mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,1038 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <algorithm>
|
|
4
|
+
#include <cassert>
|
|
5
|
+
|
|
6
|
+
#include "mlx/backend/gpu/copy.h"
|
|
7
|
+
#include "mlx/backend/metal/device.h"
|
|
8
|
+
#include "mlx/backend/metal/kernels.h"
|
|
9
|
+
#include "mlx/backend/metal/kernels/defines.h"
|
|
10
|
+
#include "mlx/backend/metal/reduce.h"
|
|
11
|
+
#include "mlx/backend/metal/utils.h"
|
|
12
|
+
#include "mlx/primitives.h"
|
|
13
|
+
#include "mlx/utils.h"
|
|
14
|
+
|
|
15
|
+
namespace mlx::core {
|
|
16
|
+
|
|
17
|
+
namespace {
|
|
18
|
+
|
|
19
|
+
struct RowReduceArgs {
|
|
20
|
+
// Input shape and strides not including the reduction axes
|
|
21
|
+
Shape shape;
|
|
22
|
+
Strides strides;
|
|
23
|
+
int ndim;
|
|
24
|
+
|
|
25
|
+
// Input shape and strides for the reduction axes
|
|
26
|
+
Shape reduce_shape;
|
|
27
|
+
Strides reduce_strides;
|
|
28
|
+
int reduce_ndim;
|
|
29
|
+
|
|
30
|
+
// The number of rows we are reducing. Namely prod(reduce_shape).
|
|
31
|
+
size_t non_row_reductions;
|
|
32
|
+
|
|
33
|
+
// The size of the row.
|
|
34
|
+
size_t row_size;
|
|
35
|
+
|
|
36
|
+
RowReduceArgs(
|
|
37
|
+
const array& in,
|
|
38
|
+
const ReductionPlan& plan,
|
|
39
|
+
const std::vector<int>& axes) {
|
|
40
|
+
row_size = plan.shape.back();
|
|
41
|
+
|
|
42
|
+
reduce_shape = plan.shape;
|
|
43
|
+
reduce_strides = plan.strides;
|
|
44
|
+
reduce_shape.pop_back();
|
|
45
|
+
reduce_strides.pop_back();
|
|
46
|
+
reduce_ndim = reduce_shape.size();
|
|
47
|
+
|
|
48
|
+
non_row_reductions = 1;
|
|
49
|
+
for (auto s : reduce_shape) {
|
|
50
|
+
non_row_reductions *= s;
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
std::tie(shape, strides) = shapes_without_reduction_axes(in, axes);
|
|
54
|
+
std::tie(shape, strides) = collapse_contiguous_dims(shape, strides);
|
|
55
|
+
ndim = shape.size();
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
void encode(CommandEncoder& compute_encoder) {
|
|
59
|
+
// Push 0s to avoid encoding empty vectors.
|
|
60
|
+
if (reduce_ndim == 0) {
|
|
61
|
+
reduce_shape.push_back(0);
|
|
62
|
+
reduce_strides.push_back(0);
|
|
63
|
+
}
|
|
64
|
+
if (ndim == 0) {
|
|
65
|
+
shape.push_back(0);
|
|
66
|
+
strides.push_back(0);
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
compute_encoder.set_bytes(row_size, 2);
|
|
70
|
+
compute_encoder.set_bytes(non_row_reductions, 3);
|
|
71
|
+
compute_encoder.set_vector_bytes(shape, 4);
|
|
72
|
+
compute_encoder.set_vector_bytes(strides, 5);
|
|
73
|
+
compute_encoder.set_bytes(ndim, 6);
|
|
74
|
+
compute_encoder.set_vector_bytes(reduce_shape, 7);
|
|
75
|
+
compute_encoder.set_vector_bytes(reduce_strides, 8);
|
|
76
|
+
compute_encoder.set_bytes(reduce_ndim, 9);
|
|
77
|
+
|
|
78
|
+
if (reduce_ndim == 0) {
|
|
79
|
+
reduce_shape.pop_back();
|
|
80
|
+
reduce_strides.pop_back();
|
|
81
|
+
}
|
|
82
|
+
if (ndim == 0) {
|
|
83
|
+
shape.pop_back();
|
|
84
|
+
strides.pop_back();
|
|
85
|
+
}
|
|
86
|
+
}
|
|
87
|
+
};
|
|
88
|
+
|
|
89
|
+
struct ColReduceArgs {
|
|
90
|
+
// Input shape and strides not including the reduction axes
|
|
91
|
+
Shape shape;
|
|
92
|
+
Strides strides;
|
|
93
|
+
int ndim;
|
|
94
|
+
|
|
95
|
+
// Input shape and strides for the reduction axes
|
|
96
|
+
Shape reduce_shape;
|
|
97
|
+
Strides reduce_strides;
|
|
98
|
+
int reduce_ndim;
|
|
99
|
+
|
|
100
|
+
// The number of column reductions we are doing. Namely prod(reduce_shape).
|
|
101
|
+
size_t non_col_reductions;
|
|
102
|
+
|
|
103
|
+
// The size of the contiguous column reduction.
|
|
104
|
+
size_t reduction_size;
|
|
105
|
+
int64_t reduction_stride;
|
|
106
|
+
|
|
107
|
+
ColReduceArgs(
|
|
108
|
+
const array& in,
|
|
109
|
+
const ReductionPlan& plan,
|
|
110
|
+
const std::vector<int>& axes) {
|
|
111
|
+
reduction_size = plan.shape.back();
|
|
112
|
+
reduction_stride = plan.strides.back();
|
|
113
|
+
|
|
114
|
+
reduce_shape = plan.shape;
|
|
115
|
+
reduce_strides = plan.strides;
|
|
116
|
+
reduce_shape.pop_back();
|
|
117
|
+
reduce_strides.pop_back();
|
|
118
|
+
reduce_ndim = reduce_shape.size();
|
|
119
|
+
|
|
120
|
+
non_col_reductions = 1;
|
|
121
|
+
for (auto s : reduce_shape) {
|
|
122
|
+
non_col_reductions *= s;
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
// We 'll use a stride_back variable because strides.back() could be 0 but
|
|
126
|
+
// yet we may have removed the appropriate amount of elements. It is safe
|
|
127
|
+
// to compute the stride by multiplying shapes (while < reduction_stride)
|
|
128
|
+
// because it is a contiguous section.
|
|
129
|
+
int64_t stride_back = 1;
|
|
130
|
+
std::tie(shape, strides) = shapes_without_reduction_axes(in, axes);
|
|
131
|
+
while (!shape.empty() && stride_back < reduction_stride) {
|
|
132
|
+
stride_back *= shape.back();
|
|
133
|
+
shape.pop_back();
|
|
134
|
+
strides.pop_back();
|
|
135
|
+
}
|
|
136
|
+
std::tie(shape, strides) = collapse_contiguous_dims(shape, strides);
|
|
137
|
+
ndim = shape.size();
|
|
138
|
+
}
|
|
139
|
+
|
|
140
|
+
/**
|
|
141
|
+
* Create the col reduce arguments for reducing the 1st axis of the row
|
|
142
|
+
* contiguous intermediate array.
|
|
143
|
+
*/
|
|
144
|
+
ColReduceArgs(const array& intermediate) {
|
|
145
|
+
assert(intermediate.flags().row_contiguous);
|
|
146
|
+
|
|
147
|
+
reduction_size = intermediate.shape(0);
|
|
148
|
+
reduction_stride = intermediate.size() / reduction_size;
|
|
149
|
+
non_col_reductions = 1;
|
|
150
|
+
reduce_ndim = 0;
|
|
151
|
+
ndim = 0;
|
|
152
|
+
}
|
|
153
|
+
|
|
154
|
+
void encode(CommandEncoder& compute_encoder) {
|
|
155
|
+
// Push 0s to avoid encoding empty vectors.
|
|
156
|
+
if (reduce_ndim == 0) {
|
|
157
|
+
reduce_shape.push_back(0);
|
|
158
|
+
reduce_strides.push_back(0);
|
|
159
|
+
}
|
|
160
|
+
if (ndim == 0) {
|
|
161
|
+
shape.push_back(0);
|
|
162
|
+
strides.push_back(0);
|
|
163
|
+
}
|
|
164
|
+
|
|
165
|
+
compute_encoder.set_bytes(reduction_size, 2);
|
|
166
|
+
compute_encoder.set_bytes(reduction_stride, 3);
|
|
167
|
+
compute_encoder.set_vector_bytes(shape, 4);
|
|
168
|
+
compute_encoder.set_vector_bytes(strides, 5);
|
|
169
|
+
compute_encoder.set_bytes(ndim, 6);
|
|
170
|
+
compute_encoder.set_vector_bytes(reduce_shape, 7);
|
|
171
|
+
compute_encoder.set_vector_bytes(reduce_strides, 8);
|
|
172
|
+
compute_encoder.set_bytes(reduce_ndim, 9);
|
|
173
|
+
compute_encoder.set_bytes(non_col_reductions, 10);
|
|
174
|
+
|
|
175
|
+
if (reduce_ndim == 0) {
|
|
176
|
+
reduce_shape.pop_back();
|
|
177
|
+
reduce_strides.pop_back();
|
|
178
|
+
}
|
|
179
|
+
if (ndim == 0) {
|
|
180
|
+
shape.pop_back();
|
|
181
|
+
strides.pop_back();
|
|
182
|
+
}
|
|
183
|
+
}
|
|
184
|
+
};
|
|
185
|
+
|
|
186
|
+
} // namespace
|
|
187
|
+
|
|
188
|
+
inline auto safe_div(size_t n, size_t m) {
|
|
189
|
+
return m == 0 ? 0 : (n + m - 1) / m;
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
inline auto safe_divup(size_t n, size_t m) {
|
|
193
|
+
return safe_div(n, m) * m;
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
inline bool is_64b_int(Dtype dtype) {
|
|
197
|
+
return dtype == int64 || dtype == uint64;
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
inline bool is_64b_dtype(Dtype dtype) {
|
|
201
|
+
return dtype == int64 || dtype == uint64 || dtype == complex64;
|
|
202
|
+
}
|
|
203
|
+
|
|
204
|
+
inline int get_kernel_reduce_ndim(int reduce_ndim) {
|
|
205
|
+
if (reduce_ndim <= 1) {
|
|
206
|
+
return 1;
|
|
207
|
+
} else if (reduce_ndim == 2) {
|
|
208
|
+
return 2;
|
|
209
|
+
} else {
|
|
210
|
+
return 5;
|
|
211
|
+
}
|
|
212
|
+
}
|
|
213
|
+
|
|
214
|
+
inline int threadgroup_size_from_row_size(int row_size) {
|
|
215
|
+
// 1 simdgroup per row smallish rows
|
|
216
|
+
if (row_size <= 512) {
|
|
217
|
+
return 32;
|
|
218
|
+
}
|
|
219
|
+
|
|
220
|
+
// 2 simdgroups per row for medium rows
|
|
221
|
+
if (row_size <= 1024) {
|
|
222
|
+
return 128;
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
// up to 32 simdgroups after that
|
|
226
|
+
int thread_group_size;
|
|
227
|
+
thread_group_size = (row_size + REDUCE_N_READS - 1) / REDUCE_N_READS;
|
|
228
|
+
thread_group_size = ((thread_group_size + 31) / 32) * 32;
|
|
229
|
+
thread_group_size = std::min(1024, thread_group_size);
|
|
230
|
+
return thread_group_size;
|
|
231
|
+
}
|
|
232
|
+
|
|
233
|
+
inline auto output_grid_for_col_reduce(
|
|
234
|
+
const array& out,
|
|
235
|
+
const ColReduceArgs& args) {
|
|
236
|
+
auto out_shape = out.shape();
|
|
237
|
+
auto out_strides = out.strides();
|
|
238
|
+
while (!out_shape.empty() && out_strides.back() < args.reduction_stride) {
|
|
239
|
+
out_shape.pop_back();
|
|
240
|
+
out_strides.pop_back();
|
|
241
|
+
}
|
|
242
|
+
return get_2d_grid_dims(out_shape, out_strides);
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
std::pair<Dtype, Dtype> remap_reduce_types(
|
|
246
|
+
const array& in,
|
|
247
|
+
const std::string& op_name) {
|
|
248
|
+
if (op_name == "sum" || op_name == "prod") {
|
|
249
|
+
if (issubdtype(in.dtype(), integer)) {
|
|
250
|
+
switch (in.dtype()) {
|
|
251
|
+
case uint8:
|
|
252
|
+
return {uint8, uint32};
|
|
253
|
+
case uint16:
|
|
254
|
+
return {uint16, uint32};
|
|
255
|
+
case uint32:
|
|
256
|
+
return {uint32, uint32};
|
|
257
|
+
case uint64:
|
|
258
|
+
return {uint64, uint64};
|
|
259
|
+
case int8:
|
|
260
|
+
return {int8, int32};
|
|
261
|
+
case int16:
|
|
262
|
+
return {int16, int32};
|
|
263
|
+
case int32:
|
|
264
|
+
return {int32, int32};
|
|
265
|
+
case int64:
|
|
266
|
+
return {int64, int64};
|
|
267
|
+
default:
|
|
268
|
+
throw std::runtime_error("Unsupported integer type");
|
|
269
|
+
}
|
|
270
|
+
}
|
|
271
|
+
if (in.dtype() == bool_) {
|
|
272
|
+
return {int8, int32};
|
|
273
|
+
}
|
|
274
|
+
return {in.dtype(), in.dtype()};
|
|
275
|
+
} else if (op_name == "and" || op_name == "or") {
|
|
276
|
+
if (in.dtype().size() == 1) {
|
|
277
|
+
return {bool_, bool_};
|
|
278
|
+
} else if (in.dtype().size() == 2) {
|
|
279
|
+
return {int16, bool_};
|
|
280
|
+
} else if (in.dtype().size() == 4) {
|
|
281
|
+
return {int32, bool_};
|
|
282
|
+
} else {
|
|
283
|
+
return {int64, bool_};
|
|
284
|
+
}
|
|
285
|
+
}
|
|
286
|
+
return {in.dtype(), in.dtype()};
|
|
287
|
+
}
|
|
288
|
+
|
|
289
|
+
void init_reduce(
|
|
290
|
+
array& out,
|
|
291
|
+
const std::string& op_name,
|
|
292
|
+
CommandEncoder& compute_encoder,
|
|
293
|
+
metal::Device& d,
|
|
294
|
+
const Stream& s) {
|
|
295
|
+
auto [_, out_type] = remap_reduce_types(out, op_name);
|
|
296
|
+
const std::string func_name = "init_reduce";
|
|
297
|
+
std::string kname = func_name;
|
|
298
|
+
concatenate(kname, "_", op_name, type_to_name(out_type));
|
|
299
|
+
auto kernel = get_reduce_init_kernel(d, kname, func_name, op_name, out_type);
|
|
300
|
+
size_t nthreads = out.size();
|
|
301
|
+
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
|
302
|
+
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
303
|
+
if (thread_group_size > nthreads) {
|
|
304
|
+
thread_group_size = nthreads;
|
|
305
|
+
}
|
|
306
|
+
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
307
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
308
|
+
compute_encoder.set_output_array(out, 0);
|
|
309
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
310
|
+
}
|
|
311
|
+
|
|
312
|
+
void all_reduce_dispatch(
|
|
313
|
+
const array& in,
|
|
314
|
+
array& out,
|
|
315
|
+
const std::string& op_name,
|
|
316
|
+
CommandEncoder& compute_encoder,
|
|
317
|
+
metal::Device& d,
|
|
318
|
+
const Stream& s) {
|
|
319
|
+
// Set the kernel
|
|
320
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
321
|
+
const std::string func_name = "all_reduce";
|
|
322
|
+
std::string kname = func_name;
|
|
323
|
+
concatenate(kname, "_", op_name, type_to_name(in_type));
|
|
324
|
+
auto kernel = get_reduce_kernel(
|
|
325
|
+
d, kname, func_name, op_name, in_type, out_type, "int64_t");
|
|
326
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
327
|
+
|
|
328
|
+
size_t in_size = in.size();
|
|
329
|
+
|
|
330
|
+
// Small array so dispatch a single threadgroup
|
|
331
|
+
if (in_size <= REDUCE_N_READS * 1024) {
|
|
332
|
+
int threadgroup_size = (in_size + REDUCE_N_READS - 1) / REDUCE_N_READS;
|
|
333
|
+
threadgroup_size = ((threadgroup_size + 31) / 32) * 32;
|
|
334
|
+
MTL::Size grid_dims(threadgroup_size, 1, 1);
|
|
335
|
+
|
|
336
|
+
compute_encoder.set_input_array(in, 0);
|
|
337
|
+
compute_encoder.set_output_array(out, 1);
|
|
338
|
+
compute_encoder.set_bytes(in_size, 2);
|
|
339
|
+
compute_encoder.set_bytes(in_size, 3);
|
|
340
|
+
compute_encoder.dispatch_threads(grid_dims, grid_dims);
|
|
341
|
+
}
|
|
342
|
+
|
|
343
|
+
// We need multiple threadgroups so we 'll do it in 2 passes.
|
|
344
|
+
else {
|
|
345
|
+
int n_rows, threadgroup_2nd_pass;
|
|
346
|
+
// Less than 2**26 bytes
|
|
347
|
+
if (in.nbytes() <= (1 << 26)) {
|
|
348
|
+
n_rows = 32 * REDUCE_N_READS;
|
|
349
|
+
threadgroup_2nd_pass = 32;
|
|
350
|
+
}
|
|
351
|
+
|
|
352
|
+
// Really large matrix so parallelize as much as possible
|
|
353
|
+
else {
|
|
354
|
+
n_rows = 1024 * REDUCE_N_READS;
|
|
355
|
+
threadgroup_2nd_pass = 1024;
|
|
356
|
+
}
|
|
357
|
+
|
|
358
|
+
// Allocate an intermediate tensor to hold results if needed
|
|
359
|
+
array intermediate({n_rows}, out_type, nullptr, {});
|
|
360
|
+
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
|
361
|
+
d.add_temporary(intermediate, s.index);
|
|
362
|
+
|
|
363
|
+
// 1st pass
|
|
364
|
+
size_t row_size = (in_size + n_rows - 1) / n_rows;
|
|
365
|
+
int threadgroup_size =
|
|
366
|
+
std::min((row_size + REDUCE_N_READS - 1) / REDUCE_N_READS, 1024ul);
|
|
367
|
+
threadgroup_size = ((threadgroup_size + 31) / 32) * 32;
|
|
368
|
+
MTL::Size grid_dims(threadgroup_size, n_rows, 1);
|
|
369
|
+
MTL::Size group_dims(threadgroup_size, 1, 1);
|
|
370
|
+
compute_encoder.set_input_array(in, 0);
|
|
371
|
+
compute_encoder.set_output_array(intermediate, 1);
|
|
372
|
+
compute_encoder.set_bytes(in_size, 2);
|
|
373
|
+
compute_encoder.set_bytes(row_size, 3);
|
|
374
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
375
|
+
|
|
376
|
+
// 2nd pass
|
|
377
|
+
std::string kname_2nd_pass = func_name;
|
|
378
|
+
concatenate(kname_2nd_pass, "_", op_name, type_to_name(intermediate));
|
|
379
|
+
auto kernel_2nd_pass = get_reduce_kernel(
|
|
380
|
+
d, kname_2nd_pass, func_name, op_name, out_type, out_type, "int64_t");
|
|
381
|
+
compute_encoder.set_compute_pipeline_state(kernel_2nd_pass);
|
|
382
|
+
size_t intermediate_size = n_rows;
|
|
383
|
+
grid_dims = MTL::Size(threadgroup_2nd_pass, 1, 1);
|
|
384
|
+
group_dims = MTL::Size(threadgroup_2nd_pass, 1, 1);
|
|
385
|
+
compute_encoder.set_input_array(intermediate, 0);
|
|
386
|
+
compute_encoder.set_output_array(out, 1);
|
|
387
|
+
compute_encoder.set_bytes(intermediate_size, 2);
|
|
388
|
+
compute_encoder.set_bytes(intermediate_size, 3);
|
|
389
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
390
|
+
}
|
|
391
|
+
}
|
|
392
|
+
|
|
393
|
+
void row_reduce_small(
|
|
394
|
+
const array& in,
|
|
395
|
+
array& out,
|
|
396
|
+
const std::string& op_name,
|
|
397
|
+
RowReduceArgs& args,
|
|
398
|
+
CommandEncoder& compute_encoder,
|
|
399
|
+
metal::Device& d,
|
|
400
|
+
const Stream& s) {
|
|
401
|
+
// Set the kernel
|
|
402
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
403
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
404
|
+
const std::string func_name = "row_reduce_small";
|
|
405
|
+
std::string kname = func_name;
|
|
406
|
+
bool large = in.size() > INT32_MAX;
|
|
407
|
+
if (large) {
|
|
408
|
+
kname += "_large";
|
|
409
|
+
}
|
|
410
|
+
concatenate(
|
|
411
|
+
kname,
|
|
412
|
+
"_",
|
|
413
|
+
std::to_string(n),
|
|
414
|
+
"_reduce_",
|
|
415
|
+
op_name,
|
|
416
|
+
type_to_name(in_type));
|
|
417
|
+
auto kernel = get_reduce_kernel(
|
|
418
|
+
d,
|
|
419
|
+
kname,
|
|
420
|
+
func_name,
|
|
421
|
+
op_name,
|
|
422
|
+
in_type,
|
|
423
|
+
out_type,
|
|
424
|
+
large ? "size_t" : "int",
|
|
425
|
+
n);
|
|
426
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
427
|
+
|
|
428
|
+
// Figure out the grid dims
|
|
429
|
+
MTL::Size grid_dims;
|
|
430
|
+
MTL::Size group_dims;
|
|
431
|
+
if ((args.non_row_reductions < 32 && args.row_size <= 8) ||
|
|
432
|
+
args.non_row_reductions <= 8) {
|
|
433
|
+
grid_dims = get_2d_grid_dims(out.shape(), out.strides());
|
|
434
|
+
group_dims =
|
|
435
|
+
MTL::Size((grid_dims.width < 1024) ? grid_dims.width : 1024, 1, 1);
|
|
436
|
+
} else {
|
|
437
|
+
auto out_grid_size = get_2d_grid_dims(out.shape(), out.strides());
|
|
438
|
+
grid_dims = MTL::Size(32, out_grid_size.width, out_grid_size.height);
|
|
439
|
+
group_dims = MTL::Size(32, 1, 1);
|
|
440
|
+
}
|
|
441
|
+
|
|
442
|
+
// Launch
|
|
443
|
+
compute_encoder.set_input_array(in, 0);
|
|
444
|
+
compute_encoder.set_output_array(out, 1);
|
|
445
|
+
args.encode(compute_encoder);
|
|
446
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
447
|
+
}
|
|
448
|
+
|
|
449
|
+
void row_reduce_simple(
|
|
450
|
+
const array& in,
|
|
451
|
+
array& out,
|
|
452
|
+
const std::string& op_name,
|
|
453
|
+
RowReduceArgs& args,
|
|
454
|
+
CommandEncoder& compute_encoder,
|
|
455
|
+
metal::Device& d,
|
|
456
|
+
const Stream& s) {
|
|
457
|
+
// Set the kernel
|
|
458
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
459
|
+
const std::string func_name = "row_reduce_simple";
|
|
460
|
+
std::string kname = func_name;
|
|
461
|
+
concatenate(kname, "_", op_name, type_to_name(in_type));
|
|
462
|
+
|
|
463
|
+
auto kernel = get_reduce_kernel(
|
|
464
|
+
d, kname, func_name, op_name, in_type, out_type, "size_t");
|
|
465
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
466
|
+
|
|
467
|
+
// Figure out the grid dims
|
|
468
|
+
size_t row_size = args.row_size;
|
|
469
|
+
size_t out_size = out.size();
|
|
470
|
+
auto out_grid_size = get_2d_grid_dims(out.shape(), out.strides());
|
|
471
|
+
out_grid_size.width =
|
|
472
|
+
(out_grid_size.width + REDUCE_N_WRITES - 1) / REDUCE_N_WRITES;
|
|
473
|
+
int threadgroup_size = threadgroup_size_from_row_size(row_size);
|
|
474
|
+
if (in.itemsize() == 8) {
|
|
475
|
+
threadgroup_size = std::min(threadgroup_size, 512);
|
|
476
|
+
}
|
|
477
|
+
MTL::Size grid_dims(
|
|
478
|
+
threadgroup_size, out_grid_size.width, out_grid_size.height);
|
|
479
|
+
MTL::Size group_dims(threadgroup_size, 1, 1);
|
|
480
|
+
|
|
481
|
+
// Launch
|
|
482
|
+
compute_encoder.set_input_array(in, 0);
|
|
483
|
+
compute_encoder.set_output_array(out, 1);
|
|
484
|
+
compute_encoder.set_bytes(row_size, 2);
|
|
485
|
+
compute_encoder.set_bytes(out_size, 3);
|
|
486
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
487
|
+
}
|
|
488
|
+
|
|
489
|
+
void row_reduce_looped(
|
|
490
|
+
const array& in,
|
|
491
|
+
array& out,
|
|
492
|
+
const std::string& op_name,
|
|
493
|
+
RowReduceArgs& args,
|
|
494
|
+
CommandEncoder& compute_encoder,
|
|
495
|
+
metal::Device& d,
|
|
496
|
+
const Stream& s) {
|
|
497
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
498
|
+
|
|
499
|
+
// Set the kernel
|
|
500
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
501
|
+
const std::string func_name = "row_reduce_looped";
|
|
502
|
+
std::string kname = func_name;
|
|
503
|
+
bool large = in.size() > INT32_MAX;
|
|
504
|
+
if (large) {
|
|
505
|
+
kname += "_large";
|
|
506
|
+
}
|
|
507
|
+
concatenate(
|
|
508
|
+
kname,
|
|
509
|
+
"_",
|
|
510
|
+
std::to_string(n),
|
|
511
|
+
"_reduce_",
|
|
512
|
+
op_name,
|
|
513
|
+
type_to_name(in_type));
|
|
514
|
+
auto kernel = get_reduce_kernel(
|
|
515
|
+
d,
|
|
516
|
+
kname,
|
|
517
|
+
func_name,
|
|
518
|
+
op_name,
|
|
519
|
+
in_type,
|
|
520
|
+
out_type,
|
|
521
|
+
large ? "size_t" : "int",
|
|
522
|
+
n);
|
|
523
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
524
|
+
|
|
525
|
+
// Figure out the grid
|
|
526
|
+
auto out_grid_size = get_2d_grid_dims(out.shape(), out.strides());
|
|
527
|
+
int threadgroup_size = threadgroup_size_from_row_size(args.row_size);
|
|
528
|
+
MTL::Size grid_dims(
|
|
529
|
+
threadgroup_size, out_grid_size.width, out_grid_size.height);
|
|
530
|
+
MTL::Size group_dims(threadgroup_size, 1, 1);
|
|
531
|
+
|
|
532
|
+
// Launch
|
|
533
|
+
compute_encoder.set_input_array(in, 0);
|
|
534
|
+
compute_encoder.set_output_array(out, 1);
|
|
535
|
+
args.encode(compute_encoder);
|
|
536
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
537
|
+
}
|
|
538
|
+
|
|
539
|
+
void row_reduce_general_dispatch(
|
|
540
|
+
const array& in,
|
|
541
|
+
array& out,
|
|
542
|
+
const std::string& op_name,
|
|
543
|
+
const ReductionPlan& plan,
|
|
544
|
+
const std::vector<int>& axes,
|
|
545
|
+
CommandEncoder& compute_encoder,
|
|
546
|
+
metal::Device& d,
|
|
547
|
+
const Stream& s) {
|
|
548
|
+
// Prepare the arguments for the kernel
|
|
549
|
+
RowReduceArgs args(in, plan, axes);
|
|
550
|
+
|
|
551
|
+
// Case 1: The row is small
|
|
552
|
+
if (args.row_size <= 64) {
|
|
553
|
+
return row_reduce_small(in, out, op_name, args, compute_encoder, d, s);
|
|
554
|
+
}
|
|
555
|
+
|
|
556
|
+
// Case 2: Contiguous reduce without non-row reductions
|
|
557
|
+
if (plan.type == ContiguousReduce && args.reduce_ndim == 0 &&
|
|
558
|
+
in.size() / args.row_size >= 32) {
|
|
559
|
+
return row_reduce_simple(in, out, op_name, args, compute_encoder, d, s);
|
|
560
|
+
}
|
|
561
|
+
|
|
562
|
+
// Case 3: General row reduce including non-row reductions
|
|
563
|
+
return row_reduce_looped(in, out, op_name, args, compute_encoder, d, s);
|
|
564
|
+
}
|
|
565
|
+
|
|
566
|
+
void strided_reduce_small(
|
|
567
|
+
const array& in,
|
|
568
|
+
array& out,
|
|
569
|
+
const std::string& op_name,
|
|
570
|
+
ColReduceArgs& args,
|
|
571
|
+
CommandEncoder& compute_encoder,
|
|
572
|
+
metal::Device& d,
|
|
573
|
+
const Stream& s) {
|
|
574
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
575
|
+
|
|
576
|
+
// Figure out the grid dims
|
|
577
|
+
MTL::Size grid_dims, group_dims;
|
|
578
|
+
|
|
579
|
+
// Prepare the arguments for the kernel
|
|
580
|
+
args.reduce_shape.push_back(args.reduction_size);
|
|
581
|
+
args.reduce_strides.push_back(args.reduction_stride);
|
|
582
|
+
args.reduce_ndim++;
|
|
583
|
+
|
|
584
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
585
|
+
const std::string func_name = "col_reduce_small";
|
|
586
|
+
std::string kname = func_name;
|
|
587
|
+
bool large = in.size() > INT32_MAX;
|
|
588
|
+
if (large) {
|
|
589
|
+
kname += "_large";
|
|
590
|
+
}
|
|
591
|
+
concatenate(
|
|
592
|
+
kname,
|
|
593
|
+
"_",
|
|
594
|
+
std::to_string(n),
|
|
595
|
+
"_reduce_",
|
|
596
|
+
op_name,
|
|
597
|
+
type_to_name(in_type));
|
|
598
|
+
auto kernel = get_reduce_kernel(
|
|
599
|
+
d,
|
|
600
|
+
kname,
|
|
601
|
+
func_name,
|
|
602
|
+
op_name,
|
|
603
|
+
in_type,
|
|
604
|
+
out_type,
|
|
605
|
+
large ? "size_t" : "int",
|
|
606
|
+
n);
|
|
607
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
608
|
+
|
|
609
|
+
const int n_reads = 4;
|
|
610
|
+
size_t reduction_stride_blocks =
|
|
611
|
+
(args.reduction_stride + n_reads - 1) / n_reads;
|
|
612
|
+
size_t total = args.reduction_size * args.non_col_reductions;
|
|
613
|
+
size_t threadgroup_x = std::min(reduction_stride_blocks, 32ul);
|
|
614
|
+
size_t threadgroup_y = std::min(
|
|
615
|
+
8ul,
|
|
616
|
+
std::min(kernel->maxTotalThreadsPerThreadgroup() / threadgroup_x, total));
|
|
617
|
+
|
|
618
|
+
group_dims = MTL::Size(threadgroup_x, threadgroup_y, 1);
|
|
619
|
+
grid_dims = output_grid_for_col_reduce(out, args);
|
|
620
|
+
grid_dims = MTL::Size(
|
|
621
|
+
(reduction_stride_blocks + threadgroup_x - 1) / threadgroup_x,
|
|
622
|
+
grid_dims.width,
|
|
623
|
+
grid_dims.height);
|
|
624
|
+
|
|
625
|
+
// Launch
|
|
626
|
+
compute_encoder.set_input_array(in, 0);
|
|
627
|
+
compute_encoder.set_output_array(out, 1);
|
|
628
|
+
args.encode(compute_encoder);
|
|
629
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
630
|
+
}
|
|
631
|
+
|
|
632
|
+
void strided_reduce_longcolumn(
|
|
633
|
+
const array& in,
|
|
634
|
+
array& out,
|
|
635
|
+
const std::string& op_name,
|
|
636
|
+
ColReduceArgs& args,
|
|
637
|
+
CommandEncoder& compute_encoder,
|
|
638
|
+
metal::Device& d,
|
|
639
|
+
const Stream& s) {
|
|
640
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
641
|
+
size_t total_reduction_size = args.reduction_size * args.non_col_reductions;
|
|
642
|
+
size_t outer_blocks = 32;
|
|
643
|
+
if (total_reduction_size >= 32768) {
|
|
644
|
+
outer_blocks = 128;
|
|
645
|
+
}
|
|
646
|
+
|
|
647
|
+
// Prepare the temporary accumulator
|
|
648
|
+
Shape intermediate_shape;
|
|
649
|
+
intermediate_shape.reserve(out.ndim() + 1);
|
|
650
|
+
intermediate_shape.push_back(outer_blocks);
|
|
651
|
+
intermediate_shape.insert(
|
|
652
|
+
intermediate_shape.end(), out.shape().begin(), out.shape().end());
|
|
653
|
+
array intermediate(std::move(intermediate_shape), out_type, nullptr, {});
|
|
654
|
+
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
|
655
|
+
d.add_temporary(intermediate, s.index);
|
|
656
|
+
|
|
657
|
+
// Prepare the arguments for the kernel
|
|
658
|
+
args.reduce_shape.push_back(args.reduction_size);
|
|
659
|
+
args.reduce_strides.push_back(args.reduction_stride);
|
|
660
|
+
args.reduce_ndim++;
|
|
661
|
+
|
|
662
|
+
// Figure out the grid dims
|
|
663
|
+
size_t out_size = out.size();
|
|
664
|
+
size_t threadgroup_x = args.reduction_stride;
|
|
665
|
+
size_t threadgroup_y =
|
|
666
|
+
(args.non_col_reductions * args.reduction_size + outer_blocks - 1) /
|
|
667
|
+
outer_blocks;
|
|
668
|
+
threadgroup_y = std::min(32ul, threadgroup_y);
|
|
669
|
+
|
|
670
|
+
auto out_grid_size = output_grid_for_col_reduce(out, args);
|
|
671
|
+
MTL::Size grid_dims(out_grid_size.width, out_grid_size.height, outer_blocks);
|
|
672
|
+
MTL::Size group_dims(threadgroup_x, threadgroup_y, 1);
|
|
673
|
+
|
|
674
|
+
// Set the kernel
|
|
675
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
676
|
+
std::string func_name = "col_reduce_longcolumn";
|
|
677
|
+
std::string kname = func_name;
|
|
678
|
+
bool large = in.size() > INT32_MAX;
|
|
679
|
+
if (large) {
|
|
680
|
+
kname += "_large";
|
|
681
|
+
}
|
|
682
|
+
concatenate(
|
|
683
|
+
kname,
|
|
684
|
+
"_",
|
|
685
|
+
std::to_string(n),
|
|
686
|
+
"_reduce_",
|
|
687
|
+
op_name,
|
|
688
|
+
type_to_name(in_type));
|
|
689
|
+
auto kernel = get_reduce_kernel(
|
|
690
|
+
d,
|
|
691
|
+
kname,
|
|
692
|
+
func_name,
|
|
693
|
+
op_name,
|
|
694
|
+
in_type,
|
|
695
|
+
out_type,
|
|
696
|
+
large ? "int64_t" : "int",
|
|
697
|
+
n);
|
|
698
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
699
|
+
|
|
700
|
+
// Launch
|
|
701
|
+
compute_encoder.set_input_array(in, 0);
|
|
702
|
+
compute_encoder.set_output_array(intermediate, 1);
|
|
703
|
+
args.encode(compute_encoder);
|
|
704
|
+
compute_encoder.set_bytes(out_size, 11);
|
|
705
|
+
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
|
706
|
+
|
|
707
|
+
// Make the 2nd pass arguments and grid_dims
|
|
708
|
+
ColReduceArgs second_args(intermediate);
|
|
709
|
+
second_args.reduce_shape.push_back(outer_blocks);
|
|
710
|
+
second_args.reduce_strides.push_back(out.size());
|
|
711
|
+
second_args.reduce_ndim++;
|
|
712
|
+
int BN = 32;
|
|
713
|
+
grid_dims = MTL::Size(256 * ((out.size() + BN - 1) / BN), 1, 1);
|
|
714
|
+
group_dims = MTL::Size(256, 1, 1);
|
|
715
|
+
|
|
716
|
+
// Set the 2nd kernel
|
|
717
|
+
func_name = "col_reduce_looped";
|
|
718
|
+
kname = func_name;
|
|
719
|
+
large = intermediate.size() > INT32_MAX;
|
|
720
|
+
if (large) {
|
|
721
|
+
kname += "_large";
|
|
722
|
+
}
|
|
723
|
+
concatenate(kname, "_1_32_32_reduce_", op_name, type_to_name(intermediate));
|
|
724
|
+
kernel = get_reduce_kernel(
|
|
725
|
+
d,
|
|
726
|
+
kname,
|
|
727
|
+
func_name,
|
|
728
|
+
op_name,
|
|
729
|
+
intermediate.dtype(),
|
|
730
|
+
out_type,
|
|
731
|
+
large ? "int64_t" : "int",
|
|
732
|
+
1,
|
|
733
|
+
32,
|
|
734
|
+
32);
|
|
735
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
736
|
+
|
|
737
|
+
compute_encoder.set_input_array(intermediate, 0);
|
|
738
|
+
compute_encoder.set_output_array(out, 1);
|
|
739
|
+
second_args.encode(compute_encoder);
|
|
740
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
741
|
+
}
|
|
742
|
+
|
|
743
|
+
void strided_reduce_looped(
|
|
744
|
+
const array& in,
|
|
745
|
+
array& out,
|
|
746
|
+
const std::string& op_name,
|
|
747
|
+
ColReduceArgs& args,
|
|
748
|
+
CommandEncoder& compute_encoder,
|
|
749
|
+
metal::Device& d,
|
|
750
|
+
const Stream& s) {
|
|
751
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
752
|
+
|
|
753
|
+
// Prepare the arguments for the kernel
|
|
754
|
+
args.reduce_shape.push_back(args.reduction_size);
|
|
755
|
+
args.reduce_strides.push_back(args.reduction_stride);
|
|
756
|
+
args.reduce_ndim++;
|
|
757
|
+
|
|
758
|
+
// Figure out the grid dims
|
|
759
|
+
auto out_grid_size = output_grid_for_col_reduce(out, args);
|
|
760
|
+
int BN = 32;
|
|
761
|
+
int BM = 1024 / BN;
|
|
762
|
+
int threadgroup_size = 8 * 32;
|
|
763
|
+
MTL::Size grid_dims(
|
|
764
|
+
threadgroup_size * ((args.reduction_stride + BN - 1) / BN),
|
|
765
|
+
out_grid_size.width,
|
|
766
|
+
out_grid_size.height);
|
|
767
|
+
MTL::Size group_dims(threadgroup_size, 1, 1);
|
|
768
|
+
|
|
769
|
+
// Set the kernel
|
|
770
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
771
|
+
std::string func_name = "col_reduce_looped";
|
|
772
|
+
std::string kname = func_name;
|
|
773
|
+
bool large = in.size() > INT32_MAX;
|
|
774
|
+
if (large) {
|
|
775
|
+
kname += "_large";
|
|
776
|
+
}
|
|
777
|
+
concatenate(
|
|
778
|
+
kname,
|
|
779
|
+
"_",
|
|
780
|
+
std::to_string(n),
|
|
781
|
+
"_",
|
|
782
|
+
std::to_string(BM),
|
|
783
|
+
"_",
|
|
784
|
+
std::to_string(BN),
|
|
785
|
+
"_reduce_",
|
|
786
|
+
op_name,
|
|
787
|
+
type_to_name(in_type));
|
|
788
|
+
auto kernel = get_reduce_kernel(
|
|
789
|
+
d,
|
|
790
|
+
kname,
|
|
791
|
+
func_name,
|
|
792
|
+
op_name,
|
|
793
|
+
in_type,
|
|
794
|
+
out_type,
|
|
795
|
+
large ? "int64_t" : "int",
|
|
796
|
+
n,
|
|
797
|
+
BM,
|
|
798
|
+
BN);
|
|
799
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
800
|
+
|
|
801
|
+
// Launch
|
|
802
|
+
compute_encoder.set_input_array(in, 0);
|
|
803
|
+
compute_encoder.set_output_array(out, 1);
|
|
804
|
+
args.encode(compute_encoder);
|
|
805
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
806
|
+
}
|
|
807
|
+
|
|
808
|
+
void strided_reduce_2pass(
|
|
809
|
+
const array& in,
|
|
810
|
+
array& out,
|
|
811
|
+
const std::string& op_name,
|
|
812
|
+
ColReduceArgs& args,
|
|
813
|
+
CommandEncoder& compute_encoder,
|
|
814
|
+
metal::Device& d,
|
|
815
|
+
const Stream& s) {
|
|
816
|
+
auto [in_type, out_type] = remap_reduce_types(in, op_name);
|
|
817
|
+
|
|
818
|
+
// Prepare the temporary accumulator
|
|
819
|
+
Shape intermediate_shape;
|
|
820
|
+
intermediate_shape.reserve(out.ndim() + 1);
|
|
821
|
+
intermediate_shape.push_back(32);
|
|
822
|
+
intermediate_shape.insert(
|
|
823
|
+
intermediate_shape.end(), out.shape().begin(), out.shape().end());
|
|
824
|
+
array intermediate(std::move(intermediate_shape), out_type, nullptr, {});
|
|
825
|
+
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
|
826
|
+
d.add_temporary(intermediate, s.index);
|
|
827
|
+
|
|
828
|
+
// Prepare the arguments for the kernel
|
|
829
|
+
args.reduce_shape.push_back(args.reduction_size);
|
|
830
|
+
args.reduce_strides.push_back(args.reduction_stride);
|
|
831
|
+
args.reduce_ndim++;
|
|
832
|
+
|
|
833
|
+
// Figure out the grid dims
|
|
834
|
+
size_t out_size = out.size() / args.reduction_stride;
|
|
835
|
+
auto out_grid_size = output_grid_for_col_reduce(out, args);
|
|
836
|
+
int outer_blocks = 32;
|
|
837
|
+
int BN = 32;
|
|
838
|
+
int BM = 1024 / BN;
|
|
839
|
+
int threadgroup_size = 8 * 32;
|
|
840
|
+
MTL::Size grid_dims(
|
|
841
|
+
threadgroup_size * ((args.reduction_stride + BN - 1) / BN),
|
|
842
|
+
out_grid_size.width * outer_blocks,
|
|
843
|
+
out_grid_size.height);
|
|
844
|
+
MTL::Size group_dims(threadgroup_size, 1, 1);
|
|
845
|
+
|
|
846
|
+
// Set the kernel
|
|
847
|
+
int n = get_kernel_reduce_ndim(args.reduce_ndim);
|
|
848
|
+
std::string func_name = "col_reduce_2pass";
|
|
849
|
+
std::string kname = func_name;
|
|
850
|
+
bool large = in.size() > INT32_MAX;
|
|
851
|
+
if (large) {
|
|
852
|
+
kname += "_large";
|
|
853
|
+
}
|
|
854
|
+
concatenate(
|
|
855
|
+
kname,
|
|
856
|
+
"_",
|
|
857
|
+
std::to_string(n),
|
|
858
|
+
"_",
|
|
859
|
+
std::to_string(BM),
|
|
860
|
+
"_",
|
|
861
|
+
std::to_string(BN),
|
|
862
|
+
"_reduce_",
|
|
863
|
+
op_name,
|
|
864
|
+
type_to_name(in_type));
|
|
865
|
+
auto kernel = get_reduce_kernel(
|
|
866
|
+
d,
|
|
867
|
+
kname,
|
|
868
|
+
func_name,
|
|
869
|
+
op_name,
|
|
870
|
+
in_type,
|
|
871
|
+
out_type,
|
|
872
|
+
large ? "int64_t" : "int",
|
|
873
|
+
n,
|
|
874
|
+
BM,
|
|
875
|
+
BN);
|
|
876
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
877
|
+
|
|
878
|
+
// Launch
|
|
879
|
+
compute_encoder.set_input_array(in, 0);
|
|
880
|
+
compute_encoder.set_output_array(intermediate, 1);
|
|
881
|
+
args.encode(compute_encoder);
|
|
882
|
+
compute_encoder.set_bytes(out_size, 11);
|
|
883
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
884
|
+
|
|
885
|
+
// Make the 2nd pass arguments and grid_dims
|
|
886
|
+
ColReduceArgs second_args(intermediate);
|
|
887
|
+
second_args.reduce_shape.push_back(outer_blocks);
|
|
888
|
+
second_args.reduce_strides.push_back(out.size());
|
|
889
|
+
second_args.reduce_ndim++;
|
|
890
|
+
grid_dims = MTL::Size(threadgroup_size * ((out.size() + BN - 1) / BN), 1, 1);
|
|
891
|
+
|
|
892
|
+
// Set the 2nd kernel
|
|
893
|
+
func_name = "col_reduce_looped";
|
|
894
|
+
kname = func_name;
|
|
895
|
+
large = intermediate.size() > INT32_MAX;
|
|
896
|
+
if (large) {
|
|
897
|
+
kname += "_large";
|
|
898
|
+
}
|
|
899
|
+
concatenate(kname, "_1_32_32_reduce_", op_name, type_to_name(intermediate));
|
|
900
|
+
kernel = get_reduce_kernel(
|
|
901
|
+
d,
|
|
902
|
+
kname,
|
|
903
|
+
func_name,
|
|
904
|
+
op_name,
|
|
905
|
+
intermediate.dtype(),
|
|
906
|
+
out_type,
|
|
907
|
+
large ? "int64_t" : "int",
|
|
908
|
+
1,
|
|
909
|
+
32,
|
|
910
|
+
32);
|
|
911
|
+
compute_encoder.set_compute_pipeline_state(kernel);
|
|
912
|
+
|
|
913
|
+
compute_encoder.set_input_array(intermediate, 0);
|
|
914
|
+
compute_encoder.set_output_array(out, 1);
|
|
915
|
+
second_args.encode(compute_encoder);
|
|
916
|
+
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
917
|
+
}
|
|
918
|
+
|
|
919
|
+
void strided_reduce_general_dispatch(
|
|
920
|
+
const array& in,
|
|
921
|
+
array& out,
|
|
922
|
+
const std::string& op_name,
|
|
923
|
+
const ReductionPlan& plan,
|
|
924
|
+
const std::vector<int>& axes,
|
|
925
|
+
CommandEncoder& compute_encoder,
|
|
926
|
+
metal::Device& d,
|
|
927
|
+
const Stream& s) {
|
|
928
|
+
// Prepare the arguments for the kernel
|
|
929
|
+
ColReduceArgs args(in, plan, axes);
|
|
930
|
+
|
|
931
|
+
// Small column
|
|
932
|
+
if (args.reduction_size * args.non_col_reductions < 32) {
|
|
933
|
+
return strided_reduce_small(in, out, op_name, args, compute_encoder, d, s);
|
|
934
|
+
}
|
|
935
|
+
|
|
936
|
+
// Long column but small row
|
|
937
|
+
if (args.reduction_stride < 32 &&
|
|
938
|
+
args.reduction_size * args.non_col_reductions >= 1024) {
|
|
939
|
+
return strided_reduce_longcolumn(
|
|
940
|
+
in, out, op_name, args, compute_encoder, d, s);
|
|
941
|
+
}
|
|
942
|
+
|
|
943
|
+
if (args.reduction_size * args.non_col_reductions > 256 &&
|
|
944
|
+
out.size() / 32 < 1024) {
|
|
945
|
+
return strided_reduce_2pass(in, out, op_name, args, compute_encoder, d, s);
|
|
946
|
+
}
|
|
947
|
+
|
|
948
|
+
return strided_reduce_looped(in, out, op_name, args, compute_encoder, d, s);
|
|
949
|
+
}
|
|
950
|
+
|
|
951
|
+
void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
952
|
+
assert(inputs.size() == 1);
|
|
953
|
+
array in = inputs[0];
|
|
954
|
+
|
|
955
|
+
// Make sure no identity reductions trickle down here
|
|
956
|
+
assert(!axes_.empty());
|
|
957
|
+
assert(out.size() != in.size());
|
|
958
|
+
|
|
959
|
+
// Continue with reduction operation
|
|
960
|
+
// Minimum of 4 bytes since we use size 4 structs for all reduce
|
|
961
|
+
// and metal will complain o/w
|
|
962
|
+
size_t min_bytes = std::max(out.nbytes(), 4ul);
|
|
963
|
+
out.set_data(allocator::malloc(min_bytes));
|
|
964
|
+
std::string op_name;
|
|
965
|
+
switch (reduce_type_) {
|
|
966
|
+
case Reduce::And:
|
|
967
|
+
op_name = "and";
|
|
968
|
+
break;
|
|
969
|
+
case Reduce::Or:
|
|
970
|
+
op_name = "or";
|
|
971
|
+
break;
|
|
972
|
+
case Reduce::Sum:
|
|
973
|
+
op_name = "sum";
|
|
974
|
+
break;
|
|
975
|
+
case Reduce::Prod:
|
|
976
|
+
op_name = "prod";
|
|
977
|
+
break;
|
|
978
|
+
case Reduce::Min:
|
|
979
|
+
op_name = out.dtype() == bool_ ? "and" : "min";
|
|
980
|
+
break;
|
|
981
|
+
case Reduce::Max:
|
|
982
|
+
op_name = out.dtype() == bool_ ? "or" : "max";
|
|
983
|
+
break;
|
|
984
|
+
}
|
|
985
|
+
|
|
986
|
+
// Initialize output
|
|
987
|
+
auto& s = stream();
|
|
988
|
+
auto& d = metal::device(s.device);
|
|
989
|
+
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
990
|
+
|
|
991
|
+
// Reduce
|
|
992
|
+
if (in.size() > 0) {
|
|
993
|
+
ReductionPlan plan = get_reduction_plan(in, axes_);
|
|
994
|
+
|
|
995
|
+
// If it is a general reduce then copy the input to a contiguous array and
|
|
996
|
+
// recompute the plan.
|
|
997
|
+
//
|
|
998
|
+
// TODO: This can be avoided by making the output have the same strides as
|
|
999
|
+
// input for the axes with stride smaller than the minimum reduction
|
|
1000
|
+
// stride.
|
|
1001
|
+
if (plan.type == GeneralReduce) {
|
|
1002
|
+
array in_copy = contiguous_copy_gpu(in, s);
|
|
1003
|
+
d.add_temporary(in_copy, s.index);
|
|
1004
|
+
in = in_copy;
|
|
1005
|
+
plan = get_reduction_plan(in, axes_);
|
|
1006
|
+
}
|
|
1007
|
+
|
|
1008
|
+
// Reducing over everything and the data is all there no broadcasting or
|
|
1009
|
+
// slicing etc.
|
|
1010
|
+
if (plan.type == ContiguousAllReduce) {
|
|
1011
|
+
all_reduce_dispatch(in, out, op_name, compute_encoder, d, s);
|
|
1012
|
+
}
|
|
1013
|
+
|
|
1014
|
+
// At least the last dimension is row contiguous and we are reducing over
|
|
1015
|
+
// the last dim.
|
|
1016
|
+
else if (
|
|
1017
|
+
plan.type == ContiguousReduce || plan.type == GeneralContiguousReduce) {
|
|
1018
|
+
row_reduce_general_dispatch(
|
|
1019
|
+
in, out, op_name, plan, axes_, compute_encoder, d, s);
|
|
1020
|
+
}
|
|
1021
|
+
|
|
1022
|
+
// At least the last two dimensions are contiguous and we are doing a
|
|
1023
|
+
// strided reduce over these.
|
|
1024
|
+
else if (
|
|
1025
|
+
plan.type == ContiguousStridedReduce ||
|
|
1026
|
+
plan.type == GeneralStridedReduce) {
|
|
1027
|
+
strided_reduce_general_dispatch(
|
|
1028
|
+
in, out, op_name, plan, axes_, compute_encoder, d, s);
|
|
1029
|
+
}
|
|
1030
|
+
}
|
|
1031
|
+
|
|
1032
|
+
// Nothing to reduce just initialize the output
|
|
1033
|
+
else {
|
|
1034
|
+
init_reduce(out, op_name, compute_encoder, d, s);
|
|
1035
|
+
}
|
|
1036
|
+
}
|
|
1037
|
+
|
|
1038
|
+
} // namespace mlx::core
|