
|
-
* if SIDE = 'R'.
|
2232
|
-
*
|
2233
|
-
|
2234
|
-
* Arguments
|
2235
|
-
* =========
|
2236
|
-
*
|
2237
|
-
* SIDE (input) CHARACTER*1
|
2238
|
-
* = 'L': apply Q or Q**T from the Left;
|
2239
|
-
* = 'R': apply Q or Q**T from the Right.
|
2240
|
-
*
|
2241
|
-
* TRANS (input) CHARACTER*1
|
2242
|
-
* = 'N': No transpose, apply Q;
|
2243
|
-
* = 'T': Transpose, apply Q**T.
|
2244
|
-
*
|
2245
|
-
* M (input) INTEGER
|
2246
|
-
* The number of rows of the matrix C. M >= 0.
|
2247
|
-
*
|
2248
|
-
* N (input) INTEGER
|
2249
|
-
* The number of columns of the matrix C. N >= 0.
|
2250
|
-
*
|
2251
|
-
* K (input) INTEGER
|
2252
|
-
* The number of elementary reflectors whose product defines
|
2253
|
-
* the matrix Q.
|
2254
|
-
* If SIDE = 'L', M >= K >= 0;
|
2255
|
-
* if SIDE = 'R', N >= K >= 0.
|
2256
|
-
*
|
2257
|
-
* A (input) DOUBLE PRECISION array, dimension
|
2258
|
-
* (LDA,M) if SIDE = 'L',
|
2259
|
-
* (LDA,N) if SIDE = 'R'
|
2260
|
-
* The i-th row must contain the vector which defines the
|
2261
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
2262
|
-
* DGERQF in the last k rows of its array argument A.
|
2263
|
-
* A is modified by the routine but restored on exit.
|
2264
|
-
*
|
2265
|
-
* LDA (input) INTEGER
|
2266
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
2267
|
-
*
|
2268
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
2269
|
-
* TAU(i) must contain the scalar factor of the elementary
|
2270
|
-
* reflector H(i), as returned by DGERQF.
|
2271
|
-
*
|
2272
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
2273
|
-
* On entry, the M-by-N matrix C.
|
2274
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
2275
|
-
*
|
2276
|
-
* LDC (input) INTEGER
|
2277
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
2278
|
-
*
|
2279
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
2280
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
2281
|
-
*
|
2282
|
-
* LWORK (input) INTEGER
|
2283
|
-
* The dimension of the array WORK.
|
2284
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
2285
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
2286
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
2287
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
2288
|
-
* blocksize.
|
2289
|
-
*
|
2290
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
2291
|
-
* only calculates the optimal size of the WORK array, returns
|
2292
|
-
* this value as the first entry of the WORK array, and no error
|
2293
|
-
* message related to LWORK is issued by XERBLA.
|
2294
|
-
*
|
2295
|
-
* INFO (output) INTEGER
|
2296
|
-
* = 0: successful exit
|
2297
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
2298
|
-
*
|
2299
|
-
|
2300
|
-
* =====================================================================
|
2301
|
-
*
|
2302
|
-
|
2303
|
-
|
2304
|
-
</PRE>
|
2305
|
-
<A HREF="#top">go to the page top</A>
|
2306
|
-
|
2307
|
-
<A NAME="dormrz"></A>
|
2308
|
-
<H2>dormrz</H2>
|
2309
|
-
<PRE>
|
2310
|
-
USAGE:
|
2311
|
-
work, info, c = NumRu::Lapack.dormrz( side, trans, l, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
2312
|
-
|
2313
|
-
|
2314
|
-
FORTRAN MANUAL
|
2315
|
-
SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
2316
|
-
|
2317
|
-
* Purpose
|
2318
|
-
* =======
|
2319
|
-
*
|
2320
|
-
* DORMRZ overwrites the general real M-by-N matrix C with
|
2321
|
-
*
|
2322
|
-
* SIDE = 'L' SIDE = 'R'
|
2323
|
-
* TRANS = 'N': Q * C C * Q
|
2324
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
2325
|
-
*
|
2326
|
-
* where Q is a real orthogonal matrix defined as the product of k
|
2327
|
-
* elementary reflectors
|
2328
|
-
*
|
2329
|
-
* Q = H(1) H(2) . . . H(k)
|
2330
|
-
*
|
2331
|
-
* as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N
|
2332
|
-
* if SIDE = 'R'.
|
2333
|
-
*
|
2334
|
-
|
2335
|
-
* Arguments
|
2336
|
-
* =========
|
2337
|
-
*
|
2338
|
-
* SIDE (input) CHARACTER*1
|
2339
|
-
* = 'L': apply Q or Q**T from the Left;
|
2340
|
-
* = 'R': apply Q or Q**T from the Right.
|
2341
|
-
*
|
2342
|
-
* TRANS (input) CHARACTER*1
|
2343
|
-
* = 'N': No transpose, apply Q;
|
2344
|
-
* = 'T': Transpose, apply Q**T.
|
2345
|
-
*
|
2346
|
-
* M (input) INTEGER
|
2347
|
-
* The number of rows of the matrix C. M >= 0.
|
2348
|
-
*
|
2349
|
-
* N (input) INTEGER
|
2350
|
-
* The number of columns of the matrix C. N >= 0.
|
2351
|
-
*
|
2352
|
-
* K (input) INTEGER
|
2353
|
-
* The number of elementary reflectors whose product defines
|
2354
|
-
* the matrix Q.
|
2355
|
-
* If SIDE = 'L', M >= K >= 0;
|
2356
|
-
* if SIDE = 'R', N >= K >= 0.
|
2357
|
-
*
|
2358
|
-
* L (input) INTEGER
|
2359
|
-
* The number of columns of the matrix A containing
|
2360
|
-
* the meaningful part of the Householder reflectors.
|
2361
|
-
* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
|
2362
|
-
*
|
2363
|
-
* A (input) DOUBLE PRECISION array, dimension
|
2364
|
-
* (LDA,M) if SIDE = 'L',
|
2365
|
-
* (LDA,N) if SIDE = 'R'
|
2366
|
-
* The i-th row must contain the vector which defines the
|
2367
|
-
* elementary reflector H(i), for i = 1,2,...,k, as returned by
|
2368
|
-
* DTZRZF in the last k rows of its array argument A.
|
2369
|
-
* A is modified by the routine but restored on exit.
|
2370
|
-
*
|
2371
|
-
* LDA (input) INTEGER
|
2372
|
-
* The leading dimension of the array A. LDA >= max(1,K).
|
2373
|
-
*
|
2374
|
-
* TAU (input) DOUBLE PRECISION array, dimension (K)
|
2375
|
-
* TAU(i) must contain the scalar factor of the elementary
|
2376
|
-
* reflector H(i), as returned by DTZRZF.
|
2377
|
-
*
|
2378
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
2379
|
-
* On entry, the M-by-N matrix C.
|
2380
|
-
* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
|
2381
|
-
*
|
2382
|
-
* LDC (input) INTEGER
|
2383
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
2384
|
-
*
|
2385
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
2386
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
2387
|
-
*
|
2388
|
-
* LWORK (input) INTEGER
|
2389
|
-
* The dimension of the array WORK.
|
2390
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
2391
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
2392
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
2393
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
2394
|
-
* blocksize.
|
2395
|
-
*
|
2396
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
2397
|
-
* only calculates the optimal size of the WORK array, returns
|
2398
|
-
* this value as the first entry of the WORK array, and no error
|
2399
|
-
* message related to LWORK is issued by XERBLA.
|
2400
|
-
*
|
2401
|
-
* INFO (output) INTEGER
|
2402
|
-
* = 0: successful exit
|
2403
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
2404
|
-
*
|
2405
|
-
|
2406
|
-
* Further Details
|
2407
|
-
* ===============
|
2408
|
-
*
|
2409
|
-
* Based on contributions by
|
2410
|
-
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|
2411
|
-
*
|
2412
|
-
* =====================================================================
|
2413
|
-
*
|
2414
|
-
|
2415
|
-
|
2416
|
-
</PRE>
|
2417
|
-
<A HREF="#top">go to the page top</A>
|
2418
|
-
|
2419
|
-
<A NAME="dormtr"></A>
|
2420
|
-
<H2>dormtr</H2>
|
2421
|
-
<PRE>
|
2422
|
-
USAGE:
|
2423
|
-
work, info, c = NumRu::Lapack.dormtr( side, uplo, trans, a, tau, c, [:lwork => lwork, :usage => usage, :help => help])
|
2424
|
-
|
2425
|
-
|
2426
|
-
FORTRAN MANUAL
|
2427
|
-
SUBROUTINE DORMTR( SIDE, UPLO, TRANS, M, N, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
|
2428
|
-
|
2429
|
-
* Purpose
|
2430
|
-
* =======
|
2431
|
-
*
|
2432
|
-
* DORMTR overwrites the general real M-by-N matrix C with
|
2433
|
-
*
|
2434
|
-
* SIDE = 'L' SIDE = 'R'
|
2435
|
-
* TRANS = 'N': Q * C C * Q
|
2436
|
-
* TRANS = 'T': Q**T * C C * Q**T
|
2437
|
-
*
|
2438
|
-
* where Q is a real orthogonal matrix of order nq, with nq = m if
|
2439
|
-
* SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
|
2440
|
-
* nq-1 elementary reflectors, as returned by DSYTRD:
|
2441
|
-
*
|
2442
|
-
* if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);
|
2443
|
-
*
|
2444
|
-
* if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).
|
2445
|
-
*
|
2446
|
-
|
2447
|
-
* Arguments
|
2448
|
-
* =========
|
2449
|
-
*
|
2450
|
-
* SIDE (input) CHARACTER*1
|
2451
|
-
* = 'L': apply Q or Q**T from the Left;
|
2452
|
-
* = 'R': apply Q or Q**T from the Right.
|
2453
|
-
*
|
2454
|
-
* UPLO (input) CHARACTER*1
|
2455
|
-
* = 'U': Upper triangle of A contains elementary reflectors
|
2456
|
-
* from DSYTRD;
|
2457
|
-
* = 'L': Lower triangle of A contains elementary reflectors
|
2458
|
-
* from DSYTRD.
|
2459
|
-
*
|
2460
|
-
* TRANS (input) CHARACTER*1
|
2461
|
-
* = 'N': No transpose, apply Q;
|
2462
|
-
* = 'T': Transpose, apply Q**T.
|
2463
|
-
*
|
2464
|
-
* M (input) INTEGER
|
2465
|
-
* The number of rows of the matrix C. M >= 0.
|
2466
|
-
*
|
2467
|
-
* N (input) INTEGER
|
2468
|
-
* The number of columns of the matrix C. N >= 0.
|
2469
|
-
*
|
2470
|
-
* A (input) DOUBLE PRECISION array, dimension
|
2471
|
-
* (LDA,M) if SIDE = 'L'
|
2472
|
-
* (LDA,N) if SIDE = 'R'
|
2473
|
-
* The vectors which define the elementary reflectors, as
|
2474
|
-
* returned by DSYTRD.
|
2475
|
-
*
|
2476
|
-
* LDA (input) INTEGER
|
2477
|
-
* The leading dimension of the array A.
|
2478
|
-
* LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
|
2479
|
-
*
|
2480
|
-
* TAU (input) DOUBLE PRECISION array, dimension
|
2481
|
-
* (M-1) if SIDE = 'L'
|
2482
|
-
* (N-1) if SIDE = 'R'
|
2483
|
-
* TAU(i) must contain the scalar factor of the elementary
|
2484
|
-
* reflector H(i), as returned by DSYTRD.
|
2485
|
-
*
|
2486
|
-
* C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
2487
|
-
* On entry, the M-by-N matrix C.
|
2488
|
-
* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
|
2489
|
-
*
|
2490
|
-
* LDC (input) INTEGER
|
2491
|
-
* The leading dimension of the array C. LDC >= max(1,M).
|
2492
|
-
*
|
2493
|
-
* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
|
2494
|
-
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
2495
|
-
*
|
2496
|
-
* LWORK (input) INTEGER
|
2497
|
-
* The dimension of the array WORK.
|
2498
|
-
* If SIDE = 'L', LWORK >= max(1,N);
|
2499
|
-
* if SIDE = 'R', LWORK >= max(1,M).
|
2500
|
-
* For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
2501
|
-
* LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
2502
|
-
* blocksize.
|
2503
|
-
*
|
2504
|
-
* If LWORK = -1, then a workspace query is assumed; the routine
|
2505
|
-
* only calculates the optimal size of the WORK array, returns
|
2506
|
-
* this value as the first entry of the WORK array, and no error
|
2507
|
-
* message related to LWORK is issued by XERBLA.
|
2508
|
-
*
|
2509
|
-
* INFO (output) INTEGER
|
2510
|
-
* = 0: successful exit
|
2511
|
-
* < 0: if INFO = -i, the i-th argument had an illegal value
|
2512
|
-
*
|
2513
|
-
|
2514
|
-
* =====================================================================
|
2515
|
-
*
|
2516
|
-
* .. Local Scalars ..
|
2517
|
-
LOGICAL LEFT, LQUERY, UPPER
|
2518
|
-
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
|
2519
|
-
* ..
|
2520
|
-
* .. External Functions ..
|
2521
|
-
LOGICAL LSAME
|
2522
|
-
INTEGER ILAENV
|
2523
|
-
EXTERNAL LSAME, ILAENV
|
2524
|
-
* ..
|
2525
|
-
* .. External Subroutines ..
|
2526
|
-
EXTERNAL DORMQL, DORMQR, XERBLA
|
2527
|
-
* ..
|
2528
|
-
* .. Intrinsic Functions ..
|
2529
|
-
INTRINSIC MAX
|
2530
|
-
* ..
|
2531
|
-
|
2532
|
-
|
2533
|
-
</PRE>
|
2534
|
-
<A HREF="#top">go to the page top</A>
|
2535
|
-
|
2536
|
-
<HR />
|
2537
|
-
<A HREF="d.html">back to matrix types</A><BR>
|
2538
|
-
<A HREF="d.html">back to data types</A>
|
2539
|
-
</BODY>
|
2540
|
-
</HTML>
|