mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,166 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+
3
+ #include <cstring>
4
+ #include "mlx/array.h"
5
+ #include "mlx/backend/cpu/binary.h"
6
+ #include "mlx/backend/cpu/binary_ops.h"
7
+ #include "mlx/backend/cpu/copy.h"
8
+ #include "mlx/backend/cpu/encoder.h"
9
+ #include "mlx/backend/cpu/gemm.h"
10
+ #include "mlx/primitives.h"
11
+
12
+ namespace mlx::core {
13
+
14
+ template <typename T>
15
+ void matmul_dispatch(
16
+ const array& a,
17
+ const array& b,
18
+ array& out,
19
+ bool a_transposed,
20
+ bool b_transposed,
21
+ size_t lda,
22
+ size_t ldb,
23
+ float alpha,
24
+ float beta,
25
+ Stream stream) {
26
+ const T* a_ptr = a.data<T>();
27
+ const T* b_ptr = b.data<T>();
28
+ T* out_ptr = out.data<T>();
29
+ size_t ldc = out.shape(-1);
30
+ size_t batch_size = a.size() / (a.shape(-2) * a.shape(-1));
31
+ auto& encoder = cpu::get_command_encoder(stream);
32
+ encoder.set_input_array(a);
33
+ encoder.set_input_array(b);
34
+ encoder.set_output_array(out);
35
+ encoder.dispatch([a_ptr,
36
+ b_ptr,
37
+ out_ptr,
38
+ a_transposed,
39
+ b_transposed,
40
+ lda,
41
+ ldb,
42
+ ldc,
43
+ alpha,
44
+ beta,
45
+ batch_size,
46
+ a_shape = a.shape(),
47
+ a_strides = a.strides(),
48
+ b_shape = b.shape(),
49
+ b_strides = b.strides()]() {
50
+ matmul<T>(
51
+ a_ptr,
52
+ b_ptr,
53
+ out_ptr,
54
+ a_transposed,
55
+ b_transposed,
56
+ lda,
57
+ ldb,
58
+ ldc,
59
+ alpha,
60
+ beta,
61
+ batch_size,
62
+ a_shape,
63
+ a_strides,
64
+ b_shape,
65
+ b_strides);
66
+ });
67
+ }
68
+
69
+ void matmul_general(
70
+ const array& a_pre,
71
+ const array& b_pre,
72
+ array& out,
73
+ Stream stream,
74
+ float alpha = 1.0f,
75
+ float beta = 0.0f) {
76
+ std::vector<array> temps;
77
+ auto check_transpose = [stream, &temps](const array& arr) {
78
+ auto stx = arr.strides()[arr.ndim() - 2];
79
+ auto sty = arr.strides()[arr.ndim() - 1];
80
+ if (stx == arr.shape(-1) && sty == 1) {
81
+ return std::make_tuple(false, stx, arr);
82
+ } else if (stx == 1 && sty == arr.shape(-2)) {
83
+ return std::make_tuple(true, sty, arr);
84
+ } else {
85
+ temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
86
+ copy_cpu(arr, temps.back(), CopyType::General, stream);
87
+ stx = arr.shape(-1);
88
+ return std::make_tuple(false, stx, temps.back());
89
+ }
90
+ };
91
+
92
+ auto [a_transposed, lda, a] = check_transpose(a_pre);
93
+ auto [b_transposed, ldb, b] = check_transpose(b_pre);
94
+ size_t M = a.shape(-2);
95
+ size_t N = b.shape(-1);
96
+ if (M == 0 || N == 0) {
97
+ return;
98
+ }
99
+
100
+ if (out.dtype() == float32) {
101
+ matmul_dispatch<float>(
102
+ a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
103
+ } else if (out.dtype() == float16) {
104
+ matmul_dispatch<float16_t>(
105
+ a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
106
+ } else if (out.dtype() == bfloat16) {
107
+ matmul_dispatch<bfloat16_t>(
108
+ a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
109
+ } else if (out.dtype() == float64) {
110
+ matmul_dispatch<double>(
111
+ a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
112
+ } else if (out.dtype() == complex64) {
113
+ matmul_dispatch<complex64_t>(
114
+ a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
115
+ } else {
116
+ throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
117
+ }
118
+ cpu::get_command_encoder(stream).add_temporaries(std::move(temps));
119
+ }
120
+
121
+ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
122
+ out.set_data(allocator::malloc(out.nbytes()));
123
+ if (inputs[0].shape(-1) == 0) {
124
+ auto& encoder = cpu::get_command_encoder(stream());
125
+ encoder.set_output_array(out);
126
+ encoder.dispatch([out_ptr = out.data<void>(), nbytes = out.nbytes()]() {
127
+ std::memset(out_ptr, 0, nbytes);
128
+ });
129
+ return;
130
+ }
131
+ matmul_general(inputs[0], inputs[1], out, stream());
132
+ }
133
+
134
+ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
135
+ if (out.size() == 0) {
136
+ out.set_data(allocator::malloc(out.nbytes()));
137
+ return;
138
+ }
139
+
140
+ // Handle empty matrix case (K=0)
141
+ if (inputs[0].shape(-1) == 0) {
142
+ auto& c = inputs[2];
143
+ if (beta_ == 1.0f) {
144
+ CopyType ctype = c.data_size() == 1
145
+ ? CopyType::Scalar
146
+ : (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
147
+ copy_cpu(c, out, ctype, stream());
148
+ } else {
149
+ array beta_scalar = array(beta_, c.dtype());
150
+ auto& encoder = cpu::get_command_encoder(stream());
151
+ binary_float_op_cpu(c, beta_scalar, out, detail::Multiply(), stream());
152
+ encoder.add_temporary(std::move(beta_scalar));
153
+ }
154
+ return;
155
+ }
156
+
157
+ // Fill output with C
158
+ auto& c = inputs[2];
159
+ CopyType ctype = c.data_size() == 1
160
+ ? CopyType::Scalar
161
+ : (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
162
+ copy_cpu(c, out, ctype, stream());
163
+ matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
164
+ }
165
+
166
+ } // namespace mlx::core
@@ -0,0 +1,478 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+
3
+ #include <algorithm>
4
+ #include <cassert>
5
+ #include <cmath>
6
+ #include <numeric>
7
+ #include <sstream>
8
+
9
+ #include "mlx/allocator.h"
10
+ #include "mlx/backend/common/slicing.h"
11
+ #include "mlx/backend/common/utils.h"
12
+ #include "mlx/backend/cpu/arange.h"
13
+ #include "mlx/backend/cpu/copy.h"
14
+ #include "mlx/backend/cpu/encoder.h"
15
+ #include "mlx/backend/cpu/threefry.h"
16
+ #include "mlx/primitives.h"
17
+ #include "mlx/utils.h"
18
+
19
+ namespace mlx::core {
20
+
21
+ void reshape(const array& in, array& out) {
22
+ auto [copy_necessary, out_strides] = prepare_reshape(in, out);
23
+ if (copy_necessary) {
24
+ out.set_data(allocator::malloc(out.nbytes()));
25
+ copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
26
+ } else {
27
+ shared_buffer_reshape(in, out_strides, out);
28
+ }
29
+ }
30
+
31
+ static std::pair<array, bool> compute_dynamic_offset(
32
+ const array& indices,
33
+ const Strides& strides,
34
+ const std::vector<int>& axes,
35
+ Stream stream) {
36
+ array offset({1}, int64, nullptr, {});
37
+ bool donate = indices.is_donatable() &&
38
+ (indices.data_size() * indices.itemsize()) >= offset.itemsize();
39
+ if (donate) {
40
+ offset.copy_shared_buffer(indices);
41
+ } else {
42
+ offset.set_data(allocator::malloc(offset.itemsize()));
43
+ }
44
+
45
+ auto& encoder = cpu::get_command_encoder(stream);
46
+ encoder.set_input_array(indices);
47
+ encoder.set_output_array(offset);
48
+ auto compute_offset =
49
+ [strides, axes, offset = offset.data<int64_t>()](const auto* indices) {
50
+ int64_t offset_ = 0;
51
+ for (int i = 0; i < axes.size(); ++i) {
52
+ offset_ += indices[i] * strides[axes[i]];
53
+ }
54
+ offset[0] = offset_;
55
+ };
56
+ switch (indices.dtype()) {
57
+ case int8:
58
+ case uint8:
59
+ encoder.dispatch(compute_offset, indices.data<uint8_t>());
60
+ break;
61
+ case int16:
62
+ case uint16:
63
+ encoder.dispatch(compute_offset, indices.data<uint16_t>());
64
+ break;
65
+ case int32:
66
+ case uint32:
67
+ encoder.dispatch(compute_offset, indices.data<uint32_t>());
68
+ break;
69
+ case int64:
70
+ case uint64:
71
+ encoder.dispatch(compute_offset, indices.data<uint64_t>());
72
+ break;
73
+ default:
74
+ throw std::runtime_error("Invalid indices type.");
75
+ }
76
+ return {offset, donate};
77
+ }
78
+
79
+ void AsStrided::eval_cpu(const std::vector<array>& inputs, array& out) {
80
+ eval(inputs, out);
81
+ }
82
+ void Broadcast::eval_cpu(const std::vector<array>& inputs, array& out) {
83
+ eval(inputs, out);
84
+ }
85
+ void BroadcastAxes::eval_cpu(const std::vector<array>& inputs, array& out) {
86
+ eval(inputs, out);
87
+ }
88
+ void Copy::eval_cpu(const std::vector<array>& inputs, array& out) {
89
+ eval(inputs, out);
90
+ }
91
+ void CustomTransforms::eval_cpu(
92
+ const std::vector<array>& inputs,
93
+ std::vector<array>& outputs) {
94
+ eval(inputs, outputs);
95
+ }
96
+ void Depends::eval_cpu(
97
+ const std::vector<array>& inputs,
98
+ std::vector<array>& outputs) {
99
+ eval(inputs, outputs);
100
+ }
101
+ void ExpandDims::eval_cpu(const std::vector<array>& inputs, array& out) {
102
+ eval(inputs, out);
103
+ }
104
+ void NumberOfElements::eval_cpu(const std::vector<array>& inputs, array& out) {
105
+ eval(inputs, out);
106
+ }
107
+ void Slice::eval_cpu(const std::vector<array>& inputs, array& out) {
108
+ slice(inputs[0], out, start_indices_, strides_);
109
+ }
110
+ void Split::eval_cpu(
111
+ const std::vector<array>& inputs,
112
+ std::vector<array>& outputs) {
113
+ eval(inputs, outputs);
114
+ }
115
+ void Squeeze::eval_cpu(const std::vector<array>& inputs, array& out) {
116
+ eval(inputs, out);
117
+ }
118
+ void StopGradient::eval_cpu(const std::vector<array>& inputs, array& out) {
119
+ eval(inputs, out);
120
+ }
121
+ void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
122
+ eval(inputs, out);
123
+ }
124
+
125
+ void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
126
+ assert(inputs.size() == 0);
127
+ out.set_data(allocator::malloc(out.nbytes()));
128
+ switch (out.dtype()) {
129
+ case bool_:
130
+ throw std::runtime_error("Bool type unsupported for arange.");
131
+ break;
132
+ case uint8:
133
+ arange<uint8_t>(start_, start_ + step_, out, out.size(), stream());
134
+ break;
135
+ case uint16:
136
+ arange<uint16_t>(start_, start_ + step_, out, out.size(), stream());
137
+ break;
138
+ case uint32:
139
+ arange<uint32_t>(start_, start_ + step_, out, out.size(), stream());
140
+ break;
141
+ case uint64:
142
+ arange<uint64_t>(start_, start_ + step_, out, out.size(), stream());
143
+ break;
144
+ case int8:
145
+ arange<int8_t>(start_, start_ + step_, out, out.size(), stream());
146
+ break;
147
+ case int16:
148
+ arange<int16_t>(start_, start_ + step_, out, out.size(), stream());
149
+ break;
150
+ case int32:
151
+ arange<int32_t>(start_, start_ + step_, out, out.size(), stream());
152
+ break;
153
+ case int64:
154
+ arange<int64_t>(start_, start_ + step_, out, out.size(), stream());
155
+ break;
156
+ case float16:
157
+ arange<float16_t>(start_, start_ + step_, out, out.size(), stream());
158
+ break;
159
+ case float32:
160
+ arange<float>(start_, start_ + step_, out, out.size(), stream());
161
+ break;
162
+ case float64:
163
+ arange<double>(start_, start_ + step_, out, out.size(), stream());
164
+ break;
165
+ case bfloat16:
166
+ arange<bfloat16_t>(start_, start_ + step_, out, out.size(), stream());
167
+ break;
168
+ case complex64:
169
+ arange<complex64_t>(start_, start_ + step_, out, out.size(), stream());
170
+ break;
171
+ }
172
+ }
173
+
174
+ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
175
+ assert(inputs.size() == 1);
176
+ auto& in = inputs[0];
177
+ CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
178
+ copy_cpu(in, out, ctype, stream());
179
+ }
180
+
181
+ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
182
+ std::vector<int> sizes;
183
+ sizes.push_back(0);
184
+ for (auto& p : inputs) {
185
+ sizes.push_back(p.shape(axis_));
186
+ }
187
+ std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
188
+
189
+ out.set_data(allocator::malloc(out.nbytes()));
190
+
191
+ auto strides = out.strides();
192
+ auto flags = out.flags();
193
+ flags.row_contiguous = false;
194
+ flags.col_contiguous = false;
195
+ flags.contiguous = false;
196
+ for (int i = 0; i < inputs.size(); i++) {
197
+ array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
198
+ size_t data_offset = strides[axis_] * sizes[i];
199
+ out_slice.copy_shared_buffer(
200
+ out, strides, flags, out_slice.size(), data_offset);
201
+ copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
202
+ }
203
+ }
204
+
205
+ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
206
+ assert(inputs.size() == 1);
207
+ auto& in = inputs[0];
208
+ constexpr size_t extra_bytes = 16384;
209
+ if (in.buffer_size() <= out.nbytes() + extra_bytes &&
210
+ (in.flags().row_contiguous ||
211
+ (allow_col_major_ && in.flags().col_contiguous))) {
212
+ out.copy_shared_buffer(in);
213
+ } else {
214
+ copy_cpu(in, out, CopyType::General, stream());
215
+ }
216
+ }
217
+
218
+ void Flatten::eval_cpu(const std::vector<array>& inputs, array& out) {
219
+ reshape(inputs[0], out);
220
+ }
221
+
222
+ void Unflatten::eval_cpu(const std::vector<array>& inputs, array& out) {
223
+ reshape(inputs[0], out);
224
+ }
225
+
226
+ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
227
+ assert(inputs.size() == 1);
228
+ auto& in = inputs[0];
229
+ assert(in.dtype() == out.dtype());
230
+ CopyType ctype;
231
+ if (in.data_size() == 1) {
232
+ ctype = CopyType::Scalar;
233
+ } else if (in.flags().contiguous) {
234
+ ctype = CopyType::Vector;
235
+ } else {
236
+ ctype = CopyType::General;
237
+ }
238
+ copy_cpu(in, out, ctype, stream());
239
+ }
240
+
241
+ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
242
+ // Inputs must be base input array and scalar val array
243
+ assert(inputs.size() == 2);
244
+ auto& in = inputs[0];
245
+ auto& val = inputs[1];
246
+
247
+ // Padding value must be a scalar
248
+ assert(val.size() == 1);
249
+
250
+ // Padding value, input and output must be of the same type
251
+ assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
252
+
253
+ // Fill output with val
254
+ copy_cpu(val, out, CopyType::Scalar, stream());
255
+
256
+ // Find offset for start of input values
257
+ size_t data_offset = 0;
258
+ for (int i = 0; i < axes_.size(); i++) {
259
+ auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
260
+ data_offset += out.strides()[ax] * low_pad_size_[i];
261
+ }
262
+
263
+ // Extract slice from output where input will be pasted
264
+ array out_slice(in.shape(), out.dtype(), nullptr, {});
265
+ out_slice.copy_shared_buffer(
266
+ out, out.strides(), out.flags(), out_slice.size(), data_offset);
267
+
268
+ // Copy input values into the slice
269
+ copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
270
+ }
271
+
272
+ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
273
+ assert(inputs.size() == 1);
274
+ // keys has shape (N1, ..., NK, 2)
275
+ // out has shape (N1, ..., NK, M1, M2, ...)
276
+ auto& keys = inputs[0];
277
+ size_t num_keys = keys.size() / 2;
278
+
279
+ size_t elems_per_key = out.size() / num_keys;
280
+ size_t bytes_per_key = out.itemsize() * elems_per_key;
281
+ out.set_data(allocator::malloc(out.nbytes()));
282
+
283
+ auto kptr = inputs[0].data<uint32_t>();
284
+ auto cptr = out.data<char>();
285
+ auto& encoder = cpu::get_command_encoder(stream());
286
+ encoder.set_input_array(inputs[0]);
287
+ encoder.set_output_array(out);
288
+ encoder.dispatch([kptr,
289
+ cptr,
290
+ bytes_per_key,
291
+ num_keys,
292
+ kshape = keys.shape(),
293
+ kstrides = keys.strides()]() mutable {
294
+ auto copy_remaining = [&](char* cptr, size_t loc, uint32_t v) {
295
+ if (4 * loc + 4 <= bytes_per_key) {
296
+ reinterpret_cast<uint32_t*>(cptr)[loc] = v;
297
+ } else {
298
+ std::copy(
299
+ reinterpret_cast<char*>(&v),
300
+ reinterpret_cast<char*>(&v) + bytes_per_key - 4 * loc,
301
+ cptr + 4 * loc);
302
+ }
303
+ };
304
+
305
+ size_t out_skip = (bytes_per_key + 4 - 1) / 4;
306
+ auto half_size = out_skip / 2;
307
+ bool even = out_skip % 2 == 0;
308
+ for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
309
+ auto ptr = reinterpret_cast<uint32_t*>(cptr);
310
+ // Get ith key
311
+ auto kidx = 2 * i;
312
+ auto k1_elem = elem_to_loc(kidx, kshape, kstrides);
313
+ auto k2_elem = elem_to_loc(kidx + 1, kshape, kstrides);
314
+ auto key = std::make_pair(kptr[k1_elem], kptr[k2_elem]);
315
+
316
+ std::pair<uintptr_t, uintptr_t> count{0, half_size + !even};
317
+ for (; count.first + 1 < half_size; count.first++, count.second++) {
318
+ std::tie(ptr[count.first], ptr[count.second]) =
319
+ random::threefry2x32_hash(key, count);
320
+ }
321
+ if (count.first < half_size) {
322
+ auto rb = random::threefry2x32_hash(key, count);
323
+ ptr[count.first++] = rb.first;
324
+ copy_remaining(cptr, count.second, rb.second);
325
+ }
326
+ if (!even) {
327
+ count.second = 0;
328
+ copy_remaining(
329
+ cptr, half_size, random::threefry2x32_hash(key, count).first);
330
+ }
331
+ }
332
+ });
333
+ }
334
+
335
+ void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
336
+ reshape(inputs[0], out);
337
+ }
338
+
339
+ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
340
+ if (out.size() == 0) {
341
+ out.set_data(allocator::malloc(0));
342
+ return;
343
+ }
344
+ auto& in = inputs[0];
345
+ out.set_data(allocator::malloc(out.nbytes()));
346
+ auto [in_offset, donated] =
347
+ compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
348
+ copy_cpu_inplace(
349
+ /* const array& src = */ in,
350
+ /* array& dst = */ out,
351
+ /* const Shape& data_shape = */ out.shape(),
352
+ /* const Strides& i_strides = */ in.strides(),
353
+ /* const Strides& o_strides = */ out.strides(),
354
+ /* int64_t i_offset = */ 0,
355
+ /* int64_t o_offset = */ 0,
356
+ /* CopyType ctype = */ CopyType::GeneralGeneral,
357
+ stream(),
358
+ /* const std::optional<array>& dynamic_i_offset = */ in_offset,
359
+ /* const std::optional<array>& dynamic_o_offset = */ std::nullopt);
360
+ if (!donated) {
361
+ cpu::get_command_encoder(stream()).add_temporary(std::move(in_offset));
362
+ }
363
+ }
364
+
365
+ void DynamicSliceUpdate::eval_cpu(
366
+ const std::vector<array>& inputs,
367
+ array& out) {
368
+ if (out.size() == 0) {
369
+ out.set_data(allocator::malloc(0));
370
+ return;
371
+ }
372
+
373
+ auto& in = inputs[0];
374
+ auto& upd = inputs[1];
375
+
376
+ // Copy or move src to dst
377
+ auto ctype = in.flags().contiguous && in.size() == in.data_size()
378
+ ? CopyType::Vector
379
+ : CopyType::General;
380
+ copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
381
+
382
+ auto [out_offset, donated] =
383
+ compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
384
+ copy_cpu_inplace(
385
+ /* const array& src = */ upd,
386
+ /* array& dst = */ out,
387
+ /* const std::vector<int>& data_shape = */ upd.shape(),
388
+ /* const std::vector<stride_t>& i_strides = */ upd.strides(),
389
+ /* const std::vector<stride_t>& o_strides = */ out.strides(),
390
+ /* int64_t i_offset = */ 0,
391
+ /* int64_t o_offset = */ 0,
392
+ /* CopyType ctype = */ CopyType::GeneralGeneral,
393
+ stream(),
394
+ /* const std::optional<array>& dynamic_i_offset = */ std::nullopt,
395
+ /* const std::optional<array>& dynamic_o_offset = */ out_offset);
396
+ if (!donated) {
397
+ cpu::get_command_encoder(stream()).add_temporary(std::move(out_offset));
398
+ }
399
+ }
400
+
401
+ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
402
+ assert(inputs.size() == 2);
403
+ if (out.size() == 0) {
404
+ out.set_data(allocator::malloc(0));
405
+ return;
406
+ }
407
+
408
+ auto& in = inputs[0];
409
+ auto& upd = inputs[1];
410
+
411
+ if (upd.size() == 0) {
412
+ out.copy_shared_buffer(in);
413
+ return;
414
+ }
415
+
416
+ // Check if materialization is needed
417
+ auto ctype = in.flags().contiguous && in.size() == in.data_size()
418
+ ? CopyType::Vector
419
+ : CopyType::General;
420
+ copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
421
+
422
+ // Calculate out strides, initial offset and if copy needs to be made
423
+ auto [data_offset, out_strides] =
424
+ prepare_slice(out, start_indices_, strides_);
425
+
426
+ // Do copy
427
+ copy_cpu_inplace(
428
+ /* const array& src = */ upd,
429
+ /* array& dst = */ out,
430
+ /* const std::vector<int>& data_shape = */ upd.shape(),
431
+ /* const std::vector<stride_t>& i_strides = */ upd.strides(),
432
+ /* const std::vector<stride_t>& o_strides = */ out_strides,
433
+ /* int64_t i_offset = */ 0,
434
+ /* int64_t o_offset = */ data_offset,
435
+ /* CopyType ctype = */ CopyType::GeneralGeneral,
436
+ stream());
437
+ }
438
+
439
+ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
440
+ assert(inputs.size() == 1);
441
+ auto& in = inputs[0];
442
+ auto ibytes = size_of(in.dtype());
443
+ auto obytes = size_of(out.dtype());
444
+ // Conditions for buffer copying (disjunction):
445
+ // - type size is the same
446
+ // - type size is smaller and the last axis is contiguous
447
+ // - the entire array is row contiguous
448
+ if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
449
+ in.flags().row_contiguous) {
450
+ auto strides = in.strides();
451
+ for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
452
+ strides[i] *= ibytes;
453
+ strides[i] /= obytes;
454
+ }
455
+ out.copy_shared_buffer(
456
+ in, strides, in.flags(), in.data_size() * ibytes / obytes);
457
+ } else {
458
+ auto tmp = array(
459
+ in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
460
+ tmp.set_data(allocator::malloc(tmp.nbytes()));
461
+ if (in.dtype() == bool_) {
462
+ auto in_tmp = array(in.shape(), uint8, nullptr, {});
463
+ in_tmp.copy_shared_buffer(in);
464
+ copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
465
+ } else {
466
+ copy_cpu_inplace(in, tmp, CopyType::General, stream());
467
+ }
468
+
469
+ auto flags = out.flags();
470
+ flags.contiguous = true;
471
+ flags.row_contiguous = true;
472
+ auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
473
+ flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
474
+ out.copy_shared_buffer(tmp, out.strides(), flags, out.size());
475
+ }
476
+ }
477
+
478
+ } // namespace mlx::core