mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,309 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class << self
|
|
6
|
+
def sum_gradients(group = nil)
|
|
7
|
+
group ||= MLX::Core.init(false, "any")
|
|
8
|
+
if group.size == 1
|
|
9
|
+
->(x) { x }
|
|
10
|
+
else
|
|
11
|
+
->(x) { MLX::Core.all_sum(x, group) }
|
|
12
|
+
end
|
|
13
|
+
end
|
|
14
|
+
|
|
15
|
+
def shard_inplace(module_obj, sharding, segments: 1, group: nil)
|
|
16
|
+
group ||= MLX::Core.init(false, "any")
|
|
17
|
+
|
|
18
|
+
sharding_fn = if sharding.is_a?(String)
|
|
19
|
+
check_sharding(sharding)
|
|
20
|
+
sharding == "all-to-sharded" ? all_to_sharded(segments) : sharded_to_all(segments)
|
|
21
|
+
else
|
|
22
|
+
sharding
|
|
23
|
+
end
|
|
24
|
+
|
|
25
|
+
module_obj.update(shard(module_obj.parameters, sharding_fn, group))
|
|
26
|
+
module_obj
|
|
27
|
+
end
|
|
28
|
+
|
|
29
|
+
def shard_linear(module_obj, sharding, segments: 1, group: nil)
|
|
30
|
+
check_sharding(sharding)
|
|
31
|
+
fns = {
|
|
32
|
+
["all-to-sharded", true] => ->(m, s, g) { AllToShardedLinear.from_linear(m, segments: s, group: g) },
|
|
33
|
+
["all-to-sharded", false] => ->(m, s, g) { QuantizedAllToShardedLinear.from_quantized_linear(m, segments: s, group: g) },
|
|
34
|
+
["sharded-to-all", true] => ->(m, s, g) { ShardedToAllLinear.from_linear(m, segments: s, group: g) },
|
|
35
|
+
["sharded-to-all", false] => lambda { |m, s, g|
|
|
36
|
+
QuantizedShardedToAllLinear.from_quantized_linear(m, segments: s, group: g)
|
|
37
|
+
}
|
|
38
|
+
}
|
|
39
|
+
fns.fetch([sharding, module_obj.is_a?(Linear)]).call(module_obj, segments, group)
|
|
40
|
+
end
|
|
41
|
+
|
|
42
|
+
private
|
|
43
|
+
|
|
44
|
+
def split_segments(weight, segments, axis)
|
|
45
|
+
if segments.is_a?(Integer) || (segments.is_a?(Array) && !segments.empty? && segments[0].is_a?(Integer))
|
|
46
|
+
return MLX::Core.split(weight, segments, axis)
|
|
47
|
+
end
|
|
48
|
+
|
|
49
|
+
n = weight.shape[axis]
|
|
50
|
+
indices = segments.map { |s| (s * n).to_i }
|
|
51
|
+
MLX::Core.split(weight, indices, axis)
|
|
52
|
+
end
|
|
53
|
+
|
|
54
|
+
def shard(parameters, sharding_predicate, group)
|
|
55
|
+
n = group.size
|
|
56
|
+
r = group.rank
|
|
57
|
+
return parameters if n == 1
|
|
58
|
+
|
|
59
|
+
shard_fn = lambda do |path, weight|
|
|
60
|
+
return weight unless weight.is_a?(MLX::Core::Array)
|
|
61
|
+
|
|
62
|
+
spec = sharding_predicate.call(path.to_s, weight)
|
|
63
|
+
return weight if spec.nil?
|
|
64
|
+
|
|
65
|
+
axis = nil
|
|
66
|
+
segments = 1
|
|
67
|
+
if spec.is_a?(Integer)
|
|
68
|
+
axis = spec
|
|
69
|
+
elsif spec.is_a?(Array) && spec.length == 2
|
|
70
|
+
axis = spec[0]
|
|
71
|
+
segments = spec[1]
|
|
72
|
+
else
|
|
73
|
+
raise ArgumentError, "The sharding function should return int or tuple [axis, segments]"
|
|
74
|
+
end
|
|
75
|
+
|
|
76
|
+
part_segments = split_segments(weight, segments, axis)
|
|
77
|
+
shard_parts = part_segments.map do |part|
|
|
78
|
+
split_segments(part, n, axis)[r]
|
|
79
|
+
end
|
|
80
|
+
MLX::Core.concatenate(shard_parts, axis)
|
|
81
|
+
end
|
|
82
|
+
|
|
83
|
+
MLX::Utils.tree_map_with_path(shard_fn, parameters)
|
|
84
|
+
end
|
|
85
|
+
|
|
86
|
+
def all_to_sharded(segments)
|
|
87
|
+
lambda do |path, weight|
|
|
88
|
+
if path.end_with?("bias")
|
|
89
|
+
[-1, segments]
|
|
90
|
+
else
|
|
91
|
+
[[weight.ndim - 2, 0].max, segments]
|
|
92
|
+
end
|
|
93
|
+
end
|
|
94
|
+
end
|
|
95
|
+
|
|
96
|
+
def sharded_to_all(segments)
|
|
97
|
+
lambda do |path, _weight|
|
|
98
|
+
if path.end_with?("bias")
|
|
99
|
+
nil
|
|
100
|
+
else
|
|
101
|
+
[-1, segments]
|
|
102
|
+
end
|
|
103
|
+
end
|
|
104
|
+
end
|
|
105
|
+
|
|
106
|
+
def check_sharding(sharding)
|
|
107
|
+
return if %w[all-to-sharded sharded-to-all].include?(sharding)
|
|
108
|
+
|
|
109
|
+
raise ArgumentError,
|
|
110
|
+
"Sharding type sharding=#{sharding} not supported, choose one of 'all-to-sharded' or 'sharded-to-all'"
|
|
111
|
+
end
|
|
112
|
+
end
|
|
113
|
+
|
|
114
|
+
class AllToShardedLinear < Module
|
|
115
|
+
def initialize(input_dims, output_dims, bias: true, group: nil)
|
|
116
|
+
super()
|
|
117
|
+
@group = group || MLX::Core.init(false, "any")
|
|
118
|
+
n = @group.size
|
|
119
|
+
if (output_dims % n) != 0
|
|
120
|
+
raise ArgumentError, "Cannot shard the output of size #{output_dims} across #{n} devices."
|
|
121
|
+
end
|
|
122
|
+
|
|
123
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
124
|
+
self.weight = MLX::Core.uniform([output_dims / n, input_dims], -scale, scale)
|
|
125
|
+
self.bias = MLX::Core.uniform([output_dims / n], -scale, scale) if bias
|
|
126
|
+
end
|
|
127
|
+
|
|
128
|
+
def call(x)
|
|
129
|
+
x = MLX::NN.sum_gradients(@group).call(x)
|
|
130
|
+
out = MLX::Core.matmul(x, weight.T)
|
|
131
|
+
state.key?("bias") ? MLX::Core.add(out, bias) : out
|
|
132
|
+
end
|
|
133
|
+
|
|
134
|
+
def self.from_linear(linear_layer, segments: 1, group: nil)
|
|
135
|
+
group ||= MLX::Core.init(false, "any")
|
|
136
|
+
output_dims, input_dims = linear_layer.weight.shape
|
|
137
|
+
sl = new(input_dims, output_dims, bias: linear_layer.state.key?("bias"), group: group)
|
|
138
|
+
sl.update(
|
|
139
|
+
MLX::NN.__send__(
|
|
140
|
+
:shard,
|
|
141
|
+
linear_layer.parameters,
|
|
142
|
+
MLX::NN.__send__(:all_to_sharded, segments),
|
|
143
|
+
group
|
|
144
|
+
)
|
|
145
|
+
)
|
|
146
|
+
sl
|
|
147
|
+
end
|
|
148
|
+
end
|
|
149
|
+
|
|
150
|
+
class ShardedToAllLinear < Module
|
|
151
|
+
def initialize(input_dims, output_dims, bias: true, group: nil)
|
|
152
|
+
super()
|
|
153
|
+
@group = group || MLX::Core.init(false, "any")
|
|
154
|
+
n = @group.size
|
|
155
|
+
if (input_dims % n) != 0
|
|
156
|
+
raise ArgumentError, "The input of size #{input_dims} cannot be sharded across #{n} devices."
|
|
157
|
+
end
|
|
158
|
+
|
|
159
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
160
|
+
self.weight = MLX::Core.uniform([output_dims, input_dims / n], -scale, scale)
|
|
161
|
+
self.bias = MLX::Core.uniform([output_dims], -scale, scale) if bias
|
|
162
|
+
end
|
|
163
|
+
|
|
164
|
+
def call(x)
|
|
165
|
+
out = MLX::Core.matmul(x, weight.T)
|
|
166
|
+
out = MLX::Core.all_sum(out, @group)
|
|
167
|
+
state.key?("bias") ? MLX::Core.add(out, bias) : out
|
|
168
|
+
end
|
|
169
|
+
|
|
170
|
+
def self.from_linear(linear_layer, segments: 1, group: nil)
|
|
171
|
+
group ||= MLX::Core.init(false, "any")
|
|
172
|
+
output_dims, input_dims = linear_layer.weight.shape
|
|
173
|
+
sl = new(input_dims, output_dims, bias: linear_layer.state.key?("bias"), group: group)
|
|
174
|
+
sl.update(
|
|
175
|
+
MLX::NN.__send__(
|
|
176
|
+
:shard,
|
|
177
|
+
linear_layer.parameters,
|
|
178
|
+
MLX::NN.__send__(:sharded_to_all, segments),
|
|
179
|
+
group
|
|
180
|
+
)
|
|
181
|
+
)
|
|
182
|
+
sl
|
|
183
|
+
end
|
|
184
|
+
end
|
|
185
|
+
|
|
186
|
+
class QuantizedAllToShardedLinear < Module
|
|
187
|
+
attr_reader :group_size, :bits
|
|
188
|
+
|
|
189
|
+
def initialize(input_dims, output_dims, bias: true, group_size: 64, bits: 4, group: nil)
|
|
190
|
+
super()
|
|
191
|
+
@group = group || MLX::Core.init(false, "any")
|
|
192
|
+
@group_size = group_size
|
|
193
|
+
@bits = bits
|
|
194
|
+
|
|
195
|
+
n = @group.size
|
|
196
|
+
if (output_dims % n) != 0
|
|
197
|
+
raise ArgumentError, "Cannot shard the output of size #{output_dims} across #{n} devices."
|
|
198
|
+
end
|
|
199
|
+
|
|
200
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
201
|
+
weight = MLX::Core.uniform([output_dims / n, input_dims], -scale, scale)
|
|
202
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(weight, group_size, bits)
|
|
203
|
+
self.weight = q_weight
|
|
204
|
+
self.scales = q_scales
|
|
205
|
+
self.biases = q_biases.empty? ? nil : q_biases[0]
|
|
206
|
+
self.bias = MLX::Core.zeros([output_dims / n], MLX::Core.float32) if bias
|
|
207
|
+
|
|
208
|
+
freeze
|
|
209
|
+
end
|
|
210
|
+
|
|
211
|
+
def unfreeze(*args, **kwargs)
|
|
212
|
+
super(*args, **kwargs)
|
|
213
|
+
freeze(recurse: false)
|
|
214
|
+
end
|
|
215
|
+
|
|
216
|
+
def call(x)
|
|
217
|
+
x = MLX::NN.sum_gradients(@group).call(x)
|
|
218
|
+
out = MLX::Core.quantized_matmul(x, weight, scales, self.biases, true, @group_size, @bits)
|
|
219
|
+
state.key?("bias") ? MLX::Core.add(out, bias) : out
|
|
220
|
+
end
|
|
221
|
+
|
|
222
|
+
def self.from_quantized_linear(quantized_linear_layer, segments: 1, group: nil)
|
|
223
|
+
group ||= MLX::Core.init(false, "any")
|
|
224
|
+
output_dims, input_packed = quantized_linear_layer.weight.shape
|
|
225
|
+
input_dims = (input_packed * 32) / quantized_linear_layer.bits
|
|
226
|
+
|
|
227
|
+
sl = new(
|
|
228
|
+
input_dims,
|
|
229
|
+
output_dims,
|
|
230
|
+
bias: quantized_linear_layer.state.key?("bias"),
|
|
231
|
+
group_size: quantized_linear_layer.group_size,
|
|
232
|
+
bits: quantized_linear_layer.bits,
|
|
233
|
+
group: group
|
|
234
|
+
)
|
|
235
|
+
sl.update(
|
|
236
|
+
MLX::NN.__send__(
|
|
237
|
+
:shard,
|
|
238
|
+
quantized_linear_layer.parameters,
|
|
239
|
+
MLX::NN.__send__(:all_to_sharded, segments),
|
|
240
|
+
group
|
|
241
|
+
)
|
|
242
|
+
)
|
|
243
|
+
sl
|
|
244
|
+
end
|
|
245
|
+
end
|
|
246
|
+
|
|
247
|
+
class QuantizedShardedToAllLinear < Module
|
|
248
|
+
attr_reader :group_size, :bits
|
|
249
|
+
|
|
250
|
+
def initialize(input_dims, output_dims, bias: true, group_size: 64, bits: 4, group: nil)
|
|
251
|
+
super()
|
|
252
|
+
@group = group || MLX::Core.init(false, "any")
|
|
253
|
+
@group_size = group_size
|
|
254
|
+
@bits = bits
|
|
255
|
+
|
|
256
|
+
n = @group.size
|
|
257
|
+
if (input_dims % n) != 0
|
|
258
|
+
raise ArgumentError, "The input of size #{input_dims} cannot be sharded across #{n} devices."
|
|
259
|
+
end
|
|
260
|
+
|
|
261
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
262
|
+
weight = MLX::Core.uniform([output_dims, input_dims / n], -scale, scale)
|
|
263
|
+
q_weight, q_scales, *q_biases = MLX::Core.quantize(weight, group_size, bits)
|
|
264
|
+
self.weight = q_weight
|
|
265
|
+
self.scales = q_scales
|
|
266
|
+
self.biases = q_biases.empty? ? nil : q_biases[0]
|
|
267
|
+
self.bias = MLX::Core.zeros([output_dims], MLX::Core.float32) if bias
|
|
268
|
+
|
|
269
|
+
freeze
|
|
270
|
+
end
|
|
271
|
+
|
|
272
|
+
def unfreeze(*args, **kwargs)
|
|
273
|
+
super(*args, **kwargs)
|
|
274
|
+
freeze(recurse: false)
|
|
275
|
+
end
|
|
276
|
+
|
|
277
|
+
def call(x)
|
|
278
|
+
out = MLX::Core.quantized_matmul(x, weight, scales, self.biases, true, @group_size, @bits)
|
|
279
|
+
out = MLX::Core.all_sum(out, @group)
|
|
280
|
+
state.key?("bias") ? MLX::Core.add(out, bias) : out
|
|
281
|
+
end
|
|
282
|
+
|
|
283
|
+
def self.from_quantized_linear(quantized_linear_layer, segments: 1, group: nil)
|
|
284
|
+
group ||= MLX::Core.init(false, "any")
|
|
285
|
+
output_dims, input_packed = quantized_linear_layer.weight.shape
|
|
286
|
+
input_dims = (input_packed * 32) / quantized_linear_layer.bits
|
|
287
|
+
|
|
288
|
+
sl = new(
|
|
289
|
+
input_dims,
|
|
290
|
+
output_dims,
|
|
291
|
+
bias: quantized_linear_layer.state.key?("bias"),
|
|
292
|
+
group_size: quantized_linear_layer.group_size,
|
|
293
|
+
bits: quantized_linear_layer.bits,
|
|
294
|
+
group: group
|
|
295
|
+
)
|
|
296
|
+
sl.update(
|
|
297
|
+
MLX::NN.__send__(
|
|
298
|
+
:shard,
|
|
299
|
+
quantized_linear_layer.parameters,
|
|
300
|
+
MLX::NN.__send__(:sharded_to_all, segments),
|
|
301
|
+
group
|
|
302
|
+
)
|
|
303
|
+
)
|
|
304
|
+
sl
|
|
305
|
+
end
|
|
306
|
+
end
|
|
307
|
+
|
|
308
|
+
end
|
|
309
|
+
end
|
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class Dropout < Module
|
|
6
|
+
def initialize(p = 0.5)
|
|
7
|
+
super()
|
|
8
|
+
unless p >= 0.0 && p < 1.0
|
|
9
|
+
raise ArgumentError, "The dropout probability #{p} is not in [0, 1)"
|
|
10
|
+
end
|
|
11
|
+
|
|
12
|
+
@p_keep = 1.0 - p
|
|
13
|
+
end
|
|
14
|
+
|
|
15
|
+
def call(x)
|
|
16
|
+
return x if @p_keep == 1.0 || !training
|
|
17
|
+
|
|
18
|
+
mask = MLX::Core.bernoulli(@p_keep, x.shape)
|
|
19
|
+
MLX::Core.multiply(MLX::Core.multiply(mask, x), 1.0 / @p_keep)
|
|
20
|
+
end
|
|
21
|
+
end
|
|
22
|
+
|
|
23
|
+
class Dropout2d < Module
|
|
24
|
+
def initialize(p = 0.5)
|
|
25
|
+
super()
|
|
26
|
+
unless p >= 0.0 && p < 1.0
|
|
27
|
+
raise ArgumentError, "The dropout probability #{p} is not in [0, 1)"
|
|
28
|
+
end
|
|
29
|
+
|
|
30
|
+
@p_keep = 1.0 - p
|
|
31
|
+
end
|
|
32
|
+
|
|
33
|
+
def call(x)
|
|
34
|
+
unless [3, 4].include?(x.ndim)
|
|
35
|
+
raise ArgumentError, "Received input with #{x.ndim} dimensions. Expected 3 or 4 dimensions."
|
|
36
|
+
end
|
|
37
|
+
|
|
38
|
+
return x if @p_keep == 1.0 || !training
|
|
39
|
+
|
|
40
|
+
mask_shape = x.shape.dup
|
|
41
|
+
mask_shape[-2] = 1
|
|
42
|
+
mask_shape[-3] = 1
|
|
43
|
+
mask = MLX::Core.bernoulli(@p_keep, mask_shape)
|
|
44
|
+
MLX::Core.multiply(MLX::Core.multiply(mask, x), 1.0 / @p_keep)
|
|
45
|
+
end
|
|
46
|
+
end
|
|
47
|
+
|
|
48
|
+
class Dropout3d < Module
|
|
49
|
+
def initialize(p = 0.5)
|
|
50
|
+
super()
|
|
51
|
+
unless p >= 0.0 && p < 1.0
|
|
52
|
+
raise ArgumentError, "The dropout probability #{p} is not in [0, 1)"
|
|
53
|
+
end
|
|
54
|
+
|
|
55
|
+
@p_keep = 1.0 - p
|
|
56
|
+
end
|
|
57
|
+
|
|
58
|
+
def call(x)
|
|
59
|
+
unless [4, 5].include?(x.ndim)
|
|
60
|
+
raise ArgumentError, "Received input with #{x.ndim} dimensions. Expected 4 or 5 dimensions."
|
|
61
|
+
end
|
|
62
|
+
|
|
63
|
+
return x if @p_keep == 1.0 || !training
|
|
64
|
+
|
|
65
|
+
mask_shape = x.shape.dup
|
|
66
|
+
mask_shape[-2] = 1
|
|
67
|
+
mask_shape[-3] = 1
|
|
68
|
+
mask_shape[-4] = 1
|
|
69
|
+
mask = MLX::Core.bernoulli(@p_keep, mask_shape)
|
|
70
|
+
MLX::Core.multiply(MLX::Core.multiply(mask, x), 1.0 / @p_keep)
|
|
71
|
+
end
|
|
72
|
+
end
|
|
73
|
+
|
|
74
|
+
end
|
|
75
|
+
end
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class Embedding < Module
|
|
6
|
+
def initialize(num_embeddings, dims)
|
|
7
|
+
super()
|
|
8
|
+
scale = Math.sqrt(1.0 / dims)
|
|
9
|
+
self.weight = MLX::Core.normal([num_embeddings, dims], 0.0, scale)
|
|
10
|
+
end
|
|
11
|
+
|
|
12
|
+
def call(x)
|
|
13
|
+
MLX::Core.take(weight, x, 0)
|
|
14
|
+
end
|
|
15
|
+
|
|
16
|
+
def as_linear(x)
|
|
17
|
+
MLX::Core.matmul(x, weight.T)
|
|
18
|
+
end
|
|
19
|
+
|
|
20
|
+
def to_quantized(group_size: nil, bits: nil, mode: "affine", quantize_input: false)
|
|
21
|
+
raise ArgumentError, "Quantized input is not supported." if quantize_input
|
|
22
|
+
|
|
23
|
+
QuantizedEmbedding.from_embedding(self, group_size, bits, mode: mode)
|
|
24
|
+
end
|
|
25
|
+
end
|
|
26
|
+
|
|
27
|
+
end
|
|
28
|
+
end
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class Identity < Module
|
|
6
|
+
def initialize(*args, **kwargs)
|
|
7
|
+
super()
|
|
8
|
+
_ = [args, kwargs]
|
|
9
|
+
end
|
|
10
|
+
|
|
11
|
+
def call(x, *args, **kwargs)
|
|
12
|
+
_ = [args, kwargs]
|
|
13
|
+
x
|
|
14
|
+
end
|
|
15
|
+
end
|
|
16
|
+
|
|
17
|
+
class Linear < Module
|
|
18
|
+
def initialize(input_dims, output_dims, bias: true)
|
|
19
|
+
super()
|
|
20
|
+
scale = Math.sqrt(1.0 / input_dims)
|
|
21
|
+
self.weight = MLX::Core.uniform([output_dims, input_dims], -scale, scale)
|
|
22
|
+
self.bias = MLX::Core.uniform([output_dims], -scale, scale) if bias
|
|
23
|
+
end
|
|
24
|
+
|
|
25
|
+
def call(x)
|
|
26
|
+
out = MLX::Core.matmul(x, weight.T)
|
|
27
|
+
if state.key?("bias")
|
|
28
|
+
MLX::Core.add(out, bias)
|
|
29
|
+
else
|
|
30
|
+
out
|
|
31
|
+
end
|
|
32
|
+
end
|
|
33
|
+
|
|
34
|
+
def to_quantized(group_size: nil, bits: nil, mode: "affine", quantize_input: false)
|
|
35
|
+
if quantize_input
|
|
36
|
+
unless %w[nvfp4 mxfp8].include?(mode.to_s)
|
|
37
|
+
raise ArgumentError,
|
|
38
|
+
"Quantized activations are only supported for 'nvfp4' and 'mxfp8' modes, got #{mode}."
|
|
39
|
+
end
|
|
40
|
+
|
|
41
|
+
QQLinear.from_linear(self, group_size, bits, mode: mode)
|
|
42
|
+
else
|
|
43
|
+
QuantizedLinear.from_linear(self, group_size, bits, mode: mode)
|
|
44
|
+
end
|
|
45
|
+
end
|
|
46
|
+
end
|
|
47
|
+
|
|
48
|
+
class Bilinear < Module
|
|
49
|
+
def initialize(input1_dims, input2_dims, output_dims, bias: true)
|
|
50
|
+
super()
|
|
51
|
+
scale = Math.sqrt(1.0 / input1_dims)
|
|
52
|
+
self.weight = MLX::Core.uniform([output_dims, input2_dims, input1_dims], -scale, scale)
|
|
53
|
+
self.bias = MLX::Core.uniform([output_dims], -scale, scale) if bias
|
|
54
|
+
end
|
|
55
|
+
|
|
56
|
+
def call(x1, x2)
|
|
57
|
+
out_dims, in2_dims, in1_dims = weight.shape
|
|
58
|
+
|
|
59
|
+
x_shape = x1.shape[0...-1]
|
|
60
|
+
batch = x1.size / in1_dims
|
|
61
|
+
x1_2d = MLX::Core.reshape(x1, [batch, in1_dims])
|
|
62
|
+
x2_3d = MLX::Core.reshape(x2, [batch, 1, in2_dims])
|
|
63
|
+
|
|
64
|
+
w = MLX::Core.reshape(weight, [out_dims * in2_dims, in1_dims])
|
|
65
|
+
y = MLX::Core.matmul(x1_2d, w.T)
|
|
66
|
+
y = MLX::Core.reshape(y, [batch, out_dims, in2_dims])
|
|
67
|
+
y = MLX::Core.swapaxes(y, -2, -1)
|
|
68
|
+
y = MLX::Core.matmul(x2_3d, y)
|
|
69
|
+
y = MLX::Core.squeeze(y, 1)
|
|
70
|
+
|
|
71
|
+
out_shape = x_shape.empty? ? [out_dims] : x_shape + [out_dims]
|
|
72
|
+
y = MLX::Core.reshape(y, out_shape)
|
|
73
|
+
y = MLX::Core.add(y, bias) if state.key?("bias")
|
|
74
|
+
y
|
|
75
|
+
end
|
|
76
|
+
end
|
|
77
|
+
|
|
78
|
+
end
|
|
79
|
+
end
|
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
# frozen_string_literal: true
|
|
2
|
+
|
|
3
|
+
module MLX
|
|
4
|
+
module NN
|
|
5
|
+
class InstanceNorm < Module
|
|
6
|
+
def initialize(dims, eps: 1e-5, affine: false)
|
|
7
|
+
super()
|
|
8
|
+
if affine
|
|
9
|
+
self.weight = MLX::Core.ones([dims], MLX::Core.float32)
|
|
10
|
+
self.bias = MLX::Core.zeros([dims], MLX::Core.float32)
|
|
11
|
+
end
|
|
12
|
+
@dims = dims
|
|
13
|
+
@eps = eps
|
|
14
|
+
end
|
|
15
|
+
|
|
16
|
+
def call(x)
|
|
17
|
+
reduction_axes = (1...(x.ndim - 1)).to_a
|
|
18
|
+
mean = reduce_mean_axes(x, reduction_axes, keepdims: true)
|
|
19
|
+
var = MLX::Core.var(x, reduction_axes, true)
|
|
20
|
+
out = MLX::Core.multiply(
|
|
21
|
+
MLX::Core.subtract(x, mean),
|
|
22
|
+
MLX::Core.rsqrt(MLX::Core.add(var, @eps))
|
|
23
|
+
)
|
|
24
|
+
if state.key?("weight")
|
|
25
|
+
MLX::Core.add(MLX::Core.multiply(weight, out), bias)
|
|
26
|
+
else
|
|
27
|
+
out
|
|
28
|
+
end
|
|
29
|
+
end
|
|
30
|
+
|
|
31
|
+
private
|
|
32
|
+
|
|
33
|
+
def reduce_mean_axes(x, axes, keepdims: false)
|
|
34
|
+
return x if axes.empty?
|
|
35
|
+
|
|
36
|
+
result = x
|
|
37
|
+
axes.sort.each_with_index do |axis, i|
|
|
38
|
+
result = MLX::Core.mean(result, axis - i)
|
|
39
|
+
end
|
|
40
|
+
if keepdims
|
|
41
|
+
axes.sort.each do |axis|
|
|
42
|
+
result = MLX::Core.expand_dims(result, axis)
|
|
43
|
+
end
|
|
44
|
+
end
|
|
45
|
+
result
|
|
46
|
+
end
|
|
47
|
+
end
|
|
48
|
+
|
|
49
|
+
class LayerNorm < Module
|
|
50
|
+
def initialize(dims, eps: 1e-5, affine: true, bias: true)
|
|
51
|
+
super()
|
|
52
|
+
if affine
|
|
53
|
+
self.weight = MLX::Core.ones([dims], MLX::Core.float32)
|
|
54
|
+
self.bias = MLX::Core.zeros([dims], MLX::Core.float32) if bias
|
|
55
|
+
end
|
|
56
|
+
@eps = eps
|
|
57
|
+
@dims = dims
|
|
58
|
+
end
|
|
59
|
+
|
|
60
|
+
def call(x)
|
|
61
|
+
w = state.key?("weight") ? weight : nil
|
|
62
|
+
b = state.key?("bias") ? bias : nil
|
|
63
|
+
MLX::Core.layer_norm(x, w, b, @eps)
|
|
64
|
+
end
|
|
65
|
+
end
|
|
66
|
+
|
|
67
|
+
class RMSNorm < Module
|
|
68
|
+
def initialize(dims, eps: 1e-5)
|
|
69
|
+
super()
|
|
70
|
+
self.weight = MLX::Core.ones([dims], MLX::Core.float32)
|
|
71
|
+
@eps = eps
|
|
72
|
+
end
|
|
73
|
+
|
|
74
|
+
def call(x)
|
|
75
|
+
MLX::Core.rms_norm(x, weight, @eps)
|
|
76
|
+
end
|
|
77
|
+
end
|
|
78
|
+
|
|
79
|
+
class GroupNorm < Module
|
|
80
|
+
def initialize(num_groups, dims, eps: 1e-5, affine: true, pytorch_compatible: false)
|
|
81
|
+
super()
|
|
82
|
+
if affine
|
|
83
|
+
self.bias = MLX::Core.zeros([dims], MLX::Core.float32)
|
|
84
|
+
self.weight = MLX::Core.ones([dims], MLX::Core.float32)
|
|
85
|
+
end
|
|
86
|
+
@num_groups = num_groups
|
|
87
|
+
@dims = dims
|
|
88
|
+
@eps = eps
|
|
89
|
+
@pytorch_compatible = pytorch_compatible
|
|
90
|
+
end
|
|
91
|
+
|
|
92
|
+
def call(x)
|
|
93
|
+
out = if @pytorch_compatible
|
|
94
|
+
pytorch_compatible_group_norm(x)
|
|
95
|
+
else
|
|
96
|
+
group_norm(x)
|
|
97
|
+
end
|
|
98
|
+
if state.key?("weight")
|
|
99
|
+
MLX::Core.add(MLX::Core.multiply(weight, out), bias)
|
|
100
|
+
else
|
|
101
|
+
out
|
|
102
|
+
end
|
|
103
|
+
end
|
|
104
|
+
|
|
105
|
+
private
|
|
106
|
+
|
|
107
|
+
def pytorch_compatible_group_norm(x)
|
|
108
|
+
batch = x.shape[0]
|
|
109
|
+
rest = x.shape[1...-1]
|
|
110
|
+
dims = x.shape[-1]
|
|
111
|
+
group_size = dims / @num_groups
|
|
112
|
+
feature_count = rest.reduce(1) { |acc, v| acc * v }
|
|
113
|
+
|
|
114
|
+
out = MLX::Core.reshape(x, [batch, feature_count, @num_groups, group_size])
|
|
115
|
+
out = MLX::Core.transpose(out, [0, 2, 1, 3])
|
|
116
|
+
out = MLX::Core.reshape(out, [batch, @num_groups, feature_count * group_size])
|
|
117
|
+
out = MLX::Core.layer_norm(out, nil, nil, @eps)
|
|
118
|
+
out = MLX::Core.reshape(out, [batch, @num_groups, feature_count, group_size])
|
|
119
|
+
out = MLX::Core.transpose(out, [0, 2, 1, 3])
|
|
120
|
+
MLX::Core.reshape(out, [batch, *rest, dims])
|
|
121
|
+
end
|
|
122
|
+
|
|
123
|
+
def group_norm(x)
|
|
124
|
+
batch = x.shape[0]
|
|
125
|
+
rest = x.shape[1...-1]
|
|
126
|
+
dims = x.shape[-1]
|
|
127
|
+
grouped = x.size / (batch * @num_groups)
|
|
128
|
+
|
|
129
|
+
out = MLX::Core.reshape(x, [batch, grouped, @num_groups])
|
|
130
|
+
means = MLX::Core.expand_dims(MLX::Core.mean(out, 1), 1)
|
|
131
|
+
var = MLX::Core.var(out, 1, true)
|
|
132
|
+
out = MLX::Core.multiply(
|
|
133
|
+
MLX::Core.subtract(out, means),
|
|
134
|
+
MLX::Core.rsqrt(MLX::Core.add(var, @eps))
|
|
135
|
+
)
|
|
136
|
+
MLX::Core.reshape(out, [batch, *rest, dims])
|
|
137
|
+
end
|
|
138
|
+
end
|
|
139
|
+
|
|
140
|
+
class BatchNorm < Module
|
|
141
|
+
def initialize(num_features, eps: 1e-5, momentum: 0.1, affine: true, track_running_stats: true)
|
|
142
|
+
super()
|
|
143
|
+
|
|
144
|
+
@num_features = num_features
|
|
145
|
+
@eps = eps
|
|
146
|
+
@momentum = momentum
|
|
147
|
+
@track_running_stats = track_running_stats
|
|
148
|
+
|
|
149
|
+
if affine
|
|
150
|
+
self.weight = MLX::Core.ones([num_features], MLX::Core.float32)
|
|
151
|
+
self.bias = MLX::Core.zeros([num_features], MLX::Core.float32)
|
|
152
|
+
end
|
|
153
|
+
|
|
154
|
+
if @track_running_stats
|
|
155
|
+
self.running_mean = MLX::Core.zeros([num_features], MLX::Core.float32)
|
|
156
|
+
self.running_var = MLX::Core.ones([num_features], MLX::Core.float32)
|
|
157
|
+
freeze(keys: %w[running_mean running_var], recurse: false)
|
|
158
|
+
end
|
|
159
|
+
end
|
|
160
|
+
|
|
161
|
+
def unfreeze(*args, **kwargs)
|
|
162
|
+
super(*args, **kwargs)
|
|
163
|
+
freeze(keys: %w[running_mean running_var], recurse: false) if @track_running_stats
|
|
164
|
+
end
|
|
165
|
+
|
|
166
|
+
def call(x)
|
|
167
|
+
if x.ndim < 2 || x.ndim > 4
|
|
168
|
+
raise ArgumentError, "Expected input tensor to have 2, 3 or 4 dimensions, but got #{x.ndim}"
|
|
169
|
+
end
|
|
170
|
+
|
|
171
|
+
mean, var = calc_stats(x)
|
|
172
|
+
if training && @track_running_stats
|
|
173
|
+
mu = @momentum
|
|
174
|
+
self.running_mean = MLX::Core.add(
|
|
175
|
+
MLX::Core.multiply(1.0 - mu, running_mean),
|
|
176
|
+
MLX::Core.multiply(mu, mean)
|
|
177
|
+
)
|
|
178
|
+
self.running_var = MLX::Core.add(
|
|
179
|
+
MLX::Core.multiply(1.0 - mu, running_var),
|
|
180
|
+
MLX::Core.multiply(mu, var)
|
|
181
|
+
)
|
|
182
|
+
elsif @track_running_stats
|
|
183
|
+
mean = running_mean
|
|
184
|
+
var = running_var
|
|
185
|
+
end
|
|
186
|
+
|
|
187
|
+
out = MLX::Core.multiply(
|
|
188
|
+
MLX::Core.subtract(x, mean),
|
|
189
|
+
MLX::Core.rsqrt(MLX::Core.add(var, @eps))
|
|
190
|
+
)
|
|
191
|
+
if state.key?("weight")
|
|
192
|
+
MLX::Core.add(MLX::Core.multiply(weight, out), bias)
|
|
193
|
+
else
|
|
194
|
+
out
|
|
195
|
+
end
|
|
196
|
+
end
|
|
197
|
+
|
|
198
|
+
private
|
|
199
|
+
|
|
200
|
+
def calc_stats(x)
|
|
201
|
+
reduction_axes = (0...(x.ndim - 1)).to_a
|
|
202
|
+
mean = reduce_mean_axes(x, reduction_axes)
|
|
203
|
+
var = MLX::Core.var(x, reduction_axes)
|
|
204
|
+
[mean, var]
|
|
205
|
+
end
|
|
206
|
+
|
|
207
|
+
def reduce_mean_axes(x, axes)
|
|
208
|
+
result = x
|
|
209
|
+
axes.sort.each_with_index do |axis, i|
|
|
210
|
+
result = MLX::Core.mean(result, axis - i)
|
|
211
|
+
end
|
|
212
|
+
result
|
|
213
|
+
end
|
|
214
|
+
end
|
|
215
|
+
end
|
|
216
|
+
end
|