mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,681 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/cudnn_utils.h"
|
|
4
|
+
#include "mlx/backend/cuda/device.h"
|
|
5
|
+
#include "mlx/backend/cuda/lru_cache.h"
|
|
6
|
+
#include "mlx/backend/gpu/copy.h"
|
|
7
|
+
#include "mlx/fast_primitives.h"
|
|
8
|
+
|
|
9
|
+
#include <nvtx3/nvtx3.hpp>
|
|
10
|
+
|
|
11
|
+
namespace mlx::core {
|
|
12
|
+
|
|
13
|
+
namespace {
|
|
14
|
+
|
|
15
|
+
array prepare_sdpa_input(const array& x, Stream s) {
|
|
16
|
+
// SDPA kernel's requirements on inputs:
|
|
17
|
+
// 1. last dim's stride be 1;
|
|
18
|
+
// 2. pointer be aligned.
|
|
19
|
+
if (x.strides(-1) != 1 || get_alignment(x) < 16) {
|
|
20
|
+
array x_copy = contiguous_copy_gpu(x, s);
|
|
21
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
22
|
+
encoder.add_temporary(x_copy);
|
|
23
|
+
return x_copy;
|
|
24
|
+
}
|
|
25
|
+
return x;
|
|
26
|
+
}
|
|
27
|
+
|
|
28
|
+
array prepare_sdpa_sinks(const array& sinks, Stream s) {
|
|
29
|
+
// cuDNN requires sinks to be float32.
|
|
30
|
+
if (sinks.dtype() == float32) {
|
|
31
|
+
return sinks;
|
|
32
|
+
}
|
|
33
|
+
array sinks_f32(sinks.shape(), float32, nullptr, {});
|
|
34
|
+
copy_gpu(sinks, sinks_f32, CopyType::Vector, s);
|
|
35
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
36
|
+
encoder.add_temporary(sinks_f32);
|
|
37
|
+
return sinks_f32;
|
|
38
|
+
}
|
|
39
|
+
|
|
40
|
+
void malloc_with_same_layout(
|
|
41
|
+
cu::CommandEncoder& encoder,
|
|
42
|
+
array& o,
|
|
43
|
+
const array& q) {
|
|
44
|
+
if (q.flags().row_contiguous) {
|
|
45
|
+
o.set_data(cu::malloc_async(o.nbytes(), encoder));
|
|
46
|
+
return;
|
|
47
|
+
}
|
|
48
|
+
// fill_order = argsort(q.strides())
|
|
49
|
+
Shape fill_order(q.ndim());
|
|
50
|
+
std::iota(fill_order.begin(), fill_order.end(), 0);
|
|
51
|
+
std::stable_sort(
|
|
52
|
+
fill_order.begin(), fill_order.end(), [&q](int idx1, int idx2) {
|
|
53
|
+
auto s1 = q.strides(idx1) > 0 ? q.strides(idx1) : 1;
|
|
54
|
+
auto s2 = q.strides(idx2) > 0 ? q.strides(idx2) : 1;
|
|
55
|
+
return s1 < s2;
|
|
56
|
+
});
|
|
57
|
+
// Generate o_strides with fill_order
|
|
58
|
+
Strides o_strides(q.ndim());
|
|
59
|
+
int64_t stride = 1;
|
|
60
|
+
for (int i : fill_order) {
|
|
61
|
+
o_strides[i] = stride;
|
|
62
|
+
stride *= o.shape(i);
|
|
63
|
+
}
|
|
64
|
+
// o is a transposed contiguous array
|
|
65
|
+
o.set_data(
|
|
66
|
+
cu::malloc_async(o.nbytes(), encoder),
|
|
67
|
+
o.size(),
|
|
68
|
+
o_strides,
|
|
69
|
+
{true, false, false});
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
bool use_cudnn_for_decoding(
|
|
73
|
+
const array& q,
|
|
74
|
+
const array& k,
|
|
75
|
+
const array& v,
|
|
76
|
+
bool has_arr_mask) {
|
|
77
|
+
if (q.shape(2) != 1) {
|
|
78
|
+
return false;
|
|
79
|
+
}
|
|
80
|
+
if (has_arr_mask) {
|
|
81
|
+
return false;
|
|
82
|
+
}
|
|
83
|
+
// The cuDNN SDPA is faster than vector kernel but for small sequence the
|
|
84
|
+
// overhead would kill the advantage.
|
|
85
|
+
constexpr int kv_cache_step = 256; // number is from mlx-lm
|
|
86
|
+
if (k.shape(2) < kv_cache_step) {
|
|
87
|
+
return false;
|
|
88
|
+
}
|
|
89
|
+
// When called during graph building the strides is not available, and we
|
|
90
|
+
// rely on |supports_sdpa_vector| to decide whether to use fast sdpa since
|
|
91
|
+
// we can fallback to |sdpa_vector|.
|
|
92
|
+
if ((k.status() != array::evaluated) || (v.status() != array::evaluated)) {
|
|
93
|
+
return false;
|
|
94
|
+
}
|
|
95
|
+
// Check if k/v are slices from fixed-size kv cache.
|
|
96
|
+
auto is_slice = [](const array& kv) {
|
|
97
|
+
// Get pre-sliced sequence length from strides, and check if the buffer
|
|
98
|
+
// belongs to a contiguous kv cache.
|
|
99
|
+
int64_t T_kv = kv.strides(1) / kv.strides(2);
|
|
100
|
+
if (kv.size() / kv.shape(2) * T_kv != kv.buffer_size() / kv.itemsize()) {
|
|
101
|
+
return false;
|
|
102
|
+
}
|
|
103
|
+
// It is possible to use heuristic to check slices, but for now just make
|
|
104
|
+
// mlx-lm work.
|
|
105
|
+
return T_kv % kv_cache_step == 0;
|
|
106
|
+
};
|
|
107
|
+
return is_slice(k) && is_slice(v);
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
// Get original kv from slices, i.e. undo keys[..., :offset, :]
|
|
111
|
+
array unslice_kv(const array& kv) {
|
|
112
|
+
Shape shape = kv.shape();
|
|
113
|
+
shape[2] = /* T_kv */ kv.strides(1) / kv.strides(2);
|
|
114
|
+
array copy(shape, kv.dtype(), nullptr, {});
|
|
115
|
+
copy.copy_shared_buffer(
|
|
116
|
+
kv,
|
|
117
|
+
make_contiguous_strides(shape),
|
|
118
|
+
{true, true, false},
|
|
119
|
+
/* data_size */ kv.buffer_size() / kv.itemsize(),
|
|
120
|
+
/* offset */ -kv.offset());
|
|
121
|
+
return copy;
|
|
122
|
+
}
|
|
123
|
+
|
|
124
|
+
constexpr int QKV_NDIM = 4;
|
|
125
|
+
|
|
126
|
+
struct SDPACacheKey {
|
|
127
|
+
int device_id;
|
|
128
|
+
fe::DataType_t cudnn_dtype;
|
|
129
|
+
std::array<int, QKV_NDIM> q_shape;
|
|
130
|
+
std::array<int, QKV_NDIM> k_shape;
|
|
131
|
+
std::array<int, QKV_NDIM> v_shape;
|
|
132
|
+
std::array<int64_t, QKV_NDIM> q_strides;
|
|
133
|
+
std::array<int64_t, QKV_NDIM> k_strides;
|
|
134
|
+
std::array<int64_t, QKV_NDIM> v_strides;
|
|
135
|
+
bool do_causal;
|
|
136
|
+
std::array<int, QKV_NDIM> mask_shape;
|
|
137
|
+
std::array<int64_t, QKV_NDIM> mask_strides;
|
|
138
|
+
bool has_sinks;
|
|
139
|
+
bool output_logsumexp;
|
|
140
|
+
};
|
|
141
|
+
|
|
142
|
+
inline BytesKey<SDPACacheKey> build_sdpa_cache_key(
|
|
143
|
+
cu::CommandEncoder& encoder,
|
|
144
|
+
const array& q,
|
|
145
|
+
const array& k,
|
|
146
|
+
const array& v,
|
|
147
|
+
bool do_causal,
|
|
148
|
+
const std::optional<array>& mask_arr,
|
|
149
|
+
const std::optional<array>& sinks,
|
|
150
|
+
bool decoding = false,
|
|
151
|
+
bool output_logsumexp = false) {
|
|
152
|
+
BytesKey<SDPACacheKey> cache_key;
|
|
153
|
+
cache_key.pod = {
|
|
154
|
+
encoder.device().cuda_device(),
|
|
155
|
+
dtype_to_cudnn_type(q.dtype()),
|
|
156
|
+
vector_key<QKV_NDIM>(q.shape()),
|
|
157
|
+
vector_key<QKV_NDIM>(k.shape()),
|
|
158
|
+
vector_key<QKV_NDIM>(v.shape()),
|
|
159
|
+
vector_key<QKV_NDIM>(q.strides()),
|
|
160
|
+
vector_key<QKV_NDIM>(k.strides()),
|
|
161
|
+
vector_key<QKV_NDIM>(v.strides()),
|
|
162
|
+
do_causal,
|
|
163
|
+
{},
|
|
164
|
+
{},
|
|
165
|
+
sinks.has_value(),
|
|
166
|
+
output_logsumexp,
|
|
167
|
+
};
|
|
168
|
+
if (mask_arr) {
|
|
169
|
+
cache_key.pod.mask_shape = vector_key<QKV_NDIM>(mask_arr->shape());
|
|
170
|
+
cache_key.pod.mask_strides = vector_key<QKV_NDIM>(mask_arr->strides());
|
|
171
|
+
}
|
|
172
|
+
if (decoding) {
|
|
173
|
+
int64_t T_kv = k.strides(1) / k.strides(2);
|
|
174
|
+
cache_key.pod.k_shape[2] = T_kv;
|
|
175
|
+
cache_key.pod.v_shape[2] = T_kv;
|
|
176
|
+
cache_key.pod.k_strides.fill(0);
|
|
177
|
+
cache_key.pod.v_strides.fill(0);
|
|
178
|
+
}
|
|
179
|
+
return cache_key;
|
|
180
|
+
}
|
|
181
|
+
|
|
182
|
+
auto& sdpa_cache() {
|
|
183
|
+
static LRUBytesKeyCache<SDPACacheKey, DnnGraph> cache(
|
|
184
|
+
"MLX_CUDA_SDPA_CACHE_SIZE", /* default_capacity */ 256);
|
|
185
|
+
return cache;
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
auto& sdpa_backward_cache() {
|
|
189
|
+
static LRUBytesKeyCache<SDPACacheKey, DnnGraph> cache(
|
|
190
|
+
"MLX_CUDA_SDPA_BACKWARD_CACHE_SIZE", /* default_capacity */ 64);
|
|
191
|
+
return cache;
|
|
192
|
+
}
|
|
193
|
+
|
|
194
|
+
enum UIDS {
|
|
195
|
+
Q,
|
|
196
|
+
K,
|
|
197
|
+
V,
|
|
198
|
+
SCALE,
|
|
199
|
+
BIAS,
|
|
200
|
+
SINKS,
|
|
201
|
+
SEQ_LEN_Q,
|
|
202
|
+
SEQ_LEN_KV,
|
|
203
|
+
O,
|
|
204
|
+
STATS,
|
|
205
|
+
// Backward graph:
|
|
206
|
+
D_Q,
|
|
207
|
+
D_K,
|
|
208
|
+
D_V,
|
|
209
|
+
D_O,
|
|
210
|
+
};
|
|
211
|
+
|
|
212
|
+
DnnGraph build_sdpa_graph(
|
|
213
|
+
cudnnHandle_t handle,
|
|
214
|
+
const array& q,
|
|
215
|
+
const array& k,
|
|
216
|
+
const array& v,
|
|
217
|
+
bool do_causal,
|
|
218
|
+
const std::optional<array>& mask_arr,
|
|
219
|
+
const std::optional<array>& sinks,
|
|
220
|
+
const std::optional<array>& seq_len_q,
|
|
221
|
+
const std::optional<array>& seq_len_kv,
|
|
222
|
+
bool output_logsumexp,
|
|
223
|
+
const array& o,
|
|
224
|
+
const std::optional<array>& stats) {
|
|
225
|
+
DnnGraph graph(handle, q.dtype());
|
|
226
|
+
|
|
227
|
+
auto q_ = graph.tensor("Q", Q, q);
|
|
228
|
+
auto k_ = graph.tensor("K", K, k);
|
|
229
|
+
auto v_ = graph.tensor("V", V, v);
|
|
230
|
+
|
|
231
|
+
auto options = fe::graph::SDPA_attributes()
|
|
232
|
+
.set_name("sdpa_cudnn")
|
|
233
|
+
.set_attn_scale(graph.scalar("Scale", SCALE, float32))
|
|
234
|
+
.set_generate_stats(output_logsumexp);
|
|
235
|
+
if (do_causal) {
|
|
236
|
+
options.set_causal_mask_bottom_right(do_causal);
|
|
237
|
+
}
|
|
238
|
+
if (mask_arr) {
|
|
239
|
+
options.set_bias(graph.tensor("BIAS", BIAS, *mask_arr));
|
|
240
|
+
}
|
|
241
|
+
if (sinks) {
|
|
242
|
+
options.set_sink_token(graph.tensor_4d("SINKS", SINKS, *sinks, 1));
|
|
243
|
+
}
|
|
244
|
+
if (seq_len_q && seq_len_kv) {
|
|
245
|
+
options.set_padding_mask(true);
|
|
246
|
+
options.set_seq_len_q(graph.tensor("SEQ_LEN_Q", SEQ_LEN_Q, *seq_len_q));
|
|
247
|
+
options.set_seq_len_kv(graph.tensor("SEQ_LEN_KV", SEQ_LEN_KV, *seq_len_kv));
|
|
248
|
+
}
|
|
249
|
+
|
|
250
|
+
auto [o_, stats_] = graph.sdpa(q_, k_, v_, options);
|
|
251
|
+
graph.tensor(o_, O, o)->set_output(true);
|
|
252
|
+
if (output_logsumexp) {
|
|
253
|
+
graph.tensor(stats_, STATS, *stats)->set_output(true);
|
|
254
|
+
}
|
|
255
|
+
|
|
256
|
+
CHECK_CUDNN_FE_ERROR(graph.prepare());
|
|
257
|
+
graph.select_behavior_notes(
|
|
258
|
+
{fe::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API});
|
|
259
|
+
CHECK_CUDNN_FE_ERROR(graph.build());
|
|
260
|
+
return graph;
|
|
261
|
+
}
|
|
262
|
+
|
|
263
|
+
DnnGraph build_sdpa_backward_graph(
|
|
264
|
+
cudnnHandle_t handle,
|
|
265
|
+
const array& q,
|
|
266
|
+
const array& k,
|
|
267
|
+
const array& v,
|
|
268
|
+
bool do_causal,
|
|
269
|
+
const std::optional<array>& mask_arr,
|
|
270
|
+
const std::optional<array>& sinks,
|
|
271
|
+
const array& o,
|
|
272
|
+
const array& d_o,
|
|
273
|
+
const array& stats,
|
|
274
|
+
array& d_q,
|
|
275
|
+
array& d_k,
|
|
276
|
+
array& d_v) {
|
|
277
|
+
DnnGraph graph(handle, q.dtype());
|
|
278
|
+
|
|
279
|
+
auto q_ = graph.tensor("Q", Q, q);
|
|
280
|
+
auto k_ = graph.tensor("K", K, k);
|
|
281
|
+
auto v_ = graph.tensor("V", V, v);
|
|
282
|
+
auto o_ = graph.tensor("O", O, o);
|
|
283
|
+
auto d_o_ = graph.tensor("D_O", D_O, d_o);
|
|
284
|
+
auto stats_ = graph.tensor("STATS", STATS, stats);
|
|
285
|
+
|
|
286
|
+
auto options = fe::graph::SDPA_backward_attributes()
|
|
287
|
+
.set_name("sdpa_backward_cudnn")
|
|
288
|
+
.set_attn_scale(graph.scalar("Scale", SCALE, float32));
|
|
289
|
+
if (do_causal) {
|
|
290
|
+
options.set_causal_mask_bottom_right(do_causal);
|
|
291
|
+
}
|
|
292
|
+
if (mask_arr) {
|
|
293
|
+
options.set_bias(graph.tensor("BIAS", BIAS, *mask_arr));
|
|
294
|
+
}
|
|
295
|
+
if (sinks) {
|
|
296
|
+
options.set_sink_token(graph.tensor_4d("SINKS", SINKS, *sinks, 1));
|
|
297
|
+
}
|
|
298
|
+
|
|
299
|
+
auto [d_q_, d_k_, d_v_] =
|
|
300
|
+
graph.sdpa_backward(q_, k_, v_, o_, d_o_, stats_, options);
|
|
301
|
+
graph.tensor(d_q_, D_Q, d_q)->set_output(true);
|
|
302
|
+
graph.tensor(d_k_, D_K, d_k)->set_output(true);
|
|
303
|
+
graph.tensor(d_v_, D_V, d_v)->set_output(true);
|
|
304
|
+
|
|
305
|
+
CHECK_CUDNN_FE_ERROR(graph.prepare());
|
|
306
|
+
graph.select_behavior_notes(
|
|
307
|
+
{fe::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API});
|
|
308
|
+
CHECK_CUDNN_FE_ERROR(graph.build());
|
|
309
|
+
return graph;
|
|
310
|
+
}
|
|
311
|
+
|
|
312
|
+
} // namespace
|
|
313
|
+
|
|
314
|
+
bool supports_sdpa_cudnn(
|
|
315
|
+
const array& q,
|
|
316
|
+
const array& k,
|
|
317
|
+
const array& v,
|
|
318
|
+
bool has_arr_mask,
|
|
319
|
+
bool do_causal,
|
|
320
|
+
Stream s) {
|
|
321
|
+
static bool enabled = env::get_var("MLX_CUDA_USE_CUDNN_SDPA", 1);
|
|
322
|
+
if (!enabled) {
|
|
323
|
+
return false;
|
|
324
|
+
}
|
|
325
|
+
|
|
326
|
+
// cuDNN SDPA requires Ampere and later.
|
|
327
|
+
if (cu::device(s.device).compute_capability_major() < 8) {
|
|
328
|
+
return false;
|
|
329
|
+
}
|
|
330
|
+
|
|
331
|
+
// Only use cuDNN for decoding when k/v are slices from fixed-size kv cache.
|
|
332
|
+
if ((q.shape(2) == 1) && !use_cudnn_for_decoding(q, k, v, has_arr_mask)) {
|
|
333
|
+
return false;
|
|
334
|
+
}
|
|
335
|
+
|
|
336
|
+
// cuDNN does not support bottom right mask when T_q > T_kv.
|
|
337
|
+
if (do_causal && (q.shape(2) > k.shape(2))) {
|
|
338
|
+
return false;
|
|
339
|
+
}
|
|
340
|
+
|
|
341
|
+
// D_qk and D_v must be a multiple of 8 with maximum value 128.
|
|
342
|
+
if ((q.shape(-1) % 8 != 0) || (q.shape(-1) > 128) || (v.shape(-1) % 8 != 0) ||
|
|
343
|
+
(v.shape(-1) > 128)) {
|
|
344
|
+
return false;
|
|
345
|
+
}
|
|
346
|
+
|
|
347
|
+
Dtype dtype = q.dtype();
|
|
348
|
+
return dtype == float16 || dtype == bfloat16;
|
|
349
|
+
}
|
|
350
|
+
|
|
351
|
+
void sdpa_cudnn(
|
|
352
|
+
const array& q,
|
|
353
|
+
array k,
|
|
354
|
+
array v,
|
|
355
|
+
float scale,
|
|
356
|
+
array& o,
|
|
357
|
+
std::optional<array>& stats,
|
|
358
|
+
bool do_causal,
|
|
359
|
+
const std::optional<array>& mask_arr,
|
|
360
|
+
const std::optional<array>& sinks,
|
|
361
|
+
bool output_logsumexp,
|
|
362
|
+
Stream s) {
|
|
363
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
364
|
+
auto handle = encoder.device().get_cudnn_handle();
|
|
365
|
+
|
|
366
|
+
malloc_with_same_layout(encoder, o, q);
|
|
367
|
+
|
|
368
|
+
// For decoding, unslice k/v and apply padding mask.
|
|
369
|
+
std::optional<array> seq_len_q;
|
|
370
|
+
std::optional<array> seq_len_kv;
|
|
371
|
+
bool decoding = use_cudnn_for_decoding(q, k, v, mask_arr.has_value());
|
|
372
|
+
if (decoding) {
|
|
373
|
+
int B = q.shape(0);
|
|
374
|
+
std::vector<int> seq_len_q_vec(B, q.shape(2));
|
|
375
|
+
std::vector<int> seq_len_kv_vec(B, k.shape(2));
|
|
376
|
+
seq_len_q = array(seq_len_q_vec.begin(), {B, 1, 1, 1});
|
|
377
|
+
seq_len_kv = array(seq_len_kv_vec.begin(), {B, 1, 1, 1});
|
|
378
|
+
encoder.add_temporary(*seq_len_q);
|
|
379
|
+
encoder.add_temporary(*seq_len_kv);
|
|
380
|
+
k = unslice_kv(k);
|
|
381
|
+
v = unslice_kv(v);
|
|
382
|
+
encoder.add_temporary(k);
|
|
383
|
+
encoder.add_temporary(v);
|
|
384
|
+
}
|
|
385
|
+
|
|
386
|
+
encoder.set_input_array(q);
|
|
387
|
+
encoder.set_input_array(k);
|
|
388
|
+
encoder.set_input_array(v);
|
|
389
|
+
encoder.set_output_array(o);
|
|
390
|
+
if (mask_arr) {
|
|
391
|
+
encoder.set_input_array(*mask_arr);
|
|
392
|
+
}
|
|
393
|
+
if (sinks) {
|
|
394
|
+
encoder.set_input_array(*sinks);
|
|
395
|
+
}
|
|
396
|
+
if (seq_len_q && seq_len_kv) {
|
|
397
|
+
encoder.set_input_array(*seq_len_q);
|
|
398
|
+
encoder.set_input_array(*seq_len_kv);
|
|
399
|
+
}
|
|
400
|
+
if (output_logsumexp) {
|
|
401
|
+
stats->set_data(cu::malloc_async(stats->nbytes(), encoder));
|
|
402
|
+
encoder.set_output_array(*stats);
|
|
403
|
+
}
|
|
404
|
+
|
|
405
|
+
// Search cache.
|
|
406
|
+
auto cache_key = build_sdpa_cache_key(
|
|
407
|
+
encoder, q, k, v, do_causal, mask_arr, sinks, decoding, output_logsumexp);
|
|
408
|
+
auto it = sdpa_cache().find(cache_key);
|
|
409
|
+
if (it == sdpa_cache().end()) {
|
|
410
|
+
auto graph = build_sdpa_graph(
|
|
411
|
+
handle,
|
|
412
|
+
q,
|
|
413
|
+
k,
|
|
414
|
+
v,
|
|
415
|
+
do_causal,
|
|
416
|
+
mask_arr,
|
|
417
|
+
sinks,
|
|
418
|
+
seq_len_q,
|
|
419
|
+
seq_len_kv,
|
|
420
|
+
output_logsumexp,
|
|
421
|
+
o,
|
|
422
|
+
stats);
|
|
423
|
+
it = sdpa_cache().emplace(cache_key, std::move(graph)).first;
|
|
424
|
+
}
|
|
425
|
+
auto& graph = it->second;
|
|
426
|
+
|
|
427
|
+
std::unordered_map<int64_t, void*> variant_pack{
|
|
428
|
+
{Q, gpu_ptr<void>(q)},
|
|
429
|
+
{K, gpu_ptr<void>(k)},
|
|
430
|
+
{V, gpu_ptr<void>(v)},
|
|
431
|
+
{SCALE, &scale},
|
|
432
|
+
{O, gpu_ptr<void>(o)}};
|
|
433
|
+
if (mask_arr) {
|
|
434
|
+
variant_pack[BIAS] = gpu_ptr<void>(*mask_arr);
|
|
435
|
+
}
|
|
436
|
+
if (sinks) {
|
|
437
|
+
variant_pack[SINKS] = gpu_ptr<void>(*sinks);
|
|
438
|
+
}
|
|
439
|
+
if (seq_len_q && seq_len_kv) {
|
|
440
|
+
variant_pack[SEQ_LEN_Q] = gpu_ptr<void>(*seq_len_q);
|
|
441
|
+
variant_pack[SEQ_LEN_KV] = gpu_ptr<void>(*seq_len_kv);
|
|
442
|
+
}
|
|
443
|
+
if (output_logsumexp) {
|
|
444
|
+
variant_pack[STATS] = gpu_ptr<void>(*stats);
|
|
445
|
+
}
|
|
446
|
+
|
|
447
|
+
CHECK_CUDNN_FE_ERROR(graph.encode_graph(encoder, std::move(variant_pack)));
|
|
448
|
+
}
|
|
449
|
+
|
|
450
|
+
void sdpa_backward_cudnn(
|
|
451
|
+
const array& q,
|
|
452
|
+
const array& k,
|
|
453
|
+
const array& v,
|
|
454
|
+
float scale,
|
|
455
|
+
const array& o,
|
|
456
|
+
const array& stats,
|
|
457
|
+
bool do_causal,
|
|
458
|
+
const std::optional<array>& mask_arr,
|
|
459
|
+
const std::optional<array>& sinks,
|
|
460
|
+
const array& d_o,
|
|
461
|
+
array& d_q,
|
|
462
|
+
array& d_k,
|
|
463
|
+
array& d_v,
|
|
464
|
+
Stream s) {
|
|
465
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
466
|
+
auto handle = encoder.device().get_cudnn_handle();
|
|
467
|
+
|
|
468
|
+
malloc_with_same_layout(encoder, d_q, q);
|
|
469
|
+
malloc_with_same_layout(encoder, d_k, k);
|
|
470
|
+
malloc_with_same_layout(encoder, d_v, v);
|
|
471
|
+
|
|
472
|
+
encoder.set_input_array(q);
|
|
473
|
+
encoder.set_input_array(k);
|
|
474
|
+
encoder.set_input_array(v);
|
|
475
|
+
encoder.set_input_array(o);
|
|
476
|
+
encoder.set_input_array(stats);
|
|
477
|
+
encoder.set_input_array(d_o);
|
|
478
|
+
encoder.set_output_array(d_q);
|
|
479
|
+
encoder.set_output_array(d_k);
|
|
480
|
+
encoder.set_output_array(d_v);
|
|
481
|
+
if (mask_arr) {
|
|
482
|
+
encoder.set_input_array(*mask_arr);
|
|
483
|
+
}
|
|
484
|
+
if (sinks) {
|
|
485
|
+
encoder.set_input_array(*sinks);
|
|
486
|
+
}
|
|
487
|
+
|
|
488
|
+
// Search cache.
|
|
489
|
+
auto cache_key =
|
|
490
|
+
build_sdpa_cache_key(encoder, q, k, v, do_causal, mask_arr, sinks);
|
|
491
|
+
auto it = sdpa_backward_cache().find(cache_key);
|
|
492
|
+
if (it == sdpa_backward_cache().end()) {
|
|
493
|
+
auto graph = build_sdpa_backward_graph(
|
|
494
|
+
handle,
|
|
495
|
+
q,
|
|
496
|
+
k,
|
|
497
|
+
v,
|
|
498
|
+
do_causal,
|
|
499
|
+
mask_arr,
|
|
500
|
+
sinks,
|
|
501
|
+
o,
|
|
502
|
+
d_o,
|
|
503
|
+
stats,
|
|
504
|
+
d_q,
|
|
505
|
+
d_k,
|
|
506
|
+
d_v);
|
|
507
|
+
it = sdpa_backward_cache().emplace(cache_key, std::move(graph)).first;
|
|
508
|
+
}
|
|
509
|
+
auto& graph = it->second;
|
|
510
|
+
|
|
511
|
+
std::unordered_map<int64_t, void*> variant_pack{
|
|
512
|
+
{Q, gpu_ptr<void>(q)},
|
|
513
|
+
{K, gpu_ptr<void>(k)},
|
|
514
|
+
{V, gpu_ptr<void>(v)},
|
|
515
|
+
{SCALE, &scale},
|
|
516
|
+
{O, gpu_ptr<void>(o)},
|
|
517
|
+
{STATS, gpu_ptr<void>(stats)},
|
|
518
|
+
{D_O, gpu_ptr<void>(d_o)},
|
|
519
|
+
{D_Q, gpu_ptr<void>(d_q)},
|
|
520
|
+
{D_K, gpu_ptr<void>(d_k)},
|
|
521
|
+
{D_V, gpu_ptr<void>(d_v)}};
|
|
522
|
+
if (mask_arr) {
|
|
523
|
+
variant_pack[BIAS] = gpu_ptr<void>(*mask_arr);
|
|
524
|
+
}
|
|
525
|
+
if (sinks) {
|
|
526
|
+
variant_pack[SINKS] = gpu_ptr<void>(*sinks);
|
|
527
|
+
}
|
|
528
|
+
|
|
529
|
+
CHECK_CUDNN_FE_ERROR(graph.encode_graph(encoder, std::move(variant_pack)));
|
|
530
|
+
}
|
|
531
|
+
|
|
532
|
+
// Defined in scaled_dot_product_attention.cu file.
|
|
533
|
+
bool supports_sdpa_vector(
|
|
534
|
+
const array& q,
|
|
535
|
+
const array& k,
|
|
536
|
+
const array& v,
|
|
537
|
+
bool has_arr_mask,
|
|
538
|
+
bool output_logsumexp);
|
|
539
|
+
void sdpa_vector(
|
|
540
|
+
const array& q,
|
|
541
|
+
const array& k,
|
|
542
|
+
const array& v,
|
|
543
|
+
float scale,
|
|
544
|
+
array& o,
|
|
545
|
+
bool do_causal,
|
|
546
|
+
const std::optional<array>& sinks,
|
|
547
|
+
Stream s);
|
|
548
|
+
|
|
549
|
+
namespace fast {
|
|
550
|
+
|
|
551
|
+
bool ScaledDotProductAttention::use_fallback(
|
|
552
|
+
const array& q,
|
|
553
|
+
const array& k,
|
|
554
|
+
const array& v,
|
|
555
|
+
bool has_mask,
|
|
556
|
+
bool has_arr_mask,
|
|
557
|
+
bool do_causal,
|
|
558
|
+
bool is_training,
|
|
559
|
+
bool output_logsumexp,
|
|
560
|
+
Stream s) {
|
|
561
|
+
if (s.device == Device::cpu) {
|
|
562
|
+
return true;
|
|
563
|
+
}
|
|
564
|
+
|
|
565
|
+
return !supports_sdpa_cudnn(q, k, v, has_arr_mask, do_causal, s) &&
|
|
566
|
+
!supports_sdpa_vector(q, k, v, has_arr_mask, output_logsumexp);
|
|
567
|
+
}
|
|
568
|
+
|
|
569
|
+
bool ScaledDotProductAttention::supports_bool_mask() {
|
|
570
|
+
return false;
|
|
571
|
+
}
|
|
572
|
+
|
|
573
|
+
void ScaledDotProductAttention::eval_gpu(
|
|
574
|
+
const std::vector<array>& inputs,
|
|
575
|
+
std::vector<array>& outputs) {
|
|
576
|
+
nvtx3::scoped_range r("ScaledDotProductAttention::eval_gpu");
|
|
577
|
+
|
|
578
|
+
auto& s = stream();
|
|
579
|
+
|
|
580
|
+
array q = prepare_sdpa_input(inputs[0], s);
|
|
581
|
+
array k = prepare_sdpa_input(inputs[1], s);
|
|
582
|
+
array v = prepare_sdpa_input(inputs[2], s);
|
|
583
|
+
array& out = outputs[0];
|
|
584
|
+
bool has_mask = inputs.size() - has_sinks_ > 3;
|
|
585
|
+
bool has_arr_mask = has_mask && !do_causal_;
|
|
586
|
+
|
|
587
|
+
std::optional<array> mask_arr;
|
|
588
|
+
if (has_arr_mask) {
|
|
589
|
+
mask_arr = prepare_sdpa_input(inputs[3], s);
|
|
590
|
+
}
|
|
591
|
+
std::optional<array> sinks;
|
|
592
|
+
if (has_sinks_) {
|
|
593
|
+
sinks = inputs.back();
|
|
594
|
+
}
|
|
595
|
+
std::optional<array> stats;
|
|
596
|
+
if (output_logsumexp_) {
|
|
597
|
+
stats = outputs[1];
|
|
598
|
+
}
|
|
599
|
+
|
|
600
|
+
if (supports_sdpa_cudnn(q, k, v, has_arr_mask, do_causal_, s)) {
|
|
601
|
+
if (sinks) {
|
|
602
|
+
sinks = prepare_sdpa_sinks(*sinks, s);
|
|
603
|
+
}
|
|
604
|
+
sdpa_cudnn(
|
|
605
|
+
q,
|
|
606
|
+
k,
|
|
607
|
+
v,
|
|
608
|
+
scale_,
|
|
609
|
+
out,
|
|
610
|
+
stats,
|
|
611
|
+
do_causal_,
|
|
612
|
+
mask_arr,
|
|
613
|
+
sinks,
|
|
614
|
+
output_logsumexp_,
|
|
615
|
+
s);
|
|
616
|
+
} else {
|
|
617
|
+
sdpa_vector(q, k, v, scale_, out, do_causal_, sinks, s);
|
|
618
|
+
}
|
|
619
|
+
}
|
|
620
|
+
|
|
621
|
+
bool ScaledDotProductAttentionVJP::use_fallback(const array& q, Stream s) {
|
|
622
|
+
// The frontend adds a padding mask when sequence length is not a multiple of
|
|
623
|
+
// tile size.
|
|
624
|
+
if (q.shape(2) % 128 != 0) {
|
|
625
|
+
return true;
|
|
626
|
+
}
|
|
627
|
+
return s.device == Device::cpu;
|
|
628
|
+
}
|
|
629
|
+
|
|
630
|
+
void ScaledDotProductAttentionVJP::eval_gpu(
|
|
631
|
+
const std::vector<array>& inputs,
|
|
632
|
+
std::vector<array>& outputs) {
|
|
633
|
+
nvtx3::scoped_range r("ScaledDotProductAttentionVJP::eval_gpu");
|
|
634
|
+
|
|
635
|
+
auto& s = stream();
|
|
636
|
+
|
|
637
|
+
assert(inputs.size() >= 6);
|
|
638
|
+
int primals_size = inputs.size() - 3;
|
|
639
|
+
bool has_arr_mask = primals_size > 3 + has_sinks_;
|
|
640
|
+
|
|
641
|
+
array q = prepare_sdpa_input(inputs[0], s);
|
|
642
|
+
array k = prepare_sdpa_input(inputs[1], s);
|
|
643
|
+
array v = prepare_sdpa_input(inputs[2], s);
|
|
644
|
+
array o = prepare_sdpa_input(inputs[primals_size], s);
|
|
645
|
+
array stats = prepare_sdpa_input(inputs[primals_size + 1], s);
|
|
646
|
+
array d_o = prepare_sdpa_input(inputs[primals_size + 2], s);
|
|
647
|
+
|
|
648
|
+
std::optional<array> mask_arr;
|
|
649
|
+
if (has_arr_mask) {
|
|
650
|
+
mask_arr = prepare_sdpa_input(inputs[3], s);
|
|
651
|
+
}
|
|
652
|
+
std::optional<array> sinks;
|
|
653
|
+
if (has_sinks_) {
|
|
654
|
+
sinks = prepare_sdpa_sinks(inputs.back(), s);
|
|
655
|
+
}
|
|
656
|
+
|
|
657
|
+
assert(outputs.size() == 3);
|
|
658
|
+
auto& d_q = outputs[0];
|
|
659
|
+
auto& d_k = outputs[1];
|
|
660
|
+
auto& d_v = outputs[2];
|
|
661
|
+
|
|
662
|
+
sdpa_backward_cudnn(
|
|
663
|
+
q,
|
|
664
|
+
k,
|
|
665
|
+
v,
|
|
666
|
+
scale_,
|
|
667
|
+
o,
|
|
668
|
+
stats,
|
|
669
|
+
do_causal_,
|
|
670
|
+
mask_arr,
|
|
671
|
+
sinks,
|
|
672
|
+
d_o,
|
|
673
|
+
d_q,
|
|
674
|
+
d_k,
|
|
675
|
+
d_v,
|
|
676
|
+
s);
|
|
677
|
+
}
|
|
678
|
+
|
|
679
|
+
} // namespace fast
|
|
680
|
+
|
|
681
|
+
} // namespace mlx::core
|