mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,468 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/cuda/device.h"
|
|
4
|
+
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
|
5
|
+
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
6
|
+
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
|
7
|
+
#include "mlx/backend/gpu/copy.h"
|
|
8
|
+
#include "mlx/dtype_utils.h"
|
|
9
|
+
#include "mlx/primitives.h"
|
|
10
|
+
|
|
11
|
+
#include <cooperative_groups.h>
|
|
12
|
+
#include <cooperative_groups/scan.h>
|
|
13
|
+
#include <nvtx3/nvtx3.hpp>
|
|
14
|
+
|
|
15
|
+
#include <cassert>
|
|
16
|
+
|
|
17
|
+
namespace mlx::core {
|
|
18
|
+
|
|
19
|
+
namespace cu {
|
|
20
|
+
|
|
21
|
+
namespace cg = cooperative_groups;
|
|
22
|
+
|
|
23
|
+
template <typename Op, typename T>
|
|
24
|
+
struct ScanResult {
|
|
25
|
+
using type = T;
|
|
26
|
+
};
|
|
27
|
+
|
|
28
|
+
template <>
|
|
29
|
+
struct ScanResult<Sum, bool> {
|
|
30
|
+
using type = int32_t;
|
|
31
|
+
};
|
|
32
|
+
|
|
33
|
+
template <typename T>
|
|
34
|
+
struct ReduceInit<LogAddExp, T> {
|
|
35
|
+
static constexpr __host__ __device__ T value() {
|
|
36
|
+
return Limits<T>::min();
|
|
37
|
+
}
|
|
38
|
+
};
|
|
39
|
+
|
|
40
|
+
template <bool reverse, typename T, typename U, int N_READS>
|
|
41
|
+
inline __device__ void
|
|
42
|
+
load_values(int index, const T* in, U (&values)[N_READS], int size, U init) {
|
|
43
|
+
int remaining = size - index * N_READS;
|
|
44
|
+
if constexpr (reverse) {
|
|
45
|
+
in += remaining - N_READS;
|
|
46
|
+
if (remaining < N_READS) {
|
|
47
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
48
|
+
values[N_READS - i - 1] =
|
|
49
|
+
(N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init;
|
|
50
|
+
}
|
|
51
|
+
} else {
|
|
52
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
53
|
+
values[N_READS - i - 1] = cast_to<U>(in[i]);
|
|
54
|
+
}
|
|
55
|
+
}
|
|
56
|
+
} else {
|
|
57
|
+
in += index * N_READS;
|
|
58
|
+
if (remaining < N_READS) {
|
|
59
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
60
|
+
values[i] = (i < remaining) ? cast_to<U>(in[i]) : init;
|
|
61
|
+
}
|
|
62
|
+
} else {
|
|
63
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
64
|
+
values[i] = cast_to<U>(in[i]);
|
|
65
|
+
}
|
|
66
|
+
}
|
|
67
|
+
}
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
template <bool reverse, int offset, typename T, int N_READS>
|
|
71
|
+
inline __device__ void
|
|
72
|
+
store_values(int index, T* out, T (&values)[N_READS], int size) {
|
|
73
|
+
int start = index * N_READS + offset;
|
|
74
|
+
int remaining = size - start;
|
|
75
|
+
if constexpr (reverse) {
|
|
76
|
+
out += remaining - N_READS;
|
|
77
|
+
if (remaining < N_READS) {
|
|
78
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
79
|
+
if (N_READS - i - 1 < remaining) {
|
|
80
|
+
out[i] = values[N_READS - i - 1];
|
|
81
|
+
}
|
|
82
|
+
}
|
|
83
|
+
} else {
|
|
84
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
85
|
+
out[i] = values[N_READS - i - 1];
|
|
86
|
+
}
|
|
87
|
+
}
|
|
88
|
+
} else {
|
|
89
|
+
out += start;
|
|
90
|
+
if (remaining < N_READS) {
|
|
91
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
92
|
+
if (i < remaining) {
|
|
93
|
+
out[i] = values[i];
|
|
94
|
+
}
|
|
95
|
+
}
|
|
96
|
+
} else {
|
|
97
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
98
|
+
out[i] = values[i];
|
|
99
|
+
}
|
|
100
|
+
}
|
|
101
|
+
}
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
template <
|
|
105
|
+
typename T,
|
|
106
|
+
typename U,
|
|
107
|
+
typename Op,
|
|
108
|
+
int N_READS,
|
|
109
|
+
bool inclusive,
|
|
110
|
+
bool reverse>
|
|
111
|
+
__global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
|
|
112
|
+
auto grid = cg::this_grid();
|
|
113
|
+
auto block = cg::this_thread_block();
|
|
114
|
+
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
115
|
+
|
|
116
|
+
in += grid.block_rank() * axis_size;
|
|
117
|
+
out += grid.block_rank() * axis_size;
|
|
118
|
+
|
|
119
|
+
__shared__ U warp_sums[WARP_SIZE];
|
|
120
|
+
|
|
121
|
+
Op op;
|
|
122
|
+
U init = ReduceInit<Op, T>::value();
|
|
123
|
+
U prefix = init;
|
|
124
|
+
|
|
125
|
+
// Scan per block.
|
|
126
|
+
for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) {
|
|
127
|
+
int32_t index = r * block.size() + block.thread_rank();
|
|
128
|
+
U values[N_READS];
|
|
129
|
+
load_values<reverse>(index, in, values, axis_size, init);
|
|
130
|
+
|
|
131
|
+
// Compute an inclusive scan per thread.
|
|
132
|
+
for (int i = 1; i < N_READS; ++i) {
|
|
133
|
+
values[i] = op(values[i], values[i - 1]);
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
// Compute exclusive scan of thread sums.
|
|
137
|
+
U prev_thread_sum = cg::exclusive_scan(warp, values[N_READS - 1], op);
|
|
138
|
+
if (warp.thread_rank() == 0) {
|
|
139
|
+
prev_thread_sum = init;
|
|
140
|
+
}
|
|
141
|
+
|
|
142
|
+
// Write wrap's sum to shared memory.
|
|
143
|
+
if (warp.thread_rank() == WARP_SIZE - 1) {
|
|
144
|
+
warp_sums[warp.meta_group_rank()] =
|
|
145
|
+
op(prev_thread_sum, values[N_READS - 1]);
|
|
146
|
+
}
|
|
147
|
+
block.sync();
|
|
148
|
+
|
|
149
|
+
// Compute exclusive scan of warp sums.
|
|
150
|
+
if (warp.meta_group_rank() == 0) {
|
|
151
|
+
U prev_warp_sum =
|
|
152
|
+
cg::exclusive_scan(warp, warp_sums[warp.thread_rank()], op);
|
|
153
|
+
if (warp.thread_rank() == 0) {
|
|
154
|
+
prev_warp_sum = init;
|
|
155
|
+
}
|
|
156
|
+
warp_sums[warp.thread_rank()] = prev_warp_sum;
|
|
157
|
+
}
|
|
158
|
+
block.sync();
|
|
159
|
+
|
|
160
|
+
// Compute the output.
|
|
161
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
162
|
+
values[i] = op(values[i], prefix);
|
|
163
|
+
values[i] = op(values[i], warp_sums[warp.meta_group_rank()]);
|
|
164
|
+
values[i] = op(values[i], prev_thread_sum);
|
|
165
|
+
}
|
|
166
|
+
|
|
167
|
+
// Write the values.
|
|
168
|
+
if (inclusive) {
|
|
169
|
+
store_values<reverse, 0>(index, out, values, axis_size);
|
|
170
|
+
} else {
|
|
171
|
+
store_values<reverse, 1>(index, out, values, axis_size);
|
|
172
|
+
if (reverse) {
|
|
173
|
+
if (block.thread_rank() == 0 && index == 0) {
|
|
174
|
+
out[axis_size - 1] = init;
|
|
175
|
+
}
|
|
176
|
+
} else {
|
|
177
|
+
if (block.thread_rank() == 0 && index == 0) {
|
|
178
|
+
out[0] = init;
|
|
179
|
+
}
|
|
180
|
+
}
|
|
181
|
+
}
|
|
182
|
+
block.sync();
|
|
183
|
+
|
|
184
|
+
// Share the prefix.
|
|
185
|
+
if ((warp.meta_group_rank() == warp.meta_group_size() - 1) &&
|
|
186
|
+
(warp.thread_rank() == WARP_SIZE - 1)) {
|
|
187
|
+
warp_sums[0] = values[N_READS - 1];
|
|
188
|
+
}
|
|
189
|
+
block.sync();
|
|
190
|
+
prefix = warp_sums[0];
|
|
191
|
+
}
|
|
192
|
+
}
|
|
193
|
+
|
|
194
|
+
template <
|
|
195
|
+
typename T,
|
|
196
|
+
typename U,
|
|
197
|
+
typename Op,
|
|
198
|
+
int N_READS,
|
|
199
|
+
int BM,
|
|
200
|
+
int BN,
|
|
201
|
+
bool inclusive,
|
|
202
|
+
bool reverse>
|
|
203
|
+
__global__ void strided_scan(
|
|
204
|
+
const T* in,
|
|
205
|
+
U* out,
|
|
206
|
+
int32_t axis_size,
|
|
207
|
+
int64_t stride,
|
|
208
|
+
int64_t stride_blocks) {
|
|
209
|
+
auto grid = cg::this_grid();
|
|
210
|
+
auto block = cg::this_thread_block();
|
|
211
|
+
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
212
|
+
|
|
213
|
+
constexpr int BN_pad = WARP_SIZE + 16 / sizeof(U);
|
|
214
|
+
constexpr int n_warps = BN / N_READS;
|
|
215
|
+
constexpr int n_scans = BN / n_warps;
|
|
216
|
+
|
|
217
|
+
__shared__ U read_buffer[BM * BN_pad];
|
|
218
|
+
|
|
219
|
+
Op op;
|
|
220
|
+
U init = ReduceInit<Op, T>::value();
|
|
221
|
+
U values[n_scans];
|
|
222
|
+
U prefix[n_scans];
|
|
223
|
+
for (int i = 0; i < n_scans; ++i) {
|
|
224
|
+
prefix[i] = init;
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
// Compute offsets.
|
|
228
|
+
int64_t offset = (grid.block_rank() / stride_blocks) * axis_size * stride;
|
|
229
|
+
int64_t global_index_x = (grid.block_rank() % stride_blocks) * BN;
|
|
230
|
+
uint32_t read_offset_y = (block.thread_rank() * N_READS) / BN;
|
|
231
|
+
uint32_t read_offset_x = (block.thread_rank() * N_READS) % BN;
|
|
232
|
+
uint32_t scan_offset_y = warp.thread_rank();
|
|
233
|
+
uint32_t scan_offset_x = warp.meta_group_rank() * n_scans;
|
|
234
|
+
|
|
235
|
+
uint32_t stride_limit = stride - global_index_x;
|
|
236
|
+
in += offset + global_index_x + read_offset_x;
|
|
237
|
+
out += offset + global_index_x + read_offset_x;
|
|
238
|
+
U* read_into = read_buffer + read_offset_y * BN_pad + read_offset_x;
|
|
239
|
+
U* read_from = read_buffer + scan_offset_y * BN_pad + scan_offset_x;
|
|
240
|
+
|
|
241
|
+
for (uint32_t j = 0; j < axis_size; j += BM) {
|
|
242
|
+
// Calculate the indices for the current thread.
|
|
243
|
+
uint32_t index_y = j + read_offset_y;
|
|
244
|
+
uint32_t check_index_y = index_y;
|
|
245
|
+
if (reverse) {
|
|
246
|
+
index_y = axis_size - 1 - index_y;
|
|
247
|
+
}
|
|
248
|
+
|
|
249
|
+
// Read in SM.
|
|
250
|
+
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
|
251
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
252
|
+
read_into[i] = in[index_y * stride + i];
|
|
253
|
+
}
|
|
254
|
+
} else {
|
|
255
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
256
|
+
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
|
257
|
+
read_into[i] = in[index_y * stride + i];
|
|
258
|
+
} else {
|
|
259
|
+
read_into[i] = init;
|
|
260
|
+
}
|
|
261
|
+
}
|
|
262
|
+
}
|
|
263
|
+
block.sync();
|
|
264
|
+
|
|
265
|
+
// Read strided into registers.
|
|
266
|
+
for (int i = 0; i < n_scans; ++i) {
|
|
267
|
+
values[i] = read_from[i];
|
|
268
|
+
}
|
|
269
|
+
|
|
270
|
+
// Perform the scan.
|
|
271
|
+
for (int i = 0; i < n_scans; ++i) {
|
|
272
|
+
values[i] = cg::inclusive_scan(warp, values[i], op);
|
|
273
|
+
values[i] = op(values[i], prefix[i]);
|
|
274
|
+
prefix[i] = warp.shfl(values[i], WARP_SIZE - 1);
|
|
275
|
+
}
|
|
276
|
+
|
|
277
|
+
// Write to SM.
|
|
278
|
+
for (int i = 0; i < n_scans; ++i) {
|
|
279
|
+
read_from[i] = values[i];
|
|
280
|
+
}
|
|
281
|
+
block.sync();
|
|
282
|
+
|
|
283
|
+
// Write to device memory.
|
|
284
|
+
if (!inclusive) {
|
|
285
|
+
if (check_index_y == 0) {
|
|
286
|
+
if ((read_offset_x + N_READS) < stride_limit) {
|
|
287
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
288
|
+
out[index_y * stride + i] = init;
|
|
289
|
+
}
|
|
290
|
+
} else {
|
|
291
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
292
|
+
if ((read_offset_x + i) < stride_limit) {
|
|
293
|
+
out[index_y * stride + i] = init;
|
|
294
|
+
}
|
|
295
|
+
}
|
|
296
|
+
}
|
|
297
|
+
}
|
|
298
|
+
if (reverse) {
|
|
299
|
+
index_y -= 1;
|
|
300
|
+
check_index_y += 1;
|
|
301
|
+
} else {
|
|
302
|
+
index_y += 1;
|
|
303
|
+
check_index_y += 1;
|
|
304
|
+
}
|
|
305
|
+
}
|
|
306
|
+
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
|
307
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
308
|
+
out[index_y * stride + i] = read_into[i];
|
|
309
|
+
}
|
|
310
|
+
} else {
|
|
311
|
+
for (int i = 0; i < N_READS; ++i) {
|
|
312
|
+
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
|
313
|
+
out[index_y * stride + i] = read_into[i];
|
|
314
|
+
}
|
|
315
|
+
}
|
|
316
|
+
}
|
|
317
|
+
}
|
|
318
|
+
}
|
|
319
|
+
|
|
320
|
+
} // namespace cu
|
|
321
|
+
|
|
322
|
+
template <typename F>
|
|
323
|
+
void dispatch_scan_ops(Scan::ReduceType scan_op, F&& f) {
|
|
324
|
+
if (scan_op == Scan::ReduceType::Max) {
|
|
325
|
+
f(type_identity<cu::Max>{});
|
|
326
|
+
} else if (scan_op == Scan::ReduceType::Min) {
|
|
327
|
+
f(type_identity<cu::Min>{});
|
|
328
|
+
} else if (scan_op == Scan::ReduceType::Sum) {
|
|
329
|
+
f(type_identity<cu::Sum>{});
|
|
330
|
+
} else if (scan_op == Scan::ReduceType::Prod) {
|
|
331
|
+
f(type_identity<cu::Prod>{});
|
|
332
|
+
} else if (scan_op == Scan::ReduceType::LogAddExp) {
|
|
333
|
+
f(type_identity<cu::LogAddExp>{});
|
|
334
|
+
} else {
|
|
335
|
+
throw std::invalid_argument("Unknown reduce type.");
|
|
336
|
+
}
|
|
337
|
+
}
|
|
338
|
+
|
|
339
|
+
template <typename Op>
|
|
340
|
+
const char* op_to_string() {
|
|
341
|
+
if (cuda::std::is_same_v<Op, cu::Max>) {
|
|
342
|
+
return "Max";
|
|
343
|
+
} else if (cuda::std::is_same_v<Op, cu::Min>) {
|
|
344
|
+
return "Min";
|
|
345
|
+
} else if (cuda::std::is_same_v<Op, cu::Sum>) {
|
|
346
|
+
return "Sum";
|
|
347
|
+
} else if (cuda::std::is_same_v<Op, cu::Prod>) {
|
|
348
|
+
return "Prod";
|
|
349
|
+
} else if (cuda::std::is_same_v<Op, cu::LogAddExp>) {
|
|
350
|
+
return "LogAddExp";
|
|
351
|
+
} else {
|
|
352
|
+
throw std::invalid_argument("Unknown op.");
|
|
353
|
+
}
|
|
354
|
+
}
|
|
355
|
+
|
|
356
|
+
template <typename Op, typename T>
|
|
357
|
+
constexpr bool supports_scan_op() {
|
|
358
|
+
if constexpr (cuda::std::is_same_v<Op, LogAddExp>) {
|
|
359
|
+
return is_inexact_v<T>;
|
|
360
|
+
} else {
|
|
361
|
+
return true;
|
|
362
|
+
}
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
366
|
+
nvtx3::scoped_range r("Scan::eval_gpu");
|
|
367
|
+
assert(inputs.size() == 1);
|
|
368
|
+
auto in = inputs[0];
|
|
369
|
+
auto& s = stream();
|
|
370
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
371
|
+
|
|
372
|
+
if (in.flags().contiguous && in.strides()[axis_] != 0) {
|
|
373
|
+
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
|
|
374
|
+
out.copy_shared_buffer(in);
|
|
375
|
+
} else {
|
|
376
|
+
out.set_data(
|
|
377
|
+
cu::malloc_async(in.data_size() * out.itemsize(), encoder),
|
|
378
|
+
in.data_size(),
|
|
379
|
+
in.strides(),
|
|
380
|
+
in.flags());
|
|
381
|
+
}
|
|
382
|
+
} else {
|
|
383
|
+
in = contiguous_copy_gpu(in, s);
|
|
384
|
+
out.copy_shared_buffer(in);
|
|
385
|
+
}
|
|
386
|
+
|
|
387
|
+
constexpr int N_READS = 4;
|
|
388
|
+
int32_t axis_size = in.shape(axis_);
|
|
389
|
+
bool contiguous = in.strides()[axis_] == 1;
|
|
390
|
+
|
|
391
|
+
encoder.set_input_array(in);
|
|
392
|
+
encoder.set_output_array(out);
|
|
393
|
+
|
|
394
|
+
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
395
|
+
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
396
|
+
dispatch_scan_ops(reduce_type_, [&](auto scan_op_tag) {
|
|
397
|
+
using Op = MLX_GET_TYPE(scan_op_tag);
|
|
398
|
+
if constexpr (supports_scan_op<Op, T>()) {
|
|
399
|
+
using U = typename cu::ScanResult<Op, T>::type;
|
|
400
|
+
dispatch_bool(inclusive_, [&](auto inclusive) {
|
|
401
|
+
dispatch_bool(reverse_, [&](auto reverse) {
|
|
402
|
+
if (contiguous) {
|
|
403
|
+
auto kernel = cu::contiguous_scan<
|
|
404
|
+
T,
|
|
405
|
+
U,
|
|
406
|
+
Op,
|
|
407
|
+
N_READS,
|
|
408
|
+
inclusive.value,
|
|
409
|
+
reverse.value>;
|
|
410
|
+
int block_dim = cuda::ceil_div(axis_size, N_READS);
|
|
411
|
+
block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE;
|
|
412
|
+
block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE);
|
|
413
|
+
encoder.add_kernel_node(
|
|
414
|
+
kernel,
|
|
415
|
+
in.data_size() / axis_size,
|
|
416
|
+
block_dim,
|
|
417
|
+
0,
|
|
418
|
+
gpu_ptr<T>(in),
|
|
419
|
+
gpu_ptr<U>(out),
|
|
420
|
+
axis_size);
|
|
421
|
+
} else {
|
|
422
|
+
constexpr int BM = WARP_SIZE;
|
|
423
|
+
constexpr int BN = WARP_SIZE;
|
|
424
|
+
auto kernel = cu::strided_scan<
|
|
425
|
+
T,
|
|
426
|
+
U,
|
|
427
|
+
Op,
|
|
428
|
+
N_READS,
|
|
429
|
+
BM,
|
|
430
|
+
BN,
|
|
431
|
+
inclusive.value,
|
|
432
|
+
reverse.value>;
|
|
433
|
+
int64_t stride = in.strides()[axis_];
|
|
434
|
+
int64_t stride_blocks = cuda::ceil_div(stride, BN);
|
|
435
|
+
dim3 num_blocks = get_2d_grid_dims(
|
|
436
|
+
in.shape(), in.strides(), axis_size * stride);
|
|
437
|
+
if (num_blocks.x * stride_blocks <= UINT32_MAX) {
|
|
438
|
+
num_blocks.x *= stride_blocks;
|
|
439
|
+
} else {
|
|
440
|
+
num_blocks.y *= stride_blocks;
|
|
441
|
+
}
|
|
442
|
+
int block_dim = (BN / N_READS) * WARP_SIZE;
|
|
443
|
+
encoder.add_kernel_node(
|
|
444
|
+
kernel,
|
|
445
|
+
num_blocks,
|
|
446
|
+
block_dim,
|
|
447
|
+
0,
|
|
448
|
+
gpu_ptr<T>(in),
|
|
449
|
+
gpu_ptr<U>(out),
|
|
450
|
+
axis_size,
|
|
451
|
+
stride,
|
|
452
|
+
stride_blocks);
|
|
453
|
+
}
|
|
454
|
+
});
|
|
455
|
+
});
|
|
456
|
+
} else {
|
|
457
|
+
throw std::runtime_error(
|
|
458
|
+
fmt::format(
|
|
459
|
+
"Can not do scan op {} on inputs of {} with result of {}.",
|
|
460
|
+
op_to_string<Op>(),
|
|
461
|
+
dtype_to_string(in.dtype()),
|
|
462
|
+
dtype_to_string(out.dtype())));
|
|
463
|
+
}
|
|
464
|
+
});
|
|
465
|
+
});
|
|
466
|
+
}
|
|
467
|
+
|
|
468
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include "mlx/backend/common/slicing.h"
|
|
4
|
+
#include "mlx/backend/cuda/device.h"
|
|
5
|
+
#include "mlx/backend/cuda/jit_module.h"
|
|
6
|
+
#include "mlx/backend/gpu/copy.h"
|
|
7
|
+
#include "mlx/backend/gpu/slicing.h"
|
|
8
|
+
#include "mlx/dtype_utils.h"
|
|
9
|
+
|
|
10
|
+
#include <numeric>
|
|
11
|
+
|
|
12
|
+
namespace mlx::core {
|
|
13
|
+
|
|
14
|
+
void concatenate_gpu(
|
|
15
|
+
const std::vector<array>& inputs,
|
|
16
|
+
array& out,
|
|
17
|
+
int axis,
|
|
18
|
+
const Stream& s) {
|
|
19
|
+
std::vector<int> sizes;
|
|
20
|
+
sizes.push_back(0);
|
|
21
|
+
for (auto& p : inputs) {
|
|
22
|
+
sizes.push_back(p.shape(axis));
|
|
23
|
+
}
|
|
24
|
+
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
|
|
25
|
+
|
|
26
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
27
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
28
|
+
|
|
29
|
+
auto strides = out.strides();
|
|
30
|
+
auto flags = out.flags();
|
|
31
|
+
flags.row_contiguous = false;
|
|
32
|
+
flags.col_contiguous = false;
|
|
33
|
+
flags.contiguous = false;
|
|
34
|
+
auto concurrent = encoder.concurrent_context();
|
|
35
|
+
for (int i = 0; i < inputs.size(); i++) {
|
|
36
|
+
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
|
37
|
+
size_t data_offset = strides[axis] * sizes[i];
|
|
38
|
+
out_slice.copy_shared_buffer(
|
|
39
|
+
out, strides, flags, out_slice.size(), data_offset);
|
|
40
|
+
copy_gpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, s);
|
|
41
|
+
}
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
array compute_dynamic_offset(
|
|
45
|
+
const array& indices,
|
|
46
|
+
const Strides& strides,
|
|
47
|
+
const std::vector<int>& axes,
|
|
48
|
+
const Stream& s) {
|
|
49
|
+
Dtype dtype = indices.dtype();
|
|
50
|
+
int nidx = axes.size();
|
|
51
|
+
|
|
52
|
+
std::string module_name =
|
|
53
|
+
fmt::format("compute_dynamic_offset_{}_{}", dtype_to_string(dtype), nidx);
|
|
54
|
+
std::string kernel_name = fmt::format(
|
|
55
|
+
"mlx::core::cu::compute_dynamic_offset<{}, {}>",
|
|
56
|
+
dtype_to_cuda_type(dtype),
|
|
57
|
+
nidx);
|
|
58
|
+
|
|
59
|
+
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
|
|
60
|
+
std::string source = R"(
|
|
61
|
+
#include "mlx/backend/cuda/device/utils.cuh"
|
|
62
|
+
|
|
63
|
+
namespace mlx::core::cu {
|
|
64
|
+
|
|
65
|
+
template <typename T, int NIDX>
|
|
66
|
+
__global__ void compute_dynamic_offset(
|
|
67
|
+
const T* indices,
|
|
68
|
+
int64_t* offset,
|
|
69
|
+
const __grid_constant__ Strides strides,
|
|
70
|
+
const __grid_constant__ cuda::std::array<int, NIDX> axes) {
|
|
71
|
+
int64_t acc = 0;
|
|
72
|
+
#pragma unroll
|
|
73
|
+
for (int i = 0; i < NIDX; ++i) {
|
|
74
|
+
acc += indices[i] * strides[axes[i]];
|
|
75
|
+
}
|
|
76
|
+
*offset = acc;
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
} // namespace mlx::core::cu
|
|
80
|
+
)";
|
|
81
|
+
return std::make_tuple(false, std::move(source), std::vector{kernel_name});
|
|
82
|
+
});
|
|
83
|
+
|
|
84
|
+
auto& encoder = cu::get_command_encoder(s);
|
|
85
|
+
// Prepare output.
|
|
86
|
+
array offset({1}, int64, nullptr, {});
|
|
87
|
+
bool donate = indices.is_donatable() &&
|
|
88
|
+
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
|
|
89
|
+
if (donate) {
|
|
90
|
+
offset.copy_shared_buffer(indices);
|
|
91
|
+
} else {
|
|
92
|
+
offset.set_data(cu::malloc_async(offset.itemsize(), encoder));
|
|
93
|
+
}
|
|
94
|
+
|
|
95
|
+
encoder.add_temporary(offset);
|
|
96
|
+
encoder.set_input_array(indices);
|
|
97
|
+
encoder.set_output_array(offset);
|
|
98
|
+
|
|
99
|
+
cu::KernelArgs args;
|
|
100
|
+
args.append(indices);
|
|
101
|
+
args.append(offset);
|
|
102
|
+
args.append_ndim(strides);
|
|
103
|
+
args.append(axes);
|
|
104
|
+
|
|
105
|
+
auto kernel = mod.get_kernel(kernel_name);
|
|
106
|
+
encoder.add_kernel_node(kernel, 1, 1, 0, args.args());
|
|
107
|
+
|
|
108
|
+
return offset;
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
} // namespace mlx::core
|