mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,798 @@
1
+ // Copyright © 2024 Apple Inc.
2
+ #include <sstream>
3
+
4
+ #include "mlx/backend/common/compiled.h"
5
+ #include "mlx/backend/gpu/copy.h"
6
+ #include "mlx/backend/metal/device.h"
7
+ #include "mlx/backend/metal/kernels.h"
8
+ #include "mlx/backend/metal/kernels/defines.h"
9
+ #include "mlx/backend/metal/kernels/steel/attn/params.h"
10
+ #include "mlx/backend/metal/utils.h"
11
+ #include "mlx/fast_primitives.h"
12
+ #include "mlx/utils.h"
13
+
14
+ namespace mlx::core::fast {
15
+
16
+ namespace {
17
+
18
+ void sdpa_full_self_attention_nax(
19
+ const Stream& s,
20
+ metal::Device& d,
21
+ const array& q,
22
+ const array& k,
23
+ const array& v,
24
+ const float scale,
25
+ array& o,
26
+ bool do_causal_,
27
+ const std::optional<array>& mask,
28
+ const std::optional<array>& sinks) {
29
+ using namespace mlx::steel;
30
+
31
+ int wm = 4;
32
+ int wn = 1;
33
+
34
+ int bd = q.shape(-1);
35
+ int bq = 64;
36
+ int bk = 32;
37
+
38
+ int B = q.shape(0);
39
+ int H = q.shape(1);
40
+ int D = q.shape(3);
41
+ int gqa_factor = q.shape(1) / k.shape(1);
42
+
43
+ int qL = q.shape(2);
44
+ int kL = k.shape(2);
45
+
46
+ const bool align_Q = (qL % bq) == 0;
47
+ const bool align_K = (kL % bk) == 0;
48
+ const bool has_mask = mask.has_value();
49
+ const bool do_causal = do_causal_;
50
+ const bool has_sinks = sinks.has_value();
51
+
52
+ metal::MTLFCList func_consts = {
53
+ {&align_Q, MTL::DataType::DataTypeBool, 200},
54
+ {&align_K, MTL::DataType::DataTypeBool, 201},
55
+ {&has_mask, MTL::DataType::DataTypeBool, 300},
56
+ {&do_causal, MTL::DataType::DataTypeBool, 301},
57
+ {&has_sinks, MTL::DataType::DataTypeBool, 302}};
58
+
59
+ std::string base_name;
60
+ concatenate(
61
+ base_name,
62
+ "steel_attention_",
63
+ type_to_name(q),
64
+ "_bq",
65
+ bq,
66
+ "_bk",
67
+ bk,
68
+ "_bd",
69
+ bd,
70
+ "_wm",
71
+ wm,
72
+ "_wn",
73
+ wn,
74
+ "_mask",
75
+ type_to_name(has_mask ? *mask : q));
76
+
77
+ std::string hash_name;
78
+ concatenate(
79
+ hash_name,
80
+ base_name,
81
+ "_align_Q_",
82
+ (align_Q ? 't' : 'n'),
83
+ "_align_K_",
84
+ (align_K ? 't' : 'n'),
85
+ "_has_mask_",
86
+ (has_mask ? 't' : 'n'),
87
+ "_do_causal_",
88
+ (do_causal ? 't' : 'n'),
89
+ "_has_sinks_",
90
+ (has_sinks ? 't' : 'n'));
91
+
92
+ auto& compute_encoder = d.get_command_encoder(s.index);
93
+
94
+ auto kernel = get_steel_attention_nax_kernel(
95
+ d,
96
+ base_name,
97
+ hash_name,
98
+ func_consts,
99
+ q,
100
+ bq,
101
+ bk,
102
+ bd,
103
+ wm,
104
+ wn,
105
+ (has_mask ? *mask : q));
106
+
107
+ compute_encoder.set_compute_pipeline_state(kernel);
108
+
109
+ const int NQ = (qL + bq - 1) / bq;
110
+ const int NK = (kL + bk - 1) / bk;
111
+
112
+ const int NQ_aligned = qL / bq;
113
+ const int NK_aligned = kL / bk;
114
+
115
+ AttnParams params{
116
+ /* int B = */ B,
117
+ /* int H = */ H,
118
+ /* int D = */ D,
119
+
120
+ /* int qL = */ qL,
121
+ /* int kL = */ kL,
122
+
123
+ /* int gqa_factor = */ gqa_factor,
124
+ /* float scale = */ scale,
125
+
126
+ /* int NQ = */ NQ,
127
+ /* int NK = */ NK,
128
+
129
+ /* int NQ_aligned = */ NQ_aligned,
130
+ /* int NK_aligned = */ NK_aligned,
131
+
132
+ /* int qL_rem = */ (qL - NQ_aligned * bq),
133
+ /* int kL_rem = */ (kL - NK_aligned * bk),
134
+ /* int qL_off = */ (kL - qL),
135
+
136
+ /* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
137
+ /* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
138
+ /* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
139
+ /* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
140
+
141
+ compute_encoder.set_input_array(q, 0);
142
+ compute_encoder.set_input_array(k, 1);
143
+ compute_encoder.set_input_array(v, 2);
144
+ compute_encoder.set_output_array(o, 3);
145
+ compute_encoder.set_bytes(params, 4);
146
+
147
+ if (has_mask) {
148
+ auto& m = *mask;
149
+
150
+ AttnMaskParams mask_params{/* int64_t M_strides[3] = */ {
151
+ m.strides(0), m.strides(1), m.strides(2)}};
152
+
153
+ compute_encoder.set_bytes(mask_params, 5);
154
+ compute_encoder.set_input_array(m, 6);
155
+ }
156
+ if (has_sinks) {
157
+ compute_encoder.set_input_array(*sinks, 7);
158
+ }
159
+
160
+ MTL::Size grid_dims = MTL::Size(NQ, H, B);
161
+ MTL::Size group_dims = MTL::Size(32, wm, wn);
162
+
163
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
164
+ }
165
+
166
+ void sdpa_full_self_attention_metal(
167
+ const Stream& s,
168
+ metal::Device& d,
169
+ const array& q,
170
+ const array& k,
171
+ const array& v,
172
+ const float scale,
173
+ array& o,
174
+ bool do_causal_,
175
+ const std::optional<array>& mask,
176
+ const std::optional<array>& sinks) {
177
+ if (metal::is_nax_available() && q.shape(3) != 80 &&
178
+ (env::enable_tf32() || q.dtype() != float32)) {
179
+ return sdpa_full_self_attention_nax(
180
+ /* const Stream& s = */ s,
181
+ /* metal::Device& d = */ d,
182
+ /* const array& q = */ q,
183
+ /* const array& k = */ k,
184
+ /* const array& v = */ v,
185
+ /* const float scale = */ scale,
186
+ /* array& o = */ o,
187
+ /* bool do_causal_ = */ do_causal_,
188
+ /* const std::optional<array>& mask = */ mask,
189
+ /* const std::optional<array>& sinks = */ sinks);
190
+ }
191
+
192
+ using namespace mlx::steel;
193
+
194
+ int wm = 4;
195
+ int wn = 1;
196
+
197
+ int bd = q.shape(-1);
198
+ int bq = 32;
199
+ int bk = bd < 128 ? 32 : 16;
200
+
201
+ int B = q.shape(0);
202
+ int H = q.shape(1);
203
+ int D = q.shape(3);
204
+ int gqa_factor = q.shape(1) / k.shape(1);
205
+
206
+ int qL = q.shape(2);
207
+ int kL = k.shape(2);
208
+
209
+ const bool align_Q = (qL % bq) == 0;
210
+ const bool align_K = (kL % bk) == 0;
211
+ const bool has_mask = mask.has_value();
212
+ const bool do_causal = do_causal_;
213
+ const bool has_sinks = sinks.has_value();
214
+
215
+ metal::MTLFCList func_consts = {
216
+ {&align_Q, MTL::DataType::DataTypeBool, 200},
217
+ {&align_K, MTL::DataType::DataTypeBool, 201},
218
+ {&has_mask, MTL::DataType::DataTypeBool, 300},
219
+ {&do_causal, MTL::DataType::DataTypeBool, 301},
220
+ {&has_sinks, MTL::DataType::DataTypeBool, 302}};
221
+
222
+ std::string base_name;
223
+ concatenate(
224
+ base_name,
225
+ "steel_attention_",
226
+ type_to_name(q),
227
+ "_bq",
228
+ bq,
229
+ "_bk",
230
+ bk,
231
+ "_bd",
232
+ bd,
233
+ "_wm",
234
+ wm,
235
+ "_wn",
236
+ wn,
237
+ "_mask",
238
+ type_to_name(has_mask ? *mask : q));
239
+
240
+ std::string hash_name;
241
+ concatenate(
242
+ hash_name,
243
+ base_name,
244
+ "_align_Q_",
245
+ (align_Q ? 't' : 'n'),
246
+ "_align_K_",
247
+ (align_K ? 't' : 'n'),
248
+ "_has_mask_",
249
+ (has_mask ? 't' : 'n'),
250
+ "_do_causal_",
251
+ (do_causal ? 't' : 'n'),
252
+ "_has_sinks_",
253
+ (has_sinks ? 't' : 'n'));
254
+
255
+ auto& compute_encoder = d.get_command_encoder(s.index);
256
+
257
+ auto kernel = get_steel_attention_kernel(
258
+ d,
259
+ base_name,
260
+ hash_name,
261
+ func_consts,
262
+ q,
263
+ bq,
264
+ bk,
265
+ bd,
266
+ wm,
267
+ wn,
268
+ (has_mask ? *mask : q));
269
+
270
+ compute_encoder.set_compute_pipeline_state(kernel);
271
+
272
+ const int NQ = (qL + bq - 1) / bq;
273
+ const int NK = (kL + bk - 1) / bk;
274
+
275
+ const int NQ_aligned = qL / bq;
276
+ const int NK_aligned = kL / bk;
277
+
278
+ AttnParams params{
279
+ /* int B = */ B,
280
+ /* int H = */ H,
281
+ /* int D = */ D,
282
+
283
+ /* int qL = */ qL,
284
+ /* int kL = */ kL,
285
+
286
+ /* int gqa_factor = */ gqa_factor,
287
+ /* float scale = */ scale,
288
+
289
+ /* int NQ = */ NQ,
290
+ /* int NK = */ NK,
291
+
292
+ /* int NQ_aligned = */ NQ_aligned,
293
+ /* int NK_aligned = */ NK_aligned,
294
+
295
+ /* int qL_rem = */ (qL - NQ_aligned * bq),
296
+ /* int kL_rem = */ (kL - NK_aligned * bk),
297
+ /* int qL_off = */ (kL - qL),
298
+
299
+ /* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
300
+ /* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
301
+ /* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
302
+ /* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)}};
303
+
304
+ compute_encoder.set_input_array(q, 0);
305
+ compute_encoder.set_input_array(k, 1);
306
+ compute_encoder.set_input_array(v, 2);
307
+ compute_encoder.set_output_array(o, 3);
308
+ compute_encoder.set_bytes(params, 4);
309
+
310
+ if (has_mask) {
311
+ auto& m = *mask;
312
+
313
+ AttnMaskParams mask_params{/* int64_t M_strides[3] = */ {
314
+ m.strides(0), m.strides(1), m.strides(2)}};
315
+
316
+ compute_encoder.set_bytes(mask_params, 5);
317
+ compute_encoder.set_input_array(m, 6);
318
+ }
319
+ if (has_sinks) {
320
+ compute_encoder.set_input_array(*sinks, 7);
321
+ }
322
+
323
+ MTL::Size grid_dims = MTL::Size(NQ, H, B);
324
+ MTL::Size group_dims = MTL::Size(32, wm, wn);
325
+
326
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
327
+ }
328
+
329
+ void sdpa_vector(
330
+ const Stream& s,
331
+ metal::Device& d,
332
+ const array& q,
333
+ const array& k,
334
+ const array& v,
335
+ array& out,
336
+ float scale,
337
+ bool do_causal,
338
+ const std::optional<array>& mask,
339
+ const std::optional<array>& sinks) {
340
+ // Set the kernel name
341
+ std::string kname;
342
+ kname.reserve(64);
343
+ kname += "sdpa_vector_";
344
+ kname += get_type_string(q.dtype());
345
+ kname += "_";
346
+ kname += std::to_string(q.shape(-1));
347
+ kname += "_";
348
+ kname += std::to_string(v.shape(-1));
349
+
350
+ // Compute the necessary sizes
351
+ int gqa_factor = q.shape(1) / k.shape(1);
352
+ int N = k.shape(2);
353
+ size_t k_head_stride = k.shape(1) == 1 ? k.strides(0) : k.strides(1);
354
+ size_t k_seq_stride = k.strides()[2];
355
+ size_t v_head_stride = v.shape(1) == 1 ? v.strides(0) : v.strides(1);
356
+ size_t v_seq_stride = v.strides()[2];
357
+
358
+ MTL::Size group_dims(1024, 1, 1);
359
+ MTL::Size grid_dims(q.shape(0) * q.shape(1), q.shape(2), 1);
360
+
361
+ bool has_mask = mask.has_value();
362
+ bool bool_mask = has_mask && (*mask).dtype() == bool_;
363
+ bool float_mask = has_mask && !bool_mask;
364
+ bool query_transposed = !q.flags().row_contiguous;
365
+ bool has_sinks = sinks.has_value();
366
+ metal::MTLFCList func_consts = {
367
+ {&has_mask, MTL::DataType::DataTypeBool, 20},
368
+ {&query_transposed, MTL::DataType::DataTypeBool, 21},
369
+ {&do_causal, MTL::DataType::DataTypeBool, 22},
370
+ {&bool_mask, MTL::DataType::DataTypeBool, 23},
371
+ {&float_mask, MTL::DataType::DataTypeBool, 24},
372
+ {&has_sinks, MTL::DataType::DataTypeBool, 25},
373
+ };
374
+ std::string hash_name = kname;
375
+ hash_name += has_mask ? (bool_mask ? "_boolmask" : "_floatmask") : "_nomask";
376
+ hash_name += query_transposed ? "_qt" : "_qnt";
377
+ hash_name += do_causal ? "_c" : "_nc";
378
+ hash_name += has_sinks ? "_sinks" : "_nosinks";
379
+
380
+ // Get the kernel
381
+ auto& compute_encoder = d.get_command_encoder(s.index);
382
+ auto kernel = d.get_kernel(kname, hash_name, func_consts);
383
+ compute_encoder.set_compute_pipeline_state(kernel);
384
+
385
+ // Set its arguments
386
+ compute_encoder.set_input_array(q, 0);
387
+ compute_encoder.set_input_array(k, 1);
388
+ compute_encoder.set_input_array(v, 2);
389
+ compute_encoder.set_output_array(out, 3);
390
+ compute_encoder.set_bytes(gqa_factor, 4);
391
+ compute_encoder.set_bytes(N, 5);
392
+ compute_encoder.set_bytes(k_head_stride, 6);
393
+ compute_encoder.set_bytes(k_seq_stride, 7);
394
+ compute_encoder.set_bytes(v_head_stride, 8);
395
+ compute_encoder.set_bytes(v_seq_stride, 9);
396
+
397
+ compute_encoder.set_bytes(scale, 10);
398
+ if (has_mask) {
399
+ auto& m = *mask;
400
+ compute_encoder.set_input_array(m, 11 + float_mask);
401
+ int32_t kv_seq_stride = m.shape(3) > 1 ? m.strides(3) : 0;
402
+ int32_t q_seq_stride = m.shape(2) > 1 ? m.strides(2) : 0;
403
+ int32_t head_stride =
404
+ m.shape(1) > 1 ? m.strides(1) : (m.shape(0) > 1 ? m.strides(0) : 0);
405
+ compute_encoder.set_bytes(kv_seq_stride, 13);
406
+ compute_encoder.set_bytes(q_seq_stride, 14);
407
+ compute_encoder.set_bytes(head_stride, 15);
408
+ }
409
+ if (has_sinks) {
410
+ compute_encoder.set_input_array(*sinks, 16);
411
+ compute_encoder.set_bytes(q.shape(1), 17);
412
+ }
413
+
414
+ // Launch
415
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
416
+ }
417
+
418
+ void sdpa_vector_2pass(
419
+ const Stream& s,
420
+ metal::Device& d,
421
+ const array& q,
422
+ const array& k,
423
+ const array& v,
424
+ array& out,
425
+ float scale,
426
+ bool do_causal,
427
+ const std::optional<array>& mask,
428
+ const std::optional<array>& sinks) {
429
+ // Set the kernel name
430
+ std::string kname;
431
+ kname.reserve(64);
432
+ kname += "sdpa_vector_2pass_1_";
433
+ kname += get_type_string(q.dtype());
434
+ kname += "_";
435
+ kname += std::to_string(q.shape(-1));
436
+ kname += "_";
437
+ kname += std::to_string(v.shape(-1));
438
+
439
+ // Compute the necessary sizes
440
+ int gqa_factor = q.shape(1) / k.shape(1);
441
+ int n_simds = gqa_factor * q.shape(2);
442
+
443
+ char devc = d.get_architecture().back();
444
+ int N = k.shape(2);
445
+ int blocks;
446
+ if (devc == 's') {
447
+ blocks = 64;
448
+ if (N > 1024 && n_simds > 4) {
449
+ if (N <= 8192) {
450
+ blocks = 128;
451
+ } else if (N <= 32768) {
452
+ blocks = 256;
453
+ } else if (N <= 65536) {
454
+ blocks = 512;
455
+ } else {
456
+ blocks = 1024;
457
+ }
458
+ }
459
+ } else if (devc == 'd') {
460
+ blocks = 128;
461
+ if (n_simds <= 2 && N > 8192) {
462
+ blocks = 256;
463
+ } else if (n_simds >= 6) {
464
+ if (N >= 16384 && N < 65536) {
465
+ blocks = 512;
466
+ } else if (N >= 65536) {
467
+ blocks = 1024;
468
+ }
469
+ }
470
+ } else {
471
+ if (n_simds >= 4) {
472
+ blocks = 64;
473
+ } else {
474
+ blocks = 32;
475
+ }
476
+ }
477
+ size_t k_head_stride = k.shape(1) == 1 ? k.strides(0) : k.strides(1);
478
+ size_t k_seq_stride = k.strides()[2];
479
+ size_t v_head_stride = v.shape(1) == 1 ? v.strides(0) : v.strides(1);
480
+ size_t v_seq_stride = v.strides()[2];
481
+ MTL::Size group_dims(32, gqa_factor, q.shape(2));
482
+ MTL::Size grid_dims(k.shape(1), q.shape(0), blocks);
483
+
484
+ // Allocate the intermediates
485
+ Shape intermediate_shape;
486
+ intermediate_shape.reserve(out.ndim() + 1);
487
+ intermediate_shape.insert(
488
+ intermediate_shape.end(), out.shape().begin(), out.shape().end() - 1);
489
+ intermediate_shape.push_back(blocks);
490
+ intermediate_shape.push_back(out.shape().back());
491
+ array intermediate(intermediate_shape, q.dtype(), nullptr, {});
492
+ intermediate_shape.pop_back();
493
+ array sums(intermediate_shape, float32, nullptr, {});
494
+ array maxs(std::move(intermediate_shape), float32, nullptr, {});
495
+ intermediate.set_data(allocator::malloc(intermediate.nbytes()));
496
+ sums.set_data(allocator::malloc(sums.nbytes()));
497
+ maxs.set_data(allocator::malloc(maxs.nbytes()));
498
+ d.add_temporary(intermediate, s.index);
499
+ d.add_temporary(sums, s.index);
500
+ d.add_temporary(maxs, s.index);
501
+
502
+ bool has_mask = mask.has_value();
503
+ bool bool_mask = has_mask && (*mask).dtype() == bool_;
504
+ bool float_mask = has_mask && !bool_mask;
505
+ bool query_transposed = !q.flags().row_contiguous;
506
+ bool has_sinks = sinks.has_value();
507
+ metal::MTLFCList func_consts = {
508
+ {&has_mask, MTL::DataType::DataTypeBool, 20},
509
+ {&query_transposed, MTL::DataType::DataTypeBool, 21},
510
+ {&do_causal, MTL::DataType::DataTypeBool, 22},
511
+ {&bool_mask, MTL::DataType::DataTypeBool, 23},
512
+ {&float_mask, MTL::DataType::DataTypeBool, 24},
513
+ {&has_sinks, MTL::DataType::DataTypeBool, 25},
514
+ {&blocks, MTL::DataType::DataTypeInt, 26},
515
+ };
516
+ std::string hash_name = kname;
517
+ hash_name += has_mask ? (bool_mask ? "_boolmask" : "_floatmask") : "_nomask";
518
+ hash_name += query_transposed ? "_qt" : "_qnt";
519
+ hash_name += do_causal ? "_c" : "_nc";
520
+ hash_name += has_sinks ? "_sinks_" : "_nosinks_";
521
+ hash_name += std::to_string(blocks);
522
+
523
+ // Get the kernel
524
+ auto& compute_encoder = d.get_command_encoder(s.index);
525
+ auto kernel = d.get_kernel(kname, hash_name, func_consts);
526
+ check_kernel_threadgroup_size(kernel, group_dims, hash_name);
527
+
528
+ compute_encoder.set_compute_pipeline_state(kernel);
529
+
530
+ // Set its arguments
531
+ compute_encoder.set_input_array(q, 0);
532
+ compute_encoder.set_input_array(k, 1);
533
+ compute_encoder.set_input_array(v, 2);
534
+ compute_encoder.set_output_array(intermediate, 3);
535
+ compute_encoder.set_output_array(sums, 4);
536
+ compute_encoder.set_output_array(maxs, 5);
537
+ compute_encoder.set_bytes(N, 7);
538
+ compute_encoder.set_bytes(k_head_stride, 8);
539
+ compute_encoder.set_bytes(k_seq_stride, 9);
540
+ compute_encoder.set_bytes(v_head_stride, 10);
541
+ compute_encoder.set_bytes(v_seq_stride, 11);
542
+ compute_encoder.set_bytes(scale, 12);
543
+ if (has_mask) {
544
+ auto& m = *mask;
545
+ compute_encoder.set_input_array(m, 13 + float_mask);
546
+ int32_t kv_seq_stride = m.shape(3) > 1 ? m.strides(3) : 0;
547
+ int32_t q_seq_stride = m.shape(2) > 1 ? m.strides(2) : 0;
548
+ int32_t head_stride =
549
+ m.shape(1) > 1 ? m.strides(1) : (m.shape(0) > 1 ? m.strides(0) : 0);
550
+ compute_encoder.set_bytes(kv_seq_stride, 15);
551
+ compute_encoder.set_bytes(q_seq_stride, 16);
552
+ compute_encoder.set_bytes(head_stride, 17);
553
+ }
554
+ if (has_sinks) {
555
+ compute_encoder.set_input_array(*sinks, 18);
556
+ }
557
+
558
+ // Launch
559
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
560
+
561
+ // Final pass
562
+ kname.clear();
563
+ kname = "sdpa_vector_2pass_2_";
564
+ kname += get_type_string(q.dtype());
565
+ kname += "_";
566
+ kname += std::to_string(v.shape(-1));
567
+
568
+ // Get the kernel
569
+ kernel = d.get_kernel(kname);
570
+ compute_encoder.set_compute_pipeline_state(kernel);
571
+
572
+ // Set its arguments
573
+ compute_encoder.set_input_array(intermediate, 0);
574
+ compute_encoder.set_input_array(sums, 1);
575
+ compute_encoder.set_input_array(maxs, 2);
576
+ compute_encoder.set_output_array(out, 3);
577
+ compute_encoder.set_bytes(blocks, 4);
578
+
579
+ // Launch
580
+ group_dims = MTL::Size(1024, 1, 1);
581
+ grid_dims = MTL::Size(q.shape(0) * q.shape(1), q.shape(2), 1);
582
+ check_kernel_threadgroup_size(kernel, group_dims, kname);
583
+ compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
584
+ }
585
+
586
+ } // namespace
587
+
588
+ bool ScaledDotProductAttention::use_fallback(
589
+ const array& q,
590
+ const array& k,
591
+ const array& v,
592
+ bool has_mask,
593
+ bool has_arr_mask,
594
+ bool do_causal,
595
+ bool is_training,
596
+ bool output_logsumexp,
597
+ Stream s) {
598
+ if (is_training) {
599
+ // It's faster for training on Metal to use the unfused SDPA for both
600
+ // forward and backward.
601
+ return true;
602
+ }
603
+ if (output_logsumexp) {
604
+ return true;
605
+ }
606
+ if (s.device == Device::cpu) {
607
+ return true;
608
+ }
609
+
610
+ const int value_head_dim = v.shape(-1);
611
+ const int query_head_dim = q.shape(-1);
612
+ const int query_sequence_length = q.shape(2);
613
+ const int key_sequence_length = k.shape(2);
614
+ const int num_query_heads = q.shape(1);
615
+ const int num_kv_heads = k.shape(1);
616
+ const int gqa_factor = num_query_heads / num_kv_heads;
617
+
618
+ const bool sdpa_vector_supported_head_dim =
619
+ query_head_dim == value_head_dim &&
620
+ (query_head_dim == 64 || query_head_dim == 96 || query_head_dim == 128 ||
621
+ query_head_dim == 256);
622
+ const bool sdpa_full_supported_head_dim = query_head_dim == value_head_dim &&
623
+ (query_head_dim == 64 || query_head_dim == 80 || query_head_dim == 128);
624
+
625
+ const bool sdpa_full_supported_mask = !has_mask || has_arr_mask ||
626
+ (query_sequence_length <= key_sequence_length && do_causal);
627
+
628
+ const bool supports_sdpa_full = query_sequence_length > 8 &&
629
+ sdpa_full_supported_mask && sdpa_full_supported_head_dim;
630
+
631
+ const bool supports_sdpa_vector = (query_sequence_length <= 8) &&
632
+ (query_sequence_length <= key_sequence_length) &&
633
+ sdpa_vector_supported_head_dim &&
634
+ (query_sequence_length * gqa_factor) <= 32;
635
+
636
+ return !(supports_sdpa_full || supports_sdpa_vector);
637
+ }
638
+
639
+ bool ScaledDotProductAttention::supports_bool_mask() {
640
+ return true;
641
+ }
642
+
643
+ void ScaledDotProductAttention::eval_gpu(
644
+ const std::vector<array>& inputs,
645
+ std::vector<array>& outputs) {
646
+ auto& s = stream();
647
+ auto& d = metal::device(s.device);
648
+
649
+ auto& q_pre = inputs[0];
650
+ auto& k_pre = inputs[1];
651
+ auto& v_pre = inputs[2];
652
+ auto& o = outputs[0];
653
+
654
+ std::vector<array> copies;
655
+
656
+ // Define some copy functions to ensure the layout of the inputs is as
657
+ // expected.
658
+ copies.reserve(inputs.size());
659
+ auto copy_unless = [&copies, &s](
660
+ auto predicate, const array& arr) -> const array& {
661
+ if (!predicate(arr)) {
662
+ array arr_copy = contiguous_copy_gpu(arr, s);
663
+ copies.push_back(std::move(arr_copy));
664
+ return copies.back();
665
+ } else {
666
+ return arr;
667
+ }
668
+ };
669
+
670
+ // Checks that the headdim dimension has stride 1.
671
+ auto is_matrix_contiguous = [](const array& arr) {
672
+ return arr.strides(-1) == 1;
673
+ };
674
+
675
+ std::optional<array> sinks = std::nullopt;
676
+ if (has_sinks_) {
677
+ sinks = copy_unless(is_matrix_contiguous, inputs.back());
678
+ }
679
+ bool has_arr_mask = inputs.size() > (3 + has_sinks_);
680
+
681
+ // We are in vector mode ie single query
682
+ if (q_pre.shape(2) <= 8) {
683
+ auto q_copy_unless = [](const array& arr) {
684
+ if (arr.flags().row_contiguous) {
685
+ return true;
686
+ }
687
+ auto& strides = arr.strides();
688
+ auto& shape = arr.shape();
689
+ if (shape[0] == 1 || shape[1] == 1) {
690
+ // If either the batch or head dimension is a singleton, the other can
691
+ // be transposed with the sequence dimension
692
+ auto bidx = shape[0] == 1 ? 1 : 0;
693
+ return (strides[3] == 1) && (strides[2] == shape[3] * shape[bidx]) &&
694
+ (strides[bidx] == shape[3]);
695
+ }
696
+ return false;
697
+ };
698
+
699
+ auto kv_copy_unless = [](const array& arr) {
700
+ // keys and values should be copied if:
701
+ // - the last dimension is not contiguous
702
+ // - the batch and head dim are not contiguous
703
+ auto& strides = arr.strides();
704
+ auto& shape = arr.shape();
705
+ if (strides.back() != 1) {
706
+ return false;
707
+ }
708
+ if (shape[0] == 1 || shape[1] == 1) {
709
+ return true;
710
+ }
711
+ return (strides[0] == strides[1] * shape[1]);
712
+ };
713
+
714
+ bool q_copied = !q_copy_unless(q_pre);
715
+ array q = (q_copied) ? contiguous_copy_gpu(q_pre, s) : q_pre;
716
+ const auto& k = copy_unless(kv_copy_unless, k_pre);
717
+ const auto& v = copy_unless(kv_copy_unless, v_pre);
718
+
719
+ // Donate the query if possible
720
+ if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) {
721
+ o.copy_shared_buffer(q);
722
+ } else {
723
+ if (q_copied) {
724
+ copies.push_back(q);
725
+ }
726
+ o.set_data(allocator::malloc(o.nbytes()));
727
+ }
728
+
729
+ auto mask_copy_unless = [&q](const array& arr) {
730
+ auto& strides = arr.strides();
731
+ auto& shape = arr.shape();
732
+ return arr.flags().row_contiguous || q.shape(0) == 1 || q.shape(1) == 1 ||
733
+ (strides[0] == strides[1] * shape[1]);
734
+ };
735
+
736
+ auto mask = has_arr_mask
737
+ ? std::optional<array>{copy_unless(mask_copy_unless, inputs[3])}
738
+ : std::nullopt;
739
+
740
+ // We route to the 2 pass fused attention if
741
+ // - The device is large and the sequence length long
742
+ // - The sequence length is even longer and we have gqa
743
+ bool do_causal = do_causal_ && q.shape(2) > 1;
744
+ char devc = d.get_architecture().back();
745
+ if (((devc == 'd' || devc == 's') && k.shape(2) >= 1024) ||
746
+ (k.shape(1) < q.shape(1) && k.shape(2) >= 4096)) {
747
+ sdpa_vector_2pass(s, d, q, k, v, o, scale_, do_causal, mask, sinks);
748
+ } else {
749
+ sdpa_vector(s, d, q, k, v, o, scale_, do_causal, mask, sinks);
750
+ }
751
+ }
752
+
753
+ // Full attention mode
754
+ else {
755
+ const auto& q = copy_unless(is_matrix_contiguous, q_pre);
756
+ const auto& k = copy_unless(is_matrix_contiguous, k_pre);
757
+ const auto& v = copy_unless(is_matrix_contiguous, v_pre);
758
+
759
+ int64_t str_oD = 1;
760
+ int64_t str_oH = o.shape(3);
761
+ int64_t str_oL = o.shape(1) * str_oH;
762
+ int64_t str_oB = o.shape(2) * str_oL;
763
+ size_t data_size = o.shape(0) * str_oB;
764
+
765
+ array::Flags flags{
766
+ /* bool contiguous = */ 1,
767
+ /* bool row_contiguous = */ 0,
768
+ /* bool col_contiguous = */ 0,
769
+ };
770
+
771
+ o.set_data(
772
+ allocator::malloc(o.nbytes()),
773
+ data_size,
774
+ {str_oB, str_oH, str_oL, str_oD},
775
+ flags);
776
+
777
+ auto mask = has_arr_mask
778
+ ? std::optional<array>{copy_unless(is_matrix_contiguous, inputs[3])}
779
+ : std::nullopt;
780
+
781
+ sdpa_full_self_attention_metal(
782
+ s, d, q, k, v, scale_, o, do_causal_, mask, sinks);
783
+ }
784
+
785
+ d.add_temporaries(std::move(copies), s.index);
786
+ }
787
+
788
+ bool ScaledDotProductAttentionVJP::use_fallback(const array& q, Stream s) {
789
+ return true;
790
+ }
791
+
792
+ void ScaledDotProductAttentionVJP::eval_gpu(
793
+ const std::vector<array>& inputs,
794
+ std::vector<array>& outputs) {
795
+ throw std::runtime_error("NYI");
796
+ }
797
+
798
+ } // namespace mlx::core::fast