ruby-lapack 1.4.1a → 1.5

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1638) hide show
  1. data/Rakefile +1 -2
  2. data/ext/cbbcsd.c +34 -34
  3. data/ext/cbdsqr.c +20 -20
  4. data/ext/cgbbrd.c +12 -12
  5. data/ext/cgbcon.c +13 -13
  6. data/ext/cgbequ.c +3 -3
  7. data/ext/cgbequb.c +2 -2
  8. data/ext/cgbrfs.c +22 -22
  9. data/ext/cgbrfsx.c +43 -43
  10. data/ext/cgbsv.c +2 -2
  11. data/ext/cgbsvx.c +25 -25
  12. data/ext/cgbsvxx.c +36 -36
  13. data/ext/cgbtf2.c +3 -3
  14. data/ext/cgbtrf.c +3 -3
  15. data/ext/cgbtrs.c +11 -11
  16. data/ext/cgebak.c +11 -11
  17. data/ext/cgebal.c +1 -1
  18. data/ext/cgebd2.c +1 -1
  19. data/ext/cgebrd.c +1 -1
  20. data/ext/cgecon.c +1 -1
  21. data/ext/cgees.c +3 -3
  22. data/ext/cgeesx.c +4 -4
  23. data/ext/cgeev.c +4 -4
  24. data/ext/cgeevx.c +5 -5
  25. data/ext/cgegs.c +2 -2
  26. data/ext/cgegv.c +3 -3
  27. data/ext/cgehd2.c +1 -1
  28. data/ext/cgehrd.c +2 -2
  29. data/ext/cgelqf.c +6 -6
  30. data/ext/cgels.c +2 -2
  31. data/ext/cgelsd.c +9 -9
  32. data/ext/cgelss.c +2 -2
  33. data/ext/cgelsx.c +12 -12
  34. data/ext/cgelsy.c +12 -12
  35. data/ext/cgeql2.c +1 -1
  36. data/ext/cgeqlf.c +1 -1
  37. data/ext/cgeqp3.c +11 -11
  38. data/ext/cgeqpf.c +11 -11
  39. data/ext/cgeqr2.c +1 -1
  40. data/ext/cgeqr2p.c +1 -1
  41. data/ext/cgeqrf.c +1 -1
  42. data/ext/cgeqrfp.c +1 -1
  43. data/ext/cgerfs.c +31 -31
  44. data/ext/cgerfsx.c +25 -25
  45. data/ext/cgerqf.c +6 -6
  46. data/ext/cgesc2.c +13 -13
  47. data/ext/cgesdd.c +3 -3
  48. data/ext/cgesvd.c +4 -4
  49. data/ext/cgesvx.c +32 -32
  50. data/ext/cgesvxx.c +26 -26
  51. data/ext/cgetf2.c +1 -1
  52. data/ext/cgetrf.c +1 -1
  53. data/ext/cgetri.c +10 -10
  54. data/ext/cgetrs.c +10 -10
  55. data/ext/cggbak.c +11 -11
  56. data/ext/cggbal.c +11 -11
  57. data/ext/cgges.c +15 -15
  58. data/ext/cggesx.c +6 -6
  59. data/ext/cggev.c +3 -3
  60. data/ext/cggevx.c +5 -5
  61. data/ext/cgghrd.c +14 -14
  62. data/ext/cggqrf.c +9 -9
  63. data/ext/cggrqf.c +1 -1
  64. data/ext/cggsvd.c +3 -3
  65. data/ext/cggsvp.c +4 -4
  66. data/ext/cgtcon.c +20 -20
  67. data/ext/cgtrfs.c +48 -48
  68. data/ext/cgtsv.c +8 -8
  69. data/ext/cgtsvx.c +55 -55
  70. data/ext/cgttrs.c +19 -19
  71. data/ext/cgtts2.c +20 -20
  72. data/ext/chbev.c +3 -3
  73. data/ext/chbevd.c +9 -9
  74. data/ext/chbevx.c +7 -7
  75. data/ext/chbgst.c +15 -15
  76. data/ext/chbgv.c +15 -15
  77. data/ext/chbgvd.c +20 -20
  78. data/ext/chbgvx.c +9 -9
  79. data/ext/chbtrd.c +13 -13
  80. data/ext/checon.c +12 -12
  81. data/ext/cheequb.c +1 -1
  82. data/ext/cheev.c +2 -2
  83. data/ext/cheevd.c +7 -7
  84. data/ext/cheevr.c +12 -12
  85. data/ext/cheevx.c +7 -7
  86. data/ext/chegs2.c +2 -2
  87. data/ext/chegst.c +2 -2
  88. data/ext/chegv.c +13 -13
  89. data/ext/chegvd.c +18 -18
  90. data/ext/chegvx.c +19 -19
  91. data/ext/cherfs.c +31 -31
  92. data/ext/cherfsx.c +43 -43
  93. data/ext/chesv.c +10 -10
  94. data/ext/chesvx.c +15 -15
  95. data/ext/chesvxx.c +41 -41
  96. data/ext/chetd2.c +1 -1
  97. data/ext/chetf2.c +1 -1
  98. data/ext/chetrd.c +2 -2
  99. data/ext/chetrf.c +2 -2
  100. data/ext/chetri.c +1 -1
  101. data/ext/chetrs.c +10 -10
  102. data/ext/chetrs2.c +10 -10
  103. data/ext/chfrk.c +6 -6
  104. data/ext/chgeqz.c +27 -27
  105. data/ext/chpcon.c +1 -1
  106. data/ext/chpev.c +2 -2
  107. data/ext/chpevd.c +2 -2
  108. data/ext/chpevx.c +7 -7
  109. data/ext/chpgst.c +10 -10
  110. data/ext/chpgv.c +2 -2
  111. data/ext/chpgvd.c +11 -11
  112. data/ext/chpgvx.c +8 -8
  113. data/ext/chprfs.c +10 -10
  114. data/ext/chpsv.c +1 -1
  115. data/ext/chpsvx.c +20 -20
  116. data/ext/chptrd.c +1 -1
  117. data/ext/chptrf.c +1 -1
  118. data/ext/chptri.c +1 -1
  119. data/ext/chptrs.c +1 -1
  120. data/ext/chsein.c +21 -21
  121. data/ext/chseqr.c +4 -4
  122. data/ext/cla_gbamv.c +14 -14
  123. data/ext/cla_gbrcond_c.c +33 -33
  124. data/ext/cla_gbrcond_x.c +32 -32
  125. data/ext/cla_gbrfsx_extended.c +75 -75
  126. data/ext/cla_gbrpvgrw.c +13 -13
  127. data/ext/cla_geamv.c +6 -6
  128. data/ext/cla_gercond_c.c +31 -31
  129. data/ext/cla_gercond_x.c +30 -30
  130. data/ext/cla_gerfsx_extended.c +81 -81
  131. data/ext/cla_heamv.c +12 -12
  132. data/ext/cla_hercond_c.c +31 -31
  133. data/ext/cla_hercond_x.c +30 -30
  134. data/ext/cla_herfsx_extended.c +82 -82
  135. data/ext/cla_herpvgrw.c +14 -14
  136. data/ext/cla_lin_berr.c +14 -14
  137. data/ext/cla_porcond_c.c +23 -23
  138. data/ext/cla_porcond_x.c +22 -22
  139. data/ext/cla_porfsx_extended.c +74 -74
  140. data/ext/cla_porpvgrw.c +2 -2
  141. data/ext/cla_rpvgrw.c +12 -12
  142. data/ext/cla_syamv.c +13 -13
  143. data/ext/cla_syrcond_c.c +31 -31
  144. data/ext/cla_syrcond_x.c +30 -30
  145. data/ext/cla_syrfsx_extended.c +82 -82
  146. data/ext/cla_syrpvgrw.c +14 -14
  147. data/ext/cla_wwaddw.c +11 -11
  148. data/ext/clabrd.c +2 -2
  149. data/ext/clacn2.c +2 -2
  150. data/ext/clacp2.c +1 -1
  151. data/ext/clacpy.c +1 -1
  152. data/ext/clacrm.c +11 -11
  153. data/ext/clacrt.c +12 -12
  154. data/ext/claed7.c +42 -42
  155. data/ext/claed8.c +27 -27
  156. data/ext/claein.c +14 -14
  157. data/ext/clags2.c +5 -5
  158. data/ext/clagtm.c +21 -21
  159. data/ext/clahef.c +1 -1
  160. data/ext/clahqr.c +6 -6
  161. data/ext/clahr2.c +1 -1
  162. data/ext/clahrd.c +1 -1
  163. data/ext/claic1.c +12 -12
  164. data/ext/clals0.c +37 -37
  165. data/ext/clalsa.c +72 -72
  166. data/ext/clalsd.c +4 -4
  167. data/ext/clangb.c +3 -3
  168. data/ext/clange.c +1 -1
  169. data/ext/clangt.c +10 -10
  170. data/ext/clanhb.c +2 -2
  171. data/ext/clanhe.c +1 -1
  172. data/ext/clanhf.c +3 -3
  173. data/ext/clanhp.c +2 -2
  174. data/ext/clanhs.c +1 -1
  175. data/ext/clanht.c +1 -1
  176. data/ext/clansb.c +2 -2
  177. data/ext/clansp.c +2 -2
  178. data/ext/clansy.c +1 -1
  179. data/ext/clantb.c +3 -3
  180. data/ext/clantp.c +2 -2
  181. data/ext/clantr.c +3 -3
  182. data/ext/clapll.c +10 -10
  183. data/ext/clapmr.c +1 -1
  184. data/ext/clapmt.c +11 -11
  185. data/ext/claqgb.c +2 -2
  186. data/ext/claqge.c +10 -10
  187. data/ext/claqhb.c +2 -2
  188. data/ext/claqhe.c +12 -12
  189. data/ext/claqhp.c +2 -2
  190. data/ext/claqp2.c +10 -10
  191. data/ext/claqps.c +20 -20
  192. data/ext/claqr0.c +3 -3
  193. data/ext/claqr1.c +4 -4
  194. data/ext/claqr2.c +18 -18
  195. data/ext/claqr3.c +18 -18
  196. data/ext/claqr4.c +3 -3
  197. data/ext/claqr5.c +21 -21
  198. data/ext/claqsb.c +13 -13
  199. data/ext/claqsp.c +2 -2
  200. data/ext/claqsy.c +12 -12
  201. data/ext/clar1v.c +15 -15
  202. data/ext/clar2v.c +19 -19
  203. data/ext/clarf.c +2 -2
  204. data/ext/clarfb.c +16 -16
  205. data/ext/clarfg.c +1 -1
  206. data/ext/clarfgp.c +1 -1
  207. data/ext/clarft.c +2 -2
  208. data/ext/clarfx.c +3 -3
  209. data/ext/clargv.c +2 -2
  210. data/ext/clarnv.c +1 -1
  211. data/ext/clarrv.c +40 -40
  212. data/ext/clarscl2.c +8 -8
  213. data/ext/clartv.c +20 -20
  214. data/ext/clarz.c +11 -11
  215. data/ext/clarzb.c +14 -14
  216. data/ext/clarzt.c +2 -2
  217. data/ext/clascl.c +4 -4
  218. data/ext/clascl2.c +8 -8
  219. data/ext/claset.c +4 -4
  220. data/ext/clasr.c +2 -2
  221. data/ext/classq.c +2 -2
  222. data/ext/claswp.c +2 -2
  223. data/ext/clasyf.c +1 -1
  224. data/ext/clatbs.c +14 -14
  225. data/ext/clatdf.c +21 -21
  226. data/ext/clatps.c +12 -12
  227. data/ext/clatrd.c +1 -1
  228. data/ext/clatrs.c +15 -15
  229. data/ext/clatrz.c +1 -1
  230. data/ext/clatzm.c +3 -3
  231. data/ext/clauu2.c +1 -1
  232. data/ext/clauum.c +1 -1
  233. data/ext/cpbcon.c +3 -3
  234. data/ext/cpbequ.c +1 -1
  235. data/ext/cpbrfs.c +12 -12
  236. data/ext/cpbstf.c +1 -1
  237. data/ext/cpbsv.c +1 -1
  238. data/ext/cpbsvx.c +23 -23
  239. data/ext/cpbtf2.c +1 -1
  240. data/ext/cpbtrf.c +1 -1
  241. data/ext/cpbtrs.c +1 -1
  242. data/ext/cpftrf.c +2 -2
  243. data/ext/cpftri.c +2 -2
  244. data/ext/cpftrs.c +2 -2
  245. data/ext/cpocon.c +1 -1
  246. data/ext/cporfs.c +23 -23
  247. data/ext/cporfsx.c +22 -22
  248. data/ext/cposv.c +9 -9
  249. data/ext/cposvx.c +12 -12
  250. data/ext/cposvxx.c +20 -20
  251. data/ext/cpotf2.c +1 -1
  252. data/ext/cpotrf.c +1 -1
  253. data/ext/cpotri.c +1 -1
  254. data/ext/cpotrs.c +9 -9
  255. data/ext/cppcon.c +1 -1
  256. data/ext/cppequ.c +1 -1
  257. data/ext/cpprfs.c +20 -20
  258. data/ext/cppsv.c +1 -1
  259. data/ext/cppsvx.c +12 -12
  260. data/ext/cpptrf.c +1 -1
  261. data/ext/cpptri.c +1 -1
  262. data/ext/cpptrs.c +1 -1
  263. data/ext/cpstf2.c +2 -2
  264. data/ext/cpstrf.c +2 -2
  265. data/ext/cptcon.c +1 -1
  266. data/ext/cpteqr.c +10 -10
  267. data/ext/cptrfs.c +12 -12
  268. data/ext/cptsv.c +8 -8
  269. data/ext/cptsvx.c +19 -19
  270. data/ext/cpttrs.c +1 -1
  271. data/ext/cptts2.c +1 -1
  272. data/ext/crot.c +11 -11
  273. data/ext/cspcon.c +1 -1
  274. data/ext/cspmv.c +3 -3
  275. data/ext/cspr.c +11 -11
  276. data/ext/csprfs.c +10 -10
  277. data/ext/cspsv.c +1 -1
  278. data/ext/cspsvx.c +20 -20
  279. data/ext/csptrf.c +1 -1
  280. data/ext/csptri.c +1 -1
  281. data/ext/csptrs.c +1 -1
  282. data/ext/csrscl.c +2 -2
  283. data/ext/cstedc.c +10 -10
  284. data/ext/cstegr.c +18 -18
  285. data/ext/cstein.c +14 -14
  286. data/ext/cstemr.c +22 -22
  287. data/ext/csteqr.c +10 -10
  288. data/ext/csycon.c +12 -12
  289. data/ext/csyconv.c +12 -12
  290. data/ext/csyequb.c +1 -1
  291. data/ext/csymv.c +13 -13
  292. data/ext/csyr.c +4 -4
  293. data/ext/csyrfs.c +31 -31
  294. data/ext/csyrfsx.c +43 -43
  295. data/ext/csysv.c +10 -10
  296. data/ext/csysvx.c +15 -15
  297. data/ext/csysvxx.c +41 -41
  298. data/ext/csyswapr.c +2 -2
  299. data/ext/csytf2.c +1 -1
  300. data/ext/csytrf.c +2 -2
  301. data/ext/csytri.c +1 -1
  302. data/ext/csytri2.c +3 -3
  303. data/ext/csytri2x.c +2 -2
  304. data/ext/csytrs.c +10 -10
  305. data/ext/csytrs2.c +10 -10
  306. data/ext/ctbcon.c +3 -3
  307. data/ext/ctbrfs.c +14 -14
  308. data/ext/ctbtrs.c +2 -2
  309. data/ext/ctfsm.c +5 -5
  310. data/ext/ctftri.c +1 -1
  311. data/ext/ctfttp.c +1 -1
  312. data/ext/ctfttr.c +1 -1
  313. data/ext/ctgevc.c +32 -32
  314. data/ext/ctgex2.c +14 -14
  315. data/ext/ctgexc.c +25 -25
  316. data/ext/ctgsen.c +37 -37
  317. data/ext/ctgsja.c +26 -26
  318. data/ext/ctgsna.c +24 -24
  319. data/ext/ctgsy2.c +22 -22
  320. data/ext/ctgsyl.c +42 -42
  321. data/ext/ctpcon.c +2 -2
  322. data/ext/ctprfs.c +13 -13
  323. data/ext/ctptri.c +1 -1
  324. data/ext/ctptrs.c +3 -3
  325. data/ext/ctpttf.c +1 -1
  326. data/ext/ctpttr.c +1 -1
  327. data/ext/ctrcon.c +3 -3
  328. data/ext/ctrevc.c +12 -12
  329. data/ext/ctrexc.c +1 -1
  330. data/ext/ctrrfs.c +11 -11
  331. data/ext/ctrsen.c +13 -13
  332. data/ext/ctrsna.c +20 -20
  333. data/ext/ctrsyl.c +11 -11
  334. data/ext/ctrti2.c +1 -1
  335. data/ext/ctrtri.c +1 -1
  336. data/ext/ctrtrs.c +10 -10
  337. data/ext/ctrttf.c +1 -1
  338. data/ext/ctrttp.c +1 -1
  339. data/ext/cunbdb.c +15 -15
  340. data/ext/cuncsd.c +27 -27
  341. data/ext/cung2l.c +9 -9
  342. data/ext/cung2r.c +9 -9
  343. data/ext/cungbr.c +1 -1
  344. data/ext/cunghr.c +7 -7
  345. data/ext/cungl2.c +1 -1
  346. data/ext/cunglq.c +9 -9
  347. data/ext/cungql.c +9 -9
  348. data/ext/cungqr.c +9 -9
  349. data/ext/cungr2.c +1 -1
  350. data/ext/cungrq.c +9 -9
  351. data/ext/cungtr.c +6 -6
  352. data/ext/cunm2l.c +12 -12
  353. data/ext/cunm2r.c +12 -12
  354. data/ext/cunmbr.c +3 -3
  355. data/ext/cunmhr.c +12 -12
  356. data/ext/cunml2.c +1 -1
  357. data/ext/cunmlq.c +7 -7
  358. data/ext/cunmql.c +12 -12
  359. data/ext/cunmqr.c +12 -12
  360. data/ext/cunmr2.c +1 -1
  361. data/ext/cunmr3.c +10 -10
  362. data/ext/cunmrq.c +7 -7
  363. data/ext/cunmrz.c +10 -10
  364. data/ext/cunmtr.c +17 -17
  365. data/ext/cupgtr.c +8 -8
  366. data/ext/cupmtr.c +2 -2
  367. data/ext/dbbcsd.c +29 -29
  368. data/ext/dbdsdc.c +6 -6
  369. data/ext/dbdsqr.c +20 -20
  370. data/ext/ddisna.c +1 -1
  371. data/ext/dgbbrd.c +12 -12
  372. data/ext/dgbcon.c +13 -13
  373. data/ext/dgbequ.c +3 -3
  374. data/ext/dgbequb.c +2 -2
  375. data/ext/dgbrfs.c +22 -22
  376. data/ext/dgbrfsx.c +43 -43
  377. data/ext/dgbsv.c +2 -2
  378. data/ext/dgbsvx.c +25 -25
  379. data/ext/dgbsvxx.c +36 -36
  380. data/ext/dgbtf2.c +3 -3
  381. data/ext/dgbtrf.c +3 -3
  382. data/ext/dgbtrs.c +11 -11
  383. data/ext/dgebak.c +11 -11
  384. data/ext/dgebal.c +1 -1
  385. data/ext/dgebd2.c +1 -1
  386. data/ext/dgebrd.c +1 -1
  387. data/ext/dgecon.c +1 -1
  388. data/ext/dgees.c +3 -3
  389. data/ext/dgeesx.c +4 -4
  390. data/ext/dgeev.c +3 -3
  391. data/ext/dgeevx.c +5 -5
  392. data/ext/dgegs.c +2 -2
  393. data/ext/dgegv.c +3 -3
  394. data/ext/dgehd2.c +1 -1
  395. data/ext/dgehrd.c +2 -2
  396. data/ext/dgejsv.c +16 -16
  397. data/ext/dgelqf.c +6 -6
  398. data/ext/dgels.c +2 -2
  399. data/ext/dgelsd.c +7 -7
  400. data/ext/dgelss.c +2 -2
  401. data/ext/dgelsx.c +12 -12
  402. data/ext/dgelsy.c +12 -12
  403. data/ext/dgeql2.c +1 -1
  404. data/ext/dgeqlf.c +1 -1
  405. data/ext/dgeqp3.c +11 -11
  406. data/ext/dgeqpf.c +11 -11
  407. data/ext/dgeqr2.c +1 -1
  408. data/ext/dgeqr2p.c +1 -1
  409. data/ext/dgeqrf.c +1 -1
  410. data/ext/dgeqrfp.c +1 -1
  411. data/ext/dgerfs.c +31 -31
  412. data/ext/dgerfsx.c +25 -25
  413. data/ext/dgerqf.c +6 -6
  414. data/ext/dgesc2.c +13 -13
  415. data/ext/dgesdd.c +3 -3
  416. data/ext/dgesvd.c +4 -4
  417. data/ext/dgesvj.c +15 -15
  418. data/ext/dgesvx.c +32 -32
  419. data/ext/dgesvxx.c +26 -26
  420. data/ext/dgetf2.c +1 -1
  421. data/ext/dgetrf.c +1 -1
  422. data/ext/dgetri.c +10 -10
  423. data/ext/dgetrs.c +10 -10
  424. data/ext/dggbak.c +11 -11
  425. data/ext/dggbal.c +11 -11
  426. data/ext/dgges.c +15 -15
  427. data/ext/dggesx.c +6 -6
  428. data/ext/dggev.c +3 -3
  429. data/ext/dggevx.c +4 -4
  430. data/ext/dgghrd.c +14 -14
  431. data/ext/dggqrf.c +9 -9
  432. data/ext/dggrqf.c +1 -1
  433. data/ext/dggsvd.c +3 -3
  434. data/ext/dggsvp.c +4 -4
  435. data/ext/dgsvj0.c +20 -20
  436. data/ext/dgsvj1.c +26 -26
  437. data/ext/dgtcon.c +20 -20
  438. data/ext/dgtrfs.c +48 -48
  439. data/ext/dgtsv.c +8 -8
  440. data/ext/dgtsvx.c +55 -55
  441. data/ext/dgttrs.c +19 -19
  442. data/ext/dgtts2.c +20 -20
  443. data/ext/dhgeqz.c +27 -27
  444. data/ext/dhsein.c +42 -42
  445. data/ext/dhseqr.c +4 -4
  446. data/ext/dla_gbamv.c +16 -16
  447. data/ext/dla_gbrcond.c +25 -25
  448. data/ext/dla_gbrfsx_extended.c +56 -56
  449. data/ext/dla_gbrpvgrw.c +13 -13
  450. data/ext/dla_geamv.c +4 -4
  451. data/ext/dla_gercond.c +31 -31
  452. data/ext/dla_gerfsx_extended.c +70 -70
  453. data/ext/dla_lin_berr.c +14 -14
  454. data/ext/dla_porcond.c +15 -15
  455. data/ext/dla_porfsx_extended.c +74 -74
  456. data/ext/dla_porpvgrw.c +2 -2
  457. data/ext/dla_rpvgrw.c +12 -12
  458. data/ext/dla_syamv.c +12 -12
  459. data/ext/dla_syrcond.c +31 -31
  460. data/ext/dla_syrfsx_extended.c +82 -82
  461. data/ext/dla_syrpvgrw.c +14 -14
  462. data/ext/dla_wwaddw.c +11 -11
  463. data/ext/dlabad.c +1 -1
  464. data/ext/dlabrd.c +2 -2
  465. data/ext/dlacn2.c +2 -2
  466. data/ext/dlacpy.c +1 -1
  467. data/ext/dlaebz.c +43 -43
  468. data/ext/dlaed0.c +2 -2
  469. data/ext/dlaed1.c +20 -20
  470. data/ext/dlaed2.c +21 -21
  471. data/ext/dlaed3.c +30 -30
  472. data/ext/dlaed4.c +12 -12
  473. data/ext/dlaed5.c +11 -11
  474. data/ext/dlaed6.c +12 -12
  475. data/ext/dlaed7.c +35 -35
  476. data/ext/dlaed8.c +16 -16
  477. data/ext/dlaed9.c +14 -14
  478. data/ext/dlaeda.c +31 -31
  479. data/ext/dlaein.c +13 -13
  480. data/ext/dlaexc.c +14 -14
  481. data/ext/dlag2s.c +2 -2
  482. data/ext/dlags2.c +4 -4
  483. data/ext/dlagtf.c +10 -10
  484. data/ext/dlagtm.c +21 -21
  485. data/ext/dlagts.c +13 -13
  486. data/ext/dlahqr.c +6 -6
  487. data/ext/dlahr2.c +1 -1
  488. data/ext/dlahrd.c +1 -1
  489. data/ext/dlaic1.c +12 -12
  490. data/ext/dlaln2.c +16 -16
  491. data/ext/dlals0.c +37 -37
  492. data/ext/dlalsa.c +72 -72
  493. data/ext/dlalsd.c +4 -4
  494. data/ext/dlamrg.c +1 -1
  495. data/ext/dlaneg.c +1 -1
  496. data/ext/dlangb.c +3 -3
  497. data/ext/dlange.c +1 -1
  498. data/ext/dlangt.c +10 -10
  499. data/ext/dlanhs.c +1 -1
  500. data/ext/dlansb.c +2 -2
  501. data/ext/dlansf.c +3 -3
  502. data/ext/dlansp.c +3 -3
  503. data/ext/dlanst.c +1 -1
  504. data/ext/dlansy.c +2 -2
  505. data/ext/dlantb.c +2 -2
  506. data/ext/dlantp.c +2 -2
  507. data/ext/dlantr.c +3 -3
  508. data/ext/dlapll.c +10 -10
  509. data/ext/dlapmr.c +1 -1
  510. data/ext/dlapmt.c +11 -11
  511. data/ext/dlaqgb.c +2 -2
  512. data/ext/dlaqge.c +10 -10
  513. data/ext/dlaqp2.c +10 -10
  514. data/ext/dlaqps.c +20 -20
  515. data/ext/dlaqr0.c +3 -3
  516. data/ext/dlaqr1.c +2 -2
  517. data/ext/dlaqr2.c +18 -18
  518. data/ext/dlaqr3.c +18 -18
  519. data/ext/dlaqr4.c +3 -3
  520. data/ext/dlaqr5.c +9 -9
  521. data/ext/dlaqsb.c +13 -13
  522. data/ext/dlaqsp.c +2 -2
  523. data/ext/dlaqsy.c +12 -12
  524. data/ext/dlaqtr.c +12 -12
  525. data/ext/dlar1v.c +15 -15
  526. data/ext/dlar2v.c +19 -19
  527. data/ext/dlarf.c +2 -2
  528. data/ext/dlarfb.c +16 -16
  529. data/ext/dlarfg.c +1 -1
  530. data/ext/dlarfgp.c +1 -1
  531. data/ext/dlarft.c +2 -2
  532. data/ext/dlarfx.c +2 -2
  533. data/ext/dlargv.c +2 -2
  534. data/ext/dlarnv.c +1 -1
  535. data/ext/dlarra.c +20 -20
  536. data/ext/dlarrb.c +22 -22
  537. data/ext/dlarrc.c +13 -13
  538. data/ext/dlarrd.c +25 -25
  539. data/ext/dlarre.c +17 -17
  540. data/ext/dlarrf.c +21 -21
  541. data/ext/dlarrj.c +23 -23
  542. data/ext/dlarrk.c +3 -3
  543. data/ext/dlarrv.c +40 -40
  544. data/ext/dlarscl2.c +8 -8
  545. data/ext/dlartv.c +20 -20
  546. data/ext/dlaruv.c +1 -1
  547. data/ext/dlarz.c +11 -11
  548. data/ext/dlarzb.c +14 -14
  549. data/ext/dlarzt.c +2 -2
  550. data/ext/dlascl.c +4 -4
  551. data/ext/dlascl2.c +8 -8
  552. data/ext/dlasd0.c +3 -3
  553. data/ext/dlasd1.c +13 -13
  554. data/ext/dlasd2.c +18 -18
  555. data/ext/dlasd3.c +15 -15
  556. data/ext/dlasd4.c +12 -12
  557. data/ext/dlasd5.c +11 -11
  558. data/ext/dlasd6.c +14 -14
  559. data/ext/dlasd7.c +25 -25
  560. data/ext/dlasd8.c +27 -27
  561. data/ext/dlasda.c +5 -5
  562. data/ext/dlasdq.c +20 -20
  563. data/ext/dlaset.c +3 -3
  564. data/ext/dlasq3.c +8 -8
  565. data/ext/dlasq4.c +5 -5
  566. data/ext/dlasq5.c +3 -3
  567. data/ext/dlasq6.c +1 -1
  568. data/ext/dlasr.c +2 -2
  569. data/ext/dlasrt.c +1 -1
  570. data/ext/dlassq.c +2 -2
  571. data/ext/dlaswp.c +2 -2
  572. data/ext/dlasy2.c +24 -24
  573. data/ext/dlasyf.c +1 -1
  574. data/ext/dlat2s.c +1 -1
  575. data/ext/dlatbs.c +14 -14
  576. data/ext/dlatdf.c +21 -21
  577. data/ext/dlatps.c +12 -12
  578. data/ext/dlatrd.c +1 -1
  579. data/ext/dlatrs.c +15 -15
  580. data/ext/dlatrz.c +1 -1
  581. data/ext/dlatzm.c +2 -2
  582. data/ext/dlauu2.c +1 -1
  583. data/ext/dlauum.c +1 -1
  584. data/ext/dopgtr.c +8 -8
  585. data/ext/dopmtr.c +2 -2
  586. data/ext/dorbdb.c +15 -15
  587. data/ext/dorcsd.c +13 -13
  588. data/ext/dorg2l.c +9 -9
  589. data/ext/dorg2r.c +9 -9
  590. data/ext/dorgbr.c +1 -1
  591. data/ext/dorghr.c +7 -7
  592. data/ext/dorgl2.c +1 -1
  593. data/ext/dorglq.c +9 -9
  594. data/ext/dorgql.c +9 -9
  595. data/ext/dorgqr.c +9 -9
  596. data/ext/dorgr2.c +1 -1
  597. data/ext/dorgrq.c +9 -9
  598. data/ext/dorgtr.c +6 -6
  599. data/ext/dorm2l.c +12 -12
  600. data/ext/dorm2r.c +12 -12
  601. data/ext/dormbr.c +3 -3
  602. data/ext/dormhr.c +12 -12
  603. data/ext/dorml2.c +1 -1
  604. data/ext/dormlq.c +7 -7
  605. data/ext/dormql.c +12 -12
  606. data/ext/dormqr.c +12 -12
  607. data/ext/dormr2.c +1 -1
  608. data/ext/dormr3.c +10 -10
  609. data/ext/dormrq.c +7 -7
  610. data/ext/dormrz.c +10 -10
  611. data/ext/dormtr.c +17 -17
  612. data/ext/dpbcon.c +3 -3
  613. data/ext/dpbequ.c +1 -1
  614. data/ext/dpbrfs.c +12 -12
  615. data/ext/dpbstf.c +1 -1
  616. data/ext/dpbsv.c +1 -1
  617. data/ext/dpbsvx.c +23 -23
  618. data/ext/dpbtf2.c +1 -1
  619. data/ext/dpbtrf.c +1 -1
  620. data/ext/dpbtrs.c +1 -1
  621. data/ext/dpftrf.c +2 -2
  622. data/ext/dpftri.c +2 -2
  623. data/ext/dpftrs.c +2 -2
  624. data/ext/dpocon.c +1 -1
  625. data/ext/dporfs.c +23 -23
  626. data/ext/dporfsx.c +22 -22
  627. data/ext/dposv.c +9 -9
  628. data/ext/dposvx.c +12 -12
  629. data/ext/dposvxx.c +20 -20
  630. data/ext/dpotf2.c +1 -1
  631. data/ext/dpotrf.c +1 -1
  632. data/ext/dpotri.c +1 -1
  633. data/ext/dpotrs.c +9 -9
  634. data/ext/dppcon.c +1 -1
  635. data/ext/dppequ.c +1 -1
  636. data/ext/dpprfs.c +20 -20
  637. data/ext/dppsv.c +1 -1
  638. data/ext/dppsvx.c +12 -12
  639. data/ext/dpptrf.c +1 -1
  640. data/ext/dpptri.c +1 -1
  641. data/ext/dpptrs.c +1 -1
  642. data/ext/dpstf2.c +2 -2
  643. data/ext/dpstrf.c +2 -2
  644. data/ext/dptcon.c +1 -1
  645. data/ext/dpteqr.c +10 -10
  646. data/ext/dptrfs.c +30 -30
  647. data/ext/dptsv.c +8 -8
  648. data/ext/dptsvx.c +19 -19
  649. data/ext/dpttrs.c +8 -8
  650. data/ext/dptts2.c +8 -8
  651. data/ext/drscl.c +2 -2
  652. data/ext/dsbev.c +3 -3
  653. data/ext/dsbevd.c +9 -9
  654. data/ext/dsbevx.c +7 -7
  655. data/ext/dsbgst.c +15 -15
  656. data/ext/dsbgv.c +15 -15
  657. data/ext/dsbgvd.c +20 -20
  658. data/ext/dsbgvx.c +10 -10
  659. data/ext/dsbtrd.c +13 -13
  660. data/ext/dsfrk.c +5 -5
  661. data/ext/dspcon.c +1 -1
  662. data/ext/dspev.c +2 -2
  663. data/ext/dspevd.c +7 -7
  664. data/ext/dspevx.c +7 -7
  665. data/ext/dspgst.c +10 -10
  666. data/ext/dspgv.c +2 -2
  667. data/ext/dspgvd.c +7 -7
  668. data/ext/dspgvx.c +8 -8
  669. data/ext/dsposv.c +10 -10
  670. data/ext/dsprfs.c +10 -10
  671. data/ext/dspsv.c +1 -1
  672. data/ext/dspsvx.c +20 -20
  673. data/ext/dsptrd.c +1 -1
  674. data/ext/dsptrf.c +1 -1
  675. data/ext/dsptri.c +1 -1
  676. data/ext/dsptrs.c +1 -1
  677. data/ext/dstebz.c +5 -5
  678. data/ext/dstedc.c +5 -5
  679. data/ext/dstegr.c +18 -18
  680. data/ext/dstein.c +14 -14
  681. data/ext/dstemr.c +22 -22
  682. data/ext/dsteqr.c +10 -10
  683. data/ext/dstev.c +1 -1
  684. data/ext/dstevd.c +7 -7
  685. data/ext/dstevr.c +16 -16
  686. data/ext/dstevx.c +6 -6
  687. data/ext/dsycon.c +12 -12
  688. data/ext/dsyconv.c +12 -12
  689. data/ext/dsyequb.c +1 -1
  690. data/ext/dsyev.c +2 -2
  691. data/ext/dsyevd.c +1 -1
  692. data/ext/dsyevr.c +6 -6
  693. data/ext/dsyevx.c +7 -7
  694. data/ext/dsygs2.c +2 -2
  695. data/ext/dsygst.c +2 -2
  696. data/ext/dsygv.c +13 -13
  697. data/ext/dsygvd.c +18 -18
  698. data/ext/dsygvx.c +19 -19
  699. data/ext/dsyrfs.c +31 -31
  700. data/ext/dsyrfsx.c +43 -43
  701. data/ext/dsysv.c +10 -10
  702. data/ext/dsysvx.c +15 -15
  703. data/ext/dsysvxx.c +41 -41
  704. data/ext/dsyswapr.c +2 -2
  705. data/ext/dsytd2.c +1 -1
  706. data/ext/dsytf2.c +1 -1
  707. data/ext/dsytrd.c +2 -2
  708. data/ext/dsytrf.c +2 -2
  709. data/ext/dsytri.c +1 -1
  710. data/ext/dsytri2.c +3 -3
  711. data/ext/dsytri2x.c +2 -2
  712. data/ext/dsytrs.c +10 -10
  713. data/ext/dsytrs2.c +10 -10
  714. data/ext/dtbcon.c +3 -3
  715. data/ext/dtbrfs.c +14 -14
  716. data/ext/dtbtrs.c +2 -2
  717. data/ext/dtfsm.c +13 -13
  718. data/ext/dtftri.c +1 -1
  719. data/ext/dtfttp.c +1 -1
  720. data/ext/dtfttr.c +2 -2
  721. data/ext/dtgevc.c +32 -32
  722. data/ext/dtgex2.c +23 -23
  723. data/ext/dtgexc.c +24 -24
  724. data/ext/dtgsen.c +37 -37
  725. data/ext/dtgsja.c +26 -26
  726. data/ext/dtgsna.c +24 -24
  727. data/ext/dtgsy2.c +22 -22
  728. data/ext/dtgsyl.c +42 -42
  729. data/ext/dtpcon.c +2 -2
  730. data/ext/dtprfs.c +13 -13
  731. data/ext/dtptri.c +1 -1
  732. data/ext/dtptrs.c +3 -3
  733. data/ext/dtpttf.c +1 -1
  734. data/ext/dtpttr.c +1 -1
  735. data/ext/dtrcon.c +3 -3
  736. data/ext/dtrevc.c +12 -12
  737. data/ext/dtrexc.c +1 -1
  738. data/ext/dtrrfs.c +11 -11
  739. data/ext/dtrsen.c +13 -13
  740. data/ext/dtrsna.c +20 -20
  741. data/ext/dtrsyl.c +11 -11
  742. data/ext/dtrti2.c +1 -1
  743. data/ext/dtrtri.c +1 -1
  744. data/ext/dtrtrs.c +10 -10
  745. data/ext/dtrttf.c +1 -1
  746. data/ext/dtrttp.c +1 -1
  747. data/ext/dzsum1.c +1 -1
  748. data/ext/icmax1.c +1 -1
  749. data/ext/ieeeck.c +1 -1
  750. data/ext/ilaclc.c +1 -1
  751. data/ext/ilaclr.c +1 -1
  752. data/ext/iladlc.c +1 -1
  753. data/ext/iladlr.c +1 -1
  754. data/ext/ilaenv.c +4 -4
  755. data/ext/ilaslc.c +1 -1
  756. data/ext/ilaslr.c +1 -1
  757. data/ext/ilazlc.c +1 -1
  758. data/ext/ilazlr.c +1 -1
  759. data/ext/iparmq.c +3 -3
  760. data/ext/izmax1.c +1 -1
  761. data/ext/rb_lapack.c +3146 -3146
  762. data/ext/rb_lapack.h +1 -1
  763. data/ext/sbbcsd.c +29 -29
  764. data/ext/sbdsdc.c +10 -10
  765. data/ext/sbdsqr.c +20 -20
  766. data/ext/scsum1.c +1 -1
  767. data/ext/sdisna.c +1 -1
  768. data/ext/sgbbrd.c +12 -12
  769. data/ext/sgbcon.c +13 -13
  770. data/ext/sgbequ.c +3 -3
  771. data/ext/sgbequb.c +2 -2
  772. data/ext/sgbrfs.c +22 -22
  773. data/ext/sgbrfsx.c +43 -43
  774. data/ext/sgbsv.c +2 -2
  775. data/ext/sgbsvx.c +25 -25
  776. data/ext/sgbsvxx.c +36 -36
  777. data/ext/sgbtf2.c +3 -3
  778. data/ext/sgbtrf.c +3 -3
  779. data/ext/sgbtrs.c +11 -11
  780. data/ext/sgebak.c +11 -11
  781. data/ext/sgebal.c +1 -1
  782. data/ext/sgebd2.c +1 -1
  783. data/ext/sgebrd.c +1 -1
  784. data/ext/sgecon.c +1 -1
  785. data/ext/sgees.c +3 -3
  786. data/ext/sgeesx.c +4 -4
  787. data/ext/sgeev.c +3 -3
  788. data/ext/sgeevx.c +5 -5
  789. data/ext/sgegs.c +2 -2
  790. data/ext/sgegv.c +3 -3
  791. data/ext/sgehd2.c +1 -1
  792. data/ext/sgehrd.c +2 -2
  793. data/ext/sgejsv.c +16 -16
  794. data/ext/sgelqf.c +6 -6
  795. data/ext/sgels.c +2 -2
  796. data/ext/sgelsd.c +7 -7
  797. data/ext/sgelss.c +2 -2
  798. data/ext/sgelsx.c +12 -12
  799. data/ext/sgelsy.c +12 -12
  800. data/ext/sgeql2.c +1 -1
  801. data/ext/sgeqlf.c +1 -1
  802. data/ext/sgeqp3.c +11 -11
  803. data/ext/sgeqpf.c +11 -11
  804. data/ext/sgeqr2.c +1 -1
  805. data/ext/sgeqr2p.c +1 -1
  806. data/ext/sgeqrf.c +1 -1
  807. data/ext/sgeqrfp.c +1 -1
  808. data/ext/sgerfs.c +31 -31
  809. data/ext/sgerfsx.c +25 -25
  810. data/ext/sgerqf.c +6 -6
  811. data/ext/sgesc2.c +13 -13
  812. data/ext/sgesdd.c +3 -3
  813. data/ext/sgesvd.c +4 -4
  814. data/ext/sgesvj.c +15 -15
  815. data/ext/sgesvx.c +32 -32
  816. data/ext/sgesvxx.c +26 -26
  817. data/ext/sgetf2.c +1 -1
  818. data/ext/sgetrf.c +1 -1
  819. data/ext/sgetri.c +10 -10
  820. data/ext/sgetrs.c +10 -10
  821. data/ext/sggbak.c +11 -11
  822. data/ext/sggbal.c +11 -11
  823. data/ext/sgges.c +15 -15
  824. data/ext/sggesx.c +6 -6
  825. data/ext/sggev.c +3 -3
  826. data/ext/sggevx.c +4 -4
  827. data/ext/sgghrd.c +14 -14
  828. data/ext/sggqrf.c +9 -9
  829. data/ext/sggrqf.c +1 -1
  830. data/ext/sggsvd.c +3 -3
  831. data/ext/sggsvp.c +4 -4
  832. data/ext/sgsvj0.c +20 -20
  833. data/ext/sgsvj1.c +26 -26
  834. data/ext/sgtcon.c +20 -20
  835. data/ext/sgtrfs.c +48 -48
  836. data/ext/sgtsv.c +8 -8
  837. data/ext/sgtsvx.c +55 -55
  838. data/ext/sgttrs.c +19 -19
  839. data/ext/sgtts2.c +20 -20
  840. data/ext/shgeqz.c +27 -27
  841. data/ext/shsein.c +42 -42
  842. data/ext/shseqr.c +4 -4
  843. data/ext/sla_gbamv.c +16 -16
  844. data/ext/sla_gbrcond.c +25 -25
  845. data/ext/sla_gbrfsx_extended.c +66 -66
  846. data/ext/sla_gbrpvgrw.c +13 -13
  847. data/ext/sla_geamv.c +4 -4
  848. data/ext/sla_gercond.c +31 -31
  849. data/ext/sla_gerfsx_extended.c +82 -82
  850. data/ext/sla_lin_berr.c +14 -14
  851. data/ext/sla_porcond.c +15 -15
  852. data/ext/sla_porfsx_extended.c +74 -74
  853. data/ext/sla_porpvgrw.c +2 -2
  854. data/ext/sla_rpvgrw.c +12 -12
  855. data/ext/sla_syamv.c +12 -12
  856. data/ext/sla_syrcond.c +31 -31
  857. data/ext/sla_syrfsx_extended.c +82 -82
  858. data/ext/sla_syrpvgrw.c +14 -14
  859. data/ext/sla_wwaddw.c +11 -11
  860. data/ext/slabad.c +1 -1
  861. data/ext/slabrd.c +2 -2
  862. data/ext/slacn2.c +2 -2
  863. data/ext/slacpy.c +1 -1
  864. data/ext/slaebz.c +43 -43
  865. data/ext/slaed0.c +2 -2
  866. data/ext/slaed1.c +20 -20
  867. data/ext/slaed2.c +21 -21
  868. data/ext/slaed3.c +30 -30
  869. data/ext/slaed4.c +12 -12
  870. data/ext/slaed5.c +11 -11
  871. data/ext/slaed6.c +12 -12
  872. data/ext/slaed7.c +35 -35
  873. data/ext/slaed8.c +16 -16
  874. data/ext/slaed9.c +14 -14
  875. data/ext/slaeda.c +31 -31
  876. data/ext/slaein.c +13 -13
  877. data/ext/slaexc.c +14 -14
  878. data/ext/slags2.c +4 -4
  879. data/ext/slagtf.c +10 -10
  880. data/ext/slagtm.c +21 -21
  881. data/ext/slagts.c +13 -13
  882. data/ext/slahqr.c +6 -6
  883. data/ext/slahr2.c +1 -1
  884. data/ext/slahrd.c +3 -3
  885. data/ext/slaic1.c +12 -12
  886. data/ext/slaln2.c +16 -16
  887. data/ext/slals0.c +37 -37
  888. data/ext/slalsa.c +72 -72
  889. data/ext/slalsd.c +4 -4
  890. data/ext/slamrg.c +2 -2
  891. data/ext/slaneg.c +1 -1
  892. data/ext/slangb.c +3 -3
  893. data/ext/slange.c +1 -1
  894. data/ext/slangt.c +10 -10
  895. data/ext/slanhs.c +1 -1
  896. data/ext/slansb.c +2 -2
  897. data/ext/slansf.c +3 -3
  898. data/ext/slansp.c +3 -3
  899. data/ext/slanst.c +1 -1
  900. data/ext/slansy.c +2 -2
  901. data/ext/slantb.c +2 -2
  902. data/ext/slantp.c +2 -2
  903. data/ext/slantr.c +3 -3
  904. data/ext/slapll.c +10 -10
  905. data/ext/slapmr.c +1 -1
  906. data/ext/slapmt.c +11 -11
  907. data/ext/slaqgb.c +2 -2
  908. data/ext/slaqge.c +10 -10
  909. data/ext/slaqp2.c +10 -10
  910. data/ext/slaqps.c +20 -20
  911. data/ext/slaqr0.c +3 -3
  912. data/ext/slaqr1.c +2 -2
  913. data/ext/slaqr2.c +18 -18
  914. data/ext/slaqr3.c +18 -18
  915. data/ext/slaqr4.c +3 -3
  916. data/ext/slaqr5.c +9 -9
  917. data/ext/slaqsb.c +13 -13
  918. data/ext/slaqsp.c +2 -2
  919. data/ext/slaqsy.c +12 -12
  920. data/ext/slaqtr.c +12 -12
  921. data/ext/slar1v.c +15 -15
  922. data/ext/slar2v.c +19 -19
  923. data/ext/slarf.c +2 -2
  924. data/ext/slarfb.c +16 -16
  925. data/ext/slarfg.c +1 -1
  926. data/ext/slarfgp.c +1 -1
  927. data/ext/slarft.c +2 -2
  928. data/ext/slarfx.c +2 -2
  929. data/ext/slargv.c +2 -2
  930. data/ext/slarnv.c +1 -1
  931. data/ext/slarra.c +20 -20
  932. data/ext/slarrb.c +22 -22
  933. data/ext/slarrc.c +13 -13
  934. data/ext/slarrd.c +25 -25
  935. data/ext/slarre.c +17 -17
  936. data/ext/slarrf.c +21 -21
  937. data/ext/slarrj.c +23 -23
  938. data/ext/slarrk.c +3 -3
  939. data/ext/slarrv.c +40 -40
  940. data/ext/slarscl2.c +8 -8
  941. data/ext/slartv.c +20 -20
  942. data/ext/slaruv.c +1 -1
  943. data/ext/slarz.c +11 -11
  944. data/ext/slarzb.c +14 -14
  945. data/ext/slarzt.c +2 -2
  946. data/ext/slascl.c +4 -4
  947. data/ext/slascl2.c +8 -8
  948. data/ext/slasd0.c +3 -3
  949. data/ext/slasd1.c +12 -12
  950. data/ext/slasd2.c +18 -18
  951. data/ext/slasd3.c +15 -15
  952. data/ext/slasd4.c +12 -12
  953. data/ext/slasd5.c +11 -11
  954. data/ext/slasd6.c +14 -14
  955. data/ext/slasd7.c +25 -25
  956. data/ext/slasd8.c +27 -27
  957. data/ext/slasda.c +5 -5
  958. data/ext/slasdq.c +20 -20
  959. data/ext/slaset.c +3 -3
  960. data/ext/slasq3.c +8 -8
  961. data/ext/slasq4.c +5 -5
  962. data/ext/slasq5.c +3 -3
  963. data/ext/slasq6.c +1 -1
  964. data/ext/slasr.c +2 -2
  965. data/ext/slasrt.c +1 -1
  966. data/ext/slassq.c +2 -2
  967. data/ext/slaswp.c +2 -2
  968. data/ext/slasy2.c +24 -24
  969. data/ext/slasyf.c +1 -1
  970. data/ext/slatbs.c +14 -14
  971. data/ext/slatdf.c +21 -21
  972. data/ext/slatps.c +12 -12
  973. data/ext/slatrd.c +1 -1
  974. data/ext/slatrs.c +15 -15
  975. data/ext/slatrz.c +1 -1
  976. data/ext/slatzm.c +2 -2
  977. data/ext/slauu2.c +1 -1
  978. data/ext/slauum.c +1 -1
  979. data/ext/sopgtr.c +8 -8
  980. data/ext/sopmtr.c +2 -2
  981. data/ext/sorbdb.c +15 -15
  982. data/ext/sorcsd.c +13 -13
  983. data/ext/sorg2l.c +9 -9
  984. data/ext/sorg2r.c +9 -9
  985. data/ext/sorgbr.c +1 -1
  986. data/ext/sorghr.c +7 -7
  987. data/ext/sorgl2.c +1 -1
  988. data/ext/sorglq.c +9 -9
  989. data/ext/sorgql.c +9 -9
  990. data/ext/sorgqr.c +9 -9
  991. data/ext/sorgr2.c +1 -1
  992. data/ext/sorgrq.c +9 -9
  993. data/ext/sorgtr.c +6 -6
  994. data/ext/sorm2l.c +12 -12
  995. data/ext/sorm2r.c +12 -12
  996. data/ext/sormbr.c +3 -3
  997. data/ext/sormhr.c +12 -12
  998. data/ext/sorml2.c +1 -1
  999. data/ext/sormlq.c +7 -7
  1000. data/ext/sormql.c +12 -12
  1001. data/ext/sormqr.c +12 -12
  1002. data/ext/sormr2.c +1 -1
  1003. data/ext/sormr3.c +10 -10
  1004. data/ext/sormrq.c +7 -7
  1005. data/ext/sormrz.c +10 -10
  1006. data/ext/sormtr.c +17 -17
  1007. data/ext/spbcon.c +3 -3
  1008. data/ext/spbequ.c +1 -1
  1009. data/ext/spbrfs.c +12 -12
  1010. data/ext/spbstf.c +1 -1
  1011. data/ext/spbsv.c +1 -1
  1012. data/ext/spbsvx.c +23 -23
  1013. data/ext/spbtf2.c +1 -1
  1014. data/ext/spbtrf.c +1 -1
  1015. data/ext/spbtrs.c +1 -1
  1016. data/ext/spftrf.c +2 -2
  1017. data/ext/spftri.c +2 -2
  1018. data/ext/spftrs.c +2 -2
  1019. data/ext/spocon.c +1 -1
  1020. data/ext/sporfs.c +23 -23
  1021. data/ext/sporfsx.c +22 -22
  1022. data/ext/sposv.c +9 -9
  1023. data/ext/sposvx.c +12 -12
  1024. data/ext/sposvxx.c +20 -20
  1025. data/ext/spotf2.c +1 -1
  1026. data/ext/spotrf.c +1 -1
  1027. data/ext/spotri.c +1 -1
  1028. data/ext/spotrs.c +9 -9
  1029. data/ext/sppcon.c +1 -1
  1030. data/ext/sppequ.c +1 -1
  1031. data/ext/spprfs.c +20 -20
  1032. data/ext/sppsv.c +1 -1
  1033. data/ext/sppsvx.c +12 -12
  1034. data/ext/spptrf.c +1 -1
  1035. data/ext/spptri.c +1 -1
  1036. data/ext/spptrs.c +1 -1
  1037. data/ext/spstf2.c +2 -2
  1038. data/ext/spstrf.c +2 -2
  1039. data/ext/sptcon.c +1 -1
  1040. data/ext/spteqr.c +10 -10
  1041. data/ext/sptrfs.c +30 -30
  1042. data/ext/sptsv.c +8 -8
  1043. data/ext/sptsvx.c +19 -19
  1044. data/ext/spttrs.c +8 -8
  1045. data/ext/sptts2.c +8 -8
  1046. data/ext/srscl.c +2 -2
  1047. data/ext/ssbev.c +3 -3
  1048. data/ext/ssbevd.c +9 -9
  1049. data/ext/ssbevx.c +7 -7
  1050. data/ext/ssbgst.c +15 -15
  1051. data/ext/ssbgv.c +15 -15
  1052. data/ext/ssbgvd.c +20 -20
  1053. data/ext/ssbgvx.c +10 -10
  1054. data/ext/ssbtrd.c +13 -13
  1055. data/ext/ssfrk.c +5 -5
  1056. data/ext/sspcon.c +1 -1
  1057. data/ext/sspev.c +2 -2
  1058. data/ext/sspevd.c +7 -7
  1059. data/ext/sspevx.c +7 -7
  1060. data/ext/sspgst.c +10 -10
  1061. data/ext/sspgv.c +2 -2
  1062. data/ext/sspgvd.c +7 -7
  1063. data/ext/sspgvx.c +8 -8
  1064. data/ext/ssprfs.c +10 -10
  1065. data/ext/sspsv.c +1 -1
  1066. data/ext/sspsvx.c +20 -20
  1067. data/ext/ssptrd.c +1 -1
  1068. data/ext/ssptrf.c +1 -1
  1069. data/ext/ssptri.c +1 -1
  1070. data/ext/ssptrs.c +1 -1
  1071. data/ext/sstebz.c +5 -5
  1072. data/ext/sstedc.c +5 -5
  1073. data/ext/sstegr.c +18 -18
  1074. data/ext/sstein.c +14 -14
  1075. data/ext/sstemr.c +22 -22
  1076. data/ext/ssteqr.c +10 -10
  1077. data/ext/sstev.c +1 -1
  1078. data/ext/sstevd.c +7 -7
  1079. data/ext/sstevr.c +16 -16
  1080. data/ext/sstevx.c +6 -6
  1081. data/ext/ssycon.c +12 -12
  1082. data/ext/ssyconv.c +12 -12
  1083. data/ext/ssyequb.c +1 -1
  1084. data/ext/ssyev.c +2 -2
  1085. data/ext/ssyevd.c +1 -1
  1086. data/ext/ssyevr.c +6 -6
  1087. data/ext/ssyevx.c +7 -7
  1088. data/ext/ssygs2.c +2 -2
  1089. data/ext/ssygst.c +2 -2
  1090. data/ext/ssygv.c +13 -13
  1091. data/ext/ssygvd.c +18 -18
  1092. data/ext/ssygvx.c +22 -22
  1093. data/ext/ssyrfs.c +31 -31
  1094. data/ext/ssyrfsx.c +43 -43
  1095. data/ext/ssysv.c +10 -10
  1096. data/ext/ssysvx.c +15 -15
  1097. data/ext/ssysvxx.c +41 -41
  1098. data/ext/ssyswapr.c +2 -2
  1099. data/ext/ssytd2.c +1 -1
  1100. data/ext/ssytf2.c +1 -1
  1101. data/ext/ssytrd.c +2 -2
  1102. data/ext/ssytrf.c +2 -2
  1103. data/ext/ssytri.c +1 -1
  1104. data/ext/ssytri2.c +11 -11
  1105. data/ext/ssytri2x.c +2 -2
  1106. data/ext/ssytrs.c +10 -10
  1107. data/ext/ssytrs2.c +10 -10
  1108. data/ext/stbcon.c +3 -3
  1109. data/ext/stbrfs.c +14 -14
  1110. data/ext/stbtrs.c +2 -2
  1111. data/ext/stfsm.c +13 -13
  1112. data/ext/stftri.c +1 -1
  1113. data/ext/stfttp.c +1 -1
  1114. data/ext/stfttr.c +1 -1
  1115. data/ext/stgevc.c +32 -32
  1116. data/ext/stgex2.c +16 -16
  1117. data/ext/stgexc.c +26 -26
  1118. data/ext/stgsen.c +37 -37
  1119. data/ext/stgsja.c +26 -26
  1120. data/ext/stgsna.c +24 -24
  1121. data/ext/stgsy2.c +22 -22
  1122. data/ext/stgsyl.c +42 -42
  1123. data/ext/stpcon.c +2 -2
  1124. data/ext/stprfs.c +13 -13
  1125. data/ext/stptri.c +1 -1
  1126. data/ext/stptrs.c +3 -3
  1127. data/ext/stpttf.c +1 -1
  1128. data/ext/stpttr.c +1 -1
  1129. data/ext/strcon.c +3 -3
  1130. data/ext/strevc.c +12 -12
  1131. data/ext/strexc.c +1 -1
  1132. data/ext/strrfs.c +11 -11
  1133. data/ext/strsen.c +13 -13
  1134. data/ext/strsna.c +20 -20
  1135. data/ext/strsyl.c +11 -11
  1136. data/ext/strti2.c +1 -1
  1137. data/ext/strtri.c +1 -1
  1138. data/ext/strtrs.c +10 -10
  1139. data/ext/strttf.c +1 -1
  1140. data/ext/strttp.c +1 -1
  1141. data/ext/xerbla_array.c +1 -1
  1142. data/ext/zbbcsd.c +34 -34
  1143. data/ext/zbdsqr.c +20 -20
  1144. data/ext/zcposv.c +10 -10
  1145. data/ext/zdrscl.c +2 -2
  1146. data/ext/zgbbrd.c +12 -12
  1147. data/ext/zgbcon.c +13 -13
  1148. data/ext/zgbequ.c +3 -3
  1149. data/ext/zgbequb.c +2 -2
  1150. data/ext/zgbrfs.c +22 -22
  1151. data/ext/zgbrfsx.c +43 -43
  1152. data/ext/zgbsv.c +2 -2
  1153. data/ext/zgbsvx.c +25 -25
  1154. data/ext/zgbsvxx.c +36 -36
  1155. data/ext/zgbtf2.c +3 -3
  1156. data/ext/zgbtrf.c +3 -3
  1157. data/ext/zgbtrs.c +11 -11
  1158. data/ext/zgebak.c +11 -11
  1159. data/ext/zgebal.c +1 -1
  1160. data/ext/zgebd2.c +1 -1
  1161. data/ext/zgebrd.c +1 -1
  1162. data/ext/zgecon.c +1 -1
  1163. data/ext/zgees.c +3 -3
  1164. data/ext/zgeesx.c +4 -4
  1165. data/ext/zgeev.c +4 -4
  1166. data/ext/zgeevx.c +5 -5
  1167. data/ext/zgegs.c +2 -2
  1168. data/ext/zgegv.c +3 -3
  1169. data/ext/zgehd2.c +1 -1
  1170. data/ext/zgehrd.c +2 -2
  1171. data/ext/zgelqf.c +6 -6
  1172. data/ext/zgels.c +2 -2
  1173. data/ext/zgelsd.c +9 -9
  1174. data/ext/zgelss.c +2 -2
  1175. data/ext/zgelsx.c +12 -12
  1176. data/ext/zgelsy.c +12 -12
  1177. data/ext/zgeql2.c +1 -1
  1178. data/ext/zgeqlf.c +1 -1
  1179. data/ext/zgeqp3.c +11 -11
  1180. data/ext/zgeqpf.c +11 -11
  1181. data/ext/zgeqr2.c +1 -1
  1182. data/ext/zgeqr2p.c +1 -1
  1183. data/ext/zgeqrf.c +1 -1
  1184. data/ext/zgeqrfp.c +1 -1
  1185. data/ext/zgerfs.c +31 -31
  1186. data/ext/zgerfsx.c +25 -25
  1187. data/ext/zgerqf.c +6 -6
  1188. data/ext/zgesc2.c +13 -13
  1189. data/ext/zgesdd.c +3 -3
  1190. data/ext/zgesvd.c +4 -4
  1191. data/ext/zgesvx.c +32 -32
  1192. data/ext/zgesvxx.c +26 -26
  1193. data/ext/zgetf2.c +1 -1
  1194. data/ext/zgetrf.c +1 -1
  1195. data/ext/zgetri.c +10 -10
  1196. data/ext/zgetrs.c +10 -10
  1197. data/ext/zggbak.c +11 -11
  1198. data/ext/zggbal.c +11 -11
  1199. data/ext/zgges.c +15 -15
  1200. data/ext/zggesx.c +6 -6
  1201. data/ext/zggev.c +3 -3
  1202. data/ext/zggevx.c +5 -5
  1203. data/ext/zgghrd.c +14 -14
  1204. data/ext/zggqrf.c +9 -9
  1205. data/ext/zggrqf.c +1 -1
  1206. data/ext/zggsvd.c +3 -3
  1207. data/ext/zggsvp.c +4 -4
  1208. data/ext/zgtcon.c +20 -20
  1209. data/ext/zgtrfs.c +48 -48
  1210. data/ext/zgtsv.c +8 -8
  1211. data/ext/zgtsvx.c +55 -55
  1212. data/ext/zgttrs.c +19 -19
  1213. data/ext/zgtts2.c +20 -20
  1214. data/ext/zhbev.c +3 -3
  1215. data/ext/zhbevd.c +9 -9
  1216. data/ext/zhbevx.c +7 -7
  1217. data/ext/zhbgst.c +15 -15
  1218. data/ext/zhbgv.c +15 -15
  1219. data/ext/zhbgvd.c +20 -20
  1220. data/ext/zhbgvx.c +9 -9
  1221. data/ext/zhbtrd.c +13 -13
  1222. data/ext/zhecon.c +12 -12
  1223. data/ext/zheequb.c +1 -1
  1224. data/ext/zheev.c +2 -2
  1225. data/ext/zheevd.c +7 -7
  1226. data/ext/zheevr.c +12 -12
  1227. data/ext/zheevx.c +7 -7
  1228. data/ext/zhegs2.c +2 -2
  1229. data/ext/zhegst.c +2 -2
  1230. data/ext/zhegv.c +13 -13
  1231. data/ext/zhegvd.c +18 -18
  1232. data/ext/zhegvx.c +19 -19
  1233. data/ext/zherfs.c +31 -31
  1234. data/ext/zherfsx.c +43 -43
  1235. data/ext/zhesv.c +10 -10
  1236. data/ext/zhesvx.c +15 -15
  1237. data/ext/zhesvxx.c +41 -41
  1238. data/ext/zhetd2.c +1 -1
  1239. data/ext/zhetf2.c +1 -1
  1240. data/ext/zhetrd.c +2 -2
  1241. data/ext/zhetrf.c +2 -2
  1242. data/ext/zhetri.c +1 -1
  1243. data/ext/zhetrs.c +10 -10
  1244. data/ext/zhetrs2.c +10 -10
  1245. data/ext/zhfrk.c +6 -6
  1246. data/ext/zhgeqz.c +27 -27
  1247. data/ext/zhpcon.c +1 -1
  1248. data/ext/zhpev.c +2 -2
  1249. data/ext/zhpevd.c +2 -2
  1250. data/ext/zhpevx.c +7 -7
  1251. data/ext/zhpgst.c +10 -10
  1252. data/ext/zhpgv.c +2 -2
  1253. data/ext/zhpgvd.c +11 -11
  1254. data/ext/zhpgvx.c +8 -8
  1255. data/ext/zhprfs.c +10 -10
  1256. data/ext/zhpsv.c +1 -1
  1257. data/ext/zhpsvx.c +20 -20
  1258. data/ext/zhptrd.c +1 -1
  1259. data/ext/zhptrf.c +1 -1
  1260. data/ext/zhptri.c +1 -1
  1261. data/ext/zhptrs.c +1 -1
  1262. data/ext/zhsein.c +21 -21
  1263. data/ext/zhseqr.c +4 -4
  1264. data/ext/zla_gbamv.c +14 -14
  1265. data/ext/zla_gbrcond_c.c +33 -33
  1266. data/ext/zla_gbrcond_x.c +32 -32
  1267. data/ext/zla_gbrfsx_extended.c +78 -78
  1268. data/ext/zla_gbrpvgrw.c +13 -13
  1269. data/ext/zla_geamv.c +4 -4
  1270. data/ext/zla_gercond_c.c +31 -31
  1271. data/ext/zla_gercond_x.c +30 -30
  1272. data/ext/zla_gerfsx_extended.c +70 -70
  1273. data/ext/zla_heamv.c +12 -12
  1274. data/ext/zla_hercond_c.c +31 -31
  1275. data/ext/zla_hercond_x.c +30 -30
  1276. data/ext/zla_herfsx_extended.c +82 -82
  1277. data/ext/zla_herpvgrw.c +14 -14
  1278. data/ext/zla_lin_berr.c +14 -14
  1279. data/ext/zla_porcond_c.c +23 -23
  1280. data/ext/zla_porcond_x.c +22 -22
  1281. data/ext/zla_porfsx_extended.c +74 -74
  1282. data/ext/zla_porpvgrw.c +2 -2
  1283. data/ext/zla_rpvgrw.c +12 -12
  1284. data/ext/zla_syamv.c +12 -12
  1285. data/ext/zla_syrcond_c.c +31 -31
  1286. data/ext/zla_syrcond_x.c +30 -30
  1287. data/ext/zla_syrfsx_extended.c +82 -82
  1288. data/ext/zla_syrpvgrw.c +14 -14
  1289. data/ext/zla_wwaddw.c +11 -11
  1290. data/ext/zlabrd.c +2 -2
  1291. data/ext/zlacn2.c +2 -2
  1292. data/ext/zlacp2.c +1 -1
  1293. data/ext/zlacpy.c +1 -1
  1294. data/ext/zlacrm.c +11 -11
  1295. data/ext/zlacrt.c +12 -12
  1296. data/ext/zlaed7.c +42 -42
  1297. data/ext/zlaed8.c +27 -27
  1298. data/ext/zlaein.c +14 -14
  1299. data/ext/zlag2c.c +2 -2
  1300. data/ext/zlags2.c +5 -5
  1301. data/ext/zlagtm.c +21 -21
  1302. data/ext/zlahef.c +1 -1
  1303. data/ext/zlahqr.c +6 -6
  1304. data/ext/zlahr2.c +1 -1
  1305. data/ext/zlahrd.c +1 -1
  1306. data/ext/zlaic1.c +12 -12
  1307. data/ext/zlals0.c +37 -37
  1308. data/ext/zlalsa.c +72 -72
  1309. data/ext/zlalsd.c +4 -4
  1310. data/ext/zlangb.c +3 -3
  1311. data/ext/zlange.c +1 -1
  1312. data/ext/zlangt.c +10 -10
  1313. data/ext/zlanhb.c +2 -2
  1314. data/ext/zlanhe.c +2 -2
  1315. data/ext/zlanhf.c +3 -3
  1316. data/ext/zlanhp.c +3 -3
  1317. data/ext/zlanhs.c +1 -1
  1318. data/ext/zlanht.c +1 -1
  1319. data/ext/zlansb.c +2 -2
  1320. data/ext/zlansp.c +3 -3
  1321. data/ext/zlansy.c +2 -2
  1322. data/ext/zlantb.c +2 -2
  1323. data/ext/zlantp.c +2 -2
  1324. data/ext/zlantr.c +3 -3
  1325. data/ext/zlapll.c +10 -10
  1326. data/ext/zlapmr.c +1 -1
  1327. data/ext/zlapmt.c +11 -11
  1328. data/ext/zlaqgb.c +2 -2
  1329. data/ext/zlaqge.c +10 -10
  1330. data/ext/zlaqhb.c +2 -2
  1331. data/ext/zlaqhe.c +12 -12
  1332. data/ext/zlaqhp.c +2 -2
  1333. data/ext/zlaqp2.c +10 -10
  1334. data/ext/zlaqps.c +20 -20
  1335. data/ext/zlaqr0.c +17 -17
  1336. data/ext/zlaqr1.c +4 -4
  1337. data/ext/zlaqr2.c +18 -18
  1338. data/ext/zlaqr3.c +18 -18
  1339. data/ext/zlaqr4.c +7 -7
  1340. data/ext/zlaqr5.c +21 -21
  1341. data/ext/zlaqsb.c +13 -13
  1342. data/ext/zlaqsp.c +2 -2
  1343. data/ext/zlaqsy.c +12 -12
  1344. data/ext/zlar1v.c +15 -15
  1345. data/ext/zlar2v.c +19 -19
  1346. data/ext/zlarf.c +2 -2
  1347. data/ext/zlarfb.c +16 -16
  1348. data/ext/zlarfg.c +1 -1
  1349. data/ext/zlarfgp.c +1 -1
  1350. data/ext/zlarft.c +2 -2
  1351. data/ext/zlarfx.c +3 -3
  1352. data/ext/zlargv.c +2 -2
  1353. data/ext/zlarnv.c +1 -1
  1354. data/ext/zlarrv.c +40 -40
  1355. data/ext/zlarscl2.c +8 -8
  1356. data/ext/zlartv.c +20 -20
  1357. data/ext/zlarz.c +11 -11
  1358. data/ext/zlarzb.c +14 -14
  1359. data/ext/zlarzt.c +2 -2
  1360. data/ext/zlascl.c +4 -4
  1361. data/ext/zlascl2.c +8 -8
  1362. data/ext/zlaset.c +4 -4
  1363. data/ext/zlasr.c +2 -2
  1364. data/ext/zlassq.c +2 -2
  1365. data/ext/zlaswp.c +2 -2
  1366. data/ext/zlasyf.c +1 -1
  1367. data/ext/zlat2c.c +1 -1
  1368. data/ext/zlatbs.c +14 -14
  1369. data/ext/zlatdf.c +21 -21
  1370. data/ext/zlatps.c +12 -12
  1371. data/ext/zlatrd.c +1 -1
  1372. data/ext/zlatrs.c +15 -15
  1373. data/ext/zlatrz.c +1 -1
  1374. data/ext/zlatzm.c +3 -3
  1375. data/ext/zlauu2.c +1 -1
  1376. data/ext/zlauum.c +1 -1
  1377. data/ext/zpbcon.c +3 -3
  1378. data/ext/zpbequ.c +1 -1
  1379. data/ext/zpbrfs.c +12 -12
  1380. data/ext/zpbstf.c +1 -1
  1381. data/ext/zpbsv.c +1 -1
  1382. data/ext/zpbsvx.c +23 -23
  1383. data/ext/zpbtf2.c +1 -1
  1384. data/ext/zpbtrf.c +1 -1
  1385. data/ext/zpbtrs.c +1 -1
  1386. data/ext/zpftrf.c +2 -2
  1387. data/ext/zpftri.c +2 -2
  1388. data/ext/zpftrs.c +2 -2
  1389. data/ext/zpocon.c +1 -1
  1390. data/ext/zporfs.c +23 -23
  1391. data/ext/zporfsx.c +22 -22
  1392. data/ext/zposv.c +9 -9
  1393. data/ext/zposvx.c +12 -12
  1394. data/ext/zposvxx.c +20 -20
  1395. data/ext/zpotf2.c +1 -1
  1396. data/ext/zpotrf.c +1 -1
  1397. data/ext/zpotri.c +1 -1
  1398. data/ext/zpotrs.c +9 -9
  1399. data/ext/zppcon.c +1 -1
  1400. data/ext/zppequ.c +1 -1
  1401. data/ext/zpprfs.c +20 -20
  1402. data/ext/zppsv.c +1 -1
  1403. data/ext/zppsvx.c +12 -12
  1404. data/ext/zpptrf.c +1 -1
  1405. data/ext/zpptri.c +1 -1
  1406. data/ext/zpptrs.c +1 -1
  1407. data/ext/zpstf2.c +2 -2
  1408. data/ext/zpstrf.c +2 -2
  1409. data/ext/zptcon.c +1 -1
  1410. data/ext/zpteqr.c +10 -10
  1411. data/ext/zptrfs.c +12 -12
  1412. data/ext/zptsv.c +1 -1
  1413. data/ext/zptsvx.c +19 -19
  1414. data/ext/zpttrs.c +1 -1
  1415. data/ext/zptts2.c +1 -1
  1416. data/ext/zrot.c +11 -11
  1417. data/ext/zspcon.c +1 -1
  1418. data/ext/zspmv.c +15 -15
  1419. data/ext/zspr.c +11 -11
  1420. data/ext/zsprfs.c +10 -10
  1421. data/ext/zspsv.c +1 -1
  1422. data/ext/zspsvx.c +20 -20
  1423. data/ext/zsptrf.c +1 -1
  1424. data/ext/zsptri.c +1 -1
  1425. data/ext/zsptrs.c +1 -1
  1426. data/ext/zstedc.c +10 -10
  1427. data/ext/zstegr.c +18 -18
  1428. data/ext/zstein.c +14 -14
  1429. data/ext/zstemr.c +22 -22
  1430. data/ext/zsteqr.c +10 -10
  1431. data/ext/zsycon.c +12 -12
  1432. data/ext/zsyconv.c +12 -12
  1433. data/ext/zsyequb.c +1 -1
  1434. data/ext/zsymv.c +13 -13
  1435. data/ext/zsyr.c +4 -4
  1436. data/ext/zsyrfs.c +31 -31
  1437. data/ext/zsyrfsx.c +43 -43
  1438. data/ext/zsysv.c +10 -10
  1439. data/ext/zsysvx.c +15 -15
  1440. data/ext/zsysvxx.c +41 -41
  1441. data/ext/zsyswapr.c +2 -2
  1442. data/ext/zsytf2.c +1 -1
  1443. data/ext/zsytrf.c +2 -2
  1444. data/ext/zsytri.c +1 -1
  1445. data/ext/zsytri2.c +3 -3
  1446. data/ext/zsytri2x.c +2 -2
  1447. data/ext/zsytrs.c +10 -10
  1448. data/ext/zsytrs2.c +10 -10
  1449. data/ext/ztbcon.c +3 -3
  1450. data/ext/ztbrfs.c +14 -14
  1451. data/ext/ztbtrs.c +2 -2
  1452. data/ext/ztfsm.c +5 -5
  1453. data/ext/ztftri.c +1 -1
  1454. data/ext/ztfttp.c +1 -1
  1455. data/ext/ztfttr.c +1 -1
  1456. data/ext/ztgevc.c +32 -32
  1457. data/ext/ztgex2.c +14 -14
  1458. data/ext/ztgexc.c +25 -25
  1459. data/ext/ztgsen.c +37 -37
  1460. data/ext/ztgsja.c +26 -26
  1461. data/ext/ztgsna.c +24 -24
  1462. data/ext/ztgsy2.c +22 -22
  1463. data/ext/ztgsyl.c +42 -42
  1464. data/ext/ztpcon.c +2 -2
  1465. data/ext/ztprfs.c +13 -13
  1466. data/ext/ztptri.c +1 -1
  1467. data/ext/ztptrs.c +3 -3
  1468. data/ext/ztpttf.c +1 -1
  1469. data/ext/ztpttr.c +1 -1
  1470. data/ext/ztrcon.c +3 -3
  1471. data/ext/ztrevc.c +12 -12
  1472. data/ext/ztrexc.c +1 -1
  1473. data/ext/ztrrfs.c +11 -11
  1474. data/ext/ztrsen.c +13 -13
  1475. data/ext/ztrsna.c +20 -20
  1476. data/ext/ztrsyl.c +11 -11
  1477. data/ext/ztrti2.c +1 -1
  1478. data/ext/ztrtri.c +1 -1
  1479. data/ext/ztrtrs.c +10 -10
  1480. data/ext/ztrttf.c +1 -1
  1481. data/ext/ztrttp.c +1 -1
  1482. data/ext/zunbdb.c +15 -15
  1483. data/ext/zuncsd.c +27 -27
  1484. data/ext/zung2l.c +9 -9
  1485. data/ext/zung2r.c +9 -9
  1486. data/ext/zungbr.c +1 -1
  1487. data/ext/zunghr.c +7 -7
  1488. data/ext/zungl2.c +1 -1
  1489. data/ext/zunglq.c +9 -9
  1490. data/ext/zungql.c +9 -9
  1491. data/ext/zungqr.c +9 -9
  1492. data/ext/zungr2.c +1 -1
  1493. data/ext/zungrq.c +9 -9
  1494. data/ext/zungtr.c +6 -6
  1495. data/ext/zunm2l.c +12 -12
  1496. data/ext/zunm2r.c +12 -12
  1497. data/ext/zunmbr.c +3 -3
  1498. data/ext/zunmhr.c +12 -12
  1499. data/ext/zunml2.c +1 -1
  1500. data/ext/zunmlq.c +7 -7
  1501. data/ext/zunmql.c +12 -12
  1502. data/ext/zunmqr.c +12 -12
  1503. data/ext/zunmr2.c +1 -1
  1504. data/ext/zunmr3.c +10 -10
  1505. data/ext/zunmrq.c +7 -7
  1506. data/ext/zunmrz.c +10 -10
  1507. data/ext/zunmtr.c +17 -17
  1508. data/ext/zupgtr.c +8 -8
  1509. data/ext/zupmtr.c +2 -2
  1510. metadata +3183 -3329
  1511. data/doc/bd.html +0 -16
  1512. data/doc/c.html +0 -36
  1513. data/doc/cbd.html +0 -161
  1514. data/doc/cgb.html +0 -1865
  1515. data/doc/cge.html +0 -5261
  1516. data/doc/cgg.html +0 -2027
  1517. data/doc/cgt.html +0 -711
  1518. data/doc/chb.html +0 -1031
  1519. data/doc/che.html +0 -3165
  1520. data/doc/chg.html +0 -201
  1521. data/doc/chp.html +0 -1696
  1522. data/doc/chs.html +0 -386
  1523. data/doc/cpb.html +0 -994
  1524. data/doc/cpo.html +0 -1520
  1525. data/doc/cpp.html +0 -770
  1526. data/doc/cpt.html +0 -706
  1527. data/doc/csp.html +0 -905
  1528. data/doc/cst.html +0 -742
  1529. data/doc/csy.html +0 -2194
  1530. data/doc/ctb.html +0 -284
  1531. data/doc/ctg.html +0 -1544
  1532. data/doc/ctp.html +0 -553
  1533. data/doc/ctr.html +0 -1281
  1534. data/doc/ctz.html +0 -211
  1535. data/doc/cun.html +0 -2553
  1536. data/doc/cup.html +0 -166
  1537. data/doc/d.html +0 -35
  1538. data/doc/dbd.html +0 -304
  1539. data/doc/ddi.html +0 -87
  1540. data/doc/dgb.html +0 -1857
  1541. data/doc/dge.html +0 -7267
  1542. data/doc/dgg.html +0 -2102
  1543. data/doc/dgt.html +0 -713
  1544. data/doc/dhg.html +0 -225
  1545. data/doc/dhs.html +0 -414
  1546. data/doc/di.html +0 -14
  1547. data/doc/dop.html +0 -166
  1548. data/doc/dor.html +0 -2540
  1549. data/doc/dpb.html +0 -992
  1550. data/doc/dpo.html +0 -1517
  1551. data/doc/dpp.html +0 -770
  1552. data/doc/dpt.html +0 -675
  1553. data/doc/dsb.html +0 -995
  1554. data/doc/dsp.html +0 -1777
  1555. data/doc/dst.html +0 -1422
  1556. data/doc/dsy.html +0 -3433
  1557. data/doc/dtb.html +0 -284
  1558. data/doc/dtg.html +0 -1730
  1559. data/doc/dtp.html +0 -532
  1560. data/doc/dtr.html +0 -1346
  1561. data/doc/dtz.html +0 -211
  1562. data/doc/gb.html +0 -16
  1563. data/doc/ge.html +0 -16
  1564. data/doc/gg.html +0 -16
  1565. data/doc/gt.html +0 -16
  1566. data/doc/hb.html +0 -14
  1567. data/doc/he.html +0 -14
  1568. data/doc/hg.html +0 -16
  1569. data/doc/hp.html +0 -14
  1570. data/doc/hs.html +0 -16
  1571. data/doc/index.html +0 -53
  1572. data/doc/op.html +0 -14
  1573. data/doc/or.html +0 -14
  1574. data/doc/others.html +0 -1142
  1575. data/doc/pb.html +0 -16
  1576. data/doc/po.html +0 -16
  1577. data/doc/pp.html +0 -16
  1578. data/doc/pt.html +0 -16
  1579. data/doc/s.html +0 -35
  1580. data/doc/sb.html +0 -14
  1581. data/doc/sbd.html +0 -303
  1582. data/doc/sdi.html +0 -87
  1583. data/doc/sgb.html +0 -1863
  1584. data/doc/sge.html +0 -7263
  1585. data/doc/sgg.html +0 -2102
  1586. data/doc/sgt.html +0 -713
  1587. data/doc/shg.html +0 -225
  1588. data/doc/shs.html +0 -414
  1589. data/doc/sop.html +0 -166
  1590. data/doc/sor.html +0 -2540
  1591. data/doc/sp.html +0 -16
  1592. data/doc/spb.html +0 -992
  1593. data/doc/spo.html +0 -1520
  1594. data/doc/spp.html +0 -770
  1595. data/doc/spt.html +0 -675
  1596. data/doc/ssb.html +0 -995
  1597. data/doc/ssp.html +0 -1647
  1598. data/doc/sst.html +0 -1423
  1599. data/doc/ssy.html +0 -3438
  1600. data/doc/st.html +0 -16
  1601. data/doc/stb.html +0 -284
  1602. data/doc/stg.html +0 -1729
  1603. data/doc/stp.html +0 -532
  1604. data/doc/str.html +0 -1346
  1605. data/doc/stz.html +0 -211
  1606. data/doc/sy.html +0 -16
  1607. data/doc/tb.html +0 -16
  1608. data/doc/tg.html +0 -16
  1609. data/doc/tp.html +0 -16
  1610. data/doc/tr.html +0 -16
  1611. data/doc/tz.html +0 -16
  1612. data/doc/un.html +0 -14
  1613. data/doc/up.html +0 -14
  1614. data/doc/z.html +0 -36
  1615. data/doc/zbd.html +0 -161
  1616. data/doc/zgb.html +0 -1862
  1617. data/doc/zge.html +0 -5258
  1618. data/doc/zgg.html +0 -2027
  1619. data/doc/zgt.html +0 -711
  1620. data/doc/zhb.html +0 -1031
  1621. data/doc/zhe.html +0 -3162
  1622. data/doc/zhg.html +0 -201
  1623. data/doc/zhp.html +0 -1697
  1624. data/doc/zhs.html +0 -386
  1625. data/doc/zpb.html +0 -994
  1626. data/doc/zpo.html +0 -1517
  1627. data/doc/zpp.html +0 -770
  1628. data/doc/zpt.html +0 -706
  1629. data/doc/zsp.html +0 -905
  1630. data/doc/zst.html +0 -743
  1631. data/doc/zsy.html +0 -2191
  1632. data/doc/ztb.html +0 -284
  1633. data/doc/ztg.html +0 -1544
  1634. data/doc/ztp.html +0 -553
  1635. data/doc/ztr.html +0 -1281
  1636. data/doc/ztz.html +0 -211
  1637. data/doc/zun.html +0 -2553
  1638. data/doc/zup.html +0 -166
data/doc/dsp.html DELETED
@@ -1,1777 +0,0 @@
1
- <HTML>
2
- <HEAD>
3
- <TITLE>DOUBLE PRECISION routines for symmetric, packed storage matrix</TITLE>
4
- </HEAD>
5
- <BODY>
6
- <A NAME="top"></A>
7
- <H1>DOUBLE PRECISION routines for symmetric, packed storage matrix</H1>
8
- <UL>
9
- <LI><A HREF="#dspcon">dspcon</A></LI>
10
- <LI><A HREF="#dspev">dspev</A></LI>
11
- <LI><A HREF="#dspevd">dspevd</A></LI>
12
- <LI><A HREF="#dspevx">dspevx</A></LI>
13
- <LI><A HREF="#dspgst">dspgst</A></LI>
14
- <LI><A HREF="#dspgv">dspgv</A></LI>
15
- <LI><A HREF="#dspgvd">dspgvd</A></LI>
16
- <LI><A HREF="#dspgvx">dspgvx</A></LI>
17
- <LI><A HREF="#dsposv">dsposv</A></LI>
18
- <LI><A HREF="#dsprfs">dsprfs</A></LI>
19
- <LI><A HREF="#dspsv">dspsv</A></LI>
20
- <LI><A HREF="#dspsvx">dspsvx</A></LI>
21
- <LI><A HREF="#dsptrd">dsptrd</A></LI>
22
- <LI><A HREF="#dsptrf">dsptrf</A></LI>
23
- <LI><A HREF="#dsptri">dsptri</A></LI>
24
- <LI><A HREF="#dsptrs">dsptrs</A></LI>
25
- </UL>
26
-
27
- <A NAME="dspcon"></A>
28
- <H2>dspcon</H2>
29
- <PRE>
30
- USAGE:
31
- rcond, info = NumRu::Lapack.dspcon( uplo, ap, ipiv, anorm, [:usage => usage, :help => help])
32
-
33
-
34
- FORTRAN MANUAL
35
- SUBROUTINE DSPCON( UPLO, N, AP, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
36
-
37
- * Purpose
38
- * =======
39
- *
40
- * DSPCON estimates the reciprocal of the condition number (in the
41
- * 1-norm) of a real symmetric packed matrix A using the factorization
42
- * A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
43
- *
44
- * An estimate is obtained for norm(inv(A)), and the reciprocal of the
45
- * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
46
- *
47
-
48
- * Arguments
49
- * =========
50
- *
51
- * UPLO (input) CHARACTER*1
52
- * Specifies whether the details of the factorization are stored
53
- * as an upper or lower triangular matrix.
54
- * = 'U': Upper triangular, form is A = U*D*U**T;
55
- * = 'L': Lower triangular, form is A = L*D*L**T.
56
- *
57
- * N (input) INTEGER
58
- * The order of the matrix A. N >= 0.
59
- *
60
- * AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
61
- * The block diagonal matrix D and the multipliers used to
62
- * obtain the factor U or L as computed by DSPTRF, stored as a
63
- * packed triangular matrix.
64
- *
65
- * IPIV (input) INTEGER array, dimension (N)
66
- * Details of the interchanges and the block structure of D
67
- * as determined by DSPTRF.
68
- *
69
- * ANORM (input) DOUBLE PRECISION
70
- * The 1-norm of the original matrix A.
71
- *
72
- * RCOND (output) DOUBLE PRECISION
73
- * The reciprocal of the condition number of the matrix A,
74
- * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
75
- * estimate of the 1-norm of inv(A) computed in this routine.
76
- *
77
- * WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
78
- *
79
- * IWORK (workspace) INTEGER array, dimension (N)
80
- *
81
- * INFO (output) INTEGER
82
- * = 0: successful exit
83
- * < 0: if INFO = -i, the i-th argument had an illegal value
84
- *
85
-
86
- * =====================================================================
87
- *
88
-
89
-
90
- </PRE>
91
- <A HREF="#top">go to the page top</A>
92
-
93
- <A NAME="dspev"></A>
94
- <H2>dspev</H2>
95
- <PRE>
96
- USAGE:
97
- w, z, info, ap = NumRu::Lapack.dspev( jobz, uplo, ap, [:usage => usage, :help => help])
98
-
99
-
100
- FORTRAN MANUAL
101
- SUBROUTINE DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
102
-
103
- * Purpose
104
- * =======
105
- *
106
- * DSPEV computes all the eigenvalues and, optionally, eigenvectors of a
107
- * real symmetric matrix A in packed storage.
108
- *
109
-
110
- * Arguments
111
- * =========
112
- *
113
- * JOBZ (input) CHARACTER*1
114
- * = 'N': Compute eigenvalues only;
115
- * = 'V': Compute eigenvalues and eigenvectors.
116
- *
117
- * UPLO (input) CHARACTER*1
118
- * = 'U': Upper triangle of A is stored;
119
- * = 'L': Lower triangle of A is stored.
120
- *
121
- * N (input) INTEGER
122
- * The order of the matrix A. N >= 0.
123
- *
124
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
125
- * On entry, the upper or lower triangle of the symmetric matrix
126
- * A, packed columnwise in a linear array. The j-th column of A
127
- * is stored in the array AP as follows:
128
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
129
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
130
- *
131
- * On exit, AP is overwritten by values generated during the
132
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
133
- * and first superdiagonal of the tridiagonal matrix T overwrite
134
- * the corresponding elements of A, and if UPLO = 'L', the
135
- * diagonal and first subdiagonal of T overwrite the
136
- * corresponding elements of A.
137
- *
138
- * W (output) DOUBLE PRECISION array, dimension (N)
139
- * If INFO = 0, the eigenvalues in ascending order.
140
- *
141
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
142
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
143
- * eigenvectors of the matrix A, with the i-th column of Z
144
- * holding the eigenvector associated with W(i).
145
- * If JOBZ = 'N', then Z is not referenced.
146
- *
147
- * LDZ (input) INTEGER
148
- * The leading dimension of the array Z. LDZ >= 1, and if
149
- * JOBZ = 'V', LDZ >= max(1,N).
150
- *
151
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
152
- *
153
- * INFO (output) INTEGER
154
- * = 0: successful exit.
155
- * < 0: if INFO = -i, the i-th argument had an illegal value.
156
- * > 0: if INFO = i, the algorithm failed to converge; i
157
- * off-diagonal elements of an intermediate tridiagonal
158
- * form did not converge to zero.
159
- *
160
-
161
- * =====================================================================
162
- *
163
-
164
-
165
- </PRE>
166
- <A HREF="#top">go to the page top</A>
167
-
168
- <A NAME="dspevd"></A>
169
- <H2>dspevd</H2>
170
- <PRE>
171
- USAGE:
172
- w, z, work, iwork, info, ap = NumRu::Lapack.dspevd( jobz, uplo, ap, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
173
-
174
-
175
- FORTRAN MANUAL
176
- SUBROUTINE DSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
177
-
178
- * Purpose
179
- * =======
180
- *
181
- * DSPEVD computes all the eigenvalues and, optionally, eigenvectors
182
- * of a real symmetric matrix A in packed storage. If eigenvectors are
183
- * desired, it uses a divide and conquer algorithm.
184
- *
185
- * The divide and conquer algorithm makes very mild assumptions about
186
- * floating point arithmetic. It will work on machines with a guard
187
- * digit in add/subtract, or on those binary machines without guard
188
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
189
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
190
- * without guard digits, but we know of none.
191
- *
192
-
193
- * Arguments
194
- * =========
195
- *
196
- * JOBZ (input) CHARACTER*1
197
- * = 'N': Compute eigenvalues only;
198
- * = 'V': Compute eigenvalues and eigenvectors.
199
- *
200
- * UPLO (input) CHARACTER*1
201
- * = 'U': Upper triangle of A is stored;
202
- * = 'L': Lower triangle of A is stored.
203
- *
204
- * N (input) INTEGER
205
- * The order of the matrix A. N >= 0.
206
- *
207
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
208
- * On entry, the upper or lower triangle of the symmetric matrix
209
- * A, packed columnwise in a linear array. The j-th column of A
210
- * is stored in the array AP as follows:
211
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
212
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
213
- *
214
- * On exit, AP is overwritten by values generated during the
215
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
216
- * and first superdiagonal of the tridiagonal matrix T overwrite
217
- * the corresponding elements of A, and if UPLO = 'L', the
218
- * diagonal and first subdiagonal of T overwrite the
219
- * corresponding elements of A.
220
- *
221
- * W (output) DOUBLE PRECISION array, dimension (N)
222
- * If INFO = 0, the eigenvalues in ascending order.
223
- *
224
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
225
- * If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
226
- * eigenvectors of the matrix A, with the i-th column of Z
227
- * holding the eigenvector associated with W(i).
228
- * If JOBZ = 'N', then Z is not referenced.
229
- *
230
- * LDZ (input) INTEGER
231
- * The leading dimension of the array Z. LDZ >= 1, and if
232
- * JOBZ = 'V', LDZ >= max(1,N).
233
- *
234
- * WORK (workspace/output) DOUBLE PRECISION array,
235
- * dimension (LWORK)
236
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
237
- *
238
- * LWORK (input) INTEGER
239
- * The dimension of the array WORK.
240
- * If N <= 1, LWORK must be at least 1.
241
- * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
242
- * If JOBZ = 'V' and N > 1, LWORK must be at least
243
- * 1 + 6*N + N**2.
244
- *
245
- * If LWORK = -1, then a workspace query is assumed; the routine
246
- * only calculates the required sizes of the WORK and IWORK
247
- * arrays, returns these values as the first entries of the WORK
248
- * and IWORK arrays, and no error message related to LWORK or
249
- * LIWORK is issued by XERBLA.
250
- *
251
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
252
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
253
- *
254
- * LIWORK (input) INTEGER
255
- * The dimension of the array IWORK.
256
- * If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
257
- * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
258
- *
259
- * If LIWORK = -1, then a workspace query is assumed; the
260
- * routine only calculates the required sizes of the WORK and
261
- * IWORK arrays, returns these values as the first entries of
262
- * the WORK and IWORK arrays, and no error message related to
263
- * LWORK or LIWORK is issued by XERBLA.
264
- *
265
- * INFO (output) INTEGER
266
- * = 0: successful exit
267
- * < 0: if INFO = -i, the i-th argument had an illegal value.
268
- * > 0: if INFO = i, the algorithm failed to converge; i
269
- * off-diagonal elements of an intermediate tridiagonal
270
- * form did not converge to zero.
271
- *
272
-
273
- * =====================================================================
274
- *
275
-
276
-
277
- </PRE>
278
- <A HREF="#top">go to the page top</A>
279
-
280
- <A NAME="dspevx"></A>
281
- <H2>dspevx</H2>
282
- <PRE>
283
- USAGE:
284
- m, w, z, ifail, info, ap = NumRu::Lapack.dspevx( jobz, range, uplo, ap, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
285
-
286
-
287
- FORTRAN MANUAL
288
- SUBROUTINE DSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
289
-
290
- * Purpose
291
- * =======
292
- *
293
- * DSPEVX computes selected eigenvalues and, optionally, eigenvectors
294
- * of a real symmetric matrix A in packed storage. Eigenvalues/vectors
295
- * can be selected by specifying either a range of values or a range of
296
- * indices for the desired eigenvalues.
297
- *
298
-
299
- * Arguments
300
- * =========
301
- *
302
- * JOBZ (input) CHARACTER*1
303
- * = 'N': Compute eigenvalues only;
304
- * = 'V': Compute eigenvalues and eigenvectors.
305
- *
306
- * RANGE (input) CHARACTER*1
307
- * = 'A': all eigenvalues will be found;
308
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
309
- * will be found;
310
- * = 'I': the IL-th through IU-th eigenvalues will be found.
311
- *
312
- * UPLO (input) CHARACTER*1
313
- * = 'U': Upper triangle of A is stored;
314
- * = 'L': Lower triangle of A is stored.
315
- *
316
- * N (input) INTEGER
317
- * The order of the matrix A. N >= 0.
318
- *
319
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
320
- * On entry, the upper or lower triangle of the symmetric matrix
321
- * A, packed columnwise in a linear array. The j-th column of A
322
- * is stored in the array AP as follows:
323
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
324
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
325
- *
326
- * On exit, AP is overwritten by values generated during the
327
- * reduction to tridiagonal form. If UPLO = 'U', the diagonal
328
- * and first superdiagonal of the tridiagonal matrix T overwrite
329
- * the corresponding elements of A, and if UPLO = 'L', the
330
- * diagonal and first subdiagonal of T overwrite the
331
- * corresponding elements of A.
332
- *
333
- * VL (input) DOUBLE PRECISION
334
- * VU (input) DOUBLE PRECISION
335
- * If RANGE='V', the lower and upper bounds of the interval to
336
- * be searched for eigenvalues. VL < VU.
337
- * Not referenced if RANGE = 'A' or 'I'.
338
- *
339
- * IL (input) INTEGER
340
- * IU (input) INTEGER
341
- * If RANGE='I', the indices (in ascending order) of the
342
- * smallest and largest eigenvalues to be returned.
343
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
344
- * Not referenced if RANGE = 'A' or 'V'.
345
- *
346
- * ABSTOL (input) DOUBLE PRECISION
347
- * The absolute error tolerance for the eigenvalues.
348
- * An approximate eigenvalue is accepted as converged
349
- * when it is determined to lie in an interval [a,b]
350
- * of width less than or equal to
351
- *
352
- * ABSTOL + EPS * max( |a|,|b| ) ,
353
- *
354
- * where EPS is the machine precision. If ABSTOL is less than
355
- * or equal to zero, then EPS*|T| will be used in its place,
356
- * where |T| is the 1-norm of the tridiagonal matrix obtained
357
- * by reducing AP to tridiagonal form.
358
- *
359
- * Eigenvalues will be computed most accurately when ABSTOL is
360
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
361
- * If this routine returns with INFO>0, indicating that some
362
- * eigenvectors did not converge, try setting ABSTOL to
363
- * 2*DLAMCH('S').
364
- *
365
- * See "Computing Small Singular Values of Bidiagonal Matrices
366
- * with Guaranteed High Relative Accuracy," by Demmel and
367
- * Kahan, LAPACK Working Note #3.
368
- *
369
- * M (output) INTEGER
370
- * The total number of eigenvalues found. 0 <= M <= N.
371
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
372
- *
373
- * W (output) DOUBLE PRECISION array, dimension (N)
374
- * If INFO = 0, the selected eigenvalues in ascending order.
375
- *
376
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
377
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
378
- * contain the orthonormal eigenvectors of the matrix A
379
- * corresponding to the selected eigenvalues, with the i-th
380
- * column of Z holding the eigenvector associated with W(i).
381
- * If an eigenvector fails to converge, then that column of Z
382
- * contains the latest approximation to the eigenvector, and the
383
- * index of the eigenvector is returned in IFAIL.
384
- * If JOBZ = 'N', then Z is not referenced.
385
- * Note: the user must ensure that at least max(1,M) columns are
386
- * supplied in the array Z; if RANGE = 'V', the exact value of M
387
- * is not known in advance and an upper bound must be used.
388
- *
389
- * LDZ (input) INTEGER
390
- * The leading dimension of the array Z. LDZ >= 1, and if
391
- * JOBZ = 'V', LDZ >= max(1,N).
392
- *
393
- * WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
394
- *
395
- * IWORK (workspace) INTEGER array, dimension (5*N)
396
- *
397
- * IFAIL (output) INTEGER array, dimension (N)
398
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
399
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
400
- * indices of the eigenvectors that failed to converge.
401
- * If JOBZ = 'N', then IFAIL is not referenced.
402
- *
403
- * INFO (output) INTEGER
404
- * = 0: successful exit
405
- * < 0: if INFO = -i, the i-th argument had an illegal value
406
- * > 0: if INFO = i, then i eigenvectors failed to converge.
407
- * Their indices are stored in array IFAIL.
408
- *
409
-
410
- * =====================================================================
411
- *
412
-
413
-
414
- </PRE>
415
- <A HREF="#top">go to the page top</A>
416
-
417
- <A NAME="dspgst"></A>
418
- <H2>dspgst</H2>
419
- <PRE>
420
- USAGE:
421
- info, ap = NumRu::Lapack.dspgst( itype, uplo, n, ap, bp, [:usage => usage, :help => help])
422
-
423
-
424
- FORTRAN MANUAL
425
- SUBROUTINE DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
426
-
427
- * Purpose
428
- * =======
429
- *
430
- * DSPGST reduces a real symmetric-definite generalized eigenproblem
431
- * to standard form, using packed storage.
432
- *
433
- * If ITYPE = 1, the problem is A*x = lambda*B*x,
434
- * and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
435
- *
436
- * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
437
- * B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
438
- *
439
- * B must have been previously factorized as U**T*U or L*L**T by DPPTRF.
440
- *
441
-
442
- * Arguments
443
- * =========
444
- *
445
- * ITYPE (input) INTEGER
446
- * = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
447
- * = 2 or 3: compute U*A*U**T or L**T*A*L.
448
- *
449
- * UPLO (input) CHARACTER*1
450
- * = 'U': Upper triangle of A is stored and B is factored as
451
- * U**T*U;
452
- * = 'L': Lower triangle of A is stored and B is factored as
453
- * L*L**T.
454
- *
455
- * N (input) INTEGER
456
- * The order of the matrices A and B. N >= 0.
457
- *
458
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
459
- * On entry, the upper or lower triangle of the symmetric matrix
460
- * A, packed columnwise in a linear array. The j-th column of A
461
- * is stored in the array AP as follows:
462
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
463
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
464
- *
465
- * On exit, if INFO = 0, the transformed matrix, stored in the
466
- * same format as A.
467
- *
468
- * BP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
469
- * The triangular factor from the Cholesky factorization of B,
470
- * stored in the same format as A, as returned by DPPTRF.
471
- *
472
- * INFO (output) INTEGER
473
- * = 0: successful exit
474
- * < 0: if INFO = -i, the i-th argument had an illegal value
475
- *
476
-
477
- * =====================================================================
478
- *
479
-
480
-
481
- </PRE>
482
- <A HREF="#top">go to the page top</A>
483
-
484
- <A NAME="dspgv"></A>
485
- <H2>dspgv</H2>
486
- <PRE>
487
- USAGE:
488
- w, z, info, ap, bp = NumRu::Lapack.dspgv( itype, jobz, uplo, ap, bp, [:usage => usage, :help => help])
489
-
490
-
491
- FORTRAN MANUAL
492
- SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, INFO )
493
-
494
- * Purpose
495
- * =======
496
- *
497
- * DSPGV computes all the eigenvalues and, optionally, the eigenvectors
498
- * of a real generalized symmetric-definite eigenproblem, of the form
499
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
500
- * Here A and B are assumed to be symmetric, stored in packed format,
501
- * and B is also positive definite.
502
- *
503
-
504
- * Arguments
505
- * =========
506
- *
507
- * ITYPE (input) INTEGER
508
- * Specifies the problem type to be solved:
509
- * = 1: A*x = (lambda)*B*x
510
- * = 2: A*B*x = (lambda)*x
511
- * = 3: B*A*x = (lambda)*x
512
- *
513
- * JOBZ (input) CHARACTER*1
514
- * = 'N': Compute eigenvalues only;
515
- * = 'V': Compute eigenvalues and eigenvectors.
516
- *
517
- * UPLO (input) CHARACTER*1
518
- * = 'U': Upper triangles of A and B are stored;
519
- * = 'L': Lower triangles of A and B are stored.
520
- *
521
- * N (input) INTEGER
522
- * The order of the matrices A and B. N >= 0.
523
- *
524
- * AP (input/output) DOUBLE PRECISION array, dimension
525
- * (N*(N+1)/2)
526
- * On entry, the upper or lower triangle of the symmetric matrix
527
- * A, packed columnwise in a linear array. The j-th column of A
528
- * is stored in the array AP as follows:
529
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
530
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
531
- *
532
- * On exit, the contents of AP are destroyed.
533
- *
534
- * BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
535
- * On entry, the upper or lower triangle of the symmetric matrix
536
- * B, packed columnwise in a linear array. The j-th column of B
537
- * is stored in the array BP as follows:
538
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
539
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
540
- *
541
- * On exit, the triangular factor U or L from the Cholesky
542
- * factorization B = U**T*U or B = L*L**T, in the same storage
543
- * format as B.
544
- *
545
- * W (output) DOUBLE PRECISION array, dimension (N)
546
- * If INFO = 0, the eigenvalues in ascending order.
547
- *
548
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
549
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
550
- * eigenvectors. The eigenvectors are normalized as follows:
551
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
552
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
553
- * If JOBZ = 'N', then Z is not referenced.
554
- *
555
- * LDZ (input) INTEGER
556
- * The leading dimension of the array Z. LDZ >= 1, and if
557
- * JOBZ = 'V', LDZ >= max(1,N).
558
- *
559
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
560
- *
561
- * INFO (output) INTEGER
562
- * = 0: successful exit
563
- * < 0: if INFO = -i, the i-th argument had an illegal value
564
- * > 0: DPPTRF or DSPEV returned an error code:
565
- * <= N: if INFO = i, DSPEV failed to converge;
566
- * i off-diagonal elements of an intermediate
567
- * tridiagonal form did not converge to zero.
568
- * > N: if INFO = n + i, for 1 <= i <= n, then the leading
569
- * minor of order i of B is not positive definite.
570
- * The factorization of B could not be completed and
571
- * no eigenvalues or eigenvectors were computed.
572
- *
573
-
574
- * =====================================================================
575
- *
576
- * .. Local Scalars ..
577
- LOGICAL UPPER, WANTZ
578
- CHARACTER TRANS
579
- INTEGER J, NEIG
580
- * ..
581
- * .. External Functions ..
582
- LOGICAL LSAME
583
- EXTERNAL LSAME
584
- * ..
585
- * .. External Subroutines ..
586
- EXTERNAL DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA
587
- * ..
588
-
589
-
590
- </PRE>
591
- <A HREF="#top">go to the page top</A>
592
-
593
- <A NAME="dspgvd"></A>
594
- <H2>dspgvd</H2>
595
- <PRE>
596
- USAGE:
597
- w, z, work, iwork, info, ap, bp = NumRu::Lapack.dspgvd( itype, jobz, uplo, ap, bp, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
598
-
599
-
600
- FORTRAN MANUAL
601
- SUBROUTINE DSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO )
602
-
603
- * Purpose
604
- * =======
605
- *
606
- * DSPGVD computes all the eigenvalues, and optionally, the eigenvectors
607
- * of a real generalized symmetric-definite eigenproblem, of the form
608
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
609
- * B are assumed to be symmetric, stored in packed format, and B is also
610
- * positive definite.
611
- * If eigenvectors are desired, it uses a divide and conquer algorithm.
612
- *
613
- * The divide and conquer algorithm makes very mild assumptions about
614
- * floating point arithmetic. It will work on machines with a guard
615
- * digit in add/subtract, or on those binary machines without guard
616
- * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
617
- * Cray-2. It could conceivably fail on hexadecimal or decimal machines
618
- * without guard digits, but we know of none.
619
- *
620
-
621
- * Arguments
622
- * =========
623
- *
624
- * ITYPE (input) INTEGER
625
- * Specifies the problem type to be solved:
626
- * = 1: A*x = (lambda)*B*x
627
- * = 2: A*B*x = (lambda)*x
628
- * = 3: B*A*x = (lambda)*x
629
- *
630
- * JOBZ (input) CHARACTER*1
631
- * = 'N': Compute eigenvalues only;
632
- * = 'V': Compute eigenvalues and eigenvectors.
633
- *
634
- * UPLO (input) CHARACTER*1
635
- * = 'U': Upper triangles of A and B are stored;
636
- * = 'L': Lower triangles of A and B are stored.
637
- *
638
- * N (input) INTEGER
639
- * The order of the matrices A and B. N >= 0.
640
- *
641
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
642
- * On entry, the upper or lower triangle of the symmetric matrix
643
- * A, packed columnwise in a linear array. The j-th column of A
644
- * is stored in the array AP as follows:
645
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
646
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
647
- *
648
- * On exit, the contents of AP are destroyed.
649
- *
650
- * BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
651
- * On entry, the upper or lower triangle of the symmetric matrix
652
- * B, packed columnwise in a linear array. The j-th column of B
653
- * is stored in the array BP as follows:
654
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
655
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
656
- *
657
- * On exit, the triangular factor U or L from the Cholesky
658
- * factorization B = U**T*U or B = L*L**T, in the same storage
659
- * format as B.
660
- *
661
- * W (output) DOUBLE PRECISION array, dimension (N)
662
- * If INFO = 0, the eigenvalues in ascending order.
663
- *
664
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, N)
665
- * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
666
- * eigenvectors. The eigenvectors are normalized as follows:
667
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
668
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
669
- * If JOBZ = 'N', then Z is not referenced.
670
- *
671
- * LDZ (input) INTEGER
672
- * The leading dimension of the array Z. LDZ >= 1, and if
673
- * JOBZ = 'V', LDZ >= max(1,N).
674
- *
675
- * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
676
- * On exit, if INFO = 0, WORK(1) returns the required LWORK.
677
- *
678
- * LWORK (input) INTEGER
679
- * The dimension of the array WORK.
680
- * If N <= 1, LWORK >= 1.
681
- * If JOBZ = 'N' and N > 1, LWORK >= 2*N.
682
- * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
683
- *
684
- * If LWORK = -1, then a workspace query is assumed; the routine
685
- * only calculates the required sizes of the WORK and IWORK
686
- * arrays, returns these values as the first entries of the WORK
687
- * and IWORK arrays, and no error message related to LWORK or
688
- * LIWORK is issued by XERBLA.
689
- *
690
- * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
691
- * On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
692
- *
693
- * LIWORK (input) INTEGER
694
- * The dimension of the array IWORK.
695
- * If JOBZ = 'N' or N <= 1, LIWORK >= 1.
696
- * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
697
- *
698
- * If LIWORK = -1, then a workspace query is assumed; the
699
- * routine only calculates the required sizes of the WORK and
700
- * IWORK arrays, returns these values as the first entries of
701
- * the WORK and IWORK arrays, and no error message related to
702
- * LWORK or LIWORK is issued by XERBLA.
703
- *
704
- * INFO (output) INTEGER
705
- * = 0: successful exit
706
- * < 0: if INFO = -i, the i-th argument had an illegal value
707
- * > 0: DPPTRF or DSPEVD returned an error code:
708
- * <= N: if INFO = i, DSPEVD failed to converge;
709
- * i off-diagonal elements of an intermediate
710
- * tridiagonal form did not converge to zero;
711
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
712
- * minor of order i of B is not positive definite.
713
- * The factorization of B could not be completed and
714
- * no eigenvalues or eigenvectors were computed.
715
- *
716
-
717
- * Further Details
718
- * ===============
719
- *
720
- * Based on contributions by
721
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
722
- *
723
- * =====================================================================
724
- *
725
-
726
-
727
- </PRE>
728
- <A HREF="#top">go to the page top</A>
729
-
730
- <A NAME="dspgvx"></A>
731
- <H2>dspgvx</H2>
732
- <PRE>
733
- USAGE:
734
- m, w, z, ifail, info, ap, bp = NumRu::Lapack.dspgvx( itype, jobz, range, uplo, ap, bp, vl, vu, il, iu, abstol, [:usage => usage, :help => help])
735
-
736
-
737
- FORTRAN MANUAL
738
- SUBROUTINE DSPGVX( ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
739
-
740
- * Purpose
741
- * =======
742
- *
743
- * DSPGVX computes selected eigenvalues, and optionally, eigenvectors
744
- * of a real generalized symmetric-definite eigenproblem, of the form
745
- * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
746
- * and B are assumed to be symmetric, stored in packed storage, and B
747
- * is also positive definite. Eigenvalues and eigenvectors can be
748
- * selected by specifying either a range of values or a range of indices
749
- * for the desired eigenvalues.
750
- *
751
-
752
- * Arguments
753
- * =========
754
- *
755
- * ITYPE (input) INTEGER
756
- * Specifies the problem type to be solved:
757
- * = 1: A*x = (lambda)*B*x
758
- * = 2: A*B*x = (lambda)*x
759
- * = 3: B*A*x = (lambda)*x
760
- *
761
- * JOBZ (input) CHARACTER*1
762
- * = 'N': Compute eigenvalues only;
763
- * = 'V': Compute eigenvalues and eigenvectors.
764
- *
765
- * RANGE (input) CHARACTER*1
766
- * = 'A': all eigenvalues will be found.
767
- * = 'V': all eigenvalues in the half-open interval (VL,VU]
768
- * will be found.
769
- * = 'I': the IL-th through IU-th eigenvalues will be found.
770
- *
771
- * UPLO (input) CHARACTER*1
772
- * = 'U': Upper triangle of A and B are stored;
773
- * = 'L': Lower triangle of A and B are stored.
774
- *
775
- * N (input) INTEGER
776
- * The order of the matrix pencil (A,B). N >= 0.
777
- *
778
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
779
- * On entry, the upper or lower triangle of the symmetric matrix
780
- * A, packed columnwise in a linear array. The j-th column of A
781
- * is stored in the array AP as follows:
782
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
783
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
784
- *
785
- * On exit, the contents of AP are destroyed.
786
- *
787
- * BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
788
- * On entry, the upper or lower triangle of the symmetric matrix
789
- * B, packed columnwise in a linear array. The j-th column of B
790
- * is stored in the array BP as follows:
791
- * if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
792
- * if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
793
- *
794
- * On exit, the triangular factor U or L from the Cholesky
795
- * factorization B = U**T*U or B = L*L**T, in the same storage
796
- * format as B.
797
- *
798
- * VL (input) DOUBLE PRECISION
799
- * VU (input) DOUBLE PRECISION
800
- * If RANGE='V', the lower and upper bounds of the interval to
801
- * be searched for eigenvalues. VL < VU.
802
- * Not referenced if RANGE = 'A' or 'I'.
803
- *
804
- * IL (input) INTEGER
805
- * IU (input) INTEGER
806
- * If RANGE='I', the indices (in ascending order) of the
807
- * smallest and largest eigenvalues to be returned.
808
- * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
809
- * Not referenced if RANGE = 'A' or 'V'.
810
- *
811
- * ABSTOL (input) DOUBLE PRECISION
812
- * The absolute error tolerance for the eigenvalues.
813
- * An approximate eigenvalue is accepted as converged
814
- * when it is determined to lie in an interval [a,b]
815
- * of width less than or equal to
816
- *
817
- * ABSTOL + EPS * max( |a|,|b| ) ,
818
- *
819
- * where EPS is the machine precision. If ABSTOL is less than
820
- * or equal to zero, then EPS*|T| will be used in its place,
821
- * where |T| is the 1-norm of the tridiagonal matrix obtained
822
- * by reducing A to tridiagonal form.
823
- *
824
- * Eigenvalues will be computed most accurately when ABSTOL is
825
- * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
826
- * If this routine returns with INFO>0, indicating that some
827
- * eigenvectors did not converge, try setting ABSTOL to
828
- * 2*DLAMCH('S').
829
- *
830
- * M (output) INTEGER
831
- * The total number of eigenvalues found. 0 <= M <= N.
832
- * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
833
- *
834
- * W (output) DOUBLE PRECISION array, dimension (N)
835
- * On normal exit, the first M elements contain the selected
836
- * eigenvalues in ascending order.
837
- *
838
- * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
839
- * If JOBZ = 'N', then Z is not referenced.
840
- * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
841
- * contain the orthonormal eigenvectors of the matrix A
842
- * corresponding to the selected eigenvalues, with the i-th
843
- * column of Z holding the eigenvector associated with W(i).
844
- * The eigenvectors are normalized as follows:
845
- * if ITYPE = 1 or 2, Z**T*B*Z = I;
846
- * if ITYPE = 3, Z**T*inv(B)*Z = I.
847
- *
848
- * If an eigenvector fails to converge, then that column of Z
849
- * contains the latest approximation to the eigenvector, and the
850
- * index of the eigenvector is returned in IFAIL.
851
- * Note: the user must ensure that at least max(1,M) columns are
852
- * supplied in the array Z; if RANGE = 'V', the exact value of M
853
- * is not known in advance and an upper bound must be used.
854
- *
855
- * LDZ (input) INTEGER
856
- * The leading dimension of the array Z. LDZ >= 1, and if
857
- * JOBZ = 'V', LDZ >= max(1,N).
858
- *
859
- * WORK (workspace) DOUBLE PRECISION array, dimension (8*N)
860
- *
861
- * IWORK (workspace) INTEGER array, dimension (5*N)
862
- *
863
- * IFAIL (output) INTEGER array, dimension (N)
864
- * If JOBZ = 'V', then if INFO = 0, the first M elements of
865
- * IFAIL are zero. If INFO > 0, then IFAIL contains the
866
- * indices of the eigenvectors that failed to converge.
867
- * If JOBZ = 'N', then IFAIL is not referenced.
868
- *
869
- * INFO (output) INTEGER
870
- * = 0: successful exit
871
- * < 0: if INFO = -i, the i-th argument had an illegal value
872
- * > 0: DPPTRF or DSPEVX returned an error code:
873
- * <= N: if INFO = i, DSPEVX failed to converge;
874
- * i eigenvectors failed to converge. Their indices
875
- * are stored in array IFAIL.
876
- * > N: if INFO = N + i, for 1 <= i <= N, then the leading
877
- * minor of order i of B is not positive definite.
878
- * The factorization of B could not be completed and
879
- * no eigenvalues or eigenvectors were computed.
880
- *
881
-
882
- * Further Details
883
- * ===============
884
- *
885
- * Based on contributions by
886
- * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
887
- *
888
- * =====================================================================
889
- *
890
- * .. Local Scalars ..
891
- LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
892
- CHARACTER TRANS
893
- INTEGER J
894
- * ..
895
- * .. External Functions ..
896
- LOGICAL LSAME
897
- EXTERNAL LSAME
898
- * ..
899
- * .. External Subroutines ..
900
- EXTERNAL DPPTRF, DSPEVX, DSPGST, DTPMV, DTPSV, XERBLA
901
- * ..
902
- * .. Intrinsic Functions ..
903
- INTRINSIC MIN
904
- * ..
905
-
906
-
907
- </PRE>
908
- <A HREF="#top">go to the page top</A>
909
-
910
- <A NAME="dsposv"></A>
911
- <H2>dsposv</H2>
912
- <PRE>
913
- USAGE:
914
- x, iter, info, a = NumRu::Lapack.dsposv( uplo, a, b, [:usage => usage, :help => help])
915
-
916
-
917
- FORTRAN MANUAL
918
- SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, ITER, INFO )
919
-
920
- * Purpose
921
- * =======
922
- *
923
- * DSPOSV computes the solution to a real system of linear equations
924
- * A * X = B,
925
- * where A is an N-by-N symmetric positive definite matrix and X and B
926
- * are N-by-NRHS matrices.
927
- *
928
- * DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
929
- * and use this factorization within an iterative refinement procedure
930
- * to produce a solution with DOUBLE PRECISION normwise backward error
931
- * quality (see below). If the approach fails the method switches to a
932
- * DOUBLE PRECISION factorization and solve.
933
- *
934
- * The iterative refinement is not going to be a winning strategy if
935
- * the ratio SINGLE PRECISION performance over DOUBLE PRECISION
936
- * performance is too small. A reasonable strategy should take the
937
- * number of right-hand sides and the size of the matrix into account.
938
- * This might be done with a call to ILAENV in the future. Up to now, we
939
- * always try iterative refinement.
940
- *
941
- * The iterative refinement process is stopped if
942
- * ITER > ITERMAX
943
- * or for all the RHS we have:
944
- * RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
945
- * where
946
- * o ITER is the number of the current iteration in the iterative
947
- * refinement process
948
- * o RNRM is the infinity-norm of the residual
949
- * o XNRM is the infinity-norm of the solution
950
- * o ANRM is the infinity-operator-norm of the matrix A
951
- * o EPS is the machine epsilon returned by DLAMCH('Epsilon')
952
- * The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
953
- * respectively.
954
- *
955
-
956
- * Arguments
957
- * =========
958
- *
959
- * UPLO (input) CHARACTER*1
960
- * = 'U': Upper triangle of A is stored;
961
- * = 'L': Lower triangle of A is stored.
962
- *
963
- * N (input) INTEGER
964
- * The number of linear equations, i.e., the order of the
965
- * matrix A. N >= 0.
966
- *
967
- * NRHS (input) INTEGER
968
- * The number of right hand sides, i.e., the number of columns
969
- * of the matrix B. NRHS >= 0.
970
- *
971
- * A (input/output) DOUBLE PRECISION array,
972
- * dimension (LDA,N)
973
- * On entry, the symmetric matrix A. If UPLO = 'U', the leading
974
- * N-by-N upper triangular part of A contains the upper
975
- * triangular part of the matrix A, and the strictly lower
976
- * triangular part of A is not referenced. If UPLO = 'L', the
977
- * leading N-by-N lower triangular part of A contains the lower
978
- * triangular part of the matrix A, and the strictly upper
979
- * triangular part of A is not referenced.
980
- * On exit, if iterative refinement has been successfully used
981
- * (INFO.EQ.0 and ITER.GE.0, see description below), then A is
982
- * unchanged, if double precision factorization has been used
983
- * (INFO.EQ.0 and ITER.LT.0, see description below), then the
984
- * array A contains the factor U or L from the Cholesky
985
- * factorization A = U**T*U or A = L*L**T.
986
- *
987
- *
988
- * LDA (input) INTEGER
989
- * The leading dimension of the array A. LDA >= max(1,N).
990
- *
991
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
992
- * The N-by-NRHS right hand side matrix B.
993
- *
994
- * LDB (input) INTEGER
995
- * The leading dimension of the array B. LDB >= max(1,N).
996
- *
997
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
998
- * If INFO = 0, the N-by-NRHS solution matrix X.
999
- *
1000
- * LDX (input) INTEGER
1001
- * The leading dimension of the array X. LDX >= max(1,N).
1002
- *
1003
- * WORK (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
1004
- * This array is used to hold the residual vectors.
1005
- *
1006
- * SWORK (workspace) REAL array, dimension (N*(N+NRHS))
1007
- * This array is used to use the single precision matrix and the
1008
- * right-hand sides or solutions in single precision.
1009
- *
1010
- * ITER (output) INTEGER
1011
- * < 0: iterative refinement has failed, double precision
1012
- * factorization has been performed
1013
- * -1 : the routine fell back to full precision for
1014
- * implementation- or machine-specific reasons
1015
- * -2 : narrowing the precision induced an overflow,
1016
- * the routine fell back to full precision
1017
- * -3 : failure of SPOTRF
1018
- * -31: stop the iterative refinement after the 30th
1019
- * iterations
1020
- * > 0: iterative refinement has been sucessfully used.
1021
- * Returns the number of iterations
1022
- *
1023
- * INFO (output) INTEGER
1024
- * = 0: successful exit
1025
- * < 0: if INFO = -i, the i-th argument had an illegal value
1026
- * > 0: if INFO = i, the leading minor of order i of (DOUBLE
1027
- * PRECISION) A is not positive definite, so the
1028
- * factorization could not be completed, and the solution
1029
- * has not been computed.
1030
- *
1031
- * =========
1032
- *
1033
-
1034
-
1035
- </PRE>
1036
- <A HREF="#top">go to the page top</A>
1037
-
1038
- <A NAME="dsprfs"></A>
1039
- <H2>dsprfs</H2>
1040
- <PRE>
1041
- USAGE:
1042
- ferr, berr, info, x = NumRu::Lapack.dsprfs( uplo, ap, afp, ipiv, b, x, [:usage => usage, :help => help])
1043
-
1044
-
1045
- FORTRAN MANUAL
1046
- SUBROUTINE DSPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
1047
-
1048
- * Purpose
1049
- * =======
1050
- *
1051
- * DSPRFS improves the computed solution to a system of linear
1052
- * equations when the coefficient matrix is symmetric indefinite
1053
- * and packed, and provides error bounds and backward error estimates
1054
- * for the solution.
1055
- *
1056
-
1057
- * Arguments
1058
- * =========
1059
- *
1060
- * UPLO (input) CHARACTER*1
1061
- * = 'U': Upper triangle of A is stored;
1062
- * = 'L': Lower triangle of A is stored.
1063
- *
1064
- * N (input) INTEGER
1065
- * The order of the matrix A. N >= 0.
1066
- *
1067
- * NRHS (input) INTEGER
1068
- * The number of right hand sides, i.e., the number of columns
1069
- * of the matrices B and X. NRHS >= 0.
1070
- *
1071
- * AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1072
- * The upper or lower triangle of the symmetric matrix A, packed
1073
- * columnwise in a linear array. The j-th column of A is stored
1074
- * in the array AP as follows:
1075
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1076
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1077
- *
1078
- * AFP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1079
- * The factored form of the matrix A. AFP contains the block
1080
- * diagonal matrix D and the multipliers used to obtain the
1081
- * factor U or L from the factorization A = U*D*U**T or
1082
- * A = L*D*L**T as computed by DSPTRF, stored as a packed
1083
- * triangular matrix.
1084
- *
1085
- * IPIV (input) INTEGER array, dimension (N)
1086
- * Details of the interchanges and the block structure of D
1087
- * as determined by DSPTRF.
1088
- *
1089
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1090
- * The right hand side matrix B.
1091
- *
1092
- * LDB (input) INTEGER
1093
- * The leading dimension of the array B. LDB >= max(1,N).
1094
- *
1095
- * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1096
- * On entry, the solution matrix X, as computed by DSPTRS.
1097
- * On exit, the improved solution matrix X.
1098
- *
1099
- * LDX (input) INTEGER
1100
- * The leading dimension of the array X. LDX >= max(1,N).
1101
- *
1102
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1103
- * The estimated forward error bound for each solution vector
1104
- * X(j) (the j-th column of the solution matrix X).
1105
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1106
- * is an estimated upper bound for the magnitude of the largest
1107
- * element in (X(j) - XTRUE) divided by the magnitude of the
1108
- * largest element in X(j). The estimate is as reliable as
1109
- * the estimate for RCOND, and is almost always a slight
1110
- * overestimate of the true error.
1111
- *
1112
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1113
- * The componentwise relative backward error of each solution
1114
- * vector X(j) (i.e., the smallest relative change in
1115
- * any element of A or B that makes X(j) an exact solution).
1116
- *
1117
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
1118
- *
1119
- * IWORK (workspace) INTEGER array, dimension (N)
1120
- *
1121
- * INFO (output) INTEGER
1122
- * = 0: successful exit
1123
- * < 0: if INFO = -i, the i-th argument had an illegal value
1124
- *
1125
- * Internal Parameters
1126
- * ===================
1127
- *
1128
- * ITMAX is the maximum number of steps of iterative refinement.
1129
- *
1130
-
1131
- * =====================================================================
1132
- *
1133
-
1134
-
1135
- </PRE>
1136
- <A HREF="#top">go to the page top</A>
1137
-
1138
- <A NAME="dspsv"></A>
1139
- <H2>dspsv</H2>
1140
- <PRE>
1141
- USAGE:
1142
- ipiv, info, ap, b = NumRu::Lapack.dspsv( uplo, ap, b, [:usage => usage, :help => help])
1143
-
1144
-
1145
- FORTRAN MANUAL
1146
- SUBROUTINE DSPSV( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1147
-
1148
- * Purpose
1149
- * =======
1150
- *
1151
- * DSPSV computes the solution to a real system of linear equations
1152
- * A * X = B,
1153
- * where A is an N-by-N symmetric matrix stored in packed format and X
1154
- * and B are N-by-NRHS matrices.
1155
- *
1156
- * The diagonal pivoting method is used to factor A as
1157
- * A = U * D * U**T, if UPLO = 'U', or
1158
- * A = L * D * L**T, if UPLO = 'L',
1159
- * where U (or L) is a product of permutation and unit upper (lower)
1160
- * triangular matrices, D is symmetric and block diagonal with 1-by-1
1161
- * and 2-by-2 diagonal blocks. The factored form of A is then used to
1162
- * solve the system of equations A * X = B.
1163
- *
1164
-
1165
- * Arguments
1166
- * =========
1167
- *
1168
- * UPLO (input) CHARACTER*1
1169
- * = 'U': Upper triangle of A is stored;
1170
- * = 'L': Lower triangle of A is stored.
1171
- *
1172
- * N (input) INTEGER
1173
- * The number of linear equations, i.e., the order of the
1174
- * matrix A. N >= 0.
1175
- *
1176
- * NRHS (input) INTEGER
1177
- * The number of right hand sides, i.e., the number of columns
1178
- * of the matrix B. NRHS >= 0.
1179
- *
1180
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1181
- * On entry, the upper or lower triangle of the symmetric matrix
1182
- * A, packed columnwise in a linear array. The j-th column of A
1183
- * is stored in the array AP as follows:
1184
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1185
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1186
- * See below for further details.
1187
- *
1188
- * On exit, the block diagonal matrix D and the multipliers used
1189
- * to obtain the factor U or L from the factorization
1190
- * A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
1191
- * a packed triangular matrix in the same storage format as A.
1192
- *
1193
- * IPIV (output) INTEGER array, dimension (N)
1194
- * Details of the interchanges and the block structure of D, as
1195
- * determined by DSPTRF. If IPIV(k) > 0, then rows and columns
1196
- * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1197
- * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1198
- * then rows and columns k-1 and -IPIV(k) were interchanged and
1199
- * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1200
- * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1201
- * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1202
- * diagonal block.
1203
- *
1204
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1205
- * On entry, the N-by-NRHS right hand side matrix B.
1206
- * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1207
- *
1208
- * LDB (input) INTEGER
1209
- * The leading dimension of the array B. LDB >= max(1,N).
1210
- *
1211
- * INFO (output) INTEGER
1212
- * = 0: successful exit
1213
- * < 0: if INFO = -i, the i-th argument had an illegal value
1214
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1215
- * has been completed, but the block diagonal matrix D is
1216
- * exactly singular, so the solution could not be
1217
- * computed.
1218
- *
1219
-
1220
- * Further Details
1221
- * ===============
1222
- *
1223
- * The packed storage scheme is illustrated by the following example
1224
- * when N = 4, UPLO = 'U':
1225
- *
1226
- * Two-dimensional storage of the symmetric matrix A:
1227
- *
1228
- * a11 a12 a13 a14
1229
- * a22 a23 a24
1230
- * a33 a34 (aij = aji)
1231
- * a44
1232
- *
1233
- * Packed storage of the upper triangle of A:
1234
- *
1235
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1236
- *
1237
- * =====================================================================
1238
- *
1239
- * .. External Functions ..
1240
- LOGICAL LSAME
1241
- EXTERNAL LSAME
1242
- * ..
1243
- * .. External Subroutines ..
1244
- EXTERNAL DSPTRF, DSPTRS, XERBLA
1245
- * ..
1246
- * .. Intrinsic Functions ..
1247
- INTRINSIC MAX
1248
- * ..
1249
-
1250
-
1251
- </PRE>
1252
- <A HREF="#top">go to the page top</A>
1253
-
1254
- <A NAME="dspsvx"></A>
1255
- <H2>dspsvx</H2>
1256
- <PRE>
1257
- USAGE:
1258
- x, rcond, ferr, berr, info, afp, ipiv = NumRu::Lapack.dspsvx( fact, uplo, ap, afp, ipiv, b, [:usage => usage, :help => help])
1259
-
1260
-
1261
- FORTRAN MANUAL
1262
- SUBROUTINE DSPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO )
1263
-
1264
- * Purpose
1265
- * =======
1266
- *
1267
- * DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or
1268
- * A = L*D*L**T to compute the solution to a real system of linear
1269
- * equations A * X = B, where A is an N-by-N symmetric matrix stored
1270
- * in packed format and X and B are N-by-NRHS matrices.
1271
- *
1272
- * Error bounds on the solution and a condition estimate are also
1273
- * provided.
1274
- *
1275
- * Description
1276
- * ===========
1277
- *
1278
- * The following steps are performed:
1279
- *
1280
- * 1. If FACT = 'N', the diagonal pivoting method is used to factor A as
1281
- * A = U * D * U**T, if UPLO = 'U', or
1282
- * A = L * D * L**T, if UPLO = 'L',
1283
- * where U (or L) is a product of permutation and unit upper (lower)
1284
- * triangular matrices and D is symmetric and block diagonal with
1285
- * 1-by-1 and 2-by-2 diagonal blocks.
1286
- *
1287
- * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1288
- * returns with INFO = i. Otherwise, the factored form of A is used
1289
- * to estimate the condition number of the matrix A. If the
1290
- * reciprocal of the condition number is less than machine precision,
1291
- * INFO = N+1 is returned as a warning, but the routine still goes on
1292
- * to solve for X and compute error bounds as described below.
1293
- *
1294
- * 3. The system of equations is solved for X using the factored form
1295
- * of A.
1296
- *
1297
- * 4. Iterative refinement is applied to improve the computed solution
1298
- * matrix and calculate error bounds and backward error estimates
1299
- * for it.
1300
- *
1301
-
1302
- * Arguments
1303
- * =========
1304
- *
1305
- * FACT (input) CHARACTER*1
1306
- * Specifies whether or not the factored form of A has been
1307
- * supplied on entry.
1308
- * = 'F': On entry, AFP and IPIV contain the factored form of
1309
- * A. AP, AFP and IPIV will not be modified.
1310
- * = 'N': The matrix A will be copied to AFP and factored.
1311
- *
1312
- * UPLO (input) CHARACTER*1
1313
- * = 'U': Upper triangle of A is stored;
1314
- * = 'L': Lower triangle of A is stored.
1315
- *
1316
- * N (input) INTEGER
1317
- * The number of linear equations, i.e., the order of the
1318
- * matrix A. N >= 0.
1319
- *
1320
- * NRHS (input) INTEGER
1321
- * The number of right hand sides, i.e., the number of columns
1322
- * of the matrices B and X. NRHS >= 0.
1323
- *
1324
- * AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1325
- * The upper or lower triangle of the symmetric matrix A, packed
1326
- * columnwise in a linear array. The j-th column of A is stored
1327
- * in the array AP as follows:
1328
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1329
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1330
- * See below for further details.
1331
- *
1332
- * AFP (input or output) DOUBLE PRECISION array, dimension
1333
- * (N*(N+1)/2)
1334
- * If FACT = 'F', then AFP is an input argument and on entry
1335
- * contains the block diagonal matrix D and the multipliers used
1336
- * to obtain the factor U or L from the factorization
1337
- * A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
1338
- * a packed triangular matrix in the same storage format as A.
1339
- *
1340
- * If FACT = 'N', then AFP is an output argument and on exit
1341
- * contains the block diagonal matrix D and the multipliers used
1342
- * to obtain the factor U or L from the factorization
1343
- * A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as
1344
- * a packed triangular matrix in the same storage format as A.
1345
- *
1346
- * IPIV (input or output) INTEGER array, dimension (N)
1347
- * If FACT = 'F', then IPIV is an input argument and on entry
1348
- * contains details of the interchanges and the block structure
1349
- * of D, as determined by DSPTRF.
1350
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1351
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1352
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1353
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1354
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1355
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1356
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1357
- *
1358
- * If FACT = 'N', then IPIV is an output argument and on exit
1359
- * contains details of the interchanges and the block structure
1360
- * of D, as determined by DSPTRF.
1361
- *
1362
- * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1363
- * The N-by-NRHS right hand side matrix B.
1364
- *
1365
- * LDB (input) INTEGER
1366
- * The leading dimension of the array B. LDB >= max(1,N).
1367
- *
1368
- * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1369
- * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
1370
- *
1371
- * LDX (input) INTEGER
1372
- * The leading dimension of the array X. LDX >= max(1,N).
1373
- *
1374
- * RCOND (output) DOUBLE PRECISION
1375
- * The estimate of the reciprocal condition number of the matrix
1376
- * A. If RCOND is less than the machine precision (in
1377
- * particular, if RCOND = 0), the matrix is singular to working
1378
- * precision. This condition is indicated by a return code of
1379
- * INFO > 0.
1380
- *
1381
- * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1382
- * The estimated forward error bound for each solution vector
1383
- * X(j) (the j-th column of the solution matrix X).
1384
- * If XTRUE is the true solution corresponding to X(j), FERR(j)
1385
- * is an estimated upper bound for the magnitude of the largest
1386
- * element in (X(j) - XTRUE) divided by the magnitude of the
1387
- * largest element in X(j). The estimate is as reliable as
1388
- * the estimate for RCOND, and is almost always a slight
1389
- * overestimate of the true error.
1390
- *
1391
- * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1392
- * The componentwise relative backward error of each solution
1393
- * vector X(j) (i.e., the smallest relative change in
1394
- * any element of A or B that makes X(j) an exact solution).
1395
- *
1396
- * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
1397
- *
1398
- * IWORK (workspace) INTEGER array, dimension (N)
1399
- *
1400
- * INFO (output) INTEGER
1401
- * = 0: successful exit
1402
- * < 0: if INFO = -i, the i-th argument had an illegal value
1403
- * > 0: if INFO = i, and i is
1404
- * <= N: D(i,i) is exactly zero. The factorization
1405
- * has been completed but the factor D is exactly
1406
- * singular, so the solution and error bounds could
1407
- * not be computed. RCOND = 0 is returned.
1408
- * = N+1: D is nonsingular, but RCOND is less than machine
1409
- * precision, meaning that the matrix is singular
1410
- * to working precision. Nevertheless, the
1411
- * solution and error bounds are computed because
1412
- * there are a number of situations where the
1413
- * computed solution can be more accurate than the
1414
- * value of RCOND would suggest.
1415
- *
1416
-
1417
- * Further Details
1418
- * ===============
1419
- *
1420
- * The packed storage scheme is illustrated by the following example
1421
- * when N = 4, UPLO = 'U':
1422
- *
1423
- * Two-dimensional storage of the symmetric matrix A:
1424
- *
1425
- * a11 a12 a13 a14
1426
- * a22 a23 a24
1427
- * a33 a34 (aij = aji)
1428
- * a44
1429
- *
1430
- * Packed storage of the upper triangle of A:
1431
- *
1432
- * AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
1433
- *
1434
- * =====================================================================
1435
- *
1436
-
1437
-
1438
- </PRE>
1439
- <A HREF="#top">go to the page top</A>
1440
-
1441
- <A NAME="dsptrd"></A>
1442
- <H2>dsptrd</H2>
1443
- <PRE>
1444
- USAGE:
1445
- d, e, tau, info, ap = NumRu::Lapack.dsptrd( uplo, ap, [:usage => usage, :help => help])
1446
-
1447
-
1448
- FORTRAN MANUAL
1449
- SUBROUTINE DSPTRD( UPLO, N, AP, D, E, TAU, INFO )
1450
-
1451
- * Purpose
1452
- * =======
1453
- *
1454
- * DSPTRD reduces a real symmetric matrix A stored in packed form to
1455
- * symmetric tridiagonal form T by an orthogonal similarity
1456
- * transformation: Q**T * A * Q = T.
1457
- *
1458
-
1459
- * Arguments
1460
- * =========
1461
- *
1462
- * UPLO (input) CHARACTER*1
1463
- * = 'U': Upper triangle of A is stored;
1464
- * = 'L': Lower triangle of A is stored.
1465
- *
1466
- * N (input) INTEGER
1467
- * The order of the matrix A. N >= 0.
1468
- *
1469
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1470
- * On entry, the upper or lower triangle of the symmetric matrix
1471
- * A, packed columnwise in a linear array. The j-th column of A
1472
- * is stored in the array AP as follows:
1473
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1474
- * if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
1475
- * On exit, if UPLO = 'U', the diagonal and first superdiagonal
1476
- * of A are overwritten by the corresponding elements of the
1477
- * tridiagonal matrix T, and the elements above the first
1478
- * superdiagonal, with the array TAU, represent the orthogonal
1479
- * matrix Q as a product of elementary reflectors; if UPLO
1480
- * = 'L', the diagonal and first subdiagonal of A are over-
1481
- * written by the corresponding elements of the tridiagonal
1482
- * matrix T, and the elements below the first subdiagonal, with
1483
- * the array TAU, represent the orthogonal matrix Q as a product
1484
- * of elementary reflectors. See Further Details.
1485
- *
1486
- * D (output) DOUBLE PRECISION array, dimension (N)
1487
- * The diagonal elements of the tridiagonal matrix T:
1488
- * D(i) = A(i,i).
1489
- *
1490
- * E (output) DOUBLE PRECISION array, dimension (N-1)
1491
- * The off-diagonal elements of the tridiagonal matrix T:
1492
- * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
1493
- *
1494
- * TAU (output) DOUBLE PRECISION array, dimension (N-1)
1495
- * The scalar factors of the elementary reflectors (see Further
1496
- * Details).
1497
- *
1498
- * INFO (output) INTEGER
1499
- * = 0: successful exit
1500
- * < 0: if INFO = -i, the i-th argument had an illegal value
1501
- *
1502
-
1503
- * Further Details
1504
- * ===============
1505
- *
1506
- * If UPLO = 'U', the matrix Q is represented as a product of elementary
1507
- * reflectors
1508
- *
1509
- * Q = H(n-1) . . . H(2) H(1).
1510
- *
1511
- * Each H(i) has the form
1512
- *
1513
- * H(i) = I - tau * v * v'
1514
- *
1515
- * where tau is a real scalar, and v is a real vector with
1516
- * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
1517
- * overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
1518
- *
1519
- * If UPLO = 'L', the matrix Q is represented as a product of elementary
1520
- * reflectors
1521
- *
1522
- * Q = H(1) H(2) . . . H(n-1).
1523
- *
1524
- * Each H(i) has the form
1525
- *
1526
- * H(i) = I - tau * v * v'
1527
- *
1528
- * where tau is a real scalar, and v is a real vector with
1529
- * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
1530
- * overwriting A(i+2:n,i), and tau is stored in TAU(i).
1531
- *
1532
- * =====================================================================
1533
- *
1534
-
1535
-
1536
- </PRE>
1537
- <A HREF="#top">go to the page top</A>
1538
-
1539
- <A NAME="dsptrf"></A>
1540
- <H2>dsptrf</H2>
1541
- <PRE>
1542
- USAGE:
1543
- ipiv, info, ap = NumRu::Lapack.dsptrf( uplo, ap, [:usage => usage, :help => help])
1544
-
1545
-
1546
- FORTRAN MANUAL
1547
- SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
1548
-
1549
- * Purpose
1550
- * =======
1551
- *
1552
- * DSPTRF computes the factorization of a real symmetric matrix A stored
1553
- * in packed format using the Bunch-Kaufman diagonal pivoting method:
1554
- *
1555
- * A = U*D*U**T or A = L*D*L**T
1556
- *
1557
- * where U (or L) is a product of permutation and unit upper (lower)
1558
- * triangular matrices, and D is symmetric and block diagonal with
1559
- * 1-by-1 and 2-by-2 diagonal blocks.
1560
- *
1561
-
1562
- * Arguments
1563
- * =========
1564
- *
1565
- * UPLO (input) CHARACTER*1
1566
- * = 'U': Upper triangle of A is stored;
1567
- * = 'L': Lower triangle of A is stored.
1568
- *
1569
- * N (input) INTEGER
1570
- * The order of the matrix A. N >= 0.
1571
- *
1572
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1573
- * On entry, the upper or lower triangle of the symmetric matrix
1574
- * A, packed columnwise in a linear array. The j-th column of A
1575
- * is stored in the array AP as follows:
1576
- * if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
1577
- * if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
1578
- *
1579
- * On exit, the block diagonal matrix D and the multipliers used
1580
- * to obtain the factor U or L, stored as a packed triangular
1581
- * matrix overwriting A (see below for further details).
1582
- *
1583
- * IPIV (output) INTEGER array, dimension (N)
1584
- * Details of the interchanges and the block structure of D.
1585
- * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
1586
- * interchanged and D(k,k) is a 1-by-1 diagonal block.
1587
- * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
1588
- * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
1589
- * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
1590
- * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
1591
- * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
1592
- *
1593
- * INFO (output) INTEGER
1594
- * = 0: successful exit
1595
- * < 0: if INFO = -i, the i-th argument had an illegal value
1596
- * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1597
- * has been completed, but the block diagonal matrix D is
1598
- * exactly singular, and division by zero will occur if it
1599
- * is used to solve a system of equations.
1600
- *
1601
-
1602
- * Further Details
1603
- * ===============
1604
- *
1605
- * 5-96 - Based on modifications by J. Lewis, Boeing Computer Services
1606
- * Company
1607
- *
1608
- * If UPLO = 'U', then A = U*D*U', where
1609
- * U = P(n)*U(n)* ... *P(k)U(k)* ...,
1610
- * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1611
- * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1612
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1613
- * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
1614
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1615
- *
1616
- * ( I v 0 ) k-s
1617
- * U(k) = ( 0 I 0 ) s
1618
- * ( 0 0 I ) n-k
1619
- * k-s s n-k
1620
- *
1621
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
1622
- * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
1623
- * and A(k,k), and v overwrites A(1:k-2,k-1:k).
1624
- *
1625
- * If UPLO = 'L', then A = L*D*L', where
1626
- * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
1627
- * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
1628
- * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
1629
- * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
1630
- * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
1631
- * that if the diagonal block D(k) is of order s (s = 1 or 2), then
1632
- *
1633
- * ( I 0 0 ) k-1
1634
- * L(k) = ( 0 I 0 ) s
1635
- * ( 0 v I ) n-k-s+1
1636
- * k-1 s n-k-s+1
1637
- *
1638
- * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
1639
- * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
1640
- * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
1641
- *
1642
- * =====================================================================
1643
- *
1644
-
1645
-
1646
- </PRE>
1647
- <A HREF="#top">go to the page top</A>
1648
-
1649
- <A NAME="dsptri"></A>
1650
- <H2>dsptri</H2>
1651
- <PRE>
1652
- USAGE:
1653
- info, ap = NumRu::Lapack.dsptri( uplo, ap, ipiv, [:usage => usage, :help => help])
1654
-
1655
-
1656
- FORTRAN MANUAL
1657
- SUBROUTINE DSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
1658
-
1659
- * Purpose
1660
- * =======
1661
- *
1662
- * DSPTRI computes the inverse of a real symmetric indefinite matrix
1663
- * A in packed storage using the factorization A = U*D*U**T or
1664
- * A = L*D*L**T computed by DSPTRF.
1665
- *
1666
-
1667
- * Arguments
1668
- * =========
1669
- *
1670
- * UPLO (input) CHARACTER*1
1671
- * Specifies whether the details of the factorization are stored
1672
- * as an upper or lower triangular matrix.
1673
- * = 'U': Upper triangular, form is A = U*D*U**T;
1674
- * = 'L': Lower triangular, form is A = L*D*L**T.
1675
- *
1676
- * N (input) INTEGER
1677
- * The order of the matrix A. N >= 0.
1678
- *
1679
- * AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1680
- * On entry, the block diagonal matrix D and the multipliers
1681
- * used to obtain the factor U or L as computed by DSPTRF,
1682
- * stored as a packed triangular matrix.
1683
- *
1684
- * On exit, if INFO = 0, the (symmetric) inverse of the original
1685
- * matrix, stored as a packed triangular matrix. The j-th column
1686
- * of inv(A) is stored in the array AP as follows:
1687
- * if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
1688
- * if UPLO = 'L',
1689
- * AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
1690
- *
1691
- * IPIV (input) INTEGER array, dimension (N)
1692
- * Details of the interchanges and the block structure of D
1693
- * as determined by DSPTRF.
1694
- *
1695
- * WORK (workspace) DOUBLE PRECISION array, dimension (N)
1696
- *
1697
- * INFO (output) INTEGER
1698
- * = 0: successful exit
1699
- * < 0: if INFO = -i, the i-th argument had an illegal value
1700
- * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
1701
- * inverse could not be computed.
1702
- *
1703
-
1704
- * =====================================================================
1705
- *
1706
-
1707
-
1708
- </PRE>
1709
- <A HREF="#top">go to the page top</A>
1710
-
1711
- <A NAME="dsptrs"></A>
1712
- <H2>dsptrs</H2>
1713
- <PRE>
1714
- USAGE:
1715
- info, b = NumRu::Lapack.dsptrs( uplo, ap, ipiv, b, [:usage => usage, :help => help])
1716
-
1717
-
1718
- FORTRAN MANUAL
1719
- SUBROUTINE DSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
1720
-
1721
- * Purpose
1722
- * =======
1723
- *
1724
- * DSPTRS solves a system of linear equations A*X = B with a real
1725
- * symmetric matrix A stored in packed format using the factorization
1726
- * A = U*D*U**T or A = L*D*L**T computed by DSPTRF.
1727
- *
1728
-
1729
- * Arguments
1730
- * =========
1731
- *
1732
- * UPLO (input) CHARACTER*1
1733
- * Specifies whether the details of the factorization are stored
1734
- * as an upper or lower triangular matrix.
1735
- * = 'U': Upper triangular, form is A = U*D*U**T;
1736
- * = 'L': Lower triangular, form is A = L*D*L**T.
1737
- *
1738
- * N (input) INTEGER
1739
- * The order of the matrix A. N >= 0.
1740
- *
1741
- * NRHS (input) INTEGER
1742
- * The number of right hand sides, i.e., the number of columns
1743
- * of the matrix B. NRHS >= 0.
1744
- *
1745
- * AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
1746
- * The block diagonal matrix D and the multipliers used to
1747
- * obtain the factor U or L as computed by DSPTRF, stored as a
1748
- * packed triangular matrix.
1749
- *
1750
- * IPIV (input) INTEGER array, dimension (N)
1751
- * Details of the interchanges and the block structure of D
1752
- * as determined by DSPTRF.
1753
- *
1754
- * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1755
- * On entry, the right hand side matrix B.
1756
- * On exit, the solution matrix X.
1757
- *
1758
- * LDB (input) INTEGER
1759
- * The leading dimension of the array B. LDB >= max(1,N).
1760
- *
1761
- * INFO (output) INTEGER
1762
- * = 0: successful exit
1763
- * < 0: if INFO = -i, the i-th argument had an illegal value
1764
- *
1765
-
1766
- * =====================================================================
1767
- *
1768
-
1769
-
1770
- </PRE>
1771
- <A HREF="#top">go to the page top</A>
1772
-
1773
- <HR />
1774
- <A HREF="d.html">back to matrix types</A><BR>
1775
- <A HREF="d.html">back to data types</A>
1776
- </BODY>
1777
- </HTML>