mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,807 @@
|
|
|
1
|
+
// Copyright © 2024 Apple Inc.
|
|
2
|
+
#include <cassert>
|
|
3
|
+
#include <complex>
|
|
4
|
+
#include <map>
|
|
5
|
+
#include <numeric>
|
|
6
|
+
#include <set>
|
|
7
|
+
|
|
8
|
+
#include "mlx/3rdparty/pocketfft.h"
|
|
9
|
+
#include "mlx/backend/common/utils.h"
|
|
10
|
+
#include "mlx/backend/gpu/copy.h"
|
|
11
|
+
#include "mlx/backend/gpu/slicing.h"
|
|
12
|
+
#include "mlx/backend/metal/binary.h"
|
|
13
|
+
#include "mlx/backend/metal/kernels.h"
|
|
14
|
+
#include "mlx/backend/metal/unary.h"
|
|
15
|
+
#include "mlx/backend/metal/utils.h"
|
|
16
|
+
#include "mlx/utils.h"
|
|
17
|
+
|
|
18
|
+
namespace mlx::core {
|
|
19
|
+
|
|
20
|
+
using MTLFC = std::tuple<const void*, MTL::DataType, NS::UInteger>;
|
|
21
|
+
|
|
22
|
+
#define MAX_STOCKHAM_FFT_SIZE 4096
|
|
23
|
+
#define MAX_RADER_FFT_SIZE 2048
|
|
24
|
+
#define MAX_BLUESTEIN_FFT_SIZE 2048
|
|
25
|
+
// Threadgroup memory batching improves throughput for small n
|
|
26
|
+
#define MIN_THREADGROUP_MEM_SIZE 256
|
|
27
|
+
// For strided reads/writes, coalesce at least this many complex64s
|
|
28
|
+
#define MIN_COALESCE_WIDTH 4
|
|
29
|
+
|
|
30
|
+
inline const std::vector<int> supported_radices() {
|
|
31
|
+
// Ordered by preference in decomposition.
|
|
32
|
+
return {13, 11, 8, 7, 6, 5, 4, 3, 2};
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
std::vector<int> prime_factors(int n) {
|
|
36
|
+
int z = 2;
|
|
37
|
+
std::vector<int> factors;
|
|
38
|
+
while (z * z <= n) {
|
|
39
|
+
if (n % z == 0) {
|
|
40
|
+
factors.push_back(z);
|
|
41
|
+
n /= z;
|
|
42
|
+
} else {
|
|
43
|
+
z++;
|
|
44
|
+
}
|
|
45
|
+
}
|
|
46
|
+
if (n > 1) {
|
|
47
|
+
factors.push_back(n);
|
|
48
|
+
}
|
|
49
|
+
return factors;
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
struct FourStepParams {
|
|
53
|
+
bool required = false;
|
|
54
|
+
bool first_step = true;
|
|
55
|
+
int n1 = 0;
|
|
56
|
+
int n2 = 0;
|
|
57
|
+
};
|
|
58
|
+
|
|
59
|
+
// Forward Declaration
|
|
60
|
+
void fft_op(
|
|
61
|
+
const array& in,
|
|
62
|
+
array& out,
|
|
63
|
+
size_t axis,
|
|
64
|
+
bool inverse,
|
|
65
|
+
bool real,
|
|
66
|
+
const FourStepParams four_step_params,
|
|
67
|
+
bool inplace,
|
|
68
|
+
const Stream& s);
|
|
69
|
+
|
|
70
|
+
struct FFTPlan {
|
|
71
|
+
int n = 0;
|
|
72
|
+
// Number of steps for each radix in the Stockham decomposition
|
|
73
|
+
std::vector<int> stockham;
|
|
74
|
+
// Number of steps for each radix in the Rader decomposition
|
|
75
|
+
std::vector<int> rader;
|
|
76
|
+
// Rader factor, 1 if no rader factors
|
|
77
|
+
int rader_n = 1;
|
|
78
|
+
int bluestein_n = -1;
|
|
79
|
+
// Four step FFT
|
|
80
|
+
bool four_step = false;
|
|
81
|
+
int n1 = 0;
|
|
82
|
+
int n2 = 0;
|
|
83
|
+
};
|
|
84
|
+
|
|
85
|
+
int next_fast_n(int n) {
|
|
86
|
+
return next_power_of_2(n);
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
std::vector<int> plan_stockham_fft(int n) {
|
|
90
|
+
auto radices = supported_radices();
|
|
91
|
+
std::vector<int> plan(radices.size(), 0);
|
|
92
|
+
int orig_n = n;
|
|
93
|
+
if (n == 1) {
|
|
94
|
+
return plan;
|
|
95
|
+
}
|
|
96
|
+
for (int i = 0; i < radices.size(); i++) {
|
|
97
|
+
int radix = radices[i];
|
|
98
|
+
// Manually tuned radices for powers of 2
|
|
99
|
+
if (is_power_of_2(orig_n) && orig_n < 512 && radix > 4) {
|
|
100
|
+
continue;
|
|
101
|
+
}
|
|
102
|
+
while (n % radix == 0) {
|
|
103
|
+
plan[i] += 1;
|
|
104
|
+
n /= radix;
|
|
105
|
+
if (n == 1) {
|
|
106
|
+
return plan;
|
|
107
|
+
}
|
|
108
|
+
}
|
|
109
|
+
}
|
|
110
|
+
throw std::runtime_error("Unplannable");
|
|
111
|
+
}
|
|
112
|
+
|
|
113
|
+
FFTPlan plan_fft(int n) {
|
|
114
|
+
auto radices = supported_radices();
|
|
115
|
+
std::set<int> radices_set(radices.begin(), radices.end());
|
|
116
|
+
|
|
117
|
+
FFTPlan plan;
|
|
118
|
+
plan.n = n;
|
|
119
|
+
plan.rader = std::vector<int>(radices.size(), 0);
|
|
120
|
+
auto factors = prime_factors(n);
|
|
121
|
+
int remaining_n = n;
|
|
122
|
+
|
|
123
|
+
// Four Step FFT when N is too large for shared mem.
|
|
124
|
+
if (n > MAX_STOCKHAM_FFT_SIZE && is_power_of_2(n)) {
|
|
125
|
+
// For power's of two we have a fast, no transpose four step implementation.
|
|
126
|
+
plan.four_step = true;
|
|
127
|
+
// Rough heuristic for choosing faster powers of two when we can
|
|
128
|
+
plan.n2 = n > 65536 ? 1024 : 64;
|
|
129
|
+
plan.n1 = n / plan.n2;
|
|
130
|
+
return plan;
|
|
131
|
+
} else if (n > MAX_STOCKHAM_FFT_SIZE) {
|
|
132
|
+
// Otherwise we use a multi-upload Bluestein's
|
|
133
|
+
plan.four_step = true;
|
|
134
|
+
plan.bluestein_n = next_fast_n(2 * n - 1);
|
|
135
|
+
return plan;
|
|
136
|
+
}
|
|
137
|
+
|
|
138
|
+
for (int factor : factors) {
|
|
139
|
+
// Make sure the factor is a supported radix
|
|
140
|
+
if (radices_set.find(factor) == radices_set.end()) {
|
|
141
|
+
// We only support a single Rader factor currently
|
|
142
|
+
// TODO(alexbarron) investigate weirdness with large
|
|
143
|
+
// Rader sizes -- possibly a compiler issue?
|
|
144
|
+
if (plan.rader_n > 1 || n > MAX_RADER_FFT_SIZE) {
|
|
145
|
+
plan.four_step = n > MAX_BLUESTEIN_FFT_SIZE;
|
|
146
|
+
plan.bluestein_n = next_fast_n(2 * n - 1);
|
|
147
|
+
plan.stockham = plan_stockham_fft(plan.bluestein_n);
|
|
148
|
+
plan.rader = std::vector<int>(radices.size(), 0);
|
|
149
|
+
return plan;
|
|
150
|
+
}
|
|
151
|
+
// See if we can use Rader's algorithm to Stockham decompose n - 1
|
|
152
|
+
auto rader_factors = prime_factors(factor - 1);
|
|
153
|
+
for (int rf : rader_factors) {
|
|
154
|
+
// We don't nest Rader's algorithm so if `factor - 1`
|
|
155
|
+
// isn't Stockham decomposable we give up and do Bluestein's.
|
|
156
|
+
if (radices_set.find(rf) == radices_set.end()) {
|
|
157
|
+
plan.four_step = n > MAX_BLUESTEIN_FFT_SIZE;
|
|
158
|
+
plan.bluestein_n = next_fast_n(2 * n - 1);
|
|
159
|
+
plan.stockham = plan_stockham_fft(plan.bluestein_n);
|
|
160
|
+
plan.rader = std::vector<int>(radices.size(), 0);
|
|
161
|
+
return plan;
|
|
162
|
+
}
|
|
163
|
+
}
|
|
164
|
+
plan.rader = plan_stockham_fft(factor - 1);
|
|
165
|
+
plan.rader_n = factor;
|
|
166
|
+
remaining_n /= factor;
|
|
167
|
+
}
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
plan.stockham = plan_stockham_fft(remaining_n);
|
|
171
|
+
return plan;
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
int compute_elems_per_thread(FFTPlan plan) {
|
|
175
|
+
// Heuristics for selecting an efficient number
|
|
176
|
+
// of threads to use for a particular mixed-radix FFT.
|
|
177
|
+
auto n = plan.n;
|
|
178
|
+
|
|
179
|
+
std::vector<int> steps;
|
|
180
|
+
auto radices = supported_radices();
|
|
181
|
+
steps.insert(steps.end(), plan.stockham.begin(), plan.stockham.end());
|
|
182
|
+
steps.insert(steps.end(), plan.rader.begin(), plan.rader.end());
|
|
183
|
+
std::set<int> used_radices;
|
|
184
|
+
for (int i = 0; i < steps.size(); i++) {
|
|
185
|
+
int radix = radices[i % radices.size()];
|
|
186
|
+
if (steps[i] > 0) {
|
|
187
|
+
used_radices.insert(radix);
|
|
188
|
+
}
|
|
189
|
+
}
|
|
190
|
+
|
|
191
|
+
// Manual tuning for 7/11/13
|
|
192
|
+
if (used_radices.find(7) != used_radices.end() &&
|
|
193
|
+
(used_radices.find(11) != used_radices.end() ||
|
|
194
|
+
used_radices.find(13) != used_radices.end())) {
|
|
195
|
+
return 7;
|
|
196
|
+
} else if (
|
|
197
|
+
used_radices.find(11) != used_radices.end() &&
|
|
198
|
+
used_radices.find(13) != used_radices.end()) {
|
|
199
|
+
return 11;
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
// TODO(alexbarron) Some really weird stuff is going on
|
|
203
|
+
// for certain `elems_per_thread` on large composite n.
|
|
204
|
+
// Possibly a compiler issue?
|
|
205
|
+
if (n == 3159)
|
|
206
|
+
return 13;
|
|
207
|
+
if (n == 3645)
|
|
208
|
+
return 5;
|
|
209
|
+
if (n == 3969)
|
|
210
|
+
return 7;
|
|
211
|
+
if (n == 1982)
|
|
212
|
+
return 5;
|
|
213
|
+
|
|
214
|
+
if (used_radices.size() == 1) {
|
|
215
|
+
return *(used_radices.begin());
|
|
216
|
+
}
|
|
217
|
+
if (used_radices.size() == 2) {
|
|
218
|
+
if (used_radices.find(11) != used_radices.end() ||
|
|
219
|
+
used_radices.find(13) != used_radices.end()) {
|
|
220
|
+
return std::accumulate(used_radices.begin(), used_radices.end(), 0) / 2;
|
|
221
|
+
}
|
|
222
|
+
std::vector<int> radix_vec(used_radices.begin(), used_radices.end());
|
|
223
|
+
return radix_vec[1];
|
|
224
|
+
}
|
|
225
|
+
// In all other cases use the second smallest radix.
|
|
226
|
+
std::vector<int> radix_vec(used_radices.begin(), used_radices.end());
|
|
227
|
+
return radix_vec[1];
|
|
228
|
+
}
|
|
229
|
+
|
|
230
|
+
// Rader
|
|
231
|
+
int mod_exp(int x, int y, int n) {
|
|
232
|
+
int out = 1;
|
|
233
|
+
while (y) {
|
|
234
|
+
if (y & 1) {
|
|
235
|
+
out = out * x % n;
|
|
236
|
+
}
|
|
237
|
+
y >>= 1;
|
|
238
|
+
x = x * x % n;
|
|
239
|
+
}
|
|
240
|
+
return out;
|
|
241
|
+
}
|
|
242
|
+
|
|
243
|
+
int primitive_root(int n) {
|
|
244
|
+
auto factors = prime_factors(n - 1);
|
|
245
|
+
|
|
246
|
+
for (int r = 2; r < n - 1; r++) {
|
|
247
|
+
bool found = true;
|
|
248
|
+
for (int factor : factors) {
|
|
249
|
+
if (mod_exp(r, (n - 1) / factor, n) == 1) {
|
|
250
|
+
found = false;
|
|
251
|
+
break;
|
|
252
|
+
}
|
|
253
|
+
}
|
|
254
|
+
if (found) {
|
|
255
|
+
return r;
|
|
256
|
+
}
|
|
257
|
+
}
|
|
258
|
+
return -1;
|
|
259
|
+
}
|
|
260
|
+
|
|
261
|
+
std::tuple<array, array, array> compute_raders_constants(
|
|
262
|
+
int rader_n,
|
|
263
|
+
const Stream& s) {
|
|
264
|
+
int proot = primitive_root(rader_n);
|
|
265
|
+
// Fermat's little theorem
|
|
266
|
+
int inv = mod_exp(proot, rader_n - 2, rader_n);
|
|
267
|
+
std::vector<short> g_q(rader_n - 1);
|
|
268
|
+
std::vector<short> g_minus_q(rader_n - 1);
|
|
269
|
+
for (int i = 0; i < rader_n - 1; i++) {
|
|
270
|
+
g_q[i] = mod_exp(proot, i, rader_n);
|
|
271
|
+
g_minus_q[i] = mod_exp(inv, i, rader_n);
|
|
272
|
+
}
|
|
273
|
+
array g_q_arr(g_q.begin(), {rader_n - 1});
|
|
274
|
+
array g_minus_q_arr(g_minus_q.begin(), {rader_n - 1});
|
|
275
|
+
|
|
276
|
+
std::vector<std::complex<float>> b_q(rader_n - 1);
|
|
277
|
+
for (int i = 0; i < rader_n - 1; i++) {
|
|
278
|
+
float pi_i = (float)g_minus_q[i] * -2.0 * M_PI / rader_n;
|
|
279
|
+
b_q[i] = std::exp(std::complex<float>(0, pi_i));
|
|
280
|
+
}
|
|
281
|
+
|
|
282
|
+
array b_q_fft({rader_n - 1}, complex64, nullptr, {});
|
|
283
|
+
b_q_fft.set_data(allocator::malloc(b_q_fft.nbytes()));
|
|
284
|
+
auto b_q_fft_ptr =
|
|
285
|
+
reinterpret_cast<std::complex<float>*>(b_q_fft.data<complex64_t>());
|
|
286
|
+
std::ptrdiff_t item_size = b_q_fft.itemsize();
|
|
287
|
+
size_t fft_size = rader_n - 1;
|
|
288
|
+
// This FFT is always small (<4096, batch 1) so save some overhead
|
|
289
|
+
// and do it on the CPU
|
|
290
|
+
pocketfft::c2c(
|
|
291
|
+
/* shape= */ {fft_size},
|
|
292
|
+
/* stride_in= */ {item_size},
|
|
293
|
+
/* stride_out= */ {item_size},
|
|
294
|
+
/* axes= */ {0},
|
|
295
|
+
/* forward= */ true,
|
|
296
|
+
/* data_in= */ b_q.data(),
|
|
297
|
+
/* data_out= */ b_q_fft_ptr,
|
|
298
|
+
/* scale= */ 1.0f);
|
|
299
|
+
return std::make_tuple(b_q_fft, g_q_arr, g_minus_q_arr);
|
|
300
|
+
}
|
|
301
|
+
|
|
302
|
+
// Bluestein
|
|
303
|
+
std::pair<array, array> compute_bluestein_constants(int n, int bluestein_n) {
|
|
304
|
+
// We need to calculate the Bluestein twiddle factors
|
|
305
|
+
// in double precision for the overall numerical stability
|
|
306
|
+
// of Bluestein's FFT algorithm to be acceptable.
|
|
307
|
+
//
|
|
308
|
+
// Metal doesn't support float64, so instead we
|
|
309
|
+
// manually implement the required operations on cpu.
|
|
310
|
+
//
|
|
311
|
+
// In numpy:
|
|
312
|
+
// w_k = np.exp(-1j * np.pi / N * (np.arange(-N + 1, N) ** 2))
|
|
313
|
+
// w_q = np.fft.fft(1/w_k)
|
|
314
|
+
// return w_k, w_q
|
|
315
|
+
std::vector<std::complex<float>> w_k_vec(n);
|
|
316
|
+
std::vector<std::complex<float>> w_q_vec(bluestein_n, 0);
|
|
317
|
+
|
|
318
|
+
for (int i = -n + 1; i < n; i++) {
|
|
319
|
+
double theta = pow(i, 2) * M_PI / (double)n;
|
|
320
|
+
w_q_vec[i + n - 1] = std::exp(std::complex<double>(0, theta));
|
|
321
|
+
if (i >= 0) {
|
|
322
|
+
w_k_vec[i] = std::exp(std::complex<double>(0, -theta));
|
|
323
|
+
}
|
|
324
|
+
}
|
|
325
|
+
|
|
326
|
+
array w_k({n}, complex64, nullptr, {});
|
|
327
|
+
w_k.set_data(allocator::malloc(w_k.nbytes()));
|
|
328
|
+
std::copy(w_k_vec.begin(), w_k_vec.end(), w_k.data<complex64_t>());
|
|
329
|
+
|
|
330
|
+
array w_q({bluestein_n}, complex64, nullptr, {});
|
|
331
|
+
w_q.set_data(allocator::malloc(w_q.nbytes()));
|
|
332
|
+
auto w_q_ptr =
|
|
333
|
+
reinterpret_cast<std::complex<float>*>(w_q.data<complex64_t>());
|
|
334
|
+
|
|
335
|
+
std::ptrdiff_t item_size = w_q.itemsize();
|
|
336
|
+
size_t fft_size = bluestein_n;
|
|
337
|
+
pocketfft::c2c(
|
|
338
|
+
/* shape= */ {fft_size},
|
|
339
|
+
/* stride_in= */ {item_size},
|
|
340
|
+
/* stride_out= */ {item_size},
|
|
341
|
+
/* axes= */ {0},
|
|
342
|
+
/* forward= */ true,
|
|
343
|
+
/* data_in= */ w_q_vec.data(),
|
|
344
|
+
/* data_out= */ w_q_ptr,
|
|
345
|
+
/* scale= */ 1.0f);
|
|
346
|
+
return std::make_tuple(w_k, w_q);
|
|
347
|
+
}
|
|
348
|
+
|
|
349
|
+
void multi_upload_bluestein_fft(
|
|
350
|
+
const array& in,
|
|
351
|
+
array& out,
|
|
352
|
+
size_t axis,
|
|
353
|
+
bool inverse,
|
|
354
|
+
bool real,
|
|
355
|
+
FFTPlan& plan,
|
|
356
|
+
std::vector<array>& copies,
|
|
357
|
+
const Stream& s) {
|
|
358
|
+
// TODO(alexbarron) Implement fused kernels for mutli upload bluestein's
|
|
359
|
+
// algorithm
|
|
360
|
+
int n = inverse ? out.shape(axis) : in.shape(axis);
|
|
361
|
+
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
|
|
362
|
+
copies.push_back(w_k);
|
|
363
|
+
copies.push_back(w_q);
|
|
364
|
+
|
|
365
|
+
auto temp_shape = inverse ? out.shape() : in.shape();
|
|
366
|
+
array temp(temp_shape, complex64, nullptr, {});
|
|
367
|
+
array temp1(temp_shape, complex64, nullptr, {});
|
|
368
|
+
|
|
369
|
+
if (real && !inverse) {
|
|
370
|
+
// Convert float32->complex64
|
|
371
|
+
copy_gpu(in, temp, CopyType::General, s);
|
|
372
|
+
copies.push_back(temp);
|
|
373
|
+
} else if (real && inverse) {
|
|
374
|
+
int back_offset = n % 2 == 0 ? 2 : 1;
|
|
375
|
+
auto slice_shape = in.shape();
|
|
376
|
+
slice_shape[axis] -= back_offset;
|
|
377
|
+
array slice_temp(slice_shape, complex64, nullptr, {});
|
|
378
|
+
array conj_temp(in.shape(), complex64, nullptr, {});
|
|
379
|
+
copies.push_back(conj_temp);
|
|
380
|
+
|
|
381
|
+
Shape rstarts(in.ndim(), 0);
|
|
382
|
+
Shape rstrides(in.ndim(), 1);
|
|
383
|
+
rstarts[axis] = in.shape(axis) - back_offset;
|
|
384
|
+
rstrides[axis] = -1;
|
|
385
|
+
unary_op_gpu({in}, conj_temp, "Conjugate", s);
|
|
386
|
+
slice_gpu(in, slice_temp, rstarts, rstrides, s);
|
|
387
|
+
concatenate_gpu({conj_temp, slice_temp}, temp, (int)axis, s);
|
|
388
|
+
copies.push_back(temp);
|
|
389
|
+
} else if (inverse) {
|
|
390
|
+
unary_op_gpu({in}, temp, "Conjugate", s);
|
|
391
|
+
copies.push_back(temp);
|
|
392
|
+
} else {
|
|
393
|
+
temp.copy_shared_buffer(in);
|
|
394
|
+
}
|
|
395
|
+
|
|
396
|
+
Strides b_strides(in.ndim(), 0);
|
|
397
|
+
b_strides[axis] = 1;
|
|
398
|
+
array w_k_broadcast(temp.shape(), complex64, nullptr, {});
|
|
399
|
+
w_k_broadcast.copy_shared_buffer(w_k, b_strides, {}, w_k.data_size());
|
|
400
|
+
binary_op_gpu({temp, w_k_broadcast}, temp1, "Multiply", s);
|
|
401
|
+
|
|
402
|
+
std::vector<std::pair<int, int>> pads;
|
|
403
|
+
auto padded_shape = out.shape();
|
|
404
|
+
padded_shape[axis] = plan.bluestein_n;
|
|
405
|
+
array pad_temp(padded_shape, complex64, nullptr, {});
|
|
406
|
+
auto zero = array(complex64_t{0.0f, 0.0f});
|
|
407
|
+
copies.push_back(zero);
|
|
408
|
+
pad_gpu(temp1, zero, pad_temp, {(int)axis}, {0}, s);
|
|
409
|
+
copies.push_back(pad_temp);
|
|
410
|
+
|
|
411
|
+
array pad_temp1(padded_shape, complex64, nullptr, {});
|
|
412
|
+
fft_op(
|
|
413
|
+
pad_temp,
|
|
414
|
+
pad_temp1,
|
|
415
|
+
axis,
|
|
416
|
+
/*inverse=*/false,
|
|
417
|
+
/*real=*/false,
|
|
418
|
+
FourStepParams(),
|
|
419
|
+
/*inplace=*/false,
|
|
420
|
+
s);
|
|
421
|
+
copies.push_back(pad_temp1);
|
|
422
|
+
|
|
423
|
+
array w_q_broadcast(pad_temp1.shape(), complex64, nullptr, {});
|
|
424
|
+
w_q_broadcast.copy_shared_buffer(w_q, b_strides, {}, w_q.data_size());
|
|
425
|
+
binary_op_gpu_inplace({pad_temp1, w_q_broadcast}, pad_temp, "Multiply", s);
|
|
426
|
+
|
|
427
|
+
fft_op(
|
|
428
|
+
pad_temp,
|
|
429
|
+
pad_temp1,
|
|
430
|
+
axis,
|
|
431
|
+
/* inverse= */ true,
|
|
432
|
+
/* real= */ false,
|
|
433
|
+
FourStepParams(),
|
|
434
|
+
/*inplace=*/true,
|
|
435
|
+
s);
|
|
436
|
+
|
|
437
|
+
int offset = plan.bluestein_n - (2 * n - 1);
|
|
438
|
+
Shape starts(in.ndim(), 0);
|
|
439
|
+
Shape strides(in.ndim(), 1);
|
|
440
|
+
starts[axis] = plan.bluestein_n - offset - n;
|
|
441
|
+
|
|
442
|
+
array temp2(temp_shape, complex64, nullptr, {});
|
|
443
|
+
slice_gpu(pad_temp1, temp2, starts, strides, s);
|
|
444
|
+
|
|
445
|
+
binary_op_gpu_inplace({temp2, w_k_broadcast}, temp1, "Multiply", s);
|
|
446
|
+
|
|
447
|
+
if (real && !inverse) {
|
|
448
|
+
Shape rstarts(in.ndim(), 0);
|
|
449
|
+
Shape rstrides(in.ndim(), 1);
|
|
450
|
+
slice_gpu(temp1, out, rstarts, strides, s);
|
|
451
|
+
} else if (real && inverse) {
|
|
452
|
+
Strides b_strides(in.ndim(), 0);
|
|
453
|
+
auto inv_n = array({1.0f / n}, {1}, float32);
|
|
454
|
+
array temp_float(out.shape(), out.dtype(), nullptr, {});
|
|
455
|
+
copies.push_back(temp_float);
|
|
456
|
+
copies.push_back(inv_n);
|
|
457
|
+
copies.push_back(temp1);
|
|
458
|
+
|
|
459
|
+
copy_gpu(temp1, temp_float, CopyType::General, s);
|
|
460
|
+
binary_op_gpu({temp_float, inv_n}, out, "Multiply", s);
|
|
461
|
+
} else if (inverse) {
|
|
462
|
+
auto inv_n = array({1.0f / n}, {1}, complex64);
|
|
463
|
+
array temp3(temp_shape, complex64, nullptr, {});
|
|
464
|
+
unary_op_gpu({temp1}, temp3, "Conjugate", s);
|
|
465
|
+
binary_op_gpu({temp3, inv_n}, out, "Multiply", s);
|
|
466
|
+
copies.push_back(inv_n);
|
|
467
|
+
copies.push_back(temp1);
|
|
468
|
+
copies.push_back(temp3);
|
|
469
|
+
} else {
|
|
470
|
+
out.copy_shared_buffer(temp1);
|
|
471
|
+
}
|
|
472
|
+
}
|
|
473
|
+
|
|
474
|
+
void four_step_fft(
|
|
475
|
+
const array& in,
|
|
476
|
+
array& out,
|
|
477
|
+
size_t axis,
|
|
478
|
+
bool inverse,
|
|
479
|
+
bool real,
|
|
480
|
+
FFTPlan& plan,
|
|
481
|
+
std::vector<array>& copies,
|
|
482
|
+
const Stream& s,
|
|
483
|
+
bool in_place) {
|
|
484
|
+
if (plan.bluestein_n == -1) {
|
|
485
|
+
// Fast no transpose implementation for powers of 2.
|
|
486
|
+
FourStepParams four_step_params = {
|
|
487
|
+
/* required= */ true, /* first_step= */ true, plan.n1, plan.n2};
|
|
488
|
+
auto temp_shape = (real && inverse) ? out.shape() : in.shape();
|
|
489
|
+
array temp(temp_shape, complex64, nullptr, {});
|
|
490
|
+
fft_op(
|
|
491
|
+
in, temp, axis, inverse, real, four_step_params, /*inplace=*/false, s);
|
|
492
|
+
four_step_params.first_step = false;
|
|
493
|
+
fft_op(
|
|
494
|
+
temp,
|
|
495
|
+
out,
|
|
496
|
+
axis,
|
|
497
|
+
inverse,
|
|
498
|
+
real,
|
|
499
|
+
four_step_params,
|
|
500
|
+
/*inplace=*/in_place,
|
|
501
|
+
s);
|
|
502
|
+
copies.push_back(temp);
|
|
503
|
+
} else {
|
|
504
|
+
multi_upload_bluestein_fft(in, out, axis, inverse, real, plan, copies, s);
|
|
505
|
+
}
|
|
506
|
+
}
|
|
507
|
+
|
|
508
|
+
void fft_op(
|
|
509
|
+
const array& in,
|
|
510
|
+
array& out,
|
|
511
|
+
size_t axis,
|
|
512
|
+
bool inverse,
|
|
513
|
+
bool real,
|
|
514
|
+
const FourStepParams four_step_params,
|
|
515
|
+
bool inplace,
|
|
516
|
+
const Stream& s) {
|
|
517
|
+
auto& d = metal::device(s.device);
|
|
518
|
+
|
|
519
|
+
size_t n = out.dtype() == float32 ? out.shape(axis) : in.shape(axis);
|
|
520
|
+
if (n == 1) {
|
|
521
|
+
out.copy_shared_buffer(in);
|
|
522
|
+
return;
|
|
523
|
+
}
|
|
524
|
+
|
|
525
|
+
if (four_step_params.required) {
|
|
526
|
+
// Four Step FFT decomposes into two FFTs: n1 on columns, n2 on rows
|
|
527
|
+
n = four_step_params.first_step ? four_step_params.n1 : four_step_params.n2;
|
|
528
|
+
}
|
|
529
|
+
|
|
530
|
+
// Make sure that the array is contiguous and has stride 1 in the FFT dim
|
|
531
|
+
std::vector<array> copies;
|
|
532
|
+
auto check_input = [&axis, &copies, &s](const array& x) {
|
|
533
|
+
// TODO: Pass the strides to the kernel so
|
|
534
|
+
// we can avoid the copy when x is not contiguous.
|
|
535
|
+
bool no_copy = x.strides()[axis] == 1 &&
|
|
536
|
+
(x.flags().row_contiguous || x.flags().col_contiguous);
|
|
537
|
+
if (no_copy) {
|
|
538
|
+
return x;
|
|
539
|
+
} else {
|
|
540
|
+
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
|
541
|
+
Strides strides;
|
|
542
|
+
int64_t cur_stride = x.shape(axis);
|
|
543
|
+
for (int a = 0; a < x.ndim(); a++) {
|
|
544
|
+
if (a == axis) {
|
|
545
|
+
strides.push_back(1);
|
|
546
|
+
} else {
|
|
547
|
+
strides.push_back(cur_stride);
|
|
548
|
+
cur_stride *= x.shape(a);
|
|
549
|
+
}
|
|
550
|
+
}
|
|
551
|
+
|
|
552
|
+
auto flags = x.flags();
|
|
553
|
+
auto [data_size, is_row_contiguous, is_col_contiguous] =
|
|
554
|
+
check_contiguity(x.shape(), strides);
|
|
555
|
+
|
|
556
|
+
flags.col_contiguous = is_col_contiguous;
|
|
557
|
+
flags.row_contiguous = is_row_contiguous;
|
|
558
|
+
flags.contiguous = data_size == x_copy.size();
|
|
559
|
+
|
|
560
|
+
x_copy.set_data(allocator::malloc(x.nbytes()), data_size, strides, flags);
|
|
561
|
+
copy_gpu_inplace(x, x_copy, CopyType::GeneralGeneral, s);
|
|
562
|
+
copies.push_back(x_copy);
|
|
563
|
+
return x_copy;
|
|
564
|
+
}
|
|
565
|
+
};
|
|
566
|
+
const array& in_contiguous = check_input(in);
|
|
567
|
+
|
|
568
|
+
// real to complex: n -> (n/2)+1
|
|
569
|
+
// complex to real: (n/2)+1 -> n
|
|
570
|
+
auto out_strides = in_contiguous.strides();
|
|
571
|
+
size_t out_data_size = in_contiguous.data_size();
|
|
572
|
+
if (in.shape(axis) != out.shape(axis)) {
|
|
573
|
+
for (int i = 0; i < out_strides.size(); i++) {
|
|
574
|
+
if (out_strides[i] != 1) {
|
|
575
|
+
out_strides[i] = out_strides[i] / in.shape(axis) * out.shape(axis);
|
|
576
|
+
}
|
|
577
|
+
}
|
|
578
|
+
out_data_size = out_data_size / in.shape(axis) * out.shape(axis);
|
|
579
|
+
}
|
|
580
|
+
|
|
581
|
+
auto plan = plan_fft(n);
|
|
582
|
+
if (plan.four_step) {
|
|
583
|
+
four_step_fft(in, out, axis, inverse, real, plan, copies, s, inplace);
|
|
584
|
+
d.add_temporaries(std::move(copies), s.index);
|
|
585
|
+
return;
|
|
586
|
+
}
|
|
587
|
+
|
|
588
|
+
// TODO: allow donation here
|
|
589
|
+
if (!inplace) {
|
|
590
|
+
out.set_data(
|
|
591
|
+
allocator::malloc(out.nbytes()),
|
|
592
|
+
out_data_size,
|
|
593
|
+
out_strides,
|
|
594
|
+
in_contiguous.flags());
|
|
595
|
+
}
|
|
596
|
+
|
|
597
|
+
auto radices = supported_radices();
|
|
598
|
+
int fft_size = plan.bluestein_n > 0 ? plan.bluestein_n : n;
|
|
599
|
+
|
|
600
|
+
// Setup function constants
|
|
601
|
+
bool power_of_2 = is_power_of_2(fft_size);
|
|
602
|
+
|
|
603
|
+
auto make_int = [](int* a, int i) {
|
|
604
|
+
return std::make_tuple(a, MTL::DataType::DataTypeInt, i);
|
|
605
|
+
};
|
|
606
|
+
auto make_bool = [](bool* a, int i) {
|
|
607
|
+
return std::make_tuple(a, MTL::DataType::DataTypeBool, i);
|
|
608
|
+
};
|
|
609
|
+
|
|
610
|
+
std::vector<MTLFC> func_consts = {
|
|
611
|
+
make_bool(&inverse, 0), make_bool(&power_of_2, 1)};
|
|
612
|
+
|
|
613
|
+
// Start of radix/rader step constants
|
|
614
|
+
int index = 4;
|
|
615
|
+
for (int i = 0; i < plan.stockham.size(); i++) {
|
|
616
|
+
func_consts.push_back(make_int(&plan.stockham[i], index));
|
|
617
|
+
index += 1;
|
|
618
|
+
}
|
|
619
|
+
for (int i = 0; i < plan.rader.size(); i++) {
|
|
620
|
+
func_consts.push_back(make_int(&plan.rader[i], index));
|
|
621
|
+
index += 1;
|
|
622
|
+
}
|
|
623
|
+
int elems_per_thread = compute_elems_per_thread(plan);
|
|
624
|
+
func_consts.push_back(make_int(&elems_per_thread, 2));
|
|
625
|
+
|
|
626
|
+
int rader_m = n / plan.rader_n;
|
|
627
|
+
func_consts.push_back(make_int(&rader_m, 3));
|
|
628
|
+
|
|
629
|
+
// The overall number of FFTs we're going to compute for this input
|
|
630
|
+
size_t size = out.dtype() == float32 ? out.size() : in.size();
|
|
631
|
+
if (real && inverse && four_step_params.required) {
|
|
632
|
+
size = out.size();
|
|
633
|
+
}
|
|
634
|
+
int total_batch_size = size / n;
|
|
635
|
+
int threads_per_fft = (fft_size + elems_per_thread - 1) / elems_per_thread;
|
|
636
|
+
|
|
637
|
+
// We batch among threadgroups for improved efficiency when n is small
|
|
638
|
+
int threadgroup_batch_size = std::max(MIN_THREADGROUP_MEM_SIZE / fft_size, 1);
|
|
639
|
+
if (four_step_params.required) {
|
|
640
|
+
// Require a threadgroup batch size of at least 4 for four step FFT
|
|
641
|
+
// so we can coalesce the memory accesses.
|
|
642
|
+
threadgroup_batch_size =
|
|
643
|
+
std::max(threadgroup_batch_size, MIN_COALESCE_WIDTH);
|
|
644
|
+
}
|
|
645
|
+
int threadgroup_mem_size = next_power_of_2(threadgroup_batch_size * fft_size);
|
|
646
|
+
// FFTs up to 2^20 are currently supported
|
|
647
|
+
assert(threadgroup_mem_size <= MAX_STOCKHAM_FFT_SIZE);
|
|
648
|
+
|
|
649
|
+
// ceil divide
|
|
650
|
+
int batch_size =
|
|
651
|
+
(total_batch_size + threadgroup_batch_size - 1) / threadgroup_batch_size;
|
|
652
|
+
|
|
653
|
+
if (real && !four_step_params.required) {
|
|
654
|
+
// We can perform 2 RFFTs at once so the batch size is halved.
|
|
655
|
+
batch_size = (batch_size + 2 - 1) / 2;
|
|
656
|
+
}
|
|
657
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
658
|
+
auto in_type_str = in.dtype() == float32 ? "float" : "float2";
|
|
659
|
+
auto out_type_str = out.dtype() == float32 ? "float" : "float2";
|
|
660
|
+
// Only required by four step
|
|
661
|
+
int step = -1;
|
|
662
|
+
{
|
|
663
|
+
std::ostringstream kname;
|
|
664
|
+
std::string inv_string = inverse ? "true" : "false";
|
|
665
|
+
std::string real_string = real ? "true" : "false";
|
|
666
|
+
std::string func_name;
|
|
667
|
+
if (plan.bluestein_n > 0) {
|
|
668
|
+
kname << "bluestein_fft_mem_" << threadgroup_mem_size << "_"
|
|
669
|
+
<< in_type_str << "_" << out_type_str;
|
|
670
|
+
func_name = "bluestein_fft";
|
|
671
|
+
} else if (plan.rader_n > 1) {
|
|
672
|
+
kname << "rader_fft_mem_" << threadgroup_mem_size << "_" << in_type_str
|
|
673
|
+
<< "_" << out_type_str;
|
|
674
|
+
func_name = "rader_fft";
|
|
675
|
+
} else if (four_step_params.required) {
|
|
676
|
+
step = four_step_params.first_step ? 0 : 1;
|
|
677
|
+
kname << "four_step_mem_" << threadgroup_mem_size << "_" << in_type_str
|
|
678
|
+
<< "_" << out_type_str << "_" << step << "_" << real_string;
|
|
679
|
+
func_name = "four_step_fft";
|
|
680
|
+
} else {
|
|
681
|
+
kname << "fft_mem_" << threadgroup_mem_size << "_" << in_type_str << "_"
|
|
682
|
+
<< out_type_str;
|
|
683
|
+
func_name = "fft";
|
|
684
|
+
}
|
|
685
|
+
std::string base_name = kname.str();
|
|
686
|
+
// We use a specialized kernel for each FFT size
|
|
687
|
+
kname << "_n" << fft_size << "_inv_" << inverse;
|
|
688
|
+
std::string hash_name = kname.str();
|
|
689
|
+
auto template_def = func_name == "four_step_fft" ? get_template_definition(
|
|
690
|
+
base_name,
|
|
691
|
+
func_name,
|
|
692
|
+
threadgroup_mem_size,
|
|
693
|
+
in_type_str,
|
|
694
|
+
out_type_str,
|
|
695
|
+
step,
|
|
696
|
+
real)
|
|
697
|
+
: get_template_definition(
|
|
698
|
+
base_name,
|
|
699
|
+
func_name,
|
|
700
|
+
threadgroup_mem_size,
|
|
701
|
+
in_type_str,
|
|
702
|
+
out_type_str);
|
|
703
|
+
auto kernel =
|
|
704
|
+
get_fft_kernel(d, base_name, hash_name, func_consts, template_def);
|
|
705
|
+
|
|
706
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
707
|
+
compute_encoder.set_input_array(in_contiguous, 0);
|
|
708
|
+
compute_encoder.set_output_array(out, 1);
|
|
709
|
+
|
|
710
|
+
if (plan.bluestein_n > 0) {
|
|
711
|
+
// Precomputed twiddle factors for Bluestein's
|
|
712
|
+
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
|
|
713
|
+
copies.push_back(w_q);
|
|
714
|
+
copies.push_back(w_k);
|
|
715
|
+
|
|
716
|
+
compute_encoder.set_input_array(w_q, 2); // w_q
|
|
717
|
+
compute_encoder.set_input_array(w_k, 3); // w_k
|
|
718
|
+
compute_encoder.set_bytes(n, 4);
|
|
719
|
+
compute_encoder.set_bytes(plan.bluestein_n, 5);
|
|
720
|
+
compute_encoder.set_bytes(total_batch_size, 6);
|
|
721
|
+
} else if (plan.rader_n > 1) {
|
|
722
|
+
auto [b_q, g_q, g_minus_q] = compute_raders_constants(plan.rader_n, s);
|
|
723
|
+
copies.push_back(b_q);
|
|
724
|
+
copies.push_back(g_q);
|
|
725
|
+
copies.push_back(g_minus_q);
|
|
726
|
+
|
|
727
|
+
compute_encoder.set_input_array(b_q, 2);
|
|
728
|
+
compute_encoder.set_input_array(g_q, 3);
|
|
729
|
+
compute_encoder.set_input_array(g_minus_q, 4);
|
|
730
|
+
compute_encoder.set_bytes(n, 5);
|
|
731
|
+
compute_encoder.set_bytes(total_batch_size, 6);
|
|
732
|
+
compute_encoder.set_bytes(plan.rader_n, 7);
|
|
733
|
+
} else if (four_step_params.required) {
|
|
734
|
+
compute_encoder.set_bytes(four_step_params.n1, 2);
|
|
735
|
+
compute_encoder.set_bytes(four_step_params.n2, 3);
|
|
736
|
+
compute_encoder.set_bytes(total_batch_size, 4);
|
|
737
|
+
} else {
|
|
738
|
+
compute_encoder.set_bytes(n, 2);
|
|
739
|
+
compute_encoder.set_bytes(total_batch_size, 3);
|
|
740
|
+
}
|
|
741
|
+
|
|
742
|
+
auto group_dims = MTL::Size(1, threadgroup_batch_size, threads_per_fft);
|
|
743
|
+
auto grid_dims =
|
|
744
|
+
MTL::Size(batch_size, threadgroup_batch_size, threads_per_fft);
|
|
745
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
746
|
+
}
|
|
747
|
+
|
|
748
|
+
d.add_temporaries(std::move(copies), s.index);
|
|
749
|
+
}
|
|
750
|
+
|
|
751
|
+
void fft_op(
|
|
752
|
+
const array& in,
|
|
753
|
+
array& out,
|
|
754
|
+
size_t axis,
|
|
755
|
+
bool inverse,
|
|
756
|
+
bool real,
|
|
757
|
+
bool inplace,
|
|
758
|
+
const Stream& s) {
|
|
759
|
+
fft_op(in, out, axis, inverse, real, FourStepParams(), inplace, s);
|
|
760
|
+
}
|
|
761
|
+
|
|
762
|
+
void nd_fft_op(
|
|
763
|
+
const array& in,
|
|
764
|
+
array& out,
|
|
765
|
+
const std::vector<size_t>& axes,
|
|
766
|
+
bool inverse,
|
|
767
|
+
bool real,
|
|
768
|
+
const Stream& s) {
|
|
769
|
+
// Perform ND FFT on GPU as a series of 1D FFTs
|
|
770
|
+
auto temp_shape = inverse ? in.shape() : out.shape();
|
|
771
|
+
std::vector<array> temp_arrs;
|
|
772
|
+
temp_arrs.emplace_back(temp_shape, complex64, nullptr, std::vector<array>{});
|
|
773
|
+
if (axes.size() > 2) {
|
|
774
|
+
temp_arrs.emplace_back(
|
|
775
|
+
temp_shape, complex64, nullptr, std::vector<array>{});
|
|
776
|
+
}
|
|
777
|
+
for (int i = axes.size() - 1; i >= 0; i--) {
|
|
778
|
+
int reverse_index = axes.size() - i - 1;
|
|
779
|
+
// For 5D and above, we don't want to reallocate our two temporary arrays
|
|
780
|
+
bool inplace = reverse_index >= 3 && i != 0;
|
|
781
|
+
// Opposite order for fft vs ifft
|
|
782
|
+
int index = inverse ? reverse_index : i;
|
|
783
|
+
size_t axis = axes[index];
|
|
784
|
+
// Mirror np.fft.(i)rfftn and perform a real transform
|
|
785
|
+
// only on the final axis.
|
|
786
|
+
bool step_real = (real && index == axes.size() - 1);
|
|
787
|
+
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[i % 2];
|
|
788
|
+
array& out_arr = i == 0 ? out : temp_arrs[1 - i % 2];
|
|
789
|
+
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
|
|
790
|
+
}
|
|
791
|
+
|
|
792
|
+
auto& d = metal::device(s.device);
|
|
793
|
+
d.add_temporaries(std::move(temp_arrs), s.index);
|
|
794
|
+
}
|
|
795
|
+
|
|
796
|
+
void FFT::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
797
|
+
auto& s = stream();
|
|
798
|
+
auto& in = inputs[0];
|
|
799
|
+
|
|
800
|
+
if (axes_.size() > 1) {
|
|
801
|
+
nd_fft_op(in, out, axes_, inverse_, real_, s);
|
|
802
|
+
} else {
|
|
803
|
+
fft_op(in, out, axes_[0], inverse_, real_, /*inplace=*/false, s);
|
|
804
|
+
}
|
|
805
|
+
}
|
|
806
|
+
|
|
807
|
+
} // namespace mlx::core
|