mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,701 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+
3
+ #include <metal_simdgroup>
4
+ #include <metal_simdgroup_matrix>
5
+ #include <metal_stdlib>
6
+
7
+ #include "mlx/backend/metal/kernels/steel/conv/params.h"
8
+ #include "mlx/backend/metal/kernels/utils.h"
9
+
10
+ #define MLX_MTL_CONST static constant constexpr const
11
+
12
+ using namespace metal;
13
+
14
+ ///////////////////////////////////////////////////////////////////////////////
15
+ /// Naive unfold with dilation
16
+ ///////////////////////////////////////////////////////////////////////////////
17
+
18
+ template <typename T, int N>
19
+ [[kernel]] void naive_unfold_Nd(
20
+ const device T* in [[buffer(0)]],
21
+ device T* out [[buffer(1)]],
22
+ const constant MLXConvParams<N>* params [[buffer(2)]],
23
+ uint3 gid [[thread_position_in_grid]]) {
24
+ int filter_size = params->C;
25
+ for (short i = 0; i < N; i++)
26
+ filter_size *= params->wS[i];
27
+
28
+ int out_pixels = 1;
29
+ for (short i = 0; i < N; i++)
30
+ out_pixels *= params->oS[i];
31
+
32
+ // Set out
33
+ out += gid.z * filter_size + gid.y * (params->C);
34
+
35
+ // Coordinates in input
36
+ int is[N] = {0};
37
+
38
+ // gid.z: N oS (Batch and row in unfolded output)
39
+ // gid.y: wS (Filter location to unfold input)
40
+ // gid.x: C (channel)
41
+
42
+ int n = (gid.z) / out_pixels;
43
+ int oS = (gid.z) % out_pixels;
44
+ int wS = gid.y;
45
+
46
+ bool valid = n < params->N;
47
+
48
+ // Unroll dimensions
49
+ for (int i = N - 1; i >= 0; --i) {
50
+ int os_ = (oS % params->oS[i]);
51
+ int ws_ = (wS % params->wS[i]);
52
+
53
+ ws_ = params->flip ? params->wS[i] - ws_ - 1 : ws_;
54
+
55
+ int is_ = os_ * params->str[i] - params->pad[i] + ws_ * params->kdil[i];
56
+ int is_max = 1 + params->idil[i] * (params->iS[i] - 1);
57
+
58
+ valid &= is_ >= 0 && is_ < is_max && (is_ % params->idil[i] == 0);
59
+
60
+ is[i] = is_ / params->idil[i];
61
+
62
+ oS /= params->oS[i];
63
+ wS /= params->wS[i];
64
+ }
65
+
66
+ if (valid) {
67
+ size_t in_offset = n * params->in_strides[0];
68
+
69
+ for (int i = 0; i < N; ++i) {
70
+ in_offset += is[i] * params->in_strides[i + 1];
71
+ }
72
+
73
+ out[gid.x] = in[in_offset + gid.x];
74
+ } else {
75
+ out[gid.x] = T(0);
76
+ }
77
+ }
78
+
79
+ // This kernel unfolds the input array of size (N, *spatial_dims, C)
80
+ // into an array of size (N x *spatial_dims, C x *kernel_dims).
81
+ template <typename T, int N>
82
+ [[kernel]] void naive_unfold_transpose_Nd(
83
+ const device T* in [[buffer(0)]],
84
+ device T* out [[buffer(1)]],
85
+ const constant MLXConvParams<N>* params [[buffer(2)]],
86
+ uint3 gid [[thread_position_in_grid]]) {
87
+ int filter_size = params->C;
88
+ for (short i = 0; i < N; i++)
89
+ filter_size *= params->wS[i];
90
+
91
+ int out_pixels = 1;
92
+ for (short i = 0; i < N; i++)
93
+ out_pixels *= params->oS[i];
94
+
95
+ // Set out
96
+ out += gid.z * filter_size + gid.x * (filter_size / params->C);
97
+
98
+ // Coordinates in input
99
+ int is[N] = {0};
100
+
101
+ // gid.z: N oS (Batch and row in unfolded output)
102
+ // gid.y: wS (Filter location to unfold input)
103
+ // gid.x: C (channel)
104
+
105
+ int n = (gid.z) / out_pixels;
106
+ int oS = (gid.z) % out_pixels;
107
+ int wS = gid.y;
108
+
109
+ bool valid = n < params->N;
110
+
111
+ // Unroll dimensions
112
+ int kernel_stride = 1;
113
+ for (int i = N - 1; i >= 0; --i) {
114
+ int os_ = (oS % params->oS[i]);
115
+ int ws_ = (wS % params->wS[i]);
116
+ out += ws_ * kernel_stride;
117
+
118
+ ws_ = params->flip ? params->wS[i] - ws_ - 1 : ws_;
119
+
120
+ int is_ = os_ * params->str[i] - params->pad[i] + ws_ * params->kdil[i];
121
+ int is_max = 1 + params->idil[i] * (params->iS[i] - 1);
122
+
123
+ valid &= is_ >= 0 && is_ < is_max && (is_ % params->idil[i] == 0);
124
+
125
+ is[i] = is_ / params->idil[i];
126
+
127
+ oS /= params->oS[i];
128
+ wS /= params->wS[i];
129
+
130
+ kernel_stride *= params->wS[i];
131
+ }
132
+
133
+ if (valid) {
134
+ size_t in_offset = n * params->in_strides[0];
135
+
136
+ for (int i = 0; i < N; ++i) {
137
+ in_offset += is[i] * params->in_strides[i + 1];
138
+ }
139
+
140
+ out[0] = in[in_offset + gid.x];
141
+ } else {
142
+ out[0] = T(0);
143
+ }
144
+ }
145
+
146
+ #define instantiate_naive_unfold_nd(name, itype, n) \
147
+ template [[host_name("naive_unfold_nd_" #name "_" #n)]] [[kernel]] void \
148
+ naive_unfold_Nd( \
149
+ const device itype* in [[buffer(0)]], \
150
+ device itype* out [[buffer(1)]], \
151
+ const constant MLXConvParams<n>* params [[buffer(2)]], \
152
+ uint3 gid [[thread_position_in_grid]]); \
153
+ template \
154
+ [[host_name("naive_unfold_transpose_nd_" #name "_" #n)]] [[kernel]] void \
155
+ naive_unfold_transpose_Nd( \
156
+ const device itype* in [[buffer(0)]], \
157
+ device itype* out [[buffer(1)]], \
158
+ const constant MLXConvParams<n>* params [[buffer(2)]], \
159
+ uint3 gid [[thread_position_in_grid]]);
160
+
161
+ #define instantiate_naive_unfold_nd_dims(name, itype) \
162
+ instantiate_naive_unfold_nd(name, itype, 1) instantiate_naive_unfold_nd( \
163
+ name, itype, 2) instantiate_naive_unfold_nd(name, itype, 3)
164
+
165
+ instantiate_naive_unfold_nd_dims(float32, float);
166
+ instantiate_naive_unfold_nd_dims(float16, half);
167
+ instantiate_naive_unfold_nd_dims(bfloat16, bfloat16_t);
168
+
169
+ ///////////////////////////////////////////////////////////////////////////////
170
+ /// Depthwise convolution kernels
171
+ ///////////////////////////////////////////////////////////////////////////////
172
+
173
+ constant int ker_h [[function_constant(00)]];
174
+ constant int ker_w [[function_constant(01)]];
175
+ constant int str_h [[function_constant(10)]];
176
+ constant int str_w [[function_constant(11)]];
177
+ constant int tgp_h [[function_constant(100)]];
178
+ constant int tgp_w [[function_constant(101)]];
179
+ constant bool do_flip [[function_constant(200)]];
180
+
181
+ constant int span_h = tgp_h * str_h + ker_h - 1;
182
+ constant int span_w = tgp_w * str_w + ker_w - 1;
183
+ constant int span_hw = span_h * span_w;
184
+
185
+ template <typename T>
186
+ [[kernel]] void depthwise_conv_2d(
187
+ const device T* in [[buffer(0)]],
188
+ const device T* wt [[buffer(1)]],
189
+ device T* out [[buffer(2)]],
190
+ const constant MLXConvParams<2>& params [[buffer(3)]],
191
+ uint3 tid [[threadgroup_position_in_grid]],
192
+ uint3 lid [[thread_position_in_threadgroup]],
193
+ uint3 gid [[thread_position_in_grid]],
194
+ uint simd_gid [[simdgroup_index_in_threadgroup]],
195
+ uint simd_lid [[thread_index_in_simdgroup]]) {
196
+ constexpr int tc = 8;
197
+ constexpr int tw = 8;
198
+ constexpr int th = 4;
199
+
200
+ constexpr int c_per_thr = 8;
201
+
202
+ constexpr int TGH = th * 2 + 6;
203
+ constexpr int TGW = tw * 2 + 6;
204
+ constexpr int TGC = tc;
205
+
206
+ threadgroup T ins[TGH * TGW * TGC];
207
+
208
+ const int n_tgblocks_h = params.oS[0] / th;
209
+ const int n = tid.z / n_tgblocks_h;
210
+ const int tghid = tid.z % n_tgblocks_h;
211
+ const int oh = tghid * th + lid.z;
212
+ const int ow = gid.y;
213
+ const int c = gid.x;
214
+
215
+ in += n * params.in_strides[0];
216
+
217
+ // Load in
218
+ {
219
+ constexpr int n_threads = th * tw * tc;
220
+ const int tg_oh = (tghid * th) * str_h - params.pad[0];
221
+ const int tg_ow = (tid.y * tw) * str_w - params.pad[1];
222
+ const int tg_c = tid.x * tc;
223
+
224
+ const int thread_idx = simd_gid * 32 + simd_lid;
225
+ constexpr int thr_per_hw = tc / c_per_thr;
226
+ constexpr int hw_per_group = n_threads / thr_per_hw;
227
+
228
+ const int thr_c = thread_idx % thr_per_hw;
229
+ const int thr_hw = thread_idx / thr_per_hw;
230
+
231
+ for (int hw = thr_hw; hw < span_hw; hw += hw_per_group) {
232
+ const int h = hw / span_w;
233
+ const int w = hw % span_w;
234
+
235
+ const int ih = tg_oh + h;
236
+ const int iw = tg_ow + w;
237
+
238
+ const int in_s_offset = h * span_w * TGC + w * TGC;
239
+
240
+ if (ih >= 0 && ih < params.iS[0] && iw >= 0 && iw < params.iS[1]) {
241
+ const auto in_load =
242
+ in + ih * params.in_strides[1] + iw * params.in_strides[2] + tg_c;
243
+
244
+ MLX_MTL_PRAGMA_UNROLL
245
+ for (int cc = 0; cc < c_per_thr; ++cc) {
246
+ ins[in_s_offset + c_per_thr * thr_c + cc] =
247
+ in_load[c_per_thr * thr_c + cc];
248
+ }
249
+ } else {
250
+ MLX_MTL_PRAGMA_UNROLL
251
+ for (int cc = 0; cc < c_per_thr; ++cc) {
252
+ ins[in_s_offset + c_per_thr * thr_c + cc] = T(0);
253
+ }
254
+ }
255
+ }
256
+ }
257
+
258
+ threadgroup_barrier(mem_flags::mem_threadgroup);
259
+ wt += c * params.wt_strides[0];
260
+
261
+ const auto ins_ptr =
262
+ &ins[lid.z * str_h * span_w * TGC + lid.y * str_w * TGC + lid.x];
263
+ float o = 0.;
264
+ for (int h = 0; h < ker_h; ++h) {
265
+ for (int w = 0; w < ker_w; ++w) {
266
+ int wt_h = h;
267
+ int wt_w = w;
268
+ if (do_flip) {
269
+ wt_h = ker_h - h - 1;
270
+ wt_w = ker_w - w - 1;
271
+ }
272
+ auto inv = ins_ptr[h * span_w * TGC + w * TGC];
273
+ auto wtv = wt[wt_h * ker_w + wt_w];
274
+ o += inv * wtv;
275
+ }
276
+ }
277
+ threadgroup_barrier(mem_flags::mem_none);
278
+
279
+ out += n * params.out_strides[0] + oh * params.out_strides[1] +
280
+ ow * params.out_strides[2];
281
+ out[c] = static_cast<T>(o);
282
+ }
283
+
284
+ #define instantiate_depthconv2d(iname, itype) \
285
+ instantiate_kernel("depthwise_conv_2d_" #iname, depthwise_conv_2d, itype)
286
+
287
+ instantiate_depthconv2d(float32, float);
288
+ instantiate_depthconv2d(float16, half);
289
+ instantiate_depthconv2d(bfloat16, bfloat16_t);
290
+
291
+ template <typename T, typename IdxT>
292
+ [[kernel]] void depthwise_conv_1d(
293
+ const device T* in [[buffer(0)]],
294
+ const device T* w [[buffer(1)]],
295
+ device T* out [[buffer(2)]],
296
+ constant const IdxT strides[3],
297
+ constant const int& kernel_size,
298
+ uint3 tid [[thread_position_in_grid]],
299
+ uint3 grid_dim [[threads_per_grid]]) {
300
+ out += (tid.z * static_cast<IdxT>(grid_dim.y) + tid.y) * grid_dim.x + tid.x;
301
+ in += tid.z * strides[0] + tid.y * strides[1] + tid.x * strides[2];
302
+ w += tid.x * kernel_size;
303
+
304
+ float acc = 0.0;
305
+ for (int i = 0; i < kernel_size; ++i) {
306
+ acc += static_cast<float>(in[0]) * w[i];
307
+ in += strides[1];
308
+ }
309
+ *out = static_cast<T>(acc);
310
+ }
311
+
312
+ #define instantiate_depthconv1d(iname, itype) \
313
+ instantiate_kernel( \
314
+ "depthwise_conv_1d_" #iname, depthwise_conv_1d, itype, int32_t) \
315
+ instantiate_kernel( \
316
+ "depthwise_conv_1d_" #iname "_large", \
317
+ depthwise_conv_1d, \
318
+ itype, \
319
+ int64_t)
320
+
321
+ instantiate_depthconv1d(float32, float);
322
+ instantiate_depthconv1d(float16, half);
323
+ instantiate_depthconv1d(bfloat16, bfloat16_t);
324
+
325
+ ///////////////////////////////////////////////////////////////////////////////
326
+ /// Winograd kernels
327
+ ///////////////////////////////////////////////////////////////////////////////
328
+
329
+ template <int M, int R, int S>
330
+ struct WinogradTransforms {};
331
+
332
+ template <>
333
+ struct WinogradTransforms<6, 3, 8> {
334
+ MLX_MTL_CONST int OUT_TILE_SIZE = 6;
335
+ MLX_MTL_CONST int FILTER_SIZE = 3;
336
+ MLX_MTL_CONST int IN_TILE_SIZE = OUT_TILE_SIZE + FILTER_SIZE - 1;
337
+ MLX_MTL_CONST int SIMD_MATRIX_SIZE = 8;
338
+ MLX_MTL_CONST float in_transform[SIMD_MATRIX_SIZE][SIMD_MATRIX_SIZE] = {
339
+ {1.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f},
340
+ {0.00f, 1.00f, -1.00f, 0.50f, -0.50f, 2.00f, -2.00f, -1.00f},
341
+ {-5.25f, 1.00f, 1.00f, 0.25f, 0.25f, 4.00f, 4.00f, 0.00f},
342
+ {0.00f, -4.25f, 4.25f, -2.50f, 2.50f, -2.50f, 2.50f, 5.25f},
343
+ {5.25f, -4.25f, -4.25f, -1.25f, -1.25f, -5.00f, -5.00f, 0.00f},
344
+ {0.00f, 1.00f, -1.00f, 2.00f, -2.00f, 0.50f, -0.50f, -5.25f},
345
+ {-1.00f, 1.00f, 1.00f, 1.00f, 1.00f, 1.00f, 1.00f, 0.00f},
346
+ {0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 1.00f},
347
+ };
348
+
349
+ MLX_MTL_CONST float out_transform[SIMD_MATRIX_SIZE][SIMD_MATRIX_SIZE] = {
350
+ {1.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f},
351
+ {1.00f, 1.00f, 1.00f, 1.00f, 1.00f, 1.00f},
352
+ {1.00f, -1.00f, 1.00f, -1.00f, 1.00f, -1.00f},
353
+ {1.00f, 2.00f, 4.00f, 8.00f, 16.00f, 32.00f},
354
+ {1.00f, -2.00f, 4.00f, -8.00f, 16.00f, -32.00f},
355
+ {1.00f, 0.50f, 0.25f, 0.125f, 0.0625f, 0.03125f},
356
+ {1.00f, -0.50f, 0.25f, -0.125f, 0.0625f, -0.03125f},
357
+ {0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 1.00f},
358
+ };
359
+
360
+ MLX_MTL_CONST float wt_transform[SIMD_MATRIX_SIZE][SIMD_MATRIX_SIZE] = {
361
+ {1.00, 0.00, 0.00},
362
+ {-2.0 / 9.00, -2.0 / 9.00, -2.0 / 9.00},
363
+ {-2.0 / 9.00, 2.0 / 9.00, -2.0 / 9.00},
364
+ {1.0 / 90.0, 1.0 / 45.0, 2.0 / 45.0},
365
+ {1.0 / 90.0, -1.0 / 45.0, 2.0 / 45.0},
366
+ {32.0 / 45.0, 16.0 / 45.0, 8.0 / 45.0},
367
+ {32.0 / 45.0, -16.0 / 45.0, 8.0 / 45.0},
368
+ {0.00, 0.00, 1.00},
369
+ };
370
+ };
371
+
372
+ constant constexpr const float WinogradTransforms<6, 3, 8>::wt_transform[8][8];
373
+ constant constexpr const float WinogradTransforms<6, 3, 8>::in_transform[8][8];
374
+ constant constexpr const float WinogradTransforms<6, 3, 8>::out_transform[8][8];
375
+
376
+ template <typename T, int BC = 32, int BO = 4, int M = 6, int R = 3>
377
+ [[kernel, max_total_threads_per_threadgroup(BO * 32)]] void
378
+ winograd_conv_2d_weight_transform(
379
+ const device T* wt_in [[buffer(0)]],
380
+ device T* wt_out [[buffer(1)]],
381
+ const constant int& C [[buffer(2)]],
382
+ const constant int& O [[buffer(3)]],
383
+ uint tid [[threadgroup_position_in_grid]],
384
+ uint simd_group_id [[simdgroup_index_in_threadgroup]],
385
+ uint simd_lane_id [[thread_index_in_simdgroup]]) {
386
+ using WGT = WinogradTransforms<M, R, 8>;
387
+
388
+ // Get lane position in simdgroup
389
+ const short qid = simd_lane_id / 4;
390
+ const short sm = (qid & 4) + (simd_lane_id / 2) % 4;
391
+ const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
392
+
393
+ // Initialize G matrix
394
+ simdgroup_matrix<float, 8, 8> G;
395
+ G.thread_elements()[0] = WGT::wt_transform[sm][sn];
396
+ G.thread_elements()[1] = WGT::wt_transform[sm][sn + 1];
397
+
398
+ // Initialize Gt matrix
399
+ simdgroup_matrix<float, 8, 8> Gt;
400
+ Gt.thread_elements()[0] = WGT::wt_transform[sn][sm];
401
+ Gt.thread_elements()[1] = WGT::wt_transform[sn + 1][sm];
402
+
403
+ // Move to the correct output filter
404
+ size_t ko = BO * tid + simd_group_id;
405
+ wt_in += ko * R * R * C;
406
+
407
+ // wt_out is stored transposed (A x A x C x O)
408
+ short ohw_0 = sm * 8 + sn;
409
+ short ohw_1 = sm * 8 + sn + 1;
410
+ device T* wt_out_0 = wt_out + ohw_0 * C * O + ko;
411
+ device T* wt_out_1 = wt_out + ohw_1 * C * O + ko;
412
+
413
+ // Prepare shared memory
414
+ threadgroup T Ws[BO][R][R][BC];
415
+
416
+ // Loop over C
417
+ for (int bc = 0; bc < C; bc += BC) {
418
+ threadgroup_barrier(mem_flags::mem_threadgroup);
419
+ // Read into shared memory
420
+ for (int kh = 0; kh < R; ++kh) {
421
+ for (int kw = 0; kw < R; ++kw) {
422
+ for (int kc = simd_lane_id; kc < BC; kc += 32) {
423
+ Ws[simd_group_id][kh][kw][kc] = wt_in[kh * R * C + kw * C + kc];
424
+ }
425
+ }
426
+ }
427
+
428
+ threadgroup_barrier(mem_flags::mem_threadgroup);
429
+ // Do transform and store the result
430
+ for (int c = 0; c < BC; ++c) {
431
+ simdgroup_matrix<float, 8, 8> g;
432
+ g.thread_elements()[0] =
433
+ sm < R && sn < R ? Ws[simd_group_id][sm][sn][c] : T(0);
434
+ g.thread_elements()[1] =
435
+ sm < R && sn + 1 < R ? Ws[simd_group_id][sm][sn + 1][c] : T(0);
436
+
437
+ simdgroup_matrix<float, 8, 8> g_out = (G * g) * Gt;
438
+ wt_out_0[c * O] = static_cast<T>(g_out.thread_elements()[0]);
439
+ wt_out_1[c * O] = static_cast<T>(g_out.thread_elements()[1]);
440
+ }
441
+
442
+ wt_in += BC;
443
+ wt_out_0 += BC * O;
444
+ wt_out_1 += BC * O;
445
+ }
446
+ }
447
+
448
+ #define instantiate_winograd_conv_2d_weight_transform_base(name, itype, bc) \
449
+ template [[host_name( \
450
+ "winograd_conv_2d_weight_transform_" #name "_bc" #bc)]] [[kernel]] void \
451
+ winograd_conv_2d_weight_transform<itype, bc>( \
452
+ const device itype* wt_in [[buffer(0)]], \
453
+ device itype* wt_out [[buffer(1)]], \
454
+ const constant int& C [[buffer(2)]], \
455
+ const constant int& O [[buffer(3)]], \
456
+ uint tid [[threadgroup_position_in_grid]], \
457
+ uint simd_group_id [[simdgroup_index_in_threadgroup]], \
458
+ uint simd_lane_id [[thread_index_in_simdgroup]]);
459
+
460
+ template <typename T, int BC, int WM, int WN, int M = 6, int R = 3>
461
+ [[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void
462
+ winograd_conv_2d_input_transform(
463
+ const device T* inp_in [[buffer(0)]],
464
+ device T* inp_out [[buffer(1)]],
465
+ const constant MLXConvParams<2>& params [[buffer(2)]],
466
+ uint3 tid [[threadgroup_position_in_grid]],
467
+ uint3 lid [[thread_position_in_threadgroup]],
468
+ uint3 tgp_per_grid [[threadgroups_per_grid]],
469
+ uint simd_group_id [[simdgroup_index_in_threadgroup]],
470
+ uint simd_lane_id [[thread_index_in_simdgroup]]) {
471
+ (void)lid;
472
+
473
+ using WGT = WinogradTransforms<M, R, 8>;
474
+ constexpr int A = WGT::IN_TILE_SIZE;
475
+ constexpr int N_SIMD_GROUPS = WM * WN;
476
+
477
+ // Get lane position in simdgroup
478
+ const short qid = simd_lane_id / 4;
479
+ const short sm = (qid & 4) + (simd_lane_id / 2) % 4;
480
+ const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
481
+
482
+ // Initialize B matrix
483
+ simdgroup_matrix<float, 8, 8> B;
484
+ B.thread_elements()[0] = WGT::in_transform[sm][sn];
485
+ B.thread_elements()[1] = WGT::in_transform[sm][sn + 1];
486
+
487
+ // Initialize Bt matrix
488
+ simdgroup_matrix<float, 8, 8> Bt;
489
+ Bt.thread_elements()[0] = WGT::in_transform[sn][sm];
490
+ Bt.thread_elements()[1] = WGT::in_transform[sn + 1][sm];
491
+
492
+ // Resolve input tile
493
+ constexpr int TH = (A / WM);
494
+ constexpr int TW = (A / WN);
495
+ int kh = TH * (simd_group_id / WN);
496
+ int kw = TW * (simd_group_id % WN);
497
+ int bh = M * tid.y + kh;
498
+ int bw = M * tid.x + kw;
499
+
500
+ // Move to the correct input tile
501
+ inp_in += tid.z * params.in_strides[0] + bh * params.in_strides[1] +
502
+ bw * params.in_strides[2];
503
+
504
+ // Pre compute strides
505
+ int jump_in[TH][TW];
506
+
507
+ for (int h = 0; h < TH; h++) {
508
+ for (int w = 0; w < TW; w++) {
509
+ jump_in[h][w] = h * params.in_strides[1] + w * params.in_strides[2];
510
+ }
511
+ }
512
+
513
+ // inp_out is stored interleaved (A x A x tiles x C)
514
+ size_t N_TILES = tgp_per_grid.x * tgp_per_grid.y * tgp_per_grid.z;
515
+ size_t tile_id =
516
+ tid.z * tgp_per_grid.x * tgp_per_grid.y + tid.y * tgp_per_grid.x + tid.x;
517
+ size_t ohw_0 = sm * 8 + sn;
518
+ size_t ohw_1 = sm * 8 + sn + 1;
519
+ device T* inp_out_0 =
520
+ inp_out + ohw_0 * N_TILES * params.C + tile_id * params.C;
521
+ device T* inp_out_1 =
522
+ inp_out + ohw_1 * N_TILES * params.C + tile_id * params.C;
523
+
524
+ // Prepare shared memory
525
+ threadgroup T Is[A][A][BC];
526
+
527
+ // Loop over C
528
+ for (int bc = 0; bc < params.C; bc += BC) {
529
+ threadgroup_barrier(mem_flags::mem_threadgroup);
530
+ // Read into shared memory
531
+ for (int h = 0; h < TH; h++) {
532
+ for (int w = 0; w < TW; w++) {
533
+ const device T* in_ptr = inp_in + jump_in[h][w];
534
+ for (int c = simd_lane_id; c < BC; c += 32) {
535
+ Is[kh + h][kw + w][c] = in_ptr[c];
536
+ }
537
+ }
538
+ }
539
+
540
+ threadgroup_barrier(mem_flags::mem_threadgroup);
541
+ // Do transform and store the result
542
+ for (int c = simd_group_id; c < BC; c += N_SIMD_GROUPS) {
543
+ simdgroup_matrix<float, 8, 8> I;
544
+ I.thread_elements()[0] = Is[sm][sn][c];
545
+ I.thread_elements()[1] = Is[sm][sn + 1][c];
546
+
547
+ simdgroup_matrix<float, 8, 8> I_out = (Bt * I) * B;
548
+ inp_out_0[c] = static_cast<T>(I_out.thread_elements()[0]);
549
+ inp_out_1[c] = static_cast<T>(I_out.thread_elements()[1]);
550
+ }
551
+
552
+ inp_in += BC;
553
+ inp_out_0 += BC;
554
+ inp_out_1 += BC;
555
+ }
556
+ }
557
+
558
+ #define instantiate_winograd_conv_2d_input_transform(name, itype, bc) \
559
+ template [[host_name( \
560
+ "winograd_conv_2d_input_transform_" #name "_bc" #bc)]] [[kernel]] void \
561
+ winograd_conv_2d_input_transform<itype, bc, 2, 2>( \
562
+ const device itype* inp_in [[buffer(0)]], \
563
+ device itype* inp_out [[buffer(1)]], \
564
+ const constant MLXConvParams<2>& params [[buffer(2)]], \
565
+ uint3 tid [[threadgroup_position_in_grid]], \
566
+ uint3 lid [[thread_position_in_threadgroup]], \
567
+ uint3 tgp_per_grid [[threadgroups_per_grid]], \
568
+ uint simd_group_id [[simdgroup_index_in_threadgroup]], \
569
+ uint simd_lane_id [[thread_index_in_simdgroup]]);
570
+
571
+ template <typename T, int BO, int WM, int WN, int M = 6, int R = 3>
572
+ [[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void
573
+ winograd_conv_2d_output_transform(
574
+ const device T* out_in [[buffer(0)]],
575
+ device T* out_out [[buffer(1)]],
576
+ const constant MLXConvParams<2>& params [[buffer(2)]],
577
+ uint3 tid [[threadgroup_position_in_grid]],
578
+ uint3 lid [[thread_position_in_threadgroup]],
579
+ uint3 tgp_per_grid [[threadgroups_per_grid]],
580
+ uint simd_group_id [[simdgroup_index_in_threadgroup]],
581
+ uint simd_lane_id [[thread_index_in_simdgroup]]) {
582
+ (void)lid;
583
+
584
+ using WGT = WinogradTransforms<M, R, 8>;
585
+ constexpr int N_SIMD_GROUPS = WM * WN;
586
+
587
+ // Get lane position in simdgroup
588
+ const short qid = simd_lane_id / 4;
589
+ const short sm = (qid & 4) + (simd_lane_id / 2) % 4;
590
+ const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
591
+
592
+ // Initialize A matrix
593
+ simdgroup_matrix<float, 8, 8> B;
594
+ B.thread_elements()[0] = WGT::out_transform[sm][sn];
595
+ B.thread_elements()[1] = WGT::out_transform[sm][sn + 1];
596
+
597
+ // Initialize At matrix
598
+ simdgroup_matrix<float, 8, 8> Bt;
599
+ Bt.thread_elements()[0] = WGT::out_transform[sn][sm];
600
+ Bt.thread_elements()[1] = WGT::out_transform[sn + 1][sm];
601
+
602
+ // Out_in comes in shape (A x A x tiles x O)
603
+ // We do transform and then write out to out_out in shape (N, H, W, O)
604
+
605
+ // Resolve output tile
606
+ constexpr int TH = (M / WM);
607
+ constexpr int TW = (M / WN);
608
+ int kh = TH * (simd_group_id / WN);
609
+ int kw = TW * (simd_group_id % WN);
610
+ int bh = M * tid.y + kh;
611
+ int bw = M * tid.x + kw;
612
+
613
+ // Move to the correct input tile
614
+ out_out += tid.z * params.out_strides[0] + bh * params.out_strides[1] +
615
+ bw * params.out_strides[2];
616
+
617
+ // Pre compute strides
618
+ int jump_in[TH][TW];
619
+
620
+ for (int h = 0; h < TH; h++) {
621
+ for (int w = 0; w < TW; w++) {
622
+ bool valid = ((bh + h) < params.oS[0]) && ((bw + w) < params.oS[1]);
623
+ jump_in[h][w] =
624
+ valid ? h * params.out_strides[1] + w * params.out_strides[2] : -1;
625
+ }
626
+ }
627
+
628
+ // out_in is stored interleaved (A x A x tiles x O)
629
+ size_t N_TILES = tgp_per_grid.x * tgp_per_grid.y * tgp_per_grid.z;
630
+ size_t tile_id =
631
+ tid.z * tgp_per_grid.x * tgp_per_grid.y + tid.y * tgp_per_grid.x + tid.x;
632
+ size_t ohw_0 = sm * 8 + sn;
633
+ size_t ohw_1 = sm * 8 + sn + 1;
634
+ const device T* out_in_0 =
635
+ out_in + ohw_0 * N_TILES * params.O + tile_id * params.O;
636
+ const device T* out_in_1 =
637
+ out_in + ohw_1 * N_TILES * params.O + tile_id * params.O;
638
+
639
+ // Prepare shared memory
640
+ threadgroup T Os[M][M][BO];
641
+
642
+ // Loop over O
643
+ for (int bo = 0; bo < params.O; bo += BO) {
644
+ threadgroup_barrier(mem_flags::mem_threadgroup);
645
+ // Do transform and store the result
646
+ for (int c = simd_group_id; c < BO; c += N_SIMD_GROUPS) {
647
+ simdgroup_matrix<float, 8, 8> O_mat;
648
+ O_mat.thread_elements()[0] = out_in_0[c];
649
+ O_mat.thread_elements()[1] = out_in_1[c];
650
+
651
+ simdgroup_matrix<float, 8, 8> O_out = (Bt * (O_mat * B));
652
+ if ((sm < M) && (sn < M)) {
653
+ Os[sm][sn][c] = static_cast<T>(O_out.thread_elements()[0]);
654
+ }
655
+ if ((sm < M) && ((sn + 1) < M)) {
656
+ Os[sm][sn + 1][c] = static_cast<T>(O_out.thread_elements()[1]);
657
+ }
658
+ }
659
+
660
+ threadgroup_barrier(mem_flags::mem_threadgroup);
661
+ // Read out from shared memory
662
+ for (int h = 0; h < TH; h++) {
663
+ for (int w = 0; w < TW; w++) {
664
+ if (jump_in[h][w] >= 0) {
665
+ device T* out_ptr = out_out + jump_in[h][w];
666
+ for (int c = simd_lane_id; c < BO; c += 32) {
667
+ out_ptr[c] = Os[kh + h][kw + w][c];
668
+ }
669
+ }
670
+ }
671
+ }
672
+
673
+ out_out += BO;
674
+ out_in_0 += BO;
675
+ out_in_1 += BO;
676
+ }
677
+ }
678
+
679
+ #define instantiate_winograd_conv_2d_output_transform(name, itype, bo) \
680
+ template [[host_name( \
681
+ "winograd_conv_2d_output_transform_" #name "_bo" #bo)]] [[kernel]] void \
682
+ winograd_conv_2d_output_transform<itype, bo, 2, 2>( \
683
+ const device itype* out_in [[buffer(0)]], \
684
+ device itype* out_out [[buffer(1)]], \
685
+ const constant MLXConvParams<2>& params [[buffer(2)]], \
686
+ uint3 tid [[threadgroup_position_in_grid]], \
687
+ uint3 lid [[thread_position_in_threadgroup]], \
688
+ uint3 tgp_per_grid [[threadgroups_per_grid]], \
689
+ uint simd_group_id [[simdgroup_index_in_threadgroup]], \
690
+ uint simd_lane_id [[thread_index_in_simdgroup]]);
691
+
692
+ // clang-format off
693
+ #define instantiate_winograd_conv_2d(name, itype) \
694
+ instantiate_winograd_conv_2d_weight_transform_base(name, itype, 32) \
695
+ instantiate_winograd_conv_2d_input_transform(name, itype, 32) \
696
+ instantiate_winograd_conv_2d_output_transform(name, itype, 32) // clang-format on
697
+
698
+ // clang-format off
699
+ instantiate_winograd_conv_2d(float32, float);
700
+ instantiate_winograd_conv_2d(bfloat16, bfloat16_t);
701
+ instantiate_winograd_conv_2d(float16, half); // clang-format on