mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,854 @@
1
+ // Copyright © 2023 Apple Inc.
2
+ #include <algorithm>
3
+ #include <cassert>
4
+ #include <cmath>
5
+
6
+ #include "mlx/allocator.h"
7
+ #include "mlx/primitives.h"
8
+
9
+ #include "mlx/backend/common/utils.h"
10
+ #include "mlx/backend/cpu/copy.h"
11
+ #include "mlx/backend/cpu/encoder.h"
12
+
13
+ namespace mlx::core {
14
+
15
+ template <typename IdxT>
16
+ inline size_t offset_neg_idx(IdxT idx, size_t size) {
17
+ return (idx < 0) ? idx + size : idx;
18
+ }
19
+
20
+ template <>
21
+ inline size_t offset_neg_idx(uint32_t idx, size_t) {
22
+ return idx;
23
+ }
24
+
25
+ struct None {
26
+ template <typename T>
27
+ void operator()(T x, T* y) {
28
+ (*y) = x;
29
+ }
30
+ };
31
+ struct Sum {
32
+ template <typename T>
33
+ void operator()(T x, T* y) {
34
+ (*y) += x;
35
+ }
36
+ };
37
+
38
+ struct Prod {
39
+ template <typename T>
40
+ void operator()(T x, T* y) {
41
+ (*y) *= x;
42
+ }
43
+ };
44
+
45
+ struct Max {
46
+ template <typename T>
47
+ void operator()(T x, T* y) {
48
+ (*y) = (*y > x) ? *y : x;
49
+ }
50
+ };
51
+
52
+ struct Min {
53
+ template <typename T>
54
+ void operator()(T x, T* y) {
55
+ (*y) = (*y < x) ? *y : x;
56
+ }
57
+ };
58
+
59
+ template <typename T, typename IdxT>
60
+ void gather(
61
+ const array& src,
62
+ const std::vector<array>& inds,
63
+ array& out,
64
+ const std::vector<int>& axes,
65
+ const Shape& slice_sizes) {
66
+ // If the array is row contiguous then we can do a contiguous copy given
67
+ // two conditions on the slice size:
68
+ // - Any number of leading ones in the slice sizes are allowed
69
+ // - All other slice sizes match the corresponding dimension except the
70
+ // first non-singleton slice size
71
+ // If the array is col contiguous then the reverse is the case:
72
+ // - Any number of trailing ones in the slice sizes are allowed
73
+ // - All other slice sizes match the corresponding dimension except the
74
+ // first non-singleton slice size from the end
75
+
76
+ bool can_copy = false;
77
+ if (src.flags().row_contiguous) {
78
+ can_copy = true;
79
+
80
+ // Ignore leading 1s
81
+ int i = 0;
82
+ for (; i < slice_sizes.size() && slice_sizes[i] == 1; ++i)
83
+ ;
84
+
85
+ // Check the remaining
86
+ i++;
87
+ for (; i < src.ndim() && can_copy; ++i) {
88
+ can_copy = (src.shape(i) == slice_sizes[i]);
89
+ }
90
+ } else if (src.flags().col_contiguous) {
91
+ can_copy = true;
92
+
93
+ // Ignore trailing 1s
94
+ int i = slice_sizes.size() - 1;
95
+ for (; i >= 0 && slice_sizes[i] == 1; --i)
96
+ ;
97
+
98
+ // Skip the next slice size and check the remaining
99
+ i--;
100
+ for (; i >= 0 && can_copy; --i) {
101
+ can_copy = (src.shape(i) == slice_sizes[i]);
102
+ }
103
+ }
104
+ size_t slice_size = 1;
105
+ for (auto s : slice_sizes) {
106
+ slice_size *= s;
107
+ }
108
+ size_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
109
+ const T* src_ptr = src.data<T>();
110
+ T* dst_ptr = out.data<T>();
111
+
112
+ std::vector<ContiguousIterator> its(inds.begin(), inds.end());
113
+ ContiguousIterator src_it;
114
+ if (!can_copy && src.ndim() > 0) {
115
+ src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
116
+ }
117
+
118
+ size_t out_idx = 0;
119
+ for (int idx = 0; idx < ind_size; idx++) {
120
+ size_t src_idx = 0;
121
+ for (int ii = 0; ii < inds.size(); ++ii) {
122
+ auto ax = axes[ii];
123
+ auto idx_loc = its[ii].loc;
124
+ its[ii].step();
125
+ auto idx_val =
126
+ offset_neg_idx(inds[ii].data<IdxT>()[idx_loc], src.shape(ax));
127
+ src_idx += (idx_val * src.strides()[ax]);
128
+ }
129
+
130
+ if (slice_size == 1) {
131
+ dst_ptr[out_idx++] = src_ptr[src_idx];
132
+ } else if (can_copy) {
133
+ std::copy(
134
+ src_ptr + src_idx, src_ptr + src_idx + slice_size, dst_ptr + out_idx);
135
+ out_idx += slice_size;
136
+ } else {
137
+ for (int jj = 0; jj < slice_size; jj++) {
138
+ dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
139
+ src_it.step();
140
+ }
141
+ src_it.reset();
142
+ }
143
+ }
144
+ }
145
+
146
+ template <typename IdxT>
147
+ void dispatch_gather(
148
+ const array& src,
149
+ const std::vector<array>& inds,
150
+ array& out,
151
+ const std::vector<int>& axes,
152
+ const Shape& size) {
153
+ switch (out.dtype()) {
154
+ case bool_:
155
+ gather<bool, IdxT>(src, inds, out, axes, size);
156
+ break;
157
+ case uint8:
158
+ gather<uint8_t, IdxT>(src, inds, out, axes, size);
159
+ break;
160
+ case uint16:
161
+ gather<uint16_t, IdxT>(src, inds, out, axes, size);
162
+ break;
163
+ case uint32:
164
+ gather<uint32_t, IdxT>(src, inds, out, axes, size);
165
+ break;
166
+ case uint64:
167
+ gather<uint64_t, IdxT>(src, inds, out, axes, size);
168
+ break;
169
+ case int8:
170
+ gather<int8_t, IdxT>(src, inds, out, axes, size);
171
+ break;
172
+ case int16:
173
+ gather<int16_t, IdxT>(src, inds, out, axes, size);
174
+ break;
175
+ case int32:
176
+ gather<int32_t, IdxT>(src, inds, out, axes, size);
177
+ break;
178
+ case int64:
179
+ gather<int64_t, IdxT>(src, inds, out, axes, size);
180
+ break;
181
+ case float16:
182
+ gather<float16_t, IdxT>(src, inds, out, axes, size);
183
+ break;
184
+ case float32:
185
+ gather<float, IdxT>(src, inds, out, axes, size);
186
+ break;
187
+ case float64:
188
+ gather<double, IdxT>(src, inds, out, axes, size);
189
+ break;
190
+ case bfloat16:
191
+ gather<bfloat16_t, IdxT>(src, inds, out, axes, size);
192
+ break;
193
+ case complex64:
194
+ gather<complex64_t, IdxT>(src, inds, out, axes, size);
195
+ break;
196
+ }
197
+ }
198
+
199
+ void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
200
+ out.set_data(allocator::malloc(out.nbytes()));
201
+
202
+ auto& src = inputs[0];
203
+ std::vector<array> inds;
204
+ for (auto it = inputs.begin() + 1; it < inputs.end(); ++it) {
205
+ inds.push_back(array::unsafe_weak_copy(*it));
206
+ }
207
+ auto& encoder = cpu::get_command_encoder(stream());
208
+ for (auto& in : inputs) {
209
+ encoder.set_input_array(in);
210
+ }
211
+ encoder.set_output_array(out);
212
+ encoder.dispatch([axes_ = axes_,
213
+ slice_sizes_ = slice_sizes_,
214
+ src = array::unsafe_weak_copy(src),
215
+ inds = std::move(inds),
216
+ out = array::unsafe_weak_copy(out)]() mutable {
217
+ if (inds.empty()) {
218
+ dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
219
+ return;
220
+ }
221
+
222
+ switch (inds[0].dtype()) {
223
+ case uint8:
224
+ dispatch_gather<uint8_t>(src, inds, out, axes_, slice_sizes_);
225
+ break;
226
+ case uint16:
227
+ dispatch_gather<uint16_t>(src, inds, out, axes_, slice_sizes_);
228
+ break;
229
+ case uint32:
230
+ dispatch_gather<uint32_t>(src, inds, out, axes_, slice_sizes_);
231
+ break;
232
+ case uint64:
233
+ dispatch_gather<uint64_t>(src, inds, out, axes_, slice_sizes_);
234
+ break;
235
+ case int8:
236
+ dispatch_gather<int8_t>(src, inds, out, axes_, slice_sizes_);
237
+ break;
238
+ case int16:
239
+ dispatch_gather<int16_t>(src, inds, out, axes_, slice_sizes_);
240
+ break;
241
+ case int32:
242
+ dispatch_gather<int32_t>(src, inds, out, axes_, slice_sizes_);
243
+ break;
244
+ case int64:
245
+ dispatch_gather<int64_t>(src, inds, out, axes_, slice_sizes_);
246
+ break;
247
+ default:
248
+ throw std::runtime_error(
249
+ "[Gather::eval_cpu] Cannot gather with indices type.");
250
+ break;
251
+ }
252
+ });
253
+ }
254
+ template <typename T, typename IdxT>
255
+ void gather_axis(
256
+ const array& src,
257
+ const array& ind,
258
+ array& out,
259
+ const int axis) {
260
+ auto shape = remove_index(ind.shape(), axis);
261
+ ContiguousIterator ind_it(
262
+ shape, remove_index(ind.strides(), axis), src.ndim() - 1);
263
+ ContiguousIterator src_it(
264
+ shape, remove_index(src.strides(), axis), src.ndim() - 1);
265
+
266
+ auto ind_ptr = ind.data<IdxT>();
267
+ auto src_ptr = src.data<T>();
268
+ auto dst_ptr = out.data<T>();
269
+ auto ind_ax_stride = ind.strides(axis);
270
+ auto src_ax_stride = src.strides(axis);
271
+ auto dst_ax_stride = out.strides(axis);
272
+ auto ind_ax_size = ind.shape(axis);
273
+ auto src_ax_size = src.shape(axis);
274
+
275
+ size_t size_pre = 1;
276
+ size_t size_post = 1;
277
+ for (int i = 0; i < axis; ++i) {
278
+ size_pre *= ind.shape(i);
279
+ }
280
+ for (int i = axis + 1; i < ind.ndim(); ++i) {
281
+ size_post *= ind.shape(i);
282
+ }
283
+
284
+ size_t stride_pre = size_post * ind_ax_size;
285
+ for (size_t i = 0; i < size_pre; i++) {
286
+ for (size_t k = 0; k < size_post; k++) {
287
+ for (int j = 0; j < ind_ax_size; ++j) {
288
+ auto ind_val = offset_neg_idx(
289
+ ind_ptr[ind_it.loc + j * ind_ax_stride], src_ax_size);
290
+ dst_ptr[k + j * dst_ax_stride] =
291
+ src_ptr[src_it.loc + ind_val * src_ax_stride];
292
+ }
293
+ ind_it.step();
294
+ src_it.step();
295
+ }
296
+ dst_ptr += stride_pre;
297
+ }
298
+ }
299
+
300
+ template <typename IdxT>
301
+ void dispatch_gather_axis(
302
+ const array& src,
303
+ const array& inds,
304
+ array& out,
305
+ const int axis) {
306
+ switch (out.dtype()) {
307
+ case bool_:
308
+ gather_axis<bool, IdxT>(src, inds, out, axis);
309
+ break;
310
+ case uint8:
311
+ gather_axis<uint8_t, IdxT>(src, inds, out, axis);
312
+ break;
313
+ case uint16:
314
+ gather_axis<uint16_t, IdxT>(src, inds, out, axis);
315
+ break;
316
+ case uint32:
317
+ gather_axis<uint32_t, IdxT>(src, inds, out, axis);
318
+ break;
319
+ case uint64:
320
+ gather_axis<uint64_t, IdxT>(src, inds, out, axis);
321
+ break;
322
+ case int8:
323
+ gather_axis<int8_t, IdxT>(src, inds, out, axis);
324
+ break;
325
+ case int16:
326
+ gather_axis<int16_t, IdxT>(src, inds, out, axis);
327
+ break;
328
+ case int32:
329
+ gather_axis<int32_t, IdxT>(src, inds, out, axis);
330
+ break;
331
+ case int64:
332
+ gather_axis<int64_t, IdxT>(src, inds, out, axis);
333
+ break;
334
+ case float16:
335
+ gather_axis<float16_t, IdxT>(src, inds, out, axis);
336
+ break;
337
+ case float32:
338
+ gather_axis<float, IdxT>(src, inds, out, axis);
339
+ break;
340
+ case float64:
341
+ gather_axis<double, IdxT>(src, inds, out, axis);
342
+ break;
343
+ case bfloat16:
344
+ gather_axis<bfloat16_t, IdxT>(src, inds, out, axis);
345
+ break;
346
+ case complex64:
347
+ gather_axis<complex64_t, IdxT>(src, inds, out, axis);
348
+ break;
349
+ }
350
+ }
351
+
352
+ void GatherAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
353
+ out.set_data(allocator::malloc(out.nbytes()));
354
+
355
+ auto& src = inputs[0];
356
+ auto& inds = inputs[1];
357
+ auto& encoder = cpu::get_command_encoder(stream());
358
+ encoder.set_input_array(src);
359
+ encoder.set_input_array(inds);
360
+ encoder.set_output_array(out);
361
+ encoder.dispatch([axis_ = axis_,
362
+ src = array::unsafe_weak_copy(src),
363
+ inds = array::unsafe_weak_copy(inds),
364
+ out = array::unsafe_weak_copy(out)]() mutable {
365
+ switch (inds.dtype()) {
366
+ case uint8:
367
+ dispatch_gather_axis<uint8_t>(src, inds, out, axis_);
368
+ break;
369
+ case uint16:
370
+ dispatch_gather_axis<uint16_t>(src, inds, out, axis_);
371
+ break;
372
+ case uint32:
373
+ dispatch_gather_axis<uint32_t>(src, inds, out, axis_);
374
+ break;
375
+ case uint64:
376
+ dispatch_gather_axis<uint64_t>(src, inds, out, axis_);
377
+ break;
378
+ case int8:
379
+ dispatch_gather_axis<int8_t>(src, inds, out, axis_);
380
+ break;
381
+ case int16:
382
+ dispatch_gather_axis<int16_t>(src, inds, out, axis_);
383
+ break;
384
+ case int32:
385
+ dispatch_gather_axis<int32_t>(src, inds, out, axis_);
386
+ break;
387
+ case int64:
388
+ dispatch_gather_axis<int64_t>(src, inds, out, axis_);
389
+ break;
390
+ default:
391
+ throw std::runtime_error(
392
+ "[GatherAxis::eval_cpu] Cannot gather with indices type.");
393
+ break;
394
+ }
395
+ });
396
+ }
397
+
398
+ template <typename InT, typename IdxT, typename OpT>
399
+ void scatter(
400
+ const array& updates,
401
+ array& out,
402
+ const std::vector<array>& inds,
403
+ const std::vector<int>& axes) {
404
+ int nind = inds.size();
405
+ auto inds_ndim = updates.ndim() - out.ndim();
406
+ size_t n_updates = nind ? inds[0].size() : 1;
407
+
408
+ Shape update_shape(
409
+ updates.shape().begin() + inds_ndim, updates.shape().end());
410
+ size_t update_size = 1;
411
+ for (auto us : update_shape) {
412
+ update_size *= us;
413
+ }
414
+
415
+ std::vector<ContiguousIterator> its(inds.begin(), inds.end());
416
+ ContiguousIterator update_it(updates);
417
+ ContiguousIterator out_it(update_shape, out.strides(), out.ndim());
418
+
419
+ auto out_ptr = out.data<InT>();
420
+ auto upd_ptr = updates.data<InT>();
421
+ for (int i = 0; i < n_updates; ++i) {
422
+ size_t out_offset = 0;
423
+ for (int j = 0; j < inds.size(); ++j) {
424
+ auto ax = axes[j];
425
+ auto idx_loc = its[j].loc;
426
+ its[j].step();
427
+ auto idx_val =
428
+ offset_neg_idx(inds[j].data<IdxT>()[idx_loc], out.shape(ax));
429
+ out_offset += (idx_val * out.strides()[ax]);
430
+ }
431
+ update_it.seek(i * update_size);
432
+ for (int j = 0; j < update_size; ++j) {
433
+ OpT{}(upd_ptr[update_it.loc], out_ptr + out_offset + out_it.loc);
434
+ update_it.step();
435
+ out_it.step();
436
+ }
437
+ out_it.reset();
438
+ update_it.reset();
439
+ }
440
+ }
441
+
442
+ template <typename InT, typename IdxT>
443
+ void dispatch_scatter_inds(
444
+ array& out,
445
+ const std::vector<array>& indices,
446
+ const array& updates,
447
+ const std::vector<int>& axes,
448
+ Scatter::ReduceType rtype) {
449
+ switch (rtype) {
450
+ case Scatter::None:
451
+ scatter<InT, IdxT, None>(updates, out, indices, axes);
452
+ break;
453
+ case Scatter::Sum:
454
+ scatter<InT, IdxT, Sum>(updates, out, indices, axes);
455
+ break;
456
+ case Scatter::Prod:
457
+ scatter<InT, IdxT, Prod>(updates, out, indices, axes);
458
+ break;
459
+ case Scatter::Max:
460
+ scatter<InT, IdxT, Max>(updates, out, indices, axes);
461
+ break;
462
+ case Scatter::Min:
463
+ scatter<InT, IdxT, Min>(updates, out, indices, axes);
464
+ break;
465
+ }
466
+ }
467
+
468
+ template <typename InT>
469
+ void dispatch_scatter(
470
+ array& out,
471
+ const std::vector<array>& inds,
472
+ const array& updates,
473
+ const std::vector<int>& axes,
474
+ Scatter::ReduceType rtype) {
475
+ if (inds.empty()) {
476
+ dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
477
+ return;
478
+ }
479
+
480
+ switch (inds[0].dtype()) {
481
+ case uint8:
482
+ dispatch_scatter_inds<InT, uint8_t>(out, inds, updates, axes, rtype);
483
+ break;
484
+ case uint16:
485
+ dispatch_scatter_inds<InT, uint16_t>(out, inds, updates, axes, rtype);
486
+ break;
487
+ case uint32:
488
+ dispatch_scatter_inds<InT, uint32_t>(out, inds, updates, axes, rtype);
489
+ break;
490
+ case uint64:
491
+ dispatch_scatter_inds<InT, uint64_t>(out, inds, updates, axes, rtype);
492
+ break;
493
+ case int8:
494
+ dispatch_scatter_inds<InT, int8_t>(out, inds, updates, axes, rtype);
495
+ break;
496
+ case int16:
497
+ dispatch_scatter_inds<InT, int16_t>(out, inds, updates, axes, rtype);
498
+ break;
499
+ case int32:
500
+ dispatch_scatter_inds<InT, int32_t>(out, inds, updates, axes, rtype);
501
+ break;
502
+ case int64:
503
+ dispatch_scatter_inds<InT, int64_t>(out, inds, updates, axes, rtype);
504
+ break;
505
+ default:
506
+ throw std::runtime_error(
507
+ "[Scatter::eval_cpu] Cannot scatter with indices type.");
508
+ }
509
+ }
510
+
511
+ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
512
+ assert(inputs.size() >= 2);
513
+
514
+ auto& src = inputs[0];
515
+ auto& updates = inputs.back();
516
+
517
+ // Copy src into out (copy allocates memory for out)
518
+ auto ctype =
519
+ src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
520
+ copy_cpu(src, out, ctype, stream());
521
+
522
+ auto& encoder = cpu::get_command_encoder(stream());
523
+ std::vector<array> inds;
524
+ for (auto it = inputs.begin() + 1; it < inputs.end() - 1; ++it) {
525
+ encoder.set_input_array(*it);
526
+ inds.push_back(array::unsafe_weak_copy(*it));
527
+ }
528
+ encoder.set_input_array(updates);
529
+ encoder.set_output_array(out);
530
+ encoder.dispatch([axes_ = axes_,
531
+ reduce_type_ = reduce_type_,
532
+ updates = array::unsafe_weak_copy(updates),
533
+ inds = std::move(inds),
534
+ out = array::unsafe_weak_copy(out)]() mutable {
535
+ switch (out.dtype()) {
536
+ case bool_:
537
+ dispatch_scatter<bool>(out, inds, updates, axes_, reduce_type_);
538
+ break;
539
+ case uint8:
540
+ dispatch_scatter<uint8_t>(out, inds, updates, axes_, reduce_type_);
541
+ break;
542
+ case uint16:
543
+ dispatch_scatter<uint16_t>(out, inds, updates, axes_, reduce_type_);
544
+ break;
545
+ case uint32:
546
+ dispatch_scatter<uint32_t>(out, inds, updates, axes_, reduce_type_);
547
+ break;
548
+ case uint64:
549
+ dispatch_scatter<uint64_t>(out, inds, updates, axes_, reduce_type_);
550
+ break;
551
+ case int8:
552
+ dispatch_scatter<int8_t>(out, inds, updates, axes_, reduce_type_);
553
+ break;
554
+ case int16:
555
+ dispatch_scatter<int16_t>(out, inds, updates, axes_, reduce_type_);
556
+ break;
557
+ case int32:
558
+ dispatch_scatter<int32_t>(out, inds, updates, axes_, reduce_type_);
559
+ break;
560
+ case int64:
561
+ dispatch_scatter<int64_t>(out, inds, updates, axes_, reduce_type_);
562
+ break;
563
+ case float16:
564
+ dispatch_scatter<float16_t>(out, inds, updates, axes_, reduce_type_);
565
+ break;
566
+ case float32:
567
+ dispatch_scatter<float>(out, inds, updates, axes_, reduce_type_);
568
+ break;
569
+ case float64:
570
+ dispatch_scatter<double>(out, inds, updates, axes_, reduce_type_);
571
+ break;
572
+ case bfloat16:
573
+ dispatch_scatter<bfloat16_t>(out, inds, updates, axes_, reduce_type_);
574
+ break;
575
+ case complex64:
576
+ dispatch_scatter<complex64_t>(out, inds, updates, axes_, reduce_type_);
577
+ break;
578
+ }
579
+ });
580
+ }
581
+
582
+ template <typename T, typename IdxT, typename OpT>
583
+ void scatter_axis(array& out, const array idx, const array& upd, int axis) {
584
+ auto shape = remove_index(idx.shape(), axis);
585
+ ContiguousIterator idx_it(
586
+ shape, remove_index(idx.strides(), axis), upd.ndim() - 1);
587
+ ContiguousIterator upd_it(
588
+ shape, remove_index(upd.strides(), axis), upd.ndim() - 1);
589
+
590
+ auto idx_ptr = idx.data<IdxT>();
591
+ auto upd_ptr = upd.data<T>();
592
+ auto dst_ptr = out.data<T>();
593
+ auto idx_ax_stride = idx.strides(axis);
594
+ auto upd_ax_stride = upd.strides(axis);
595
+ auto dst_ax_stride = out.strides(axis);
596
+ auto idx_ax_size = idx.shape(axis);
597
+ auto dst_ax_size = out.shape(axis);
598
+
599
+ size_t size_pre = 1;
600
+ size_t size_post = 1;
601
+ for (int i = 0; i < axis; ++i) {
602
+ size_pre *= idx.shape(i);
603
+ }
604
+ for (int i = axis + 1; i < idx.ndim(); ++i) {
605
+ size_post *= idx.shape(i);
606
+ }
607
+ size_t stride_pre = size_post * dst_ax_size;
608
+ for (size_t i = 0; i < size_pre; i++) {
609
+ for (size_t k = 0; k < size_post; k++) {
610
+ for (int j = 0; j < idx_ax_size; ++j) {
611
+ auto ind_val = offset_neg_idx(
612
+ idx_ptr[idx_it.loc + j * idx_ax_stride], dst_ax_size);
613
+ OpT{}(
614
+ upd_ptr[upd_it.loc + j * upd_ax_stride],
615
+ dst_ptr + k + ind_val * dst_ax_stride);
616
+ }
617
+ idx_it.step();
618
+ upd_it.step();
619
+ }
620
+ dst_ptr += stride_pre;
621
+ }
622
+ }
623
+
624
+ template <typename InT, typename IdxT>
625
+ void dispatch_scatter_axis_op(
626
+ array& out,
627
+ const array& idx,
628
+ const array& updates,
629
+ int axis,
630
+ ScatterAxis::ReduceType rtype) {
631
+ switch (rtype) {
632
+ case ScatterAxis::None:
633
+ scatter_axis<InT, IdxT, None>(out, idx, updates, axis);
634
+ break;
635
+ case ScatterAxis::Sum:
636
+ scatter_axis<InT, IdxT, Sum>(out, idx, updates, axis);
637
+ break;
638
+ }
639
+ }
640
+
641
+ template <typename InT>
642
+ void dispatch_scatter_axis(
643
+ array& out,
644
+ const array& idx,
645
+ const array& updates,
646
+ int axis,
647
+ ScatterAxis::ReduceType rtype) {
648
+ switch (idx.dtype()) {
649
+ case uint8:
650
+ dispatch_scatter_axis_op<InT, uint8_t>(out, idx, updates, axis, rtype);
651
+ break;
652
+ case uint16:
653
+ dispatch_scatter_axis_op<InT, uint16_t>(out, idx, updates, axis, rtype);
654
+ break;
655
+ case uint32:
656
+ dispatch_scatter_axis_op<InT, uint32_t>(out, idx, updates, axis, rtype);
657
+ break;
658
+ case uint64:
659
+ dispatch_scatter_axis_op<InT, uint64_t>(out, idx, updates, axis, rtype);
660
+ break;
661
+ case int8:
662
+ dispatch_scatter_axis_op<InT, int8_t>(out, idx, updates, axis, rtype);
663
+ break;
664
+ case int16:
665
+ dispatch_scatter_axis_op<InT, int16_t>(out, idx, updates, axis, rtype);
666
+ break;
667
+ case int32:
668
+ dispatch_scatter_axis_op<InT, int32_t>(out, idx, updates, axis, rtype);
669
+ break;
670
+ case int64:
671
+ dispatch_scatter_axis_op<InT, int64_t>(out, idx, updates, axis, rtype);
672
+ break;
673
+ default:
674
+ throw std::runtime_error(
675
+ "[ScatterAxis::eval_cpu] Cannot scatter with indices type.");
676
+ }
677
+ }
678
+
679
+ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
680
+ assert(inputs.size() >= 2);
681
+
682
+ auto& src = inputs[0];
683
+ auto& idx = inputs[1];
684
+ auto& updates = inputs[2];
685
+
686
+ // Copy src into out (copy allocates memory for out)
687
+ auto ctype =
688
+ src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
689
+ copy_cpu(src, out, ctype, stream());
690
+
691
+ auto& encoder = cpu::get_command_encoder(stream());
692
+ encoder.set_input_array(idx);
693
+ encoder.set_input_array(updates);
694
+ encoder.set_output_array(out);
695
+ encoder.dispatch([axis_ = axis_,
696
+ reduce_type_ = reduce_type_,
697
+ idx = array::unsafe_weak_copy(idx),
698
+ updates = array::unsafe_weak_copy(updates),
699
+ out = array::unsafe_weak_copy(out)]() mutable {
700
+ switch (out.dtype()) {
701
+ case bool_:
702
+ dispatch_scatter_axis<bool>(out, idx, updates, axis_, reduce_type_);
703
+ break;
704
+ case uint8:
705
+ dispatch_scatter_axis<uint8_t>(out, idx, updates, axis_, reduce_type_);
706
+ break;
707
+ case uint16:
708
+ dispatch_scatter_axis<uint16_t>(out, idx, updates, axis_, reduce_type_);
709
+ break;
710
+ case uint32:
711
+ dispatch_scatter_axis<uint32_t>(out, idx, updates, axis_, reduce_type_);
712
+ break;
713
+ case uint64:
714
+ dispatch_scatter_axis<uint64_t>(out, idx, updates, axis_, reduce_type_);
715
+ break;
716
+ case int8:
717
+ dispatch_scatter_axis<int8_t>(out, idx, updates, axis_, reduce_type_);
718
+ break;
719
+ case int16:
720
+ dispatch_scatter_axis<int16_t>(out, idx, updates, axis_, reduce_type_);
721
+ break;
722
+ case int32:
723
+ dispatch_scatter_axis<int32_t>(out, idx, updates, axis_, reduce_type_);
724
+ break;
725
+ case int64:
726
+ dispatch_scatter_axis<int64_t>(out, idx, updates, axis_, reduce_type_);
727
+ break;
728
+ case float16:
729
+ dispatch_scatter_axis<float16_t>(
730
+ out, idx, updates, axis_, reduce_type_);
731
+ break;
732
+ case float32:
733
+ dispatch_scatter_axis<float>(out, idx, updates, axis_, reduce_type_);
734
+ break;
735
+ case float64:
736
+ dispatch_scatter_axis<double>(out, idx, updates, axis_, reduce_type_);
737
+ break;
738
+ case bfloat16:
739
+ dispatch_scatter_axis<bfloat16_t>(
740
+ out, idx, updates, axis_, reduce_type_);
741
+ break;
742
+ case complex64:
743
+ dispatch_scatter_axis<complex64_t>(
744
+ out, idx, updates, axis_, reduce_type_);
745
+ break;
746
+ }
747
+ });
748
+ }
749
+
750
+ template <typename T>
751
+ void masked_scatter_impl(const array& mask, const array& src, array& out) {
752
+ ContiguousIterator mask_it(mask);
753
+ ContiguousIterator src_it(src);
754
+ ContiguousIterator out_it(out);
755
+
756
+ const bool* mask_ptr = mask.data<bool>();
757
+ const T* src_ptr = src.data<T>();
758
+ T* dst_ptr = out.data<T>();
759
+
760
+ const size_t batch_count = mask.shape(0);
761
+ const size_t mask_batch_size = mask.size() / batch_count;
762
+ const size_t src_batch_size = src.size() / batch_count;
763
+
764
+ for (size_t b = 0; b < batch_count; ++b) {
765
+ size_t src_consumed = 0;
766
+ src_it.seek(b * src_batch_size);
767
+
768
+ for (size_t i = 0; i < mask_batch_size; ++i) {
769
+ if (mask_ptr[mask_it.loc]) {
770
+ if (src_consumed >= src_batch_size) {
771
+ throw std::runtime_error(
772
+ "[MaskedScatter::eval_cpu] Source does not have enough elements for mask.");
773
+ }
774
+ dst_ptr[out_it.loc] = src_ptr[src_it.loc];
775
+ src_it.step();
776
+ ++src_consumed;
777
+ }
778
+ mask_it.step();
779
+ out_it.step();
780
+ }
781
+ }
782
+ }
783
+
784
+ void MaskedScatter::eval_cpu(const std::vector<array>& inputs, array& out) {
785
+ assert(inputs.size() == 3);
786
+
787
+ auto& dst = inputs[0];
788
+ auto& mask = inputs[1];
789
+ auto& src = inputs[2];
790
+
791
+ // Copy src into out (copy allocates memory for out)
792
+ auto ctype =
793
+ dst.flags().row_contiguous ? CopyType::Vector : CopyType::General;
794
+ copy_cpu(dst, out, ctype, stream());
795
+
796
+ if (mask.size() == 0) {
797
+ return;
798
+ }
799
+
800
+ auto& encoder = cpu::get_command_encoder(stream());
801
+ encoder.set_input_array(mask);
802
+ encoder.set_input_array(src);
803
+ encoder.set_output_array(out);
804
+ encoder.dispatch([mask = array::unsafe_weak_copy(mask),
805
+ src = array::unsafe_weak_copy(src),
806
+ out = array::unsafe_weak_copy(out)]() mutable {
807
+ switch (out.dtype()) {
808
+ case bool_:
809
+ masked_scatter_impl<bool>(mask, src, out);
810
+ break;
811
+ case uint8:
812
+ masked_scatter_impl<uint8_t>(mask, src, out);
813
+ break;
814
+ case uint16:
815
+ masked_scatter_impl<uint16_t>(mask, src, out);
816
+ break;
817
+ case uint32:
818
+ masked_scatter_impl<uint32_t>(mask, src, out);
819
+ break;
820
+ case uint64:
821
+ masked_scatter_impl<uint64_t>(mask, src, out);
822
+ break;
823
+ case int8:
824
+ masked_scatter_impl<int8_t>(mask, src, out);
825
+ break;
826
+ case int16:
827
+ masked_scatter_impl<int16_t>(mask, src, out);
828
+ break;
829
+ case int32:
830
+ masked_scatter_impl<int32_t>(mask, src, out);
831
+ break;
832
+ case int64:
833
+ masked_scatter_impl<int64_t>(mask, src, out);
834
+ break;
835
+ case float16:
836
+ masked_scatter_impl<float16_t>(mask, src, out);
837
+ break;
838
+ case float32:
839
+ masked_scatter_impl<float>(mask, src, out);
840
+ break;
841
+ case float64:
842
+ masked_scatter_impl<double>(mask, src, out);
843
+ break;
844
+ case bfloat16:
845
+ masked_scatter_impl<bfloat16_t>(mask, src, out);
846
+ break;
847
+ case complex64:
848
+ masked_scatter_impl<complex64_t>(mask, src, out);
849
+ break;
850
+ }
851
+ });
852
+ }
853
+
854
+ } // namespace mlx::core