mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,166 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <cstring>
|
|
4
|
+
#include "mlx/array.h"
|
|
5
|
+
#include "mlx/backend/cpu/binary.h"
|
|
6
|
+
#include "mlx/backend/cpu/binary_ops.h"
|
|
7
|
+
#include "mlx/backend/cpu/copy.h"
|
|
8
|
+
#include "mlx/backend/cpu/encoder.h"
|
|
9
|
+
#include "mlx/backend/cpu/gemm.h"
|
|
10
|
+
#include "mlx/primitives.h"
|
|
11
|
+
|
|
12
|
+
namespace mlx::core {
|
|
13
|
+
|
|
14
|
+
template <typename T>
|
|
15
|
+
void matmul_dispatch(
|
|
16
|
+
const array& a,
|
|
17
|
+
const array& b,
|
|
18
|
+
array& out,
|
|
19
|
+
bool a_transposed,
|
|
20
|
+
bool b_transposed,
|
|
21
|
+
size_t lda,
|
|
22
|
+
size_t ldb,
|
|
23
|
+
float alpha,
|
|
24
|
+
float beta,
|
|
25
|
+
Stream stream) {
|
|
26
|
+
const T* a_ptr = a.data<T>();
|
|
27
|
+
const T* b_ptr = b.data<T>();
|
|
28
|
+
T* out_ptr = out.data<T>();
|
|
29
|
+
size_t ldc = out.shape(-1);
|
|
30
|
+
size_t batch_size = a.size() / (a.shape(-2) * a.shape(-1));
|
|
31
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
32
|
+
encoder.set_input_array(a);
|
|
33
|
+
encoder.set_input_array(b);
|
|
34
|
+
encoder.set_output_array(out);
|
|
35
|
+
encoder.dispatch([a_ptr,
|
|
36
|
+
b_ptr,
|
|
37
|
+
out_ptr,
|
|
38
|
+
a_transposed,
|
|
39
|
+
b_transposed,
|
|
40
|
+
lda,
|
|
41
|
+
ldb,
|
|
42
|
+
ldc,
|
|
43
|
+
alpha,
|
|
44
|
+
beta,
|
|
45
|
+
batch_size,
|
|
46
|
+
a_shape = a.shape(),
|
|
47
|
+
a_strides = a.strides(),
|
|
48
|
+
b_shape = b.shape(),
|
|
49
|
+
b_strides = b.strides()]() {
|
|
50
|
+
matmul<T>(
|
|
51
|
+
a_ptr,
|
|
52
|
+
b_ptr,
|
|
53
|
+
out_ptr,
|
|
54
|
+
a_transposed,
|
|
55
|
+
b_transposed,
|
|
56
|
+
lda,
|
|
57
|
+
ldb,
|
|
58
|
+
ldc,
|
|
59
|
+
alpha,
|
|
60
|
+
beta,
|
|
61
|
+
batch_size,
|
|
62
|
+
a_shape,
|
|
63
|
+
a_strides,
|
|
64
|
+
b_shape,
|
|
65
|
+
b_strides);
|
|
66
|
+
});
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
void matmul_general(
|
|
70
|
+
const array& a_pre,
|
|
71
|
+
const array& b_pre,
|
|
72
|
+
array& out,
|
|
73
|
+
Stream stream,
|
|
74
|
+
float alpha = 1.0f,
|
|
75
|
+
float beta = 0.0f) {
|
|
76
|
+
std::vector<array> temps;
|
|
77
|
+
auto check_transpose = [stream, &temps](const array& arr) {
|
|
78
|
+
auto stx = arr.strides()[arr.ndim() - 2];
|
|
79
|
+
auto sty = arr.strides()[arr.ndim() - 1];
|
|
80
|
+
if (stx == arr.shape(-1) && sty == 1) {
|
|
81
|
+
return std::make_tuple(false, stx, arr);
|
|
82
|
+
} else if (stx == 1 && sty == arr.shape(-2)) {
|
|
83
|
+
return std::make_tuple(true, sty, arr);
|
|
84
|
+
} else {
|
|
85
|
+
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
|
86
|
+
copy_cpu(arr, temps.back(), CopyType::General, stream);
|
|
87
|
+
stx = arr.shape(-1);
|
|
88
|
+
return std::make_tuple(false, stx, temps.back());
|
|
89
|
+
}
|
|
90
|
+
};
|
|
91
|
+
|
|
92
|
+
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
|
93
|
+
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
|
94
|
+
size_t M = a.shape(-2);
|
|
95
|
+
size_t N = b.shape(-1);
|
|
96
|
+
if (M == 0 || N == 0) {
|
|
97
|
+
return;
|
|
98
|
+
}
|
|
99
|
+
|
|
100
|
+
if (out.dtype() == float32) {
|
|
101
|
+
matmul_dispatch<float>(
|
|
102
|
+
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
|
103
|
+
} else if (out.dtype() == float16) {
|
|
104
|
+
matmul_dispatch<float16_t>(
|
|
105
|
+
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
|
106
|
+
} else if (out.dtype() == bfloat16) {
|
|
107
|
+
matmul_dispatch<bfloat16_t>(
|
|
108
|
+
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
|
109
|
+
} else if (out.dtype() == float64) {
|
|
110
|
+
matmul_dispatch<double>(
|
|
111
|
+
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
|
112
|
+
} else if (out.dtype() == complex64) {
|
|
113
|
+
matmul_dispatch<complex64_t>(
|
|
114
|
+
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
|
115
|
+
} else {
|
|
116
|
+
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
|
|
117
|
+
}
|
|
118
|
+
cpu::get_command_encoder(stream).add_temporaries(std::move(temps));
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
122
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
123
|
+
if (inputs[0].shape(-1) == 0) {
|
|
124
|
+
auto& encoder = cpu::get_command_encoder(stream());
|
|
125
|
+
encoder.set_output_array(out);
|
|
126
|
+
encoder.dispatch([out_ptr = out.data<void>(), nbytes = out.nbytes()]() {
|
|
127
|
+
std::memset(out_ptr, 0, nbytes);
|
|
128
|
+
});
|
|
129
|
+
return;
|
|
130
|
+
}
|
|
131
|
+
matmul_general(inputs[0], inputs[1], out, stream());
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
135
|
+
if (out.size() == 0) {
|
|
136
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
137
|
+
return;
|
|
138
|
+
}
|
|
139
|
+
|
|
140
|
+
// Handle empty matrix case (K=0)
|
|
141
|
+
if (inputs[0].shape(-1) == 0) {
|
|
142
|
+
auto& c = inputs[2];
|
|
143
|
+
if (beta_ == 1.0f) {
|
|
144
|
+
CopyType ctype = c.data_size() == 1
|
|
145
|
+
? CopyType::Scalar
|
|
146
|
+
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
|
147
|
+
copy_cpu(c, out, ctype, stream());
|
|
148
|
+
} else {
|
|
149
|
+
array beta_scalar = array(beta_, c.dtype());
|
|
150
|
+
auto& encoder = cpu::get_command_encoder(stream());
|
|
151
|
+
binary_float_op_cpu(c, beta_scalar, out, detail::Multiply(), stream());
|
|
152
|
+
encoder.add_temporary(std::move(beta_scalar));
|
|
153
|
+
}
|
|
154
|
+
return;
|
|
155
|
+
}
|
|
156
|
+
|
|
157
|
+
// Fill output with C
|
|
158
|
+
auto& c = inputs[2];
|
|
159
|
+
CopyType ctype = c.data_size() == 1
|
|
160
|
+
? CopyType::Scalar
|
|
161
|
+
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
|
162
|
+
copy_cpu(c, out, ctype, stream());
|
|
163
|
+
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
|
|
164
|
+
}
|
|
165
|
+
|
|
166
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,478 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <algorithm>
|
|
4
|
+
#include <cassert>
|
|
5
|
+
#include <cmath>
|
|
6
|
+
#include <numeric>
|
|
7
|
+
#include <sstream>
|
|
8
|
+
|
|
9
|
+
#include "mlx/allocator.h"
|
|
10
|
+
#include "mlx/backend/common/slicing.h"
|
|
11
|
+
#include "mlx/backend/common/utils.h"
|
|
12
|
+
#include "mlx/backend/cpu/arange.h"
|
|
13
|
+
#include "mlx/backend/cpu/copy.h"
|
|
14
|
+
#include "mlx/backend/cpu/encoder.h"
|
|
15
|
+
#include "mlx/backend/cpu/threefry.h"
|
|
16
|
+
#include "mlx/primitives.h"
|
|
17
|
+
#include "mlx/utils.h"
|
|
18
|
+
|
|
19
|
+
namespace mlx::core {
|
|
20
|
+
|
|
21
|
+
void reshape(const array& in, array& out) {
|
|
22
|
+
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
|
23
|
+
if (copy_necessary) {
|
|
24
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
25
|
+
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
|
|
26
|
+
} else {
|
|
27
|
+
shared_buffer_reshape(in, out_strides, out);
|
|
28
|
+
}
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
static std::pair<array, bool> compute_dynamic_offset(
|
|
32
|
+
const array& indices,
|
|
33
|
+
const Strides& strides,
|
|
34
|
+
const std::vector<int>& axes,
|
|
35
|
+
Stream stream) {
|
|
36
|
+
array offset({1}, int64, nullptr, {});
|
|
37
|
+
bool donate = indices.is_donatable() &&
|
|
38
|
+
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
|
|
39
|
+
if (donate) {
|
|
40
|
+
offset.copy_shared_buffer(indices);
|
|
41
|
+
} else {
|
|
42
|
+
offset.set_data(allocator::malloc(offset.itemsize()));
|
|
43
|
+
}
|
|
44
|
+
|
|
45
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
46
|
+
encoder.set_input_array(indices);
|
|
47
|
+
encoder.set_output_array(offset);
|
|
48
|
+
auto compute_offset =
|
|
49
|
+
[strides, axes, offset = offset.data<int64_t>()](const auto* indices) {
|
|
50
|
+
int64_t offset_ = 0;
|
|
51
|
+
for (int i = 0; i < axes.size(); ++i) {
|
|
52
|
+
offset_ += indices[i] * strides[axes[i]];
|
|
53
|
+
}
|
|
54
|
+
offset[0] = offset_;
|
|
55
|
+
};
|
|
56
|
+
switch (indices.dtype()) {
|
|
57
|
+
case int8:
|
|
58
|
+
case uint8:
|
|
59
|
+
encoder.dispatch(compute_offset, indices.data<uint8_t>());
|
|
60
|
+
break;
|
|
61
|
+
case int16:
|
|
62
|
+
case uint16:
|
|
63
|
+
encoder.dispatch(compute_offset, indices.data<uint16_t>());
|
|
64
|
+
break;
|
|
65
|
+
case int32:
|
|
66
|
+
case uint32:
|
|
67
|
+
encoder.dispatch(compute_offset, indices.data<uint32_t>());
|
|
68
|
+
break;
|
|
69
|
+
case int64:
|
|
70
|
+
case uint64:
|
|
71
|
+
encoder.dispatch(compute_offset, indices.data<uint64_t>());
|
|
72
|
+
break;
|
|
73
|
+
default:
|
|
74
|
+
throw std::runtime_error("Invalid indices type.");
|
|
75
|
+
}
|
|
76
|
+
return {offset, donate};
|
|
77
|
+
}
|
|
78
|
+
|
|
79
|
+
void AsStrided::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
80
|
+
eval(inputs, out);
|
|
81
|
+
}
|
|
82
|
+
void Broadcast::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
83
|
+
eval(inputs, out);
|
|
84
|
+
}
|
|
85
|
+
void BroadcastAxes::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
86
|
+
eval(inputs, out);
|
|
87
|
+
}
|
|
88
|
+
void Copy::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
89
|
+
eval(inputs, out);
|
|
90
|
+
}
|
|
91
|
+
void CustomTransforms::eval_cpu(
|
|
92
|
+
const std::vector<array>& inputs,
|
|
93
|
+
std::vector<array>& outputs) {
|
|
94
|
+
eval(inputs, outputs);
|
|
95
|
+
}
|
|
96
|
+
void Depends::eval_cpu(
|
|
97
|
+
const std::vector<array>& inputs,
|
|
98
|
+
std::vector<array>& outputs) {
|
|
99
|
+
eval(inputs, outputs);
|
|
100
|
+
}
|
|
101
|
+
void ExpandDims::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
102
|
+
eval(inputs, out);
|
|
103
|
+
}
|
|
104
|
+
void NumberOfElements::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
105
|
+
eval(inputs, out);
|
|
106
|
+
}
|
|
107
|
+
void Slice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
108
|
+
slice(inputs[0], out, start_indices_, strides_);
|
|
109
|
+
}
|
|
110
|
+
void Split::eval_cpu(
|
|
111
|
+
const std::vector<array>& inputs,
|
|
112
|
+
std::vector<array>& outputs) {
|
|
113
|
+
eval(inputs, outputs);
|
|
114
|
+
}
|
|
115
|
+
void Squeeze::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
116
|
+
eval(inputs, out);
|
|
117
|
+
}
|
|
118
|
+
void StopGradient::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
119
|
+
eval(inputs, out);
|
|
120
|
+
}
|
|
121
|
+
void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
122
|
+
eval(inputs, out);
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
126
|
+
assert(inputs.size() == 0);
|
|
127
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
128
|
+
switch (out.dtype()) {
|
|
129
|
+
case bool_:
|
|
130
|
+
throw std::runtime_error("Bool type unsupported for arange.");
|
|
131
|
+
break;
|
|
132
|
+
case uint8:
|
|
133
|
+
arange<uint8_t>(start_, start_ + step_, out, out.size(), stream());
|
|
134
|
+
break;
|
|
135
|
+
case uint16:
|
|
136
|
+
arange<uint16_t>(start_, start_ + step_, out, out.size(), stream());
|
|
137
|
+
break;
|
|
138
|
+
case uint32:
|
|
139
|
+
arange<uint32_t>(start_, start_ + step_, out, out.size(), stream());
|
|
140
|
+
break;
|
|
141
|
+
case uint64:
|
|
142
|
+
arange<uint64_t>(start_, start_ + step_, out, out.size(), stream());
|
|
143
|
+
break;
|
|
144
|
+
case int8:
|
|
145
|
+
arange<int8_t>(start_, start_ + step_, out, out.size(), stream());
|
|
146
|
+
break;
|
|
147
|
+
case int16:
|
|
148
|
+
arange<int16_t>(start_, start_ + step_, out, out.size(), stream());
|
|
149
|
+
break;
|
|
150
|
+
case int32:
|
|
151
|
+
arange<int32_t>(start_, start_ + step_, out, out.size(), stream());
|
|
152
|
+
break;
|
|
153
|
+
case int64:
|
|
154
|
+
arange<int64_t>(start_, start_ + step_, out, out.size(), stream());
|
|
155
|
+
break;
|
|
156
|
+
case float16:
|
|
157
|
+
arange<float16_t>(start_, start_ + step_, out, out.size(), stream());
|
|
158
|
+
break;
|
|
159
|
+
case float32:
|
|
160
|
+
arange<float>(start_, start_ + step_, out, out.size(), stream());
|
|
161
|
+
break;
|
|
162
|
+
case float64:
|
|
163
|
+
arange<double>(start_, start_ + step_, out, out.size(), stream());
|
|
164
|
+
break;
|
|
165
|
+
case bfloat16:
|
|
166
|
+
arange<bfloat16_t>(start_, start_ + step_, out, out.size(), stream());
|
|
167
|
+
break;
|
|
168
|
+
case complex64:
|
|
169
|
+
arange<complex64_t>(start_, start_ + step_, out, out.size(), stream());
|
|
170
|
+
break;
|
|
171
|
+
}
|
|
172
|
+
}
|
|
173
|
+
|
|
174
|
+
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
175
|
+
assert(inputs.size() == 1);
|
|
176
|
+
auto& in = inputs[0];
|
|
177
|
+
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
|
178
|
+
copy_cpu(in, out, ctype, stream());
|
|
179
|
+
}
|
|
180
|
+
|
|
181
|
+
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
182
|
+
std::vector<int> sizes;
|
|
183
|
+
sizes.push_back(0);
|
|
184
|
+
for (auto& p : inputs) {
|
|
185
|
+
sizes.push_back(p.shape(axis_));
|
|
186
|
+
}
|
|
187
|
+
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
|
|
188
|
+
|
|
189
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
190
|
+
|
|
191
|
+
auto strides = out.strides();
|
|
192
|
+
auto flags = out.flags();
|
|
193
|
+
flags.row_contiguous = false;
|
|
194
|
+
flags.col_contiguous = false;
|
|
195
|
+
flags.contiguous = false;
|
|
196
|
+
for (int i = 0; i < inputs.size(); i++) {
|
|
197
|
+
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
|
198
|
+
size_t data_offset = strides[axis_] * sizes[i];
|
|
199
|
+
out_slice.copy_shared_buffer(
|
|
200
|
+
out, strides, flags, out_slice.size(), data_offset);
|
|
201
|
+
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
|
202
|
+
}
|
|
203
|
+
}
|
|
204
|
+
|
|
205
|
+
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
206
|
+
assert(inputs.size() == 1);
|
|
207
|
+
auto& in = inputs[0];
|
|
208
|
+
constexpr size_t extra_bytes = 16384;
|
|
209
|
+
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
|
|
210
|
+
(in.flags().row_contiguous ||
|
|
211
|
+
(allow_col_major_ && in.flags().col_contiguous))) {
|
|
212
|
+
out.copy_shared_buffer(in);
|
|
213
|
+
} else {
|
|
214
|
+
copy_cpu(in, out, CopyType::General, stream());
|
|
215
|
+
}
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
void Flatten::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
219
|
+
reshape(inputs[0], out);
|
|
220
|
+
}
|
|
221
|
+
|
|
222
|
+
void Unflatten::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
223
|
+
reshape(inputs[0], out);
|
|
224
|
+
}
|
|
225
|
+
|
|
226
|
+
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
227
|
+
assert(inputs.size() == 1);
|
|
228
|
+
auto& in = inputs[0];
|
|
229
|
+
assert(in.dtype() == out.dtype());
|
|
230
|
+
CopyType ctype;
|
|
231
|
+
if (in.data_size() == 1) {
|
|
232
|
+
ctype = CopyType::Scalar;
|
|
233
|
+
} else if (in.flags().contiguous) {
|
|
234
|
+
ctype = CopyType::Vector;
|
|
235
|
+
} else {
|
|
236
|
+
ctype = CopyType::General;
|
|
237
|
+
}
|
|
238
|
+
copy_cpu(in, out, ctype, stream());
|
|
239
|
+
}
|
|
240
|
+
|
|
241
|
+
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
242
|
+
// Inputs must be base input array and scalar val array
|
|
243
|
+
assert(inputs.size() == 2);
|
|
244
|
+
auto& in = inputs[0];
|
|
245
|
+
auto& val = inputs[1];
|
|
246
|
+
|
|
247
|
+
// Padding value must be a scalar
|
|
248
|
+
assert(val.size() == 1);
|
|
249
|
+
|
|
250
|
+
// Padding value, input and output must be of the same type
|
|
251
|
+
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
|
|
252
|
+
|
|
253
|
+
// Fill output with val
|
|
254
|
+
copy_cpu(val, out, CopyType::Scalar, stream());
|
|
255
|
+
|
|
256
|
+
// Find offset for start of input values
|
|
257
|
+
size_t data_offset = 0;
|
|
258
|
+
for (int i = 0; i < axes_.size(); i++) {
|
|
259
|
+
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
|
|
260
|
+
data_offset += out.strides()[ax] * low_pad_size_[i];
|
|
261
|
+
}
|
|
262
|
+
|
|
263
|
+
// Extract slice from output where input will be pasted
|
|
264
|
+
array out_slice(in.shape(), out.dtype(), nullptr, {});
|
|
265
|
+
out_slice.copy_shared_buffer(
|
|
266
|
+
out, out.strides(), out.flags(), out_slice.size(), data_offset);
|
|
267
|
+
|
|
268
|
+
// Copy input values into the slice
|
|
269
|
+
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
273
|
+
assert(inputs.size() == 1);
|
|
274
|
+
// keys has shape (N1, ..., NK, 2)
|
|
275
|
+
// out has shape (N1, ..., NK, M1, M2, ...)
|
|
276
|
+
auto& keys = inputs[0];
|
|
277
|
+
size_t num_keys = keys.size() / 2;
|
|
278
|
+
|
|
279
|
+
size_t elems_per_key = out.size() / num_keys;
|
|
280
|
+
size_t bytes_per_key = out.itemsize() * elems_per_key;
|
|
281
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
282
|
+
|
|
283
|
+
auto kptr = inputs[0].data<uint32_t>();
|
|
284
|
+
auto cptr = out.data<char>();
|
|
285
|
+
auto& encoder = cpu::get_command_encoder(stream());
|
|
286
|
+
encoder.set_input_array(inputs[0]);
|
|
287
|
+
encoder.set_output_array(out);
|
|
288
|
+
encoder.dispatch([kptr,
|
|
289
|
+
cptr,
|
|
290
|
+
bytes_per_key,
|
|
291
|
+
num_keys,
|
|
292
|
+
kshape = keys.shape(),
|
|
293
|
+
kstrides = keys.strides()]() mutable {
|
|
294
|
+
auto copy_remaining = [&](char* cptr, size_t loc, uint32_t v) {
|
|
295
|
+
if (4 * loc + 4 <= bytes_per_key) {
|
|
296
|
+
reinterpret_cast<uint32_t*>(cptr)[loc] = v;
|
|
297
|
+
} else {
|
|
298
|
+
std::copy(
|
|
299
|
+
reinterpret_cast<char*>(&v),
|
|
300
|
+
reinterpret_cast<char*>(&v) + bytes_per_key - 4 * loc,
|
|
301
|
+
cptr + 4 * loc);
|
|
302
|
+
}
|
|
303
|
+
};
|
|
304
|
+
|
|
305
|
+
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
|
306
|
+
auto half_size = out_skip / 2;
|
|
307
|
+
bool even = out_skip % 2 == 0;
|
|
308
|
+
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
|
|
309
|
+
auto ptr = reinterpret_cast<uint32_t*>(cptr);
|
|
310
|
+
// Get ith key
|
|
311
|
+
auto kidx = 2 * i;
|
|
312
|
+
auto k1_elem = elem_to_loc(kidx, kshape, kstrides);
|
|
313
|
+
auto k2_elem = elem_to_loc(kidx + 1, kshape, kstrides);
|
|
314
|
+
auto key = std::make_pair(kptr[k1_elem], kptr[k2_elem]);
|
|
315
|
+
|
|
316
|
+
std::pair<uintptr_t, uintptr_t> count{0, half_size + !even};
|
|
317
|
+
for (; count.first + 1 < half_size; count.first++, count.second++) {
|
|
318
|
+
std::tie(ptr[count.first], ptr[count.second]) =
|
|
319
|
+
random::threefry2x32_hash(key, count);
|
|
320
|
+
}
|
|
321
|
+
if (count.first < half_size) {
|
|
322
|
+
auto rb = random::threefry2x32_hash(key, count);
|
|
323
|
+
ptr[count.first++] = rb.first;
|
|
324
|
+
copy_remaining(cptr, count.second, rb.second);
|
|
325
|
+
}
|
|
326
|
+
if (!even) {
|
|
327
|
+
count.second = 0;
|
|
328
|
+
copy_remaining(
|
|
329
|
+
cptr, half_size, random::threefry2x32_hash(key, count).first);
|
|
330
|
+
}
|
|
331
|
+
}
|
|
332
|
+
});
|
|
333
|
+
}
|
|
334
|
+
|
|
335
|
+
void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
336
|
+
reshape(inputs[0], out);
|
|
337
|
+
}
|
|
338
|
+
|
|
339
|
+
void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
340
|
+
if (out.size() == 0) {
|
|
341
|
+
out.set_data(allocator::malloc(0));
|
|
342
|
+
return;
|
|
343
|
+
}
|
|
344
|
+
auto& in = inputs[0];
|
|
345
|
+
out.set_data(allocator::malloc(out.nbytes()));
|
|
346
|
+
auto [in_offset, donated] =
|
|
347
|
+
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
|
|
348
|
+
copy_cpu_inplace(
|
|
349
|
+
/* const array& src = */ in,
|
|
350
|
+
/* array& dst = */ out,
|
|
351
|
+
/* const Shape& data_shape = */ out.shape(),
|
|
352
|
+
/* const Strides& i_strides = */ in.strides(),
|
|
353
|
+
/* const Strides& o_strides = */ out.strides(),
|
|
354
|
+
/* int64_t i_offset = */ 0,
|
|
355
|
+
/* int64_t o_offset = */ 0,
|
|
356
|
+
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
357
|
+
stream(),
|
|
358
|
+
/* const std::optional<array>& dynamic_i_offset = */ in_offset,
|
|
359
|
+
/* const std::optional<array>& dynamic_o_offset = */ std::nullopt);
|
|
360
|
+
if (!donated) {
|
|
361
|
+
cpu::get_command_encoder(stream()).add_temporary(std::move(in_offset));
|
|
362
|
+
}
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
void DynamicSliceUpdate::eval_cpu(
|
|
366
|
+
const std::vector<array>& inputs,
|
|
367
|
+
array& out) {
|
|
368
|
+
if (out.size() == 0) {
|
|
369
|
+
out.set_data(allocator::malloc(0));
|
|
370
|
+
return;
|
|
371
|
+
}
|
|
372
|
+
|
|
373
|
+
auto& in = inputs[0];
|
|
374
|
+
auto& upd = inputs[1];
|
|
375
|
+
|
|
376
|
+
// Copy or move src to dst
|
|
377
|
+
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
|
378
|
+
? CopyType::Vector
|
|
379
|
+
: CopyType::General;
|
|
380
|
+
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
|
381
|
+
|
|
382
|
+
auto [out_offset, donated] =
|
|
383
|
+
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
|
|
384
|
+
copy_cpu_inplace(
|
|
385
|
+
/* const array& src = */ upd,
|
|
386
|
+
/* array& dst = */ out,
|
|
387
|
+
/* const std::vector<int>& data_shape = */ upd.shape(),
|
|
388
|
+
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
|
|
389
|
+
/* const std::vector<stride_t>& o_strides = */ out.strides(),
|
|
390
|
+
/* int64_t i_offset = */ 0,
|
|
391
|
+
/* int64_t o_offset = */ 0,
|
|
392
|
+
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
393
|
+
stream(),
|
|
394
|
+
/* const std::optional<array>& dynamic_i_offset = */ std::nullopt,
|
|
395
|
+
/* const std::optional<array>& dynamic_o_offset = */ out_offset);
|
|
396
|
+
if (!donated) {
|
|
397
|
+
cpu::get_command_encoder(stream()).add_temporary(std::move(out_offset));
|
|
398
|
+
}
|
|
399
|
+
}
|
|
400
|
+
|
|
401
|
+
void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
402
|
+
assert(inputs.size() == 2);
|
|
403
|
+
if (out.size() == 0) {
|
|
404
|
+
out.set_data(allocator::malloc(0));
|
|
405
|
+
return;
|
|
406
|
+
}
|
|
407
|
+
|
|
408
|
+
auto& in = inputs[0];
|
|
409
|
+
auto& upd = inputs[1];
|
|
410
|
+
|
|
411
|
+
if (upd.size() == 0) {
|
|
412
|
+
out.copy_shared_buffer(in);
|
|
413
|
+
return;
|
|
414
|
+
}
|
|
415
|
+
|
|
416
|
+
// Check if materialization is needed
|
|
417
|
+
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
|
418
|
+
? CopyType::Vector
|
|
419
|
+
: CopyType::General;
|
|
420
|
+
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
|
421
|
+
|
|
422
|
+
// Calculate out strides, initial offset and if copy needs to be made
|
|
423
|
+
auto [data_offset, out_strides] =
|
|
424
|
+
prepare_slice(out, start_indices_, strides_);
|
|
425
|
+
|
|
426
|
+
// Do copy
|
|
427
|
+
copy_cpu_inplace(
|
|
428
|
+
/* const array& src = */ upd,
|
|
429
|
+
/* array& dst = */ out,
|
|
430
|
+
/* const std::vector<int>& data_shape = */ upd.shape(),
|
|
431
|
+
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
|
|
432
|
+
/* const std::vector<stride_t>& o_strides = */ out_strides,
|
|
433
|
+
/* int64_t i_offset = */ 0,
|
|
434
|
+
/* int64_t o_offset = */ data_offset,
|
|
435
|
+
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
436
|
+
stream());
|
|
437
|
+
}
|
|
438
|
+
|
|
439
|
+
void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
|
440
|
+
assert(inputs.size() == 1);
|
|
441
|
+
auto& in = inputs[0];
|
|
442
|
+
auto ibytes = size_of(in.dtype());
|
|
443
|
+
auto obytes = size_of(out.dtype());
|
|
444
|
+
// Conditions for buffer copying (disjunction):
|
|
445
|
+
// - type size is the same
|
|
446
|
+
// - type size is smaller and the last axis is contiguous
|
|
447
|
+
// - the entire array is row contiguous
|
|
448
|
+
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
|
|
449
|
+
in.flags().row_contiguous) {
|
|
450
|
+
auto strides = in.strides();
|
|
451
|
+
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
|
|
452
|
+
strides[i] *= ibytes;
|
|
453
|
+
strides[i] /= obytes;
|
|
454
|
+
}
|
|
455
|
+
out.copy_shared_buffer(
|
|
456
|
+
in, strides, in.flags(), in.data_size() * ibytes / obytes);
|
|
457
|
+
} else {
|
|
458
|
+
auto tmp = array(
|
|
459
|
+
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
|
|
460
|
+
tmp.set_data(allocator::malloc(tmp.nbytes()));
|
|
461
|
+
if (in.dtype() == bool_) {
|
|
462
|
+
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
|
463
|
+
in_tmp.copy_shared_buffer(in);
|
|
464
|
+
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
|
|
465
|
+
} else {
|
|
466
|
+
copy_cpu_inplace(in, tmp, CopyType::General, stream());
|
|
467
|
+
}
|
|
468
|
+
|
|
469
|
+
auto flags = out.flags();
|
|
470
|
+
flags.contiguous = true;
|
|
471
|
+
flags.row_contiguous = true;
|
|
472
|
+
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
|
473
|
+
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
|
474
|
+
out.copy_shared_buffer(tmp, out.strides(), flags, out.size());
|
|
475
|
+
}
|
|
476
|
+
}
|
|
477
|
+
|
|
478
|
+
} // namespace mlx::core
|