mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,708 @@
1
+ // Copyright © 2023 Apple Inc.
2
+
3
+ #include <numeric>
4
+ #include <ostream>
5
+ #include <vector>
6
+
7
+ #include "mlx/linalg.h"
8
+ #include "mlx/primitives.h"
9
+ #include "mlx/utils.h"
10
+
11
+ namespace mlx::core::linalg {
12
+
13
+ void check_cpu_stream(const StreamOrDevice& s, const std::string& prefix) {
14
+ if (to_stream(s).device == Device::gpu) {
15
+ throw std::invalid_argument(
16
+ prefix +
17
+ " This op is not yet supported on the GPU. "
18
+ "Explicitly pass a CPU stream to run it.");
19
+ }
20
+ }
21
+ void check_float(Dtype dtype, const std::string& prefix) {
22
+ if (dtype != float32 && dtype != float64) {
23
+ std::ostringstream msg;
24
+ msg << prefix << " Arrays must have type float32 or float64. "
25
+ << "Received array with type " << dtype << ".";
26
+ throw std::invalid_argument(msg.str());
27
+ }
28
+ }
29
+
30
+ void check_float_or_complex(Dtype dtype, const std::string& prefix) {
31
+ if (dtype != float32 && dtype != float64 && dtype != complex64) {
32
+ std::ostringstream msg;
33
+ msg << prefix << " Arrays must have type float32, float64 or complex64. "
34
+ << "Received array with type " << dtype << ".";
35
+ throw std::invalid_argument(msg.str());
36
+ }
37
+ }
38
+
39
+ Dtype at_least_float(const Dtype& d) {
40
+ return issubdtype(d, inexact) ? d : promote_types(d, float32);
41
+ }
42
+
43
+ inline array l2_norm(
44
+ const array& a,
45
+ const std::vector<int>& axis,
46
+ bool keepdims,
47
+ StreamOrDevice s) {
48
+ if (issubdtype(a.dtype(), complexfloating)) {
49
+ return sqrt(sum(abs(a, s) * abs(a, s), axis, keepdims, s), s);
50
+ } else {
51
+ return sqrt(sum(square(a, s), axis, keepdims, s), s);
52
+ }
53
+ }
54
+
55
+ inline array vector_norm(
56
+ const array& a,
57
+ const double ord,
58
+ const std::vector<int>& axis,
59
+ bool keepdims,
60
+ StreamOrDevice s) {
61
+ auto dtype = at_least_float(a.dtype());
62
+ if (ord == 0.0) {
63
+ return astype(sum(not_equal(a, array(0), s), axis, keepdims, s), dtype, s);
64
+ } else if (ord == 1.0) {
65
+ return astype(sum(abs(a, s), axis, keepdims, s), dtype, s);
66
+ } else if (ord == 2.0) {
67
+ return l2_norm(a, axis, keepdims, s);
68
+ } else if (ord == std::numeric_limits<double>::infinity()) {
69
+ return astype(max(abs(a, s), axis, keepdims, s), dtype, s);
70
+ } else if (ord == -std::numeric_limits<double>::infinity()) {
71
+ return astype(min(abs(a, s), axis, keepdims, s), dtype, s);
72
+ } else {
73
+ return power(
74
+ sum(power(abs(a, s), array(ord, dtype), s), axis, keepdims, s),
75
+ array(1.0 / ord, dtype),
76
+ s);
77
+ }
78
+ }
79
+
80
+ inline array matrix_norm(
81
+ const array& a,
82
+ const double ord,
83
+ const std::vector<int>& axis,
84
+ bool keepdims,
85
+ StreamOrDevice s) {
86
+ auto dtype = at_least_float(a.dtype());
87
+ auto row_axis = axis[0];
88
+ auto col_axis = axis[1];
89
+ if (ord == -1.0) {
90
+ col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
91
+ return astype(
92
+ min(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
93
+ dtype,
94
+ s);
95
+ } else if (ord == 1.0) {
96
+ col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
97
+ return astype(
98
+ max(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
99
+ dtype,
100
+ s);
101
+ } else if (ord == std::numeric_limits<double>::infinity()) {
102
+ row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
103
+ return astype(
104
+ max(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
105
+ dtype,
106
+ s);
107
+ } else if (ord == -std::numeric_limits<double>::infinity()) {
108
+ row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
109
+ return astype(
110
+ min(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
111
+ dtype,
112
+ s);
113
+ } else if (ord == 2.0 || ord == -2.0) {
114
+ row_axis = (axis[0] < 0) ? axis[0] + a.ndim() : axis[0];
115
+ col_axis = (axis[1] < 0) ? axis[1] + a.ndim() : axis[1];
116
+ auto a_matrix = (row_axis > col_axis)
117
+ ? moveaxis(moveaxis(a, row_axis, -1, s), col_axis, -1, s)
118
+ : moveaxis(moveaxis(a, col_axis, -1, s), row_axis, -2, s);
119
+ a_matrix = svd(a_matrix, false, s).at(0);
120
+ a_matrix = (ord == 2.0) ? max(a_matrix, -1, false, s)
121
+ : min(a_matrix, -1, false, s);
122
+ if (keepdims) {
123
+ std::vector<int> sorted_axes = (row_axis < col_axis)
124
+ ? std::vector<int>{row_axis, col_axis}
125
+ : std::vector<int>{col_axis, row_axis};
126
+ a_matrix = expand_dims(a_matrix, sorted_axes, s);
127
+ }
128
+ return astype(a_matrix, dtype, s);
129
+ } else {
130
+ std::ostringstream msg;
131
+ msg << "[linalg::norm] Invalid ord " << ord << " for matrix norm.";
132
+ throw std::invalid_argument(msg.str());
133
+ }
134
+ }
135
+
136
+ inline array matrix_norm(
137
+ const array& a,
138
+ const std::string& ord,
139
+ const std::vector<int>& axis,
140
+ bool keepdims,
141
+ StreamOrDevice s) {
142
+ if (ord == "f" || ord == "fro") {
143
+ return l2_norm(a, axis, keepdims, s);
144
+ } else if (ord == "nuc") {
145
+ int row_axis = (axis[0] < 0) ? axis[0] + a.ndim() : axis[0];
146
+ int col_axis = (axis[1] < 0) ? axis[1] + a.ndim() : axis[1];
147
+ auto a_matrix = (row_axis > col_axis)
148
+ ? moveaxis(moveaxis(a, row_axis, -1, s), col_axis, -1, s)
149
+ : moveaxis(moveaxis(a, col_axis, -1, s), row_axis, -2, s);
150
+ a_matrix = sum(svd(a_matrix, false, s).at(0), -1, false, s);
151
+ if (keepdims) {
152
+ std::vector<int> sorted_axes = (row_axis < col_axis)
153
+ ? std::vector<int>{row_axis, col_axis}
154
+ : std::vector<int>{col_axis, row_axis};
155
+ a_matrix = expand_dims(a_matrix, sorted_axes, s);
156
+ }
157
+ return a_matrix;
158
+ } else {
159
+ std::ostringstream msg;
160
+ msg << "[linalg::norm] Invalid ord value '" << ord << "' for matrix norm.";
161
+ throw std::invalid_argument(msg.str());
162
+ }
163
+ }
164
+
165
+ array norm(
166
+ const array& a,
167
+ const std::optional<std::vector<int>>& axis /* = std::nullopt */,
168
+ bool keepdims /* = false */,
169
+ StreamOrDevice s /* = {} */) {
170
+ if (!axis) {
171
+ return norm(flatten(a, s), std::vector<int>{0}, keepdims, s);
172
+ }
173
+
174
+ if (axis.value().size() > 2) {
175
+ throw std::invalid_argument(
176
+ "[linalg::norm] Received too many axes for norm.");
177
+ }
178
+ return l2_norm(a, axis.value(), keepdims, s);
179
+ }
180
+
181
+ array norm(
182
+ const array& a,
183
+ const double ord,
184
+ const std::optional<std::vector<int>>& axis /* = std::nullopt */,
185
+ bool keepdims /* = false */,
186
+ StreamOrDevice s /* = {} */) {
187
+ std::vector<int> ax;
188
+ if (!axis) {
189
+ ax.resize(a.ndim());
190
+ std::iota(ax.begin(), ax.end(), 0);
191
+ } else {
192
+ ax = axis.value();
193
+ }
194
+ if (ax.size() == 1) {
195
+ return vector_norm(a, ord, ax, keepdims, s);
196
+ } else if (ax.size() == 2) {
197
+ return matrix_norm(a, ord, ax, keepdims, s);
198
+ } else {
199
+ throw std::invalid_argument(
200
+ "[linalg::norm] Received too many axes for norm.");
201
+ }
202
+ }
203
+
204
+ array norm(
205
+ const array& a,
206
+ const std::string& ord,
207
+ const std::optional<std::vector<int>>& axis /* = std::nullopt */,
208
+ bool keepdims /* = false */,
209
+ StreamOrDevice s /* = {} */) {
210
+ std::vector<int> ax;
211
+ if (!axis) {
212
+ ax.resize(a.ndim());
213
+ std::iota(ax.begin(), ax.end(), 0);
214
+ } else {
215
+ ax = axis.value();
216
+ }
217
+ if (ax.size() != 2) {
218
+ std::ostringstream msg;
219
+ msg << "[linalg::norm] Norm '" << ord << "' only supported for matrices,"
220
+ << " but received " << ax.size() << " axis/axes.";
221
+ throw std::invalid_argument(msg.str());
222
+ }
223
+ return matrix_norm(a, ord, ax, keepdims, s);
224
+ }
225
+
226
+ std::pair<array, array> qr(const array& a, StreamOrDevice s /* = {} */) {
227
+ check_cpu_stream(s, "[linalg::qr]");
228
+ check_float(a.dtype(), "[linalg::qr]");
229
+
230
+ if (a.ndim() < 2) {
231
+ std::ostringstream msg;
232
+ msg << "[linalg::qr] Arrays must have >= 2 dimensions. Received array "
233
+ "with "
234
+ << a.ndim() << " dimensions.";
235
+ throw std::invalid_argument(msg.str());
236
+ }
237
+ int k = std::min(a.shape(-2), a.shape(-1));
238
+ auto q_shape = a.shape();
239
+ q_shape.back() = k;
240
+ auto r_shape = a.shape();
241
+ r_shape[r_shape.size() - 2] = k;
242
+ auto out = array::make_arrays(
243
+ {std::move(q_shape), std::move(r_shape)},
244
+ {a.dtype(), a.dtype()},
245
+ std::make_shared<QRF>(to_stream(s)),
246
+ {astype(a, a.dtype(), s)});
247
+ return std::make_pair(out[0], out[1]);
248
+ }
249
+
250
+ std::vector<array>
251
+ svd(const array& a, bool compute_uv, StreamOrDevice s /* = {} */) {
252
+ check_cpu_stream(s, "[linalg::svd]");
253
+ check_float_or_complex(a.dtype(), "[linalg::svd]");
254
+
255
+ if (a.ndim() < 2) {
256
+ std::ostringstream msg;
257
+ msg << "[linalg::svd] Input array must have >= 2 dimensions. Received array "
258
+ "with "
259
+ << a.ndim() << " dimensions.";
260
+ throw std::invalid_argument(msg.str());
261
+ }
262
+
263
+ const auto m = a.shape(-2);
264
+ const auto n = a.shape(-1);
265
+ const auto rank = a.ndim();
266
+
267
+ auto s_shape = a.shape();
268
+ s_shape.pop_back();
269
+ s_shape[rank - 2] = std::min(m, n);
270
+
271
+ auto s_dtype = a.dtype() == complex64 ? float32 : a.dtype();
272
+
273
+ if (!compute_uv) {
274
+ return {array(
275
+ std::move(s_shape),
276
+ s_dtype,
277
+ std::make_shared<SVD>(to_stream(s), compute_uv),
278
+ {a})};
279
+ }
280
+
281
+ auto u_shape = a.shape();
282
+ u_shape[rank - 2] = m;
283
+ u_shape[rank - 1] = m;
284
+
285
+ auto vt_shape = a.shape();
286
+ vt_shape[rank - 2] = n;
287
+ vt_shape[rank - 1] = n;
288
+
289
+ return array::make_arrays(
290
+ {u_shape, s_shape, vt_shape},
291
+ {a.dtype(), s_dtype, a.dtype()},
292
+ std::make_shared<SVD>(to_stream(s), compute_uv),
293
+ {a});
294
+ }
295
+
296
+ array inv_impl(const array& a, bool tri, bool upper, StreamOrDevice s) {
297
+ check_cpu_stream(s, "[linalg::inv]");
298
+ check_float(a.dtype(), "[linalg::inv]");
299
+
300
+ if (a.ndim() < 2) {
301
+ std::ostringstream msg;
302
+ msg << "[linalg::inv] Arrays must have >= 2 dimensions. Received array "
303
+ "with "
304
+ << a.ndim() << " dimensions.";
305
+ throw std::invalid_argument(msg.str());
306
+ }
307
+ if (a.shape(-1) != a.shape(-2)) {
308
+ throw std::invalid_argument(
309
+ "[linalg::inv] Inverses are only defined for square matrices.");
310
+ }
311
+
312
+ return array(
313
+ a.shape(),
314
+ a.dtype(),
315
+ std::make_shared<Inverse>(to_stream(s), tri, upper),
316
+ {a});
317
+ }
318
+
319
+ array inv(const array& a, StreamOrDevice s /* = {} */) {
320
+ return inv_impl(a, /*tri=*/false, /*upper=*/true, s);
321
+ }
322
+
323
+ array tri_inv(
324
+ const array& a,
325
+ bool upper /* = false */,
326
+ StreamOrDevice s /* = {} */) {
327
+ return inv_impl(a, /*tri=*/true, upper, s);
328
+ }
329
+
330
+ array cholesky(
331
+ const array& a,
332
+ bool upper /* = false */,
333
+ StreamOrDevice s /* = {} */) {
334
+ check_cpu_stream(s, "[linalg::cholesky]");
335
+ check_float(a.dtype(), "[linalg::cholesky]");
336
+ if (a.ndim() < 2) {
337
+ std::ostringstream msg;
338
+ msg << "[linalg::cholesky] Arrays must have >= 2 dimensions. Received array "
339
+ "with "
340
+ << a.ndim() << " dimensions.";
341
+ throw std::invalid_argument(msg.str());
342
+ }
343
+
344
+ if (a.shape(-1) != a.shape(-2)) {
345
+ throw std::invalid_argument(
346
+ "[linalg::cholesky] Cholesky decomposition is only defined for square "
347
+ "matrices.");
348
+ }
349
+ return array(
350
+ a.shape(),
351
+ a.dtype(),
352
+ std::make_shared<Cholesky>(to_stream(s), upper),
353
+ {a});
354
+ }
355
+
356
+ array pinv(const array& a, StreamOrDevice s /* = {} */) {
357
+ check_cpu_stream(s, "[linalg::pinv]");
358
+ check_float(a.dtype(), "[linalg::pinv]");
359
+
360
+ if (a.ndim() < 2) {
361
+ std::ostringstream msg;
362
+ msg << "[linalg::pinv] Arrays must have >= 2 dimensions. Received array "
363
+ << "with " << a.ndim() << " dimensions.";
364
+ throw std::invalid_argument(msg.str());
365
+ }
366
+
367
+ int m = a.shape(-2);
368
+ int n = a.shape(-1);
369
+ int k = std::min(m, n);
370
+ auto outs = linalg::svd(a, true, s);
371
+ array U = outs[0];
372
+ array S = outs[1];
373
+ array V = outs[2];
374
+
375
+ Shape starts(a.ndim(), 0);
376
+ auto ends = a.shape();
377
+ int i = a.ndim() - 2;
378
+ int j = a.ndim() - 1;
379
+
380
+ // Prepare U
381
+ ends[i] = m;
382
+ ends[j] = k;
383
+ U = swapaxes(slice(U, starts, ends, s), -1, -2, s);
384
+
385
+ // Prepare V
386
+ ends[i] = k;
387
+ ends[j] = n;
388
+ V = swapaxes(slice(V, starts, ends, s), -1, -2, s);
389
+
390
+ // Prepare S
391
+ S = expand_dims(S, -2, s);
392
+
393
+ auto rcond = 10. * std::max(m, n) * finfo(a.dtype()).eps;
394
+ auto cutoff = multiply(array(rcond, a.dtype()), max(S, -1, true, s), s);
395
+ auto rS =
396
+ where(greater(S, cutoff, s), reciprocal(S, s), array(0.0f, a.dtype()), s);
397
+
398
+ return matmul(multiply(V, rS, s), U, s);
399
+ }
400
+
401
+ array cholesky_inv(
402
+ const array& L,
403
+ bool upper /* = false */,
404
+ StreamOrDevice s /* = {} */) {
405
+ check_cpu_stream(s, "[linalg::cholesky_inv]");
406
+ check_float(L.dtype(), "[linalg::cholesky_inv]");
407
+
408
+ if (L.ndim() < 2) {
409
+ std::ostringstream msg;
410
+ msg << "[linalg::cholesky_inv] Arrays must have >= 2 dimensions. Received array "
411
+ "with "
412
+ << L.ndim() << " dimensions.";
413
+ throw std::invalid_argument(msg.str());
414
+ }
415
+
416
+ if (L.shape(-1) != L.shape(-2)) {
417
+ throw std::invalid_argument(
418
+ "[linalg::cholesky_inv] Cholesky inverse is only defined for square "
419
+ "matrices.");
420
+ }
421
+
422
+ array L_inv = tri_inv(L, upper, s);
423
+ if (upper) {
424
+ return matmul(L_inv, swapaxes(L_inv, -1, -2, s), s);
425
+ } else {
426
+ return matmul(swapaxes(L_inv, -1, -2, s), L_inv, s);
427
+ }
428
+ }
429
+
430
+ array cross(
431
+ const array& a,
432
+ const array& b,
433
+ int axis /* = -1 */,
434
+ StreamOrDevice s /* = {} */) {
435
+ auto check_ax = [axis](const array& arr) {
436
+ if (axis >= static_cast<int>(arr.ndim()) || axis + arr.ndim() < 0) {
437
+ std::ostringstream msg;
438
+ msg << "[linalg::cross] axis " << axis << " invalid for array with "
439
+ << arr.ndim() << " dimensions.";
440
+ throw std::invalid_argument(msg.str());
441
+ }
442
+ if (arr.shape(axis) < 2 || arr.shape(axis) > 3) {
443
+ throw std::invalid_argument(
444
+ "[linalg::cross] The specified axis must have size 2 or 3.");
445
+ }
446
+ };
447
+ check_ax(a);
448
+ check_ax(b);
449
+
450
+ bool a_2d = a.shape(axis) == 2;
451
+ bool b_2d = b.shape(axis) == 2;
452
+
453
+ auto out_type = promote_types(a.dtype(), b.dtype());
454
+ auto ashape = a.shape();
455
+ auto bshape = b.shape();
456
+
457
+ ashape[axis < 0 ? axis + a.ndim() : axis] = 3;
458
+ bshape[axis < 0 ? axis + b.ndim() : axis] = 3;
459
+ auto out_shape = broadcast_shapes(ashape, bshape);
460
+
461
+ if (axis < 0) {
462
+ axis += out_shape.size();
463
+ }
464
+
465
+ out_shape[axis] = a_2d ? 2 : 3;
466
+ auto a_ = broadcast_to(astype(a, out_type, s), out_shape, s);
467
+
468
+ out_shape[axis] = b_2d ? 2 : 3;
469
+ auto b_ = broadcast_to(astype(b, out_type, s), out_shape, s);
470
+
471
+ auto a_splits = split(a_, a_2d ? 2 : 3, axis);
472
+ auto b_splits = split(b_, b_2d ? 2 : 3, axis);
473
+
474
+ std::vector<array> outputs;
475
+ if (a_2d && b_2d) {
476
+ auto z = zeros_like(a_splits[0], s);
477
+ outputs.push_back(z);
478
+ outputs.push_back(z);
479
+ } else if (b_2d) {
480
+ outputs.push_back(negative(multiply(a_splits[2], b_splits[1], s), s));
481
+ outputs.push_back(multiply(a_splits[2], b_splits[0], s));
482
+ } else if (a_2d) {
483
+ outputs.push_back(multiply(a_splits[1], b_splits[2], s));
484
+ outputs.push_back(negative(multiply(a_splits[0], b_splits[2], s), s));
485
+ } else {
486
+ outputs.push_back(subtract(
487
+ multiply(a_splits[1], b_splits[2], s),
488
+ multiply(a_splits[2], b_splits[1], s),
489
+ s));
490
+ outputs.push_back(subtract(
491
+ multiply(a_splits[2], b_splits[0], s),
492
+ multiply(a_splits[0], b_splits[2], s),
493
+ s));
494
+ }
495
+ outputs.push_back(subtract(
496
+ multiply(a_splits[0], b_splits[1], s),
497
+ multiply(a_splits[1], b_splits[0], s),
498
+ s));
499
+ return concatenate(outputs, axis, s);
500
+ }
501
+
502
+ void validate_eig(
503
+ const array& a,
504
+ const StreamOrDevice& stream,
505
+ const std::string& fname) {
506
+ check_cpu_stream(stream, fname);
507
+ check_float_or_complex(a.dtype(), fname);
508
+
509
+ if (a.ndim() < 2) {
510
+ std::ostringstream msg;
511
+ msg << fname << " Arrays must have >= 2 dimensions. Received array with "
512
+ << a.ndim() << " dimensions.";
513
+ throw std::invalid_argument(msg.str());
514
+ }
515
+
516
+ if (a.shape(-1) != a.shape(-2)) {
517
+ throw std::invalid_argument(fname + " Only defined for square matrices.");
518
+ }
519
+ }
520
+
521
+ array eigvalsh(
522
+ const array& a,
523
+ std::string UPLO /* = "L" */,
524
+ StreamOrDevice s /* = {} */) {
525
+ validate_eig(a, s, "[linalg::eigvalsh]");
526
+ Shape out_shape(a.shape().begin(), a.shape().end() - 1);
527
+ Dtype eigval_type = a.dtype() == complex64 ? float32 : a.dtype();
528
+ return array(
529
+ std::move(out_shape),
530
+ eigval_type,
531
+ std::make_shared<Eigh>(to_stream(s), UPLO, false),
532
+ {a});
533
+ }
534
+
535
+ std::pair<array, array> eigh(
536
+ const array& a,
537
+ std::string UPLO /* = "L" */,
538
+ StreamOrDevice s /* = {} */) {
539
+ validate_eig(a, s, "[linalg::eigh]");
540
+ Dtype eigval_type = a.dtype() == complex64 ? float32 : a.dtype();
541
+ auto out = array::make_arrays(
542
+ {Shape(a.shape().begin(), a.shape().end() - 1), a.shape()},
543
+ {eigval_type, a.dtype()},
544
+ std::make_shared<Eigh>(to_stream(s), UPLO, true),
545
+ {a});
546
+ return std::make_pair(out[0], out[1]);
547
+ }
548
+
549
+ array eigvals(const array& a, StreamOrDevice s /* = {} */) {
550
+ validate_eig(a, s, "[linalg::eigvals]");
551
+ Shape out_shape(a.shape().begin(), a.shape().end() - 1);
552
+ return array(
553
+ std::move(out_shape),
554
+ complex64,
555
+ std::make_shared<Eig>(to_stream(s), false),
556
+ {a});
557
+ }
558
+
559
+ std::pair<array, array> eig(const array& a, StreamOrDevice s /* = {} */) {
560
+ validate_eig(a, s, "[linalg::eig]");
561
+ auto out = array::make_arrays(
562
+ {Shape(a.shape().begin(), a.shape().end() - 1), a.shape()},
563
+ {complex64, complex64},
564
+ std::make_shared<Eig>(to_stream(s), true),
565
+ {a});
566
+ return std::make_pair(out[0], out[1]);
567
+ }
568
+
569
+ void validate_lu(
570
+ const array& a,
571
+ const StreamOrDevice& stream,
572
+ const std::string& fname) {
573
+ check_cpu_stream(stream, fname);
574
+ check_float(a.dtype(), fname);
575
+
576
+ if (a.ndim() < 2) {
577
+ std::ostringstream msg;
578
+ msg << fname
579
+ << " Arrays must have >= 2 dimensions. Received array "
580
+ "with "
581
+ << a.ndim() << " dimensions.";
582
+ throw std::invalid_argument(msg.str());
583
+ }
584
+ }
585
+
586
+ std::vector<array> lu_helper(const array& a, StreamOrDevice s /* = {} */) {
587
+ int m = a.shape()[a.shape().size() - 2];
588
+ int n = a.shape()[a.shape().size() - 1];
589
+
590
+ Shape pivots_shape(a.shape().begin(), a.shape().end() - 2);
591
+ pivots_shape.push_back(std::min(m, n));
592
+
593
+ Shape row_idx_shape(a.shape().begin(), a.shape().end() - 1);
594
+
595
+ return array::make_arrays(
596
+ {a.shape(), pivots_shape, row_idx_shape},
597
+ {a.dtype(), uint32, uint32},
598
+ std::make_shared<LUF>(to_stream(s)),
599
+ {astype(a, a.dtype(), s)});
600
+ }
601
+
602
+ std::vector<array> lu(const array& a, StreamOrDevice s /* = {} */) {
603
+ validate_lu(a, s, "[linalg::lu]");
604
+
605
+ auto out = lu_helper(a, s);
606
+ auto& LU = out[0];
607
+ auto& row_pivots = out[2];
608
+ auto L = tril(LU, /* k = */ -1, s);
609
+ auto U = triu(LU, /* k = */ 0, s);
610
+
611
+ int M = a.shape(-2);
612
+ int N = a.shape(-1);
613
+ int K = std::min(M, N);
614
+ if (N != K) {
615
+ auto start = Shape(L.ndim(), 0);
616
+ auto stop = L.shape();
617
+ stop.back() = K;
618
+ L = slice(L, std::move(start), std::move(stop), s);
619
+ } else if (M != K) {
620
+ auto start = Shape(U.ndim(), 0);
621
+ auto stop = U.shape();
622
+ stop[U.ndim() - 2] = K;
623
+ U = slice(U, std::move(start), std::move(stop), s);
624
+ }
625
+ L = add(L, eye(M, K, s), s);
626
+ return {row_pivots, L, U};
627
+ }
628
+
629
+ std::pair<array, array> lu_factor(const array& a, StreamOrDevice s /* = {} */) {
630
+ validate_lu(a, s, "[linalg::lu_factor]");
631
+ auto out = lu_helper(a, s);
632
+ return std::make_pair(out[0], out[1]);
633
+ }
634
+
635
+ void validate_solve(
636
+ const array& a,
637
+ const array& b,
638
+ const StreamOrDevice& stream,
639
+ const std::string& fname) {
640
+ check_cpu_stream(stream, fname);
641
+ if (a.ndim() < 2) {
642
+ std::ostringstream msg;
643
+ msg << fname << " First input must have >= 2 dimensions. "
644
+ << "Received array with " << a.ndim() << " dimensions.";
645
+ throw std::invalid_argument(msg.str());
646
+ }
647
+
648
+ if (b.ndim() < 1) {
649
+ std::ostringstream msg;
650
+ msg << fname << " Second input must have >= 1 dimensions. "
651
+ << "Received array with " << b.ndim() << " dimensions.";
652
+ throw std::invalid_argument(msg.str());
653
+ }
654
+
655
+ if (a.shape(-1) != a.shape(-2)) {
656
+ std::ostringstream msg;
657
+ msg << fname << " First input must be a square matrix. "
658
+ << "Received array with shape " << a.shape() << ".";
659
+ throw std::invalid_argument(msg.str());
660
+ }
661
+
662
+ int lastDim = b.ndim() > 1 ? -2 : -1;
663
+ if (a.shape(-1) != b.shape(lastDim)) {
664
+ std::ostringstream msg;
665
+ msg << fname << " Last dimension of first input with shape " << a.shape()
666
+ << " must match second to last dimension of"
667
+ << " second input with shape " << b.shape() << ".";
668
+ throw std::invalid_argument(msg.str());
669
+ }
670
+
671
+ auto out_type = promote_types(a.dtype(), b.dtype());
672
+ if (out_type != float32 && out_type != float64) {
673
+ std::ostringstream msg;
674
+ msg << fname
675
+ << " Input arrays must promote to float32 or float64. "
676
+ " Received arrays with type "
677
+ << a.dtype() << " and " << b.dtype() << ".";
678
+ throw std::invalid_argument(msg.str());
679
+ }
680
+ }
681
+
682
+ array solve(const array& a, const array& b, StreamOrDevice s /* = {} */) {
683
+ validate_solve(a, b, s, "[linalg::solve]");
684
+
685
+ // P, L, U matrices
686
+ const auto luf = lu(a, s);
687
+ auto perm = argsort(luf[0], -1, s);
688
+ int take_axis = -1;
689
+ if (b.ndim() >= 2) {
690
+ perm = expand_dims(perm, -1, s);
691
+ take_axis -= 1;
692
+ }
693
+ auto pb = take_along_axis(b, perm, take_axis, s);
694
+ auto y = solve_triangular(luf[1], pb, /* upper = */ false, s);
695
+ return solve_triangular(luf[2], y, /* upper = */ true, s);
696
+ }
697
+
698
+ array solve_triangular(
699
+ const array& a,
700
+ const array& b,
701
+ bool upper /* = false */,
702
+ StreamOrDevice s /* = {} */) {
703
+ validate_solve(a, b, s, "[linalg::solve_triangular]");
704
+ auto a_inv = tri_inv(a, upper, s);
705
+ return matmul(a_inv, b, s);
706
+ }
707
+
708
+ } // namespace mlx::core::linalg