ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/ddi.html DELETED
@@ -1,87 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for diagonal matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for diagonal matrix</H1>
8
- <UL>
9
- <LI><A HREF="#ddisna">ddisna</A></LI>
10
- </UL>
11
-
12
- <A NAME="ddisna"></A>
13
- <H2>ddisna</H2>
14
- <PRE>
15
- USAGE:
16
- sep, info = NumRu::Lapack.ddisna( job, n, d, [:usage => usage, :help => help])
17
-
18
-
19
- FORTRAN MANUAL
20
- SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
21
-
22
- * Purpose
23
- * =======
24
- *
25
- * DDISNA computes the reciprocal condition numbers for the eigenvectors
26
- * of a real symmetric or complex Hermitian matrix or for the left or
27
- * right singular vectors of a general m-by-n matrix. The reciprocal
28
- * condition number is the 'gap' between the corresponding eigenvalue or
29
- * singular value and the nearest other one.
30
- *
31
- * The bound on the error, measured by angle in radians, in the I-th
32
- * computed vector is given by
33
- *
34
- * DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
35
- *
36
- * where ANORM = 2-norm(A) = max( abs( D(j) ) ). SEP(I) is not allowed
37
- * to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
38
- * the error bound.
39
- *
40
- * DDISNA may also be used to compute error bounds for eigenvectors of
41
- * the generalized symmetric definite eigenproblem.
42
- *
43
-
44
- * Arguments
45
- * =========
46
- *
47
- * JOB (input) CHARACTER*1
48
- * Specifies for which problem the reciprocal condition numbers
49
- * should be computed:
50
- * = 'E': the eigenvectors of a symmetric/Hermitian matrix;
51
- * = 'L': the left singular vectors of a general matrix;
52
- * = 'R': the right singular vectors of a general matrix.
53
- *
54
- * M (input) INTEGER
55
- * The number of rows of the matrix. M >= 0.
56
- *
57
- * N (input) INTEGER
58
- * If JOB = 'L' or 'R', the number of columns of the matrix,
59
- * in which case N >= 0. Ignored if JOB = 'E'.
60
- *
61
- * D (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
62
- * dimension (min(M,N)) if JOB = 'L' or 'R'
63
- * The eigenvalues (if JOB = 'E') or singular values (if JOB =
64
- * 'L' or 'R') of the matrix, in either increasing or decreasing
65
- * order. If singular values, they must be non-negative.
66
- *
67
- * SEP (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
68
- * dimension (min(M,N)) if JOB = 'L' or 'R'
69
- * The reciprocal condition numbers of the vectors.
70
- *
71
- * INFO (output) INTEGER
72
- * = 0: successful exit.
73
- * < 0: if INFO = -i, the i-th argument had an illegal value.
74
- *
75
-
76
- * =====================================================================
77
- *
78
-
79
-
80
- </PRE>
81
- <A HREF="#top">go to the page top</A>
82
-
83
- <HR />
84
- <A HREF="d.html">back to matrix types</A><BR>
85
- <A HREF="d.html">back to data types</A>
86
- </BODY>
87
- </HTML>
data/doc/dgb.html DELETED
@@ -1,1857 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for general band matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for general band matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dgbbrd">dgbbrd</A></LI>
10
- <LI><A HREF="#dgbcon">dgbcon</A></LI>
11
- <LI><A HREF="#dgbequ">dgbequ</A></LI>
12
- <LI><A HREF="#dgbequb">dgbequb</A></LI>
13
- <LI><A HREF="#dgbrfs">dgbrfs</A></LI>
14
- <LI><A HREF="#dgbrfsx">dgbrfsx</A></LI>
15
- <LI><A HREF="#dgbsv">dgbsv</A></LI>
16
- <LI><A HREF="#dgbsvx">dgbsvx</A></LI>
17
- <LI><A HREF="#dgbsvxx">dgbsvxx</A></LI>
18
- <LI><A HREF="#dgbtf2">dgbtf2</A></LI>
19
- <LI><A HREF="#dgbtrf">dgbtrf</A></LI>
20
- <LI><A HREF="#dgbtrs">dgbtrs</A></LI>
21
- </UL>
22
-
23
- <A NAME="dgbbrd"></A>
24
- <H2>dgbbrd</H2>
25
- <PRE>
26
- USAGE:
27
- d, e, q, pt, info, ab, c = NumRu::Lapack.dgbbrd( vect, kl, ku, ab, c, [:usage => usage, :help => help])
28
-
29
-
30
- FORTRAN MANUAL
31
- SUBROUTINE DGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, LDQ, PT, LDPT, C, LDC, WORK, INFO )
32
-
33
- * Purpose
34
- * =======
35
- *
36
- * DGBBRD reduces a real general m-by-n band matrix A to upper
37
- * bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
38
- *
39
- * The routine computes B, and optionally forms Q or P', or computes
40
- * Q'*C for a given matrix C.
41
- *
42
-
43
- * Arguments
44
- * =========
45
- *
46
- * VECT (input) CHARACTER*1
47
- * Specifies whether or not the matrices Q and P' are to be
48
- * formed.
49
- * = 'N': do not form Q or P';
50
- * = 'Q': form Q only;
51
- * = 'P': form P' only;
52
- * = 'B': form both.
53
- *
54
- * M (input) INTEGER
55
- * The number of rows of the matrix A. M >= 0.
56
- *
57
- * N (input) INTEGER
58
- * The number of columns of the matrix A. N >= 0.
59
- *
60
- * NCC (input) INTEGER
61
- * The number of columns of the matrix C. NCC >= 0.
62
- *
63
- * KL (input) INTEGER
64
- * The number of subdiagonals of the matrix A. KL >= 0.
65
- *
66
- * KU (input) INTEGER
67
- * The number of superdiagonals of the matrix A. KU >= 0.
68
- *
69
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
70
- * On entry, the m-by-n band matrix A, stored in rows 1 to
71
- * KL+KU+1. The j-th column of A is stored in the j-th column of
72
- * the array AB as follows:
73
- * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
74
- * On exit, A is overwritten by values generated during the
75
- * reduction.
76
- *
77
- * LDAB (input) INTEGER
78
- * The leading dimension of the array A. LDAB >= KL+KU+1.
79
- *
80
- * D (output) DOUBLE PRECISION array, dimension (min(M,N))
81
- * The diagonal elements of the bidiagonal matrix B.
82
- *
83
- * E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
84
- * The superdiagonal elements of the bidiagonal matrix B.
85
- *
86
- * Q (output) DOUBLE PRECISION array, dimension (LDQ,M)
87
- * If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
88
- * If VECT = 'N' or 'P', the array Q is not referenced.
89
- *
90
- * LDQ (input) INTEGER
91
- * The leading dimension of the array Q.
92
- * LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
93
- *
94
- * PT (output) DOUBLE PRECISION array, dimension (LDPT,N)
95
- * If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
96
- * If VECT = 'N' or 'Q', the array PT is not referenced.
97
- *
98
- * LDPT (input) INTEGER
99
- * The leading dimension of the array PT.
100
- * LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
101
- *
102
- * C (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
103
- * On entry, an m-by-ncc matrix C.
104
- * On exit, C is overwritten by Q'*C.
105
- * C is not referenced if NCC = 0.
106
- *
107
- * LDC (input) INTEGER
108
- * The leading dimension of the array C.
109
- * LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
110
- *
111
- * WORK (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
112
- *
113
- * INFO (output) INTEGER
114
- * = 0: successful exit.
115
- * < 0: if INFO = -i, the i-th argument had an illegal value.
116
- *
117
-
118
- * =====================================================================
119
- *
120
-
121
-
122
- </PRE>
123
- <A HREF="#top">go to the page top</A>
124
-
125
- <A NAME="dgbcon"></A>
126
- <H2>dgbcon</H2>
127
- <PRE>
128
- USAGE:
129
- rcond, info = NumRu::Lapack.dgbcon( norm, kl, ku, ab, ipiv, anorm, [:usage => usage, :help => help])
130
-
131
-
132
- FORTRAN MANUAL
133
- SUBROUTINE DGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
134
-
135
- * Purpose
136
- * =======
137
- *
138
- * DGBCON estimates the reciprocal of the condition number of a real
139
- * general band matrix A, in either the 1-norm or the infinity-norm,
140
- * using the LU factorization computed by DGBTRF.
141
- *
142
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
143
- * condition number is computed as
144
- * RCOND = 1 / ( norm(A) * norm(inv(A)) ).
145
- *
146
-
147
- * Arguments
148
- * =========
149
- *
150
- * NORM (input) CHARACTER*1
151
- * Specifies whether the 1-norm condition number or the
152
- * infinity-norm condition number is required:
153
- * = '1' or 'O': 1-norm;
154
- * = 'I': Infinity-norm.
155
- *
156
- * N (input) INTEGER
157
- * The order of the matrix A. N >= 0.
158
- *
159
- * KL (input) INTEGER
160
- * The number of subdiagonals within the band of A. KL >= 0.
161
- *
162
- * KU (input) INTEGER
163
- * The number of superdiagonals within the band of A. KU >= 0.
164
- *
165
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
166
- * Details of the LU factorization of the band matrix A, as
167
- * computed by DGBTRF. U is stored as an upper triangular band
168
- * matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
169
- * the multipliers used during the factorization are stored in
170
- * rows KL+KU+2 to 2*KL+KU+1.
171
- *
172
- * LDAB (input) INTEGER
173
- * The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
174
- *
175
- * IPIV (input) INTEGER array, dimension (N)
176
- * The pivot indices; for 1 <= i <= N, row i of the matrix was
177
- * interchanged with row IPIV(i).
178
- *
179
- * ANORM (input) DOUBLE PRECISION
180
- * If NORM = '1' or 'O', the 1-norm of the original matrix A.
181
- * If NORM = 'I', the infinity-norm of the original matrix A.
182
- *
183
- * RCOND (output) DOUBLE PRECISION
184
- * The reciprocal of the condition number of the matrix A,
185
- * computed as RCOND = 1/(norm(A) * norm(inv(A))).
186
- *
187
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
188
- *
189
- * IWORK (workspace) INTEGER array, dimension (N)
190
- *
191
- * INFO (output) INTEGER
192
- * = 0: successful exit
193
- * < 0: if INFO = -i, the i-th argument had an illegal value
194
- *
195
-
196
- * =====================================================================
197
- *
198
-
199
-
200
- </PRE>
201
- <A HREF="#top">go to the page top</A>
202
-
203
- <A NAME="dgbequ"></A>
204
- <H2>dgbequ</H2>
205
- <PRE>
206
- USAGE:
207
- r, c, rowcnd, colcnd, amax, info = NumRu::Lapack.dgbequ( m, kl, ku, ab, [:usage => usage, :help => help])
208
-
209
-
210
- FORTRAN MANUAL
211
- SUBROUTINE DGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO )
212
-
213
- * Purpose
214
- * =======
215
- *
216
- * DGBEQU computes row and column scalings intended to equilibrate an
217
- * M-by-N band matrix A and reduce its condition number. R returns the
218
- * row scale factors and C the column scale factors, chosen to try to
219
- * make the largest element in each row and column of the matrix B with
220
- * elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
221
- *
222
- * R(i) and C(j) are restricted to be between SMLNUM = smallest safe
223
- * number and BIGNUM = largest safe number. Use of these scaling
224
- * factors is not guaranteed to reduce the condition number of A but
225
- * works well in practice.
226
- *
227
-
228
- * Arguments
229
- * =========
230
- *
231
- * M (input) INTEGER
232
- * The number of rows of the matrix A. M >= 0.
233
- *
234
- * N (input) INTEGER
235
- * The number of columns of the matrix A. N >= 0.
236
- *
237
- * KL (input) INTEGER
238
- * The number of subdiagonals within the band of A. KL >= 0.
239
- *
240
- * KU (input) INTEGER
241
- * The number of superdiagonals within the band of A. KU >= 0.
242
- *
243
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
244
- * The band matrix A, stored in rows 1 to KL+KU+1. The j-th
245
- * column of A is stored in the j-th column of the array AB as
246
- * follows:
247
- * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
248
- *
249
- * LDAB (input) INTEGER
250
- * The leading dimension of the array AB. LDAB >= KL+KU+1.
251
- *
252
- * R (output) DOUBLE PRECISION array, dimension (M)
253
- * If INFO = 0, or INFO > M, R contains the row scale factors
254
- * for A.
255
- *
256
- * C (output) DOUBLE PRECISION array, dimension (N)
257
- * If INFO = 0, C contains the column scale factors for A.
258
- *
259
- * ROWCND (output) DOUBLE PRECISION
260
- * If INFO = 0 or INFO > M, ROWCND contains the ratio of the
261
- * smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
262
- * AMAX is neither too large nor too small, it is not worth
263
- * scaling by R.
264
- *
265
- * COLCND (output) DOUBLE PRECISION
266
- * If INFO = 0, COLCND contains the ratio of the smallest
267
- * C(i) to the largest C(i). If COLCND >= 0.1, it is not
268
- * worth scaling by C.
269
- *
270
- * AMAX (output) DOUBLE PRECISION
271
- * Absolute value of largest matrix element. If AMAX is very
272
- * close to overflow or very close to underflow, the matrix
273
- * should be scaled.
274
- *
275
- * INFO (output) INTEGER
276
- * = 0: successful exit
277
- * < 0: if INFO = -i, the i-th argument had an illegal value
278
- * > 0: if INFO = i, and i is
279
- * <= M: the i-th row of A is exactly zero
280
- * > M: the (i-M)-th column of A is exactly zero
281
- *
282
-
283
- * =====================================================================
284
- *
285
-
286
-
287
- </PRE>
288
- <A HREF="#top">go to the page top</A>
289
-
290
- <A NAME="dgbequb"></A>
291
- <H2>dgbequb</H2>
292
- <PRE>
293
- USAGE:
294
- r, c, rowcnd, colcnd, amax, info = NumRu::Lapack.dgbequb( kl, ku, ab, [:usage => usage, :help => help])
295
-
296
-
297
- FORTRAN MANUAL
298
- SUBROUTINE DGBEQUB( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO )
299
-
300
- * Purpose
301
- * =======
302
- *
303
- * DGBEQUB computes row and column scalings intended to equilibrate an
304
- * M-by-N matrix A and reduce its condition number. R returns the row
305
- * scale factors and C the column scale factors, chosen to try to make
306
- * the largest element in each row and column of the matrix B with
307
- * elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most
308
- * the radix.
309
- *
310
- * R(i) and C(j) are restricted to be a power of the radix between
311
- * SMLNUM = smallest safe number and BIGNUM = largest safe number. Use
312
- * of these scaling factors is not guaranteed to reduce the condition
313
- * number of A but works well in practice.
314
- *
315
- * This routine differs from DGEEQU by restricting the scaling factors
316
- * to a power of the radix. Baring over- and underflow, scaling by
317
- * these factors introduces no additional rounding errors. However, the
318
- * scaled entries' magnitured are no longer approximately 1 but lie
319
- * between sqrt(radix) and 1/sqrt(radix).
320
- *
321
-
322
- * Arguments
323
- * =========
324
- *
325
- * M (input) INTEGER
326
- * The number of rows of the matrix A. M >= 0.
327
- *
328
- * N (input) INTEGER
329
- * The number of columns of the matrix A. N >= 0.
330
- *
331
- * KL (input) INTEGER
332
- * The number of subdiagonals within the band of A. KL >= 0.
333
- *
334
- * KU (input) INTEGER
335
- * The number of superdiagonals within the band of A. KU >= 0.
336
- *
337
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
338
- * On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
339
- * The j-th column of A is stored in the j-th column of the
340
- * array AB as follows:
341
- * AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
342
- *
343
- * LDAB (input) INTEGER
344
- * The leading dimension of the array A. LDAB >= max(1,M).
345
- *
346
- * R (output) DOUBLE PRECISION array, dimension (M)
347
- * If INFO = 0 or INFO > M, R contains the row scale factors
348
- * for A.
349
- *
350
- * C (output) DOUBLE PRECISION array, dimension (N)
351
- * If INFO = 0, C contains the column scale factors for A.
352
- *
353
- * ROWCND (output) DOUBLE PRECISION
354
- * If INFO = 0 or INFO > M, ROWCND contains the ratio of the
355
- * smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
356
- * AMAX is neither too large nor too small, it is not worth
357
- * scaling by R.
358
- *
359
- * COLCND (output) DOUBLE PRECISION
360
- * If INFO = 0, COLCND contains the ratio of the smallest
361
- * C(i) to the largest C(i). If COLCND >= 0.1, it is not
362
- * worth scaling by C.
363
- *
364
- * AMAX (output) DOUBLE PRECISION
365
- * Absolute value of largest matrix element. If AMAX is very
366
- * close to overflow or very close to underflow, the matrix
367
- * should be scaled.
368
- *
369
- * INFO (output) INTEGER
370
- * = 0: successful exit
371
- * < 0: if INFO = -i, the i-th argument had an illegal value
372
- * > 0: if INFO = i, and i is
373
- * <= M: the i-th row of A is exactly zero
374
- * > M: the (i-M)-th column of A is exactly zero
375
- *
376
-
377
- * =====================================================================
378
- *
379
-
380
-
381
- </PRE>
382
- <A HREF="#top">go to the page top</A>
383
-
384
- <A NAME="dgbrfs"></A>
385
- <H2>dgbrfs</H2>
386
- <PRE>
387
- USAGE:
388
- ferr, berr, info, x = NumRu::Lapack.dgbrfs( trans, kl, ku, ab, afb, ipiv, b, x, [:usage => usage, :help => help])
389
-
390
-
391
- FORTRAN MANUAL
392
- SUBROUTINE DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
393
-
394
- * Purpose
395
- * =======
396
- *
397
- * DGBRFS improves the computed solution to a system of linear
398
- * equations when the coefficient matrix is banded, and provides
399
- * error bounds and backward error estimates for the solution.
400
- *
401
-
402
- * Arguments
403
- * =========
404
- *
405
- * TRANS (input) CHARACTER*1
406
- * Specifies the form of the system of equations:
407
- * = 'N': A * X = B (No transpose)
408
- * = 'T': A**T * X = B (Transpose)
409
- * = 'C': A**H * X = B (Conjugate transpose = Transpose)
410
- *
411
- * N (input) INTEGER
412
- * The order of the matrix A. N >= 0.
413
- *
414
- * KL (input) INTEGER
415
- * The number of subdiagonals within the band of A. KL >= 0.
416
- *
417
- * KU (input) INTEGER
418
- * The number of superdiagonals within the band of A. KU >= 0.
419
- *
420
- * NRHS (input) INTEGER
421
- * The number of right hand sides, i.e., the number of columns
422
- * of the matrices B and X. NRHS >= 0.
423
- *
424
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
425
- * The original band matrix A, stored in rows 1 to KL+KU+1.
426
- * The j-th column of A is stored in the j-th column of the
427
- * array AB as follows:
428
- * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
429
- *
430
- * LDAB (input) INTEGER
431
- * The leading dimension of the array AB. LDAB >= KL+KU+1.
432
- *
433
- * AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
434
- * Details of the LU factorization of the band matrix A, as
435
- * computed by DGBTRF. U is stored as an upper triangular band
436
- * matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
437
- * the multipliers used during the factorization are stored in
438
- * rows KL+KU+2 to 2*KL+KU+1.
439
- *
440
- * LDAFB (input) INTEGER
441
- * The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
442
- *
443
- * IPIV (input) INTEGER array, dimension (N)
444
- * The pivot indices from DGBTRF; for 1<=i<=N, row i of the
445
- * matrix was interchanged with row IPIV(i).
446
- *
447
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
448
- * The right hand side matrix B.
449
- *
450
- * LDB (input) INTEGER
451
- * The leading dimension of the array B. LDB >= max(1,N).
452
- *
453
- * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
454
- * On entry, the solution matrix X, as computed by DGBTRS.
455
- * On exit, the improved solution matrix X.
456
- *
457
- * LDX (input) INTEGER
458
- * The leading dimension of the array X. LDX >= max(1,N).
459
- *
460
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
461
- * The estimated forward error bound for each solution vector
462
- * X(j) (the j-th column of the solution matrix X).
463
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
464
- * is an estimated upper bound for the magnitude of the largest
465
- * element in (X(j) - XTRUE) divided by the magnitude of the
466
- * largest element in X(j). The estimate is as reliable as
467
- * the estimate for RCOND, and is almost always a slight
468
- * overestimate of the true error.
469
- *
470
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
471
- * The componentwise relative backward error of each solution
472
- * vector X(j) (i.e., the smallest relative change in
473
- * any element of A or B that makes X(j) an exact solution).
474
- *
475
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
476
- *
477
- * IWORK (workspace) INTEGER array, dimension (N)
478
- *
479
- * INFO (output) INTEGER
480
- * = 0: successful exit
481
- * < 0: if INFO = -i, the i-th argument had an illegal value
482
- *
483
- * Internal Parameters
484
- * ===================
485
- *
486
- * ITMAX is the maximum number of steps of iterative refinement.
487
- *
488
-
489
- * =====================================================================
490
- *
491
-
492
-
493
- </PRE>
494
- <A HREF="#top">go to the page top</A>
495
-
496
- <A NAME="dgbrfsx"></A>
497
- <H2>dgbrfsx</H2>
498
- <PRE>
499
- USAGE:
500
- rcond, berr, err_bnds_norm, err_bnds_comp, info, r, c, x, params = NumRu::Lapack.dgbrfsx( trans, equed, kl, ku, ab, afb, ipiv, r, c, b, x, params, [:usage => usage, :help => help])
501
-
502
-
503
- FORTRAN MANUAL
504
- SUBROUTINE DGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
505
-
506
- * Purpose
507
- * =======
508
- *
509
- * DGBRFSX improves the computed solution to a system of linear
510
- * equations and provides error bounds and backward error estimates
511
- * for the solution. In addition to normwise error bound, the code
512
- * provides maximum componentwise error bound if possible. See
513
- * comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
514
- * error bounds.
515
- *
516
- * The original system of linear equations may have been equilibrated
517
- * before calling this routine, as described by arguments EQUED, R
518
- * and C below. In this case, the solution and error bounds returned
519
- * are for the original unequilibrated system.
520
- *
521
-
522
- * Arguments
523
- * =========
524
- *
525
- * Some optional parameters are bundled in the PARAMS array. These
526
- * settings determine how refinement is performed, but often the
527
- * defaults are acceptable. If the defaults are acceptable, users
528
- * can pass NPARAMS = 0 which prevents the source code from accessing
529
- * the PARAMS argument.
530
- *
531
- * TRANS (input) CHARACTER*1
532
- * Specifies the form of the system of equations:
533
- * = 'N': A * X = B (No transpose)
534
- * = 'T': A**T * X = B (Transpose)
535
- * = 'C': A**H * X = B (Conjugate transpose = Transpose)
536
- *
537
- * EQUED (input) CHARACTER*1
538
- * Specifies the form of equilibration that was done to A
539
- * before calling this routine. This is needed to compute
540
- * the solution and error bounds correctly.
541
- * = 'N': No equilibration
542
- * = 'R': Row equilibration, i.e., A has been premultiplied by
543
- * diag(R).
544
- * = 'C': Column equilibration, i.e., A has been postmultiplied
545
- * by diag(C).
546
- * = 'B': Both row and column equilibration, i.e., A has been
547
- * replaced by diag(R) * A * diag(C).
548
- * The right hand side B has been changed accordingly.
549
- *
550
- * N (input) INTEGER
551
- * The order of the matrix A. N >= 0.
552
- *
553
- * KL (input) INTEGER
554
- * The number of subdiagonals within the band of A. KL >= 0.
555
- *
556
- * KU (input) INTEGER
557
- * The number of superdiagonals within the band of A. KU >= 0.
558
- *
559
- * NRHS (input) INTEGER
560
- * The number of right hand sides, i.e., the number of columns
561
- * of the matrices B and X. NRHS >= 0.
562
- *
563
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
564
- * The original band matrix A, stored in rows 1 to KL+KU+1.
565
- * The j-th column of A is stored in the j-th column of the
566
- * array AB as follows:
567
- * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
568
- *
569
- * LDAB (input) INTEGER
570
- * The leading dimension of the array AB. LDAB >= KL+KU+1.
571
- *
572
- * AFB (input) DOUBLE PRECISION array, dimension (LDAFB,N)
573
- * Details of the LU factorization of the band matrix A, as
574
- * computed by DGBTRF. U is stored as an upper triangular band
575
- * matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
576
- * the multipliers used during the factorization are stored in
577
- * rows KL+KU+2 to 2*KL+KU+1.
578
- *
579
- * LDAFB (input) INTEGER
580
- * The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
581
- *
582
- * IPIV (input) INTEGER array, dimension (N)
583
- * The pivot indices from DGETRF; for 1<=i<=N, row i of the
584
- * matrix was interchanged with row IPIV(i).
585
- *
586
- * R (input or output) DOUBLE PRECISION array, dimension (N)
587
- * The row scale factors for A. If EQUED = 'R' or 'B', A is
588
- * multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
589
- * is not accessed. R is an input argument if FACT = 'F';
590
- * otherwise, R is an output argument. If FACT = 'F' and
591
- * EQUED = 'R' or 'B', each element of R must be positive.
592
- * If R is output, each element of R is a power of the radix.
593
- * If R is input, each element of R should be a power of the radix
594
- * to ensure a reliable solution and error estimates. Scaling by
595
- * powers of the radix does not cause rounding errors unless the
596
- * result underflows or overflows. Rounding errors during scaling
597
- * lead to refining with a matrix that is not equivalent to the
598
- * input matrix, producing error estimates that may not be
599
- * reliable.
600
- *
601
- * C (input or output) DOUBLE PRECISION array, dimension (N)
602
- * The column scale factors for A. If EQUED = 'C' or 'B', A is
603
- * multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
604
- * is not accessed. C is an input argument if FACT = 'F';
605
- * otherwise, C is an output argument. If FACT = 'F' and
606
- * EQUED = 'C' or 'B', each element of C must be positive.
607
- * If C is output, each element of C is a power of the radix.
608
- * If C is input, each element of C should be a power of the radix
609
- * to ensure a reliable solution and error estimates. Scaling by
610
- * powers of the radix does not cause rounding errors unless the
611
- * result underflows or overflows. Rounding errors during scaling
612
- * lead to refining with a matrix that is not equivalent to the
613
- * input matrix, producing error estimates that may not be
614
- * reliable.
615
- *
616
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
617
- * The right hand side matrix B.
618
- *
619
- * LDB (input) INTEGER
620
- * The leading dimension of the array B. LDB >= max(1,N).
621
- *
622
- * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
623
- * On entry, the solution matrix X, as computed by DGETRS.
624
- * On exit, the improved solution matrix X.
625
- *
626
- * LDX (input) INTEGER
627
- * The leading dimension of the array X. LDX >= max(1,N).
628
- *
629
- * RCOND (output) DOUBLE PRECISION
630
- * Reciprocal scaled condition number. This is an estimate of the
631
- * reciprocal Skeel condition number of the matrix A after
632
- * equilibration (if done). If this is less than the machine
633
- * precision (in particular, if it is zero), the matrix is singular
634
- * to working precision. Note that the error may still be small even
635
- * if this number is very small and the matrix appears ill-
636
- * conditioned.
637
- *
638
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
639
- * Componentwise relative backward error. This is the
640
- * componentwise relative backward error of each solution vector X(j)
641
- * (i.e., the smallest relative change in any element of A or B that
642
- * makes X(j) an exact solution).
643
- *
644
- * N_ERR_BNDS (input) INTEGER
645
- * Number of error bounds to return for each right hand side
646
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
647
- * ERR_BNDS_COMP below.
648
- *
649
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
650
- * For each right-hand side, this array contains information about
651
- * various error bounds and condition numbers corresponding to the
652
- * normwise relative error, which is defined as follows:
653
- *
654
- * Normwise relative error in the ith solution vector:
655
- * max_j (abs(XTRUE(j,i) - X(j,i)))
656
- * ------------------------------
657
- * max_j abs(X(j,i))
658
- *
659
- * The array is indexed by the type of error information as described
660
- * below. There currently are up to three pieces of information
661
- * returned.
662
- *
663
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
664
- * right-hand side.
665
- *
666
- * The second index in ERR_BNDS_NORM(:,err) contains the following
667
- * three fields:
668
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
669
- * reciprocal condition number is less than the threshold
670
- * sqrt(n) * dlamch('Epsilon').
671
- *
672
- * err = 2 "Guaranteed" error bound: The estimated forward error,
673
- * almost certainly within a factor of 10 of the true error
674
- * so long as the next entry is greater than the threshold
675
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
676
- * be trusted if the previous boolean is true.
677
- *
678
- * err = 3 Reciprocal condition number: Estimated normwise
679
- * reciprocal condition number. Compared with the threshold
680
- * sqrt(n) * dlamch('Epsilon') to determine if the error
681
- * estimate is "guaranteed". These reciprocal condition
682
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
683
- * appropriately scaled matrix Z.
684
- * Let Z = S*A, where S scales each row by a power of the
685
- * radix so all absolute row sums of Z are approximately 1.
686
- *
687
- * See Lapack Working Note 165 for further details and extra
688
- * cautions.
689
- *
690
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
691
- * For each right-hand side, this array contains information about
692
- * various error bounds and condition numbers corresponding to the
693
- * componentwise relative error, which is defined as follows:
694
- *
695
- * Componentwise relative error in the ith solution vector:
696
- * abs(XTRUE(j,i) - X(j,i))
697
- * max_j ----------------------
698
- * abs(X(j,i))
699
- *
700
- * The array is indexed by the right-hand side i (on which the
701
- * componentwise relative error depends), and the type of error
702
- * information as described below. There currently are up to three
703
- * pieces of information returned for each right-hand side. If
704
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
705
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
706
- * the first (:,N_ERR_BNDS) entries are returned.
707
- *
708
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
709
- * right-hand side.
710
- *
711
- * The second index in ERR_BNDS_COMP(:,err) contains the following
712
- * three fields:
713
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
714
- * reciprocal condition number is less than the threshold
715
- * sqrt(n) * dlamch('Epsilon').
716
- *
717
- * err = 2 "Guaranteed" error bound: The estimated forward error,
718
- * almost certainly within a factor of 10 of the true error
719
- * so long as the next entry is greater than the threshold
720
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
721
- * be trusted if the previous boolean is true.
722
- *
723
- * err = 3 Reciprocal condition number: Estimated componentwise
724
- * reciprocal condition number. Compared with the threshold
725
- * sqrt(n) * dlamch('Epsilon') to determine if the error
726
- * estimate is "guaranteed". These reciprocal condition
727
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
728
- * appropriately scaled matrix Z.
729
- * Let Z = S*(A*diag(x)), where x is the solution for the
730
- * current right-hand side and S scales each row of
731
- * A*diag(x) by a power of the radix so all absolute row
732
- * sums of Z are approximately 1.
733
- *
734
- * See Lapack Working Note 165 for further details and extra
735
- * cautions.
736
- *
737
- * NPARAMS (input) INTEGER
738
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
739
- * PARAMS array is never referenced and default values are used.
740
- *
741
- * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
742
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
743
- * that entry will be filled with default value used for that
744
- * parameter. Only positions up to NPARAMS are accessed; defaults
745
- * are used for higher-numbered parameters.
746
- *
747
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
748
- * refinement or not.
749
- * Default: 1.0D+0
750
- * = 0.0 : No refinement is performed, and no error bounds are
751
- * computed.
752
- * = 1.0 : Use the double-precision refinement algorithm,
753
- * possibly with doubled-single computations if the
754
- * compilation environment does not support DOUBLE
755
- * PRECISION.
756
- * (other values are reserved for future use)
757
- *
758
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
759
- * computations allowed for refinement.
760
- * Default: 10
761
- * Aggressive: Set to 100 to permit convergence using approximate
762
- * factorizations or factorizations other than LU. If
763
- * the factorization uses a technique other than
764
- * Gaussian elimination, the guarantees in
765
- * err_bnds_norm and err_bnds_comp may no longer be
766
- * trustworthy.
767
- *
768
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
769
- * will attempt to find a solution with small componentwise
770
- * relative error in the double-precision algorithm. Positive
771
- * is true, 0.0 is false.
772
- * Default: 1.0 (attempt componentwise convergence)
773
- *
774
- * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
775
- *
776
- * IWORK (workspace) INTEGER array, dimension (N)
777
- *
778
- * INFO (output) INTEGER
779
- * = 0: Successful exit. The solution to every right-hand side is
780
- * guaranteed.
781
- * < 0: If INFO = -i, the i-th argument had an illegal value
782
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
783
- * has been completed, but the factor U is exactly singular, so
784
- * the solution and error bounds could not be computed. RCOND = 0
785
- * is returned.
786
- * = N+J: The solution corresponding to the Jth right-hand side is
787
- * not guaranteed. The solutions corresponding to other right-
788
- * hand sides K with K > J may not be guaranteed as well, but
789
- * only the first such right-hand side is reported. If a small
790
- * componentwise error is not requested (PARAMS(3) = 0.0) then
791
- * the Jth right-hand side is the first with a normwise error
792
- * bound that is not guaranteed (the smallest J such
793
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
794
- * the Jth right-hand side is the first with either a normwise or
795
- * componentwise error bound that is not guaranteed (the smallest
796
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
797
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
798
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
799
- * about all of the right-hand sides check ERR_BNDS_NORM or
800
- * ERR_BNDS_COMP.
801
- *
802
-
803
- * ==================================================================
804
- *
805
-
806
-
807
- </PRE>
808
- <A HREF="#top">go to the page top</A>
809
-
810
- <A NAME="dgbsv"></A>
811
- <H2>dgbsv</H2>
812
- <PRE>
813
- USAGE:
814
- ipiv, info, ab, b = NumRu::Lapack.dgbsv( kl, ku, ab, b, [:usage => usage, :help => help])
815
-
816
-
817
- FORTRAN MANUAL
818
- SUBROUTINE DGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
819
-
820
- * Purpose
821
- * =======
822
- *
823
- * DGBSV computes the solution to a real system of linear equations
824
- * A * X = B, where A is a band matrix of order N with KL subdiagonals
825
- * and KU superdiagonals, and X and B are N-by-NRHS matrices.
826
- *
827
- * The LU decomposition with partial pivoting and row interchanges is
828
- * used to factor A as A = L * U, where L is a product of permutation
829
- * and unit lower triangular matrices with KL subdiagonals, and U is
830
- * upper triangular with KL+KU superdiagonals. The factored form of A
831
- * is then used to solve the system of equations A * X = B.
832
- *
833
-
834
- * Arguments
835
- * =========
836
- *
837
- * N (input) INTEGER
838
- * The number of linear equations, i.e., the order of the
839
- * matrix A. N >= 0.
840
- *
841
- * KL (input) INTEGER
842
- * The number of subdiagonals within the band of A. KL >= 0.
843
- *
844
- * KU (input) INTEGER
845
- * The number of superdiagonals within the band of A. KU >= 0.
846
- *
847
- * NRHS (input) INTEGER
848
- * The number of right hand sides, i.e., the number of columns
849
- * of the matrix B. NRHS >= 0.
850
- *
851
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
852
- * On entry, the matrix A in band storage, in rows KL+1 to
853
- * 2*KL+KU+1; rows 1 to KL of the array need not be set.
854
- * The j-th column of A is stored in the j-th column of the
855
- * array AB as follows:
856
- * AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
857
- * On exit, details of the factorization: U is stored as an
858
- * upper triangular band matrix with KL+KU superdiagonals in
859
- * rows 1 to KL+KU+1, and the multipliers used during the
860
- * factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
861
- * See below for further details.
862
- *
863
- * LDAB (input) INTEGER
864
- * The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
865
- *
866
- * IPIV (output) INTEGER array, dimension (N)
867
- * The pivot indices that define the permutation matrix P;
868
- * row i of the matrix was interchanged with row IPIV(i).
869
- *
870
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
871
- * On entry, the N-by-NRHS right hand side matrix B.
872
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
873
- *
874
- * LDB (input) INTEGER
875
- * The leading dimension of the array B. LDB >= max(1,N).
876
- *
877
- * INFO (output) INTEGER
878
- * = 0: successful exit
879
- * < 0: if INFO = -i, the i-th argument had an illegal value
880
- * > 0: if INFO = i, U(i,i) is exactly zero. The factorization
881
- * has been completed, but the factor U is exactly
882
- * singular, and the solution has not been computed.
883
- *
884
-
885
- * Further Details
886
- * ===============
887
- *
888
- * The band storage scheme is illustrated by the following example, when
889
- * M = N = 6, KL = 2, KU = 1:
890
- *
891
- * On entry: On exit:
892
- *
893
- * * * * + + + * * * u14 u25 u36
894
- * * * + + + + * * u13 u24 u35 u46
895
- * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
896
- * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
897
- * a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
898
- * a31 a42 a53 a64 * * m31 m42 m53 m64 * *
899
- *
900
- * Array elements marked * are not used by the routine; elements marked
901
- * + need not be set on entry, but are required by the routine to store
902
- * elements of U because of fill-in resulting from the row interchanges.
903
- *
904
- * =====================================================================
905
- *
906
- * .. External Subroutines ..
907
- EXTERNAL DGBTRF, DGBTRS, XERBLA
908
- * ..
909
- * .. Intrinsic Functions ..
910
- INTRINSIC MAX
911
- * ..
912
-
913
-
914
- </PRE>
915
- <A HREF="#top">go to the page top</A>
916
-
917
- <A NAME="dgbsvx"></A>
918
- <H2>dgbsvx</H2>
919
- <PRE>
920
- USAGE:
921
- x, rcond, ferr, berr, work, info, ab, afb, ipiv, equed, r, c, b = NumRu::Lapack.dgbsvx( fact, trans, kl, ku, ab, b, [:afb => afb, :ipiv => ipiv, :equed => equed, :r => r, :c => c, :usage => usage, :help => help])
922
-
923
-
924
- FORTRAN MANUAL
925
- SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
926
-
927
- * Purpose
928
- * =======
929
- *
930
- * DGBSVX uses the LU factorization to compute the solution to a real
931
- * system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
932
- * where A is a band matrix of order N with KL subdiagonals and KU
933
- * superdiagonals, and X and B are N-by-NRHS matrices.
934
- *
935
- * Error bounds on the solution and a condition estimate are also
936
- * provided.
937
- *
938
- * Description
939
- * ===========
940
- *
941
- * The following steps are performed by this subroutine:
942
- *
943
- * 1. If FACT = 'E', real scaling factors are computed to equilibrate
944
- * the system:
945
- * TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
946
- * TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
947
- * TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
948
- * Whether or not the system will be equilibrated depends on the
949
- * scaling of the matrix A, but if equilibration is used, A is
950
- * overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
951
- * or diag(C)*B (if TRANS = 'T' or 'C').
952
- *
953
- * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
954
- * matrix A (after equilibration if FACT = 'E') as
955
- * A = L * U,
956
- * where L is a product of permutation and unit lower triangular
957
- * matrices with KL subdiagonals, and U is upper triangular with
958
- * KL+KU superdiagonals.
959
- *
960
- * 3. If some U(i,i)=0, so that U is exactly singular, then the routine
961
- * returns with INFO = i. Otherwise, the factored form of A is used
962
- * to estimate the condition number of the matrix A. If the
963
- * reciprocal of the condition number is less than machine precision,
964
- * INFO = N+1 is returned as a warning, but the routine still goes on
965
- * to solve for X and compute error bounds as described below.
966
- *
967
- * 4. The system of equations is solved for X using the factored form
968
- * of A.
969
- *
970
- * 5. Iterative refinement is applied to improve the computed solution
971
- * matrix and calculate error bounds and backward error estimates
972
- * for it.
973
- *
974
- * 6. If equilibration was used, the matrix X is premultiplied by
975
- * diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
976
- * that it solves the original system before equilibration.
977
- *
978
-
979
- * Arguments
980
- * =========
981
- *
982
- * FACT (input) CHARACTER*1
983
- * Specifies whether or not the factored form of the matrix A is
984
- * supplied on entry, and if not, whether the matrix A should be
985
- * equilibrated before it is factored.
986
- * = 'F': On entry, AFB and IPIV contain the factored form of
987
- * A. If EQUED is not 'N', the matrix A has been
988
- * equilibrated with scaling factors given by R and C.
989
- * AB, AFB, and IPIV are not modified.
990
- * = 'N': The matrix A will be copied to AFB and factored.
991
- * = 'E': The matrix A will be equilibrated if necessary, then
992
- * copied to AFB and factored.
993
- *
994
- * TRANS (input) CHARACTER*1
995
- * Specifies the form of the system of equations.
996
- * = 'N': A * X = B (No transpose)
997
- * = 'T': A**T * X = B (Transpose)
998
- * = 'C': A**H * X = B (Transpose)
999
- *
1000
- * N (input) INTEGER
1001
- * The number of linear equations, i.e., the order of the
1002
- * matrix A. N >= 0.
1003
- *
1004
- * KL (input) INTEGER
1005
- * The number of subdiagonals within the band of A. KL >= 0.
1006
- *
1007
- * KU (input) INTEGER
1008
- * The number of superdiagonals within the band of A. KU >= 0.
1009
- *
1010
- * NRHS (input) INTEGER
1011
- * The number of right hand sides, i.e., the number of columns
1012
- * of the matrices B and X. NRHS >= 0.
1013
- *
1014
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
1015
- * On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
1016
- * The j-th column of A is stored in the j-th column of the
1017
- * array AB as follows:
1018
- * AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
1019
- *
1020
- * If FACT = 'F' and EQUED is not 'N', then A must have been
1021
- * equilibrated by the scaling factors in R and/or C. AB is not
1022
- * modified if FACT = 'F' or 'N', or if FACT = 'E' and
1023
- * EQUED = 'N' on exit.
1024
- *
1025
- * On exit, if EQUED .ne. 'N', A is scaled as follows:
1026
- * EQUED = 'R': A := diag(R) * A
1027
- * EQUED = 'C': A := A * diag(C)
1028
- * EQUED = 'B': A := diag(R) * A * diag(C).
1029
- *
1030
- * LDAB (input) INTEGER
1031
- * The leading dimension of the array AB. LDAB >= KL+KU+1.
1032
- *
1033
- * AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
1034
- * If FACT = 'F', then AFB is an input argument and on entry
1035
- * contains details of the LU factorization of the band matrix
1036
- * A, as computed by DGBTRF. U is stored as an upper triangular
1037
- * band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
1038
- * and the multipliers used during the factorization are stored
1039
- * in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
1040
- * the factored form of the equilibrated matrix A.
1041
- *
1042
- * If FACT = 'N', then AFB is an output argument and on exit
1043
- * returns details of the LU factorization of A.
1044
- *
1045
- * If FACT = 'E', then AFB is an output argument and on exit
1046
- * returns details of the LU factorization of the equilibrated
1047
- * matrix A (see the description of AB for the form of the
1048
- * equilibrated matrix).
1049
- *
1050
- * LDAFB (input) INTEGER
1051
- * The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
1052
- *
1053
- * IPIV (input or output) INTEGER array, dimension (N)
1054
- * If FACT = 'F', then IPIV is an input argument and on entry
1055
- * contains the pivot indices from the factorization A = L*U
1056
- * as computed by DGBTRF; row i of the matrix was interchanged
1057
- * with row IPIV(i).
1058
- *
1059
- * If FACT = 'N', then IPIV is an output argument and on exit
1060
- * contains the pivot indices from the factorization A = L*U
1061
- * of the original matrix A.
1062
- *
1063
- * If FACT = 'E', then IPIV is an output argument and on exit
1064
- * contains the pivot indices from the factorization A = L*U
1065
- * of the equilibrated matrix A.
1066
- *
1067
- * EQUED (input or output) CHARACTER*1
1068
- * Specifies the form of equilibration that was done.
1069
- * = 'N': No equilibration (always true if FACT = 'N').
1070
- * = 'R': Row equilibration, i.e., A has been premultiplied by
1071
- * diag(R).
1072
- * = 'C': Column equilibration, i.e., A has been postmultiplied
1073
- * by diag(C).
1074
- * = 'B': Both row and column equilibration, i.e., A has been
1075
- * replaced by diag(R) * A * diag(C).
1076
- * EQUED is an input argument if FACT = 'F'; otherwise, it is an
1077
- * output argument.
1078
- *
1079
- * R (input or output) DOUBLE PRECISION array, dimension (N)
1080
- * The row scale factors for A. If EQUED = 'R' or 'B', A is
1081
- * multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
1082
- * is not accessed. R is an input argument if FACT = 'F';
1083
- * otherwise, R is an output argument. If FACT = 'F' and
1084
- * EQUED = 'R' or 'B', each element of R must be positive.
1085
- *
1086
- * C (input or output) DOUBLE PRECISION array, dimension (N)
1087
- * The column scale factors for A. If EQUED = 'C' or 'B', A is
1088
- * multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
1089
- * is not accessed. C is an input argument if FACT = 'F';
1090
- * otherwise, C is an output argument. If FACT = 'F' and
1091
- * EQUED = 'C' or 'B', each element of C must be positive.
1092
- *
1093
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1094
- * On entry, the right hand side matrix B.
1095
- * On exit,
1096
- * if EQUED = 'N', B is not modified;
1097
- * if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
1098
- * diag(R)*B;
1099
- * if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
1100
- * overwritten by diag(C)*B.
1101
- *
1102
- * LDB (input) INTEGER
1103
- * The leading dimension of the array B. LDB >= max(1,N).
1104
- *
1105
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1106
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
1107
- * to the original system of equations. Note that A and B are
1108
- * modified on exit if EQUED .ne. 'N', and the solution to the
1109
- * equilibrated system is inv(diag(C))*X if TRANS = 'N' and
1110
- * EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
1111
- * and EQUED = 'R' or 'B'.
1112
- *
1113
- * LDX (input) INTEGER
1114
- * The leading dimension of the array X. LDX >= max(1,N).
1115
- *
1116
- * RCOND (output) DOUBLE PRECISION
1117
- * The estimate of the reciprocal condition number of the matrix
1118
- * A after equilibration (if done). If RCOND is less than the
1119
- * machine precision (in particular, if RCOND = 0), the matrix
1120
- * is singular to working precision. This condition is
1121
- * indicated by a return code of INFO > 0.
1122
- *
1123
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1124
- * The estimated forward error bound for each solution vector
1125
- * X(j) (the j-th column of the solution matrix X).
1126
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1127
- * is an estimated upper bound for the magnitude of the largest
1128
- * element in (X(j) - XTRUE) divided by the magnitude of the
1129
- * largest element in X(j). The estimate is as reliable as
1130
- * the estimate for RCOND, and is almost always a slight
1131
- * overestimate of the true error.
1132
- *
1133
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1134
- * The componentwise relative backward error of each solution
1135
- * vector X(j) (i.e., the smallest relative change in
1136
- * any element of A or B that makes X(j) an exact solution).
1137
- *
1138
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (3*N)
1139
- * On exit, WORK(1) contains the reciprocal pivot growth
1140
- * factor norm(A)/norm(U). The "max absolute element" norm is
1141
- * used. If WORK(1) is much less than 1, then the stability
1142
- * of the LU factorization of the (equilibrated) matrix A
1143
- * could be poor. This also means that the solution X, condition
1144
- * estimator RCOND, and forward error bound FERR could be
1145
- * unreliable. If factorization fails with 0<INFO<=N, then
1146
- * WORK(1) contains the reciprocal pivot growth factor for the
1147
- * leading INFO columns of A.
1148
- *
1149
- * IWORK (workspace) INTEGER array, dimension (N)
1150
- *
1151
- * INFO (output) INTEGER
1152
- * = 0: successful exit
1153
- * < 0: if INFO = -i, the i-th argument had an illegal value
1154
- * > 0: if INFO = i, and i is
1155
- * <= N: U(i,i) is exactly zero. The factorization
1156
- * has been completed, but the factor U is exactly
1157
- * singular, so the solution and error bounds
1158
- * could not be computed. RCOND = 0 is returned.
1159
- * = N+1: U is nonsingular, but RCOND is less than machine
1160
- * precision, meaning that the matrix is singular
1161
- * to working precision. Nevertheless, the
1162
- * solution and error bounds are computed because
1163
- * there are a number of situations where the
1164
- * computed solution can be more accurate than the
1165
- * value of RCOND would suggest.
1166
- *
1167
-
1168
- * =====================================================================
1169
- *
1170
-
1171
-
1172
- </PRE>
1173
- <A HREF="#top">go to the page top</A>
1174
-
1175
- <A NAME="dgbsvxx"></A>
1176
- <H2>dgbsvxx</H2>
1177
- <PRE>
1178
- USAGE:
1179
- x, rcond, rpvgrw, berr, err_bnds_norm, err_bnds_comp, info, ab, afb, ipiv, equed, r, c, b, params = NumRu::Lapack.dgbsvxx( fact, trans, kl, ku, ab, afb, ipiv, equed, r, c, b, params, [:usage => usage, :help => help])
1180
-
1181
-
1182
- FORTRAN MANUAL
1183
- SUBROUTINE DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
1184
-
1185
- * Purpose
1186
- * =======
1187
- *
1188
- * DGBSVXX uses the LU factorization to compute the solution to a
1189
- * double precision system of linear equations A * X = B, where A is an
1190
- * N-by-N matrix and X and B are N-by-NRHS matrices.
1191
- *
1192
- * If requested, both normwise and maximum componentwise error bounds
1193
- * are returned. DGBSVXX will return a solution with a tiny
1194
- * guaranteed error (O(eps) where eps is the working machine
1195
- * precision) unless the matrix is very ill-conditioned, in which
1196
- * case a warning is returned. Relevant condition numbers also are
1197
- * calculated and returned.
1198
- *
1199
- * DGBSVXX accepts user-provided factorizations and equilibration
1200
- * factors; see the definitions of the FACT and EQUED options.
1201
- * Solving with refinement and using a factorization from a previous
1202
- * DGBSVXX call will also produce a solution with either O(eps)
1203
- * errors or warnings, but we cannot make that claim for general
1204
- * user-provided factorizations and equilibration factors if they
1205
- * differ from what DGBSVXX would itself produce.
1206
- *
1207
- * Description
1208
- * ===========
1209
- *
1210
- * The following steps are performed:
1211
- *
1212
- * 1. If FACT = 'E', double precision scaling factors are computed to equilibrate
1213
- * the system:
1214
- *
1215
- * TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
1216
- * TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
1217
- * TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
1218
- *
1219
- * Whether or not the system will be equilibrated depends on the
1220
- * scaling of the matrix A, but if equilibration is used, A is
1221
- * overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
1222
- * or diag(C)*B (if TRANS = 'T' or 'C').
1223
- *
1224
- * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
1225
- * the matrix A (after equilibration if FACT = 'E') as
1226
- *
1227
- * A = P * L * U,
1228
- *
1229
- * where P is a permutation matrix, L is a unit lower triangular
1230
- * matrix, and U is upper triangular.
1231
- *
1232
- * 3. If some U(i,i)=0, so that U is exactly singular, then the
1233
- * routine returns with INFO = i. Otherwise, the factored form of A
1234
- * is used to estimate the condition number of the matrix A (see
1235
- * argument RCOND). If the reciprocal of the condition number is less
1236
- * than machine precision, the routine still goes on to solve for X
1237
- * and compute error bounds as described below.
1238
- *
1239
- * 4. The system of equations is solved for X using the factored form
1240
- * of A.
1241
- *
1242
- * 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
1243
- * the routine will use iterative refinement to try to get a small
1244
- * error and error bounds. Refinement calculates the residual to at
1245
- * least twice the working precision.
1246
- *
1247
- * 6. If equilibration was used, the matrix X is premultiplied by
1248
- * diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
1249
- * that it solves the original system before equilibration.
1250
- *
1251
-
1252
- * Arguments
1253
- * =========
1254
- *
1255
- * Some optional parameters are bundled in the PARAMS array. These
1256
- * settings determine how refinement is performed, but often the
1257
- * defaults are acceptable. If the defaults are acceptable, users
1258
- * can pass NPARAMS = 0 which prevents the source code from accessing
1259
- * the PARAMS argument.
1260
- *
1261
- * FACT (input) CHARACTER*1
1262
- * Specifies whether or not the factored form of the matrix A is
1263
- * supplied on entry, and if not, whether the matrix A should be
1264
- * equilibrated before it is factored.
1265
- * = 'F': On entry, AF and IPIV contain the factored form of A.
1266
- * If EQUED is not 'N', the matrix A has been
1267
- * equilibrated with scaling factors given by R and C.
1268
- * A, AF, and IPIV are not modified.
1269
- * = 'N': The matrix A will be copied to AF and factored.
1270
- * = 'E': The matrix A will be equilibrated if necessary, then
1271
- * copied to AF and factored.
1272
- *
1273
- * TRANS (input) CHARACTER*1
1274
- * Specifies the form of the system of equations:
1275
- * = 'N': A * X = B (No transpose)
1276
- * = 'T': A**T * X = B (Transpose)
1277
- * = 'C': A**H * X = B (Conjugate Transpose = Transpose)
1278
- *
1279
- * N (input) INTEGER
1280
- * The number of linear equations, i.e., the order of the
1281
- * matrix A. N >= 0.
1282
- *
1283
- * KL (input) INTEGER
1284
- * The number of subdiagonals within the band of A. KL >= 0.
1285
- *
1286
- * KU (input) INTEGER
1287
- * The number of superdiagonals within the band of A. KU >= 0.
1288
- *
1289
- * NRHS (input) INTEGER
1290
- * The number of right hand sides, i.e., the number of columns
1291
- * of the matrices B and X. NRHS >= 0.
1292
- *
1293
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
1294
- * On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
1295
- * The j-th column of A is stored in the j-th column of the
1296
- * array AB as follows:
1297
- * AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
1298
- *
1299
- * If FACT = 'F' and EQUED is not 'N', then AB must have been
1300
- * equilibrated by the scaling factors in R and/or C. AB is not
1301
- * modified if FACT = 'F' or 'N', or if FACT = 'E' and
1302
- * EQUED = 'N' on exit.
1303
- *
1304
- * On exit, if EQUED .ne. 'N', A is scaled as follows:
1305
- * EQUED = 'R': A := diag(R) * A
1306
- * EQUED = 'C': A := A * diag(C)
1307
- * EQUED = 'B': A := diag(R) * A * diag(C).
1308
- *
1309
- * LDAB (input) INTEGER
1310
- * The leading dimension of the array AB. LDAB >= KL+KU+1.
1311
- *
1312
- * AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
1313
- * If FACT = 'F', then AFB is an input argument and on entry
1314
- * contains details of the LU factorization of the band matrix
1315
- * A, as computed by DGBTRF. U is stored as an upper triangular
1316
- * band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
1317
- * and the multipliers used during the factorization are stored
1318
- * in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
1319
- * the factored form of the equilibrated matrix A.
1320
- *
1321
- * If FACT = 'N', then AF is an output argument and on exit
1322
- * returns the factors L and U from the factorization A = P*L*U
1323
- * of the original matrix A.
1324
- *
1325
- * If FACT = 'E', then AF is an output argument and on exit
1326
- * returns the factors L and U from the factorization A = P*L*U
1327
- * of the equilibrated matrix A (see the description of A for
1328
- * the form of the equilibrated matrix).
1329
- *
1330
- * LDAFB (input) INTEGER
1331
- * The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
1332
- *
1333
- * IPIV (input or output) INTEGER array, dimension (N)
1334
- * If FACT = 'F', then IPIV is an input argument and on entry
1335
- * contains the pivot indices from the factorization A = P*L*U
1336
- * as computed by DGETRF; row i of the matrix was interchanged
1337
- * with row IPIV(i).
1338
- *
1339
- * If FACT = 'N', then IPIV is an output argument and on exit
1340
- * contains the pivot indices from the factorization A = P*L*U
1341
- * of the original matrix A.
1342
- *
1343
- * If FACT = 'E', then IPIV is an output argument and on exit
1344
- * contains the pivot indices from the factorization A = P*L*U
1345
- * of the equilibrated matrix A.
1346
- *
1347
- * EQUED (input or output) CHARACTER*1
1348
- * Specifies the form of equilibration that was done.
1349
- * = 'N': No equilibration (always true if FACT = 'N').
1350
- * = 'R': Row equilibration, i.e., A has been premultiplied by
1351
- * diag(R).
1352
- * = 'C': Column equilibration, i.e., A has been postmultiplied
1353
- * by diag(C).
1354
- * = 'B': Both row and column equilibration, i.e., A has been
1355
- * replaced by diag(R) * A * diag(C).
1356
- * EQUED is an input argument if FACT = 'F'; otherwise, it is an
1357
- * output argument.
1358
- *
1359
- * R (input or output) DOUBLE PRECISION array, dimension (N)
1360
- * The row scale factors for A. If EQUED = 'R' or 'B', A is
1361
- * multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
1362
- * is not accessed. R is an input argument if FACT = 'F';
1363
- * otherwise, R is an output argument. If FACT = 'F' and
1364
- * EQUED = 'R' or 'B', each element of R must be positive.
1365
- * If R is output, each element of R is a power of the radix.
1366
- * If R is input, each element of R should be a power of the radix
1367
- * to ensure a reliable solution and error estimates. Scaling by
1368
- * powers of the radix does not cause rounding errors unless the
1369
- * result underflows or overflows. Rounding errors during scaling
1370
- * lead to refining with a matrix that is not equivalent to the
1371
- * input matrix, producing error estimates that may not be
1372
- * reliable.
1373
- *
1374
- * C (input or output) DOUBLE PRECISION array, dimension (N)
1375
- * The column scale factors for A. If EQUED = 'C' or 'B', A is
1376
- * multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
1377
- * is not accessed. C is an input argument if FACT = 'F';
1378
- * otherwise, C is an output argument. If FACT = 'F' and
1379
- * EQUED = 'C' or 'B', each element of C must be positive.
1380
- * If C is output, each element of C is a power of the radix.
1381
- * If C is input, each element of C should be a power of the radix
1382
- * to ensure a reliable solution and error estimates. Scaling by
1383
- * powers of the radix does not cause rounding errors unless the
1384
- * result underflows or overflows. Rounding errors during scaling
1385
- * lead to refining with a matrix that is not equivalent to the
1386
- * input matrix, producing error estimates that may not be
1387
- * reliable.
1388
- *
1389
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1390
- * On entry, the N-by-NRHS right hand side matrix B.
1391
- * On exit,
1392
- * if EQUED = 'N', B is not modified;
1393
- * if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
1394
- * diag(R)*B;
1395
- * if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
1396
- * overwritten by diag(C)*B.
1397
- *
1398
- * LDB (input) INTEGER
1399
- * The leading dimension of the array B. LDB >= max(1,N).
1400
- *
1401
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1402
- * If INFO = 0, the N-by-NRHS solution matrix X to the original
1403
- * system of equations. Note that A and B are modified on exit
1404
- * if EQUED .ne. 'N', and the solution to the equilibrated system is
1405
- * inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
1406
- * inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
1407
- *
1408
- * LDX (input) INTEGER
1409
- * The leading dimension of the array X. LDX >= max(1,N).
1410
- *
1411
- * RCOND (output) DOUBLE PRECISION
1412
- * Reciprocal scaled condition number. This is an estimate of the
1413
- * reciprocal Skeel condition number of the matrix A after
1414
- * equilibration (if done). If this is less than the machine
1415
- * precision (in particular, if it is zero), the matrix is singular
1416
- * to working precision. Note that the error may still be small even
1417
- * if this number is very small and the matrix appears ill-
1418
- * conditioned.
1419
- *
1420
- * RPVGRW (output) DOUBLE PRECISION
1421
- * Reciprocal pivot growth. On exit, this contains the reciprocal
1422
- * pivot growth factor norm(A)/norm(U). The "max absolute element"
1423
- * norm is used. If this is much less than 1, then the stability of
1424
- * the LU factorization of the (equilibrated) matrix A could be poor.
1425
- * This also means that the solution X, estimated condition numbers,
1426
- * and error bounds could be unreliable. If factorization fails with
1427
- * 0<INFO<=N, then this contains the reciprocal pivot growth factor
1428
- * for the leading INFO columns of A. In DGESVX, this quantity is
1429
- * returned in WORK(1).
1430
- *
1431
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1432
- * Componentwise relative backward error. This is the
1433
- * componentwise relative backward error of each solution vector X(j)
1434
- * (i.e., the smallest relative change in any element of A or B that
1435
- * makes X(j) an exact solution).
1436
- *
1437
- * N_ERR_BNDS (input) INTEGER
1438
- * Number of error bounds to return for each right hand side
1439
- * and each type (normwise or componentwise). See ERR_BNDS_NORM and
1440
- * ERR_BNDS_COMP below.
1441
- *
1442
- * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1443
- * For each right-hand side, this array contains information about
1444
- * various error bounds and condition numbers corresponding to the
1445
- * normwise relative error, which is defined as follows:
1446
- *
1447
- * Normwise relative error in the ith solution vector:
1448
- * max_j (abs(XTRUE(j,i) - X(j,i)))
1449
- * ------------------------------
1450
- * max_j abs(X(j,i))
1451
- *
1452
- * The array is indexed by the type of error information as described
1453
- * below. There currently are up to three pieces of information
1454
- * returned.
1455
- *
1456
- * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
1457
- * right-hand side.
1458
- *
1459
- * The second index in ERR_BNDS_NORM(:,err) contains the following
1460
- * three fields:
1461
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1462
- * reciprocal condition number is less than the threshold
1463
- * sqrt(n) * dlamch('Epsilon').
1464
- *
1465
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1466
- * almost certainly within a factor of 10 of the true error
1467
- * so long as the next entry is greater than the threshold
1468
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1469
- * be trusted if the previous boolean is true.
1470
- *
1471
- * err = 3 Reciprocal condition number: Estimated normwise
1472
- * reciprocal condition number. Compared with the threshold
1473
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1474
- * estimate is "guaranteed". These reciprocal condition
1475
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1476
- * appropriately scaled matrix Z.
1477
- * Let Z = S*A, where S scales each row by a power of the
1478
- * radix so all absolute row sums of Z are approximately 1.
1479
- *
1480
- * See Lapack Working Note 165 for further details and extra
1481
- * cautions.
1482
- *
1483
- * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1484
- * For each right-hand side, this array contains information about
1485
- * various error bounds and condition numbers corresponding to the
1486
- * componentwise relative error, which is defined as follows:
1487
- *
1488
- * Componentwise relative error in the ith solution vector:
1489
- * abs(XTRUE(j,i) - X(j,i))
1490
- * max_j ----------------------
1491
- * abs(X(j,i))
1492
- *
1493
- * The array is indexed by the right-hand side i (on which the
1494
- * componentwise relative error depends), and the type of error
1495
- * information as described below. There currently are up to three
1496
- * pieces of information returned for each right-hand side. If
1497
- * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1498
- * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
1499
- * the first (:,N_ERR_BNDS) entries are returned.
1500
- *
1501
- * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
1502
- * right-hand side.
1503
- *
1504
- * The second index in ERR_BNDS_COMP(:,err) contains the following
1505
- * three fields:
1506
- * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1507
- * reciprocal condition number is less than the threshold
1508
- * sqrt(n) * dlamch('Epsilon').
1509
- *
1510
- * err = 2 "Guaranteed" error bound: The estimated forward error,
1511
- * almost certainly within a factor of 10 of the true error
1512
- * so long as the next entry is greater than the threshold
1513
- * sqrt(n) * dlamch('Epsilon'). This error bound should only
1514
- * be trusted if the previous boolean is true.
1515
- *
1516
- * err = 3 Reciprocal condition number: Estimated componentwise
1517
- * reciprocal condition number. Compared with the threshold
1518
- * sqrt(n) * dlamch('Epsilon') to determine if the error
1519
- * estimate is "guaranteed". These reciprocal condition
1520
- * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1521
- * appropriately scaled matrix Z.
1522
- * Let Z = S*(A*diag(x)), where x is the solution for the
1523
- * current right-hand side and S scales each row of
1524
- * A*diag(x) by a power of the radix so all absolute row
1525
- * sums of Z are approximately 1.
1526
- *
1527
- * See Lapack Working Note 165 for further details and extra
1528
- * cautions.
1529
- *
1530
- * NPARAMS (input) INTEGER
1531
- * Specifies the number of parameters set in PARAMS. If .LE. 0, the
1532
- * PARAMS array is never referenced and default values are used.
1533
- *
1534
- * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
1535
- * Specifies algorithm parameters. If an entry is .LT. 0.0, then
1536
- * that entry will be filled with default value used for that
1537
- * parameter. Only positions up to NPARAMS are accessed; defaults
1538
- * are used for higher-numbered parameters.
1539
- *
1540
- * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
1541
- * refinement or not.
1542
- * Default: 1.0D+0
1543
- * = 0.0 : No refinement is performed, and no error bounds are
1544
- * computed.
1545
- * = 1.0 : Use the extra-precise refinement algorithm.
1546
- * (other values are reserved for future use)
1547
- *
1548
- * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
1549
- * computations allowed for refinement.
1550
- * Default: 10
1551
- * Aggressive: Set to 100 to permit convergence using approximate
1552
- * factorizations or factorizations other than LU. If
1553
- * the factorization uses a technique other than
1554
- * Gaussian elimination, the guarantees in
1555
- * err_bnds_norm and err_bnds_comp may no longer be
1556
- * trustworthy.
1557
- *
1558
- * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
1559
- * will attempt to find a solution with small componentwise
1560
- * relative error in the double-precision algorithm. Positive
1561
- * is true, 0.0 is false.
1562
- * Default: 1.0 (attempt componentwise convergence)
1563
- *
1564
- * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
1565
- *
1566
- * IWORK (workspace) INTEGER array, dimension (N)
1567
- *
1568
- * INFO (output) INTEGER
1569
- * = 0: Successful exit. The solution to every right-hand side is
1570
- * guaranteed.
1571
- * < 0: If INFO = -i, the i-th argument had an illegal value
1572
- * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
1573
- * has been completed, but the factor U is exactly singular, so
1574
- * the solution and error bounds could not be computed. RCOND = 0
1575
- * is returned.
1576
- * = N+J: The solution corresponding to the Jth right-hand side is
1577
- * not guaranteed. The solutions corresponding to other right-
1578
- * hand sides K with K > J may not be guaranteed as well, but
1579
- * only the first such right-hand side is reported. If a small
1580
- * componentwise error is not requested (PARAMS(3) = 0.0) then
1581
- * the Jth right-hand side is the first with a normwise error
1582
- * bound that is not guaranteed (the smallest J such
1583
- * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
1584
- * the Jth right-hand side is the first with either a normwise or
1585
- * componentwise error bound that is not guaranteed (the smallest
1586
- * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
1587
- * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
1588
- * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
1589
- * about all of the right-hand sides check ERR_BNDS_NORM or
1590
- * ERR_BNDS_COMP.
1591
- *
1592
-
1593
- * ==================================================================
1594
- *
1595
-
1596
-
1597
- </PRE>
1598
- <A HREF="#top">go to the page top</A>
1599
-
1600
- <A NAME="dgbtf2"></A>
1601
- <H2>dgbtf2</H2>
1602
- <PRE>
1603
- USAGE:
1604
- ipiv, info, ab = NumRu::Lapack.dgbtf2( m, kl, ku, ab, [:usage => usage, :help => help])
1605
-
1606
-
1607
- FORTRAN MANUAL
1608
- SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
1609
-
1610
- * Purpose
1611
- * =======
1612
- *
1613
- * DGBTF2 computes an LU factorization of a real m-by-n band matrix A
1614
- * using partial pivoting with row interchanges.
1615
- *
1616
- * This is the unblocked version of the algorithm, calling Level 2 BLAS.
1617
- *
1618
-
1619
- * Arguments
1620
- * =========
1621
- *
1622
- * M (input) INTEGER
1623
- * The number of rows of the matrix A. M >= 0.
1624
- *
1625
- * N (input) INTEGER
1626
- * The number of columns of the matrix A. N >= 0.
1627
- *
1628
- * KL (input) INTEGER
1629
- * The number of subdiagonals within the band of A. KL >= 0.
1630
- *
1631
- * KU (input) INTEGER
1632
- * The number of superdiagonals within the band of A. KU >= 0.
1633
- *
1634
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
1635
- * On entry, the matrix A in band storage, in rows KL+1 to
1636
- * 2*KL+KU+1; rows 1 to KL of the array need not be set.
1637
- * The j-th column of A is stored in the j-th column of the
1638
- * array AB as follows:
1639
- * AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
1640
- *
1641
- * On exit, details of the factorization: U is stored as an
1642
- * upper triangular band matrix with KL+KU superdiagonals in
1643
- * rows 1 to KL+KU+1, and the multipliers used during the
1644
- * factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
1645
- * See below for further details.
1646
- *
1647
- * LDAB (input) INTEGER
1648
- * The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
1649
- *
1650
- * IPIV (output) INTEGER array, dimension (min(M,N))
1651
- * The pivot indices; for 1 <= i <= min(M,N), row i of the
1652
- * matrix was interchanged with row IPIV(i).
1653
- *
1654
- * INFO (output) INTEGER
1655
- * = 0: successful exit
1656
- * < 0: if INFO = -i, the i-th argument had an illegal value
1657
- * > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
1658
- * has been completed, but the factor U is exactly
1659
- * singular, and division by zero will occur if it is used
1660
- * to solve a system of equations.
1661
- *
1662
-
1663
- * Further Details
1664
- * ===============
1665
- *
1666
- * The band storage scheme is illustrated by the following example, when
1667
- * M = N = 6, KL = 2, KU = 1:
1668
- *
1669
- * On entry: On exit:
1670
- *
1671
- * * * * + + + * * * u14 u25 u36
1672
- * * * + + + + * * u13 u24 u35 u46
1673
- * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
1674
- * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
1675
- * a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
1676
- * a31 a42 a53 a64 * * m31 m42 m53 m64 * *
1677
- *
1678
- * Array elements marked * are not used by the routine; elements marked
1679
- * + need not be set on entry, but are required by the routine to store
1680
- * elements of U, because of fill-in resulting from the row
1681
- * interchanges.
1682
- *
1683
- * =====================================================================
1684
- *
1685
-
1686
-
1687
- </PRE>
1688
- <A HREF="#top">go to the page top</A>
1689
-
1690
- <A NAME="dgbtrf"></A>
1691
- <H2>dgbtrf</H2>
1692
- <PRE>
1693
- USAGE:
1694
- ipiv, info, ab = NumRu::Lapack.dgbtrf( m, kl, ku, ab, [:usage => usage, :help => help])
1695
-
1696
-
1697
- FORTRAN MANUAL
1698
- SUBROUTINE DGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
1699
-
1700
- * Purpose
1701
- * =======
1702
- *
1703
- * DGBTRF computes an LU factorization of a real m-by-n band matrix A
1704
- * using partial pivoting with row interchanges.
1705
- *
1706
- * This is the blocked version of the algorithm, calling Level 3 BLAS.
1707
- *
1708
-
1709
- * Arguments
1710
- * =========
1711
- *
1712
- * M (input) INTEGER
1713
- * The number of rows of the matrix A. M >= 0.
1714
- *
1715
- * N (input) INTEGER
1716
- * The number of columns of the matrix A. N >= 0.
1717
- *
1718
- * KL (input) INTEGER
1719
- * The number of subdiagonals within the band of A. KL >= 0.
1720
- *
1721
- * KU (input) INTEGER
1722
- * The number of superdiagonals within the band of A. KU >= 0.
1723
- *
1724
- * AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
1725
- * On entry, the matrix A in band storage, in rows KL+1 to
1726
- * 2*KL+KU+1; rows 1 to KL of the array need not be set.
1727
- * The j-th column of A is stored in the j-th column of the
1728
- * array AB as follows:
1729
- * AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
1730
- *
1731
- * On exit, details of the factorization: U is stored as an
1732
- * upper triangular band matrix with KL+KU superdiagonals in
1733
- * rows 1 to KL+KU+1, and the multipliers used during the
1734
- * factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
1735
- * See below for further details.
1736
- *
1737
- * LDAB (input) INTEGER
1738
- * The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
1739
- *
1740
- * IPIV (output) INTEGER array, dimension (min(M,N))
1741
- * The pivot indices; for 1 <= i <= min(M,N), row i of the
1742
- * matrix was interchanged with row IPIV(i).
1743
- *
1744
- * INFO (output) INTEGER
1745
- * = 0: successful exit
1746
- * < 0: if INFO = -i, the i-th argument had an illegal value
1747
- * > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
1748
- * has been completed, but the factor U is exactly
1749
- * singular, and division by zero will occur if it is used
1750
- * to solve a system of equations.
1751
- *
1752
-
1753
- * Further Details
1754
- * ===============
1755
- *
1756
- * The band storage scheme is illustrated by the following example, when
1757
- * M = N = 6, KL = 2, KU = 1:
1758
- *
1759
- * On entry: On exit:
1760
- *
1761
- * * * * + + + * * * u14 u25 u36
1762
- * * * + + + + * * u13 u24 u35 u46
1763
- * * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
1764
- * a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
1765
- * a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
1766
- * a31 a42 a53 a64 * * m31 m42 m53 m64 * *
1767
- *
1768
- * Array elements marked * are not used by the routine; elements marked
1769
- * + need not be set on entry, but are required by the routine to store
1770
- * elements of U because of fill-in resulting from the row interchanges.
1771
- *
1772
- * =====================================================================
1773
- *
1774
-
1775
-
1776
- </PRE>
1777
- <A HREF="#top">go to the page top</A>
1778
-
1779
- <A NAME="dgbtrs"></A>
1780
- <H2>dgbtrs</H2>
1781
- <PRE>
1782
- USAGE:
1783
- info, b = NumRu::Lapack.dgbtrs( trans, kl, ku, ab, ipiv, b, [:usage => usage, :help => help])
1784
-
1785
-
1786
- FORTRAN MANUAL
1787
- SUBROUTINE DGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
1788
-
1789
- * Purpose
1790
- * =======
1791
- *
1792
- * DGBTRS solves a system of linear equations
1793
- * A * X = B or A' * X = B
1794
- * with a general band matrix A using the LU factorization computed
1795
- * by DGBTRF.
1796
- *
1797
-
1798
- * Arguments
1799
- * =========
1800
- *
1801
- * TRANS (input) CHARACTER*1
1802
- * Specifies the form of the system of equations.
1803
- * = 'N': A * X = B (No transpose)
1804
- * = 'T': A'* X = B (Transpose)
1805
- * = 'C': A'* X = B (Conjugate transpose = Transpose)
1806
- *
1807
- * N (input) INTEGER
1808
- * The order of the matrix A. N >= 0.
1809
- *
1810
- * KL (input) INTEGER
1811
- * The number of subdiagonals within the band of A. KL >= 0.
1812
- *
1813
- * KU (input) INTEGER
1814
- * The number of superdiagonals within the band of A. KU >= 0.
1815
- *
1816
- * NRHS (input) INTEGER
1817
- * The number of right hand sides, i.e., the number of columns
1818
- * of the matrix B. NRHS >= 0.
1819
- *
1820
- * AB (input) DOUBLE PRECISION array, dimension (LDAB,N)
1821
- * Details of the LU factorization of the band matrix A, as
1822
- * computed by DGBTRF. U is stored as an upper triangular band
1823
- * matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
1824
- * the multipliers used during the factorization are stored in
1825
- * rows KL+KU+2 to 2*KL+KU+1.
1826
- *
1827
- * LDAB (input) INTEGER
1828
- * The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
1829
- *
1830
- * IPIV (input) INTEGER array, dimension (N)
1831
- * The pivot indices; for 1 <= i <= N, row i of the matrix was
1832
- * interchanged with row IPIV(i).
1833
- *
1834
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1835
- * On entry, the right hand side matrix B.
1836
- * On exit, the solution matrix X.
1837
- *
1838
- * LDB (input) INTEGER
1839
- * The leading dimension of the array B. LDB >= max(1,N).
1840
- *
1841
- * INFO (output) INTEGER
1842
- * = 0: successful exit
1843
- * < 0: if INFO = -i, the i-th argument had an illegal value
1844
- *
1845
-
1846
- * =====================================================================
1847
- *
1848
-
1849
-
1850
- </PRE>
1851
- <A HREF="#top">go to the page top</A>
1852
-
1853
- <HR />
1854
- <A HREF="d.html">back to matrix types</A><BR>
1855
- <A HREF="d.html">back to data types</A>
1856
- </BODY>
1857
- </HTML>