mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,73 @@
1
+ // Copyright © 2025 Apple Inc.
2
+
3
+ #include "mlx/backend/cuda/device.h"
4
+ #include "mlx/backend/cuda/reduce/reduce.cuh"
5
+ #include "mlx/backend/gpu/copy.h"
6
+
7
+ #include <nvtx3/nvtx3.hpp>
8
+
9
+ #include <cassert>
10
+
11
+ namespace mlx::core {
12
+
13
+ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
14
+ nvtx3::scoped_range r("Reduce::eval_gpu");
15
+ assert(inputs.size() == 1);
16
+ array in = inputs[0];
17
+
18
+ // Make sure no identity reductions trickle down here.
19
+ assert(!axes_.empty());
20
+ assert(out.size() != in.size());
21
+
22
+ auto& s = stream();
23
+ auto& encoder = cu::get_command_encoder(s);
24
+
25
+ if (in.size() == 0) {
26
+ init_reduce(encoder, in, out, reduce_type_);
27
+ return;
28
+ }
29
+
30
+ // Reduce.
31
+ ReductionPlan plan = get_reduction_plan(in, axes_);
32
+
33
+ // If it is a general reduce then copy the input to a contiguous array and
34
+ // recompute the plan.
35
+ //
36
+ // TODO: Instead of copying we can use elem-to-loc to deal with broadcasting
37
+ // like we do in Metal. When it comes to broadcasted reduction axes
38
+ // some can be ignored eg for min/max.
39
+ bool broadcasted = false;
40
+ for (int i = 0, j = 0; i < in.ndim() && !broadcasted; i++) {
41
+ if (j < axes_.size() && axes_[j] == i) {
42
+ j++;
43
+ } else {
44
+ broadcasted = in.strides(i) == 0;
45
+ }
46
+ }
47
+ if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
48
+ array in_copy = contiguous_copy_gpu(in, s);
49
+ encoder.add_temporary(in_copy);
50
+ in = in_copy;
51
+ plan = get_reduction_plan(in, axes_);
52
+ }
53
+
54
+ if (plan.type == ContiguousAllReduce) {
55
+ all_reduce(encoder, in, out, reduce_type_);
56
+ return;
57
+ }
58
+
59
+ if (plan.type == ContiguousReduce || plan.type == GeneralContiguousReduce) {
60
+ row_reduce(encoder, in, out, reduce_type_, axes_, plan);
61
+ return;
62
+ }
63
+
64
+ if (plan.type == ContiguousStridedReduce ||
65
+ plan.type == GeneralStridedReduce) {
66
+ col_reduce(encoder, in, out, reduce_type_, axes_, plan);
67
+ return;
68
+ }
69
+
70
+ throw std::runtime_error("No plan reached in reduce.");
71
+ }
72
+
73
+ } // namespace mlx::core
@@ -0,0 +1,536 @@
1
+ // Copyright © 2025 Apple Inc.
2
+
3
+ #include "mlx/backend/cuda/device.h"
4
+ #include "mlx/backend/cuda/kernel_utils.cuh"
5
+ #include "mlx/backend/cuda/reduce/reduce.cuh"
6
+ #include "mlx/backend/gpu/copy.h"
7
+ #include "mlx/dtype_utils.h"
8
+ #include "mlx/fast_primitives.h"
9
+
10
+ #include <cooperative_groups.h>
11
+ #include <cooperative_groups/reduce.h>
12
+ #include <nvtx3/nvtx3.hpp>
13
+
14
+ namespace mlx::core {
15
+
16
+ namespace cu {
17
+
18
+ namespace cg = cooperative_groups;
19
+
20
+ inline __device__ float2 plus_f2(const float2& a, const float2& b) {
21
+ return {a.x + b.x, a.y + b.y};
22
+ }
23
+
24
+ // Similar to cub::BlockReduce, but result is broadcasted to every thread.
25
+ template <typename T, int BLOCK_DIM, int GROUP_DIM = WARP_SIZE>
26
+ struct BlockBroadcastReduce {
27
+ using TempStorage = T[std::max(BLOCK_DIM / WARP_SIZE, 1)];
28
+
29
+ cg::thread_block& block;
30
+ TempStorage& temp;
31
+
32
+ template <typename Op>
33
+ __device__ T Reduce(const T& input, const Op& op, const T& init_value) {
34
+ auto warp = cg::tiled_partition<GROUP_DIM>(block);
35
+ T x = cg::reduce(warp, input, op);
36
+ if constexpr (BLOCK_DIM > GROUP_DIM) {
37
+ if (warp.thread_rank() == 0) {
38
+ temp[warp.meta_group_rank()] = x;
39
+ }
40
+ block.sync();
41
+ x = warp.thread_rank() < warp.meta_group_size() ? temp[warp.thread_rank()]
42
+ : init_value;
43
+ return cg::reduce(warp, x, op);
44
+ } else {
45
+ return x;
46
+ }
47
+ }
48
+
49
+ __device__ T Sum(const T& input) {
50
+ return Reduce(input, cg::plus<T>{}, T{});
51
+ }
52
+ };
53
+
54
+ template <typename T, int BLOCK_DIM, int REDUCE_DIM, int N_READS = 4>
55
+ __global__ void rms_norm_small(
56
+ const T* x,
57
+ const T* w,
58
+ T* out,
59
+ float eps,
60
+ uint32_t axis_size,
61
+ uint32_t n_rows,
62
+ int64_t w_stride) {
63
+ auto grid = cg::this_grid();
64
+ auto block = cg::this_thread_block();
65
+
66
+ using BlockReduceT = BlockBroadcastReduce<float, BLOCK_DIM, REDUCE_DIM>;
67
+ __shared__ typename BlockReduceT::TempStorage temp;
68
+
69
+ auto row =
70
+ (grid.block_rank() * block.dim_threads().y) + block.thread_index().y;
71
+ if (row >= n_rows) {
72
+ return;
73
+ }
74
+ x += row * axis_size;
75
+ out += row * axis_size;
76
+
77
+ // Normalizer.
78
+ float normalizer = 0;
79
+ auto index = block.thread_index().x;
80
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
81
+ #pragma unroll
82
+ for (int i = 0; i < N_READS; ++i) {
83
+ float t = static_cast<float>(xn[i]);
84
+ normalizer += t * t;
85
+ }
86
+
87
+ normalizer = BlockReduceT{block, temp}.Sum(normalizer);
88
+ normalizer = rsqrt(normalizer / axis_size + eps);
89
+
90
+ // Outputs.
91
+ auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
92
+ #pragma unroll
93
+ for (int i = 0; i < N_READS; ++i) {
94
+ float y = static_cast<float>(xn[i]) * normalizer;
95
+ xn[i] = wn[i] * static_cast<T>(y);
96
+ }
97
+ store_vector<N_READS>(out, index, xn, axis_size);
98
+ }
99
+
100
+ template <typename T, int BLOCK_DIM, int N_READS = 4>
101
+ __global__ void rms_norm(
102
+ const T* x,
103
+ const T* w,
104
+ T* out,
105
+ float eps,
106
+ uint32_t axis_size,
107
+ int64_t w_stride) {
108
+ auto grid = cg::this_grid();
109
+ auto block = cg::this_thread_block();
110
+
111
+ using BlockReduceT = BlockBroadcastReduce<float, BLOCK_DIM>;
112
+ __shared__ typename BlockReduceT::TempStorage temp;
113
+
114
+ x += grid.block_rank() * axis_size;
115
+ out += grid.block_rank() * axis_size;
116
+
117
+ // Normalizer.
118
+ float normalizer = 0;
119
+ for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
120
+ auto index = r * BLOCK_DIM + block.thread_rank();
121
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
122
+ #pragma unroll
123
+ for (int i = 0; i < N_READS; ++i) {
124
+ float t = static_cast<float>(xn[i]);
125
+ normalizer += t * t;
126
+ }
127
+ }
128
+ normalizer = BlockReduceT{block, temp}.Sum(normalizer);
129
+ normalizer = rsqrt(normalizer / axis_size + eps);
130
+
131
+ // Outputs.
132
+ for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
133
+ auto index = r * BLOCK_DIM + block.thread_rank();
134
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
135
+ auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
136
+ #pragma unroll
137
+ for (int i = 0; i < N_READS; ++i) {
138
+ float y = static_cast<float>(xn[i]) * normalizer;
139
+ xn[i] = wn[i] * static_cast<T>(y);
140
+ }
141
+ store_vector<N_READS>(out, index, xn, axis_size);
142
+ }
143
+ }
144
+
145
+ template <
146
+ typename T,
147
+ bool HAS_W,
148
+ int BLOCK_DIM,
149
+ int REDUCE_DIM,
150
+ int N_READS = 4>
151
+ __global__ void rms_norm_vjp_small(
152
+ const T* x,
153
+ const T* w,
154
+ const T* g,
155
+ T* gx,
156
+ T* gw,
157
+ float eps,
158
+ int32_t axis_size,
159
+ int32_t n_rows,
160
+ int64_t w_stride) {
161
+ auto grid = cg::this_grid();
162
+ auto block = cg::this_thread_block();
163
+
164
+ using BlockReduceF2 = BlockBroadcastReduce<float2, BLOCK_DIM, REDUCE_DIM>;
165
+ __shared__ typename BlockReduceF2::TempStorage temp;
166
+
167
+ auto row =
168
+ (grid.block_rank() * block.dim_threads().y) + block.thread_index().y;
169
+ if (row >= n_rows) {
170
+ return;
171
+ }
172
+
173
+ x += row * axis_size;
174
+ g += row * axis_size;
175
+ gx += row * axis_size;
176
+ gw += row * axis_size;
177
+
178
+ // Normalizer.
179
+ float2 factors = {};
180
+ auto index = block.thread_index().x;
181
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
182
+ auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
183
+ auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
184
+ for (int i = 0; i < N_READS; i++) {
185
+ float t = static_cast<float>(xn[i]);
186
+ float wi = wn[i];
187
+ float gi = gn[i];
188
+ float wg = wi * gi;
189
+ factors = plus_f2(factors, {wg * t, t * t});
190
+ }
191
+
192
+ factors = BlockReduceF2{block, temp}.Reduce(factors, plus_f2, {});
193
+ float meangwx = factors.x / axis_size;
194
+ float normalizer = rsqrt(factors.y / axis_size + eps);
195
+ float normalizer3 = normalizer * normalizer * normalizer;
196
+
197
+ // Outputs.
198
+ for (int i = 0; i < N_READS; i++) {
199
+ float xi = xn[i];
200
+ float wi = wn[i];
201
+ float gi = gn[i];
202
+ xn[i] = static_cast<T>(normalizer * wi * gi - xi * meangwx * normalizer3);
203
+ if constexpr (HAS_W) {
204
+ wn[i] = static_cast<T>(gi * xi * normalizer);
205
+ }
206
+ }
207
+ store_vector<N_READS>(gx, index, xn, axis_size);
208
+ if constexpr (HAS_W) {
209
+ store_vector<N_READS>(gw, index, wn, axis_size);
210
+ }
211
+ }
212
+
213
+ template <typename T, bool HAS_W, int BLOCK_DIM, int N_READS = 4>
214
+ __global__ void rms_norm_vjp(
215
+ const T* x,
216
+ const T* w,
217
+ const T* g,
218
+ T* gx,
219
+ T* gw,
220
+ float eps,
221
+ int32_t axis_size,
222
+ int64_t w_stride) {
223
+ auto grid = cg::this_grid();
224
+ auto block = cg::this_thread_block();
225
+
226
+ using BlockReduceF2 = BlockBroadcastReduce<float2, BLOCK_DIM>;
227
+ __shared__ typename BlockReduceF2::TempStorage temp;
228
+
229
+ x += grid.block_rank() * axis_size;
230
+ g += grid.block_rank() * axis_size;
231
+ gx += grid.block_rank() * axis_size;
232
+ gw += grid.block_rank() * axis_size;
233
+
234
+ // Normalizer.
235
+ float2 factors = {};
236
+ for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
237
+ auto index = r * BLOCK_DIM + block.thread_rank();
238
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
239
+ auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
240
+ auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
241
+ for (int i = 0; i < N_READS; i++) {
242
+ float t = static_cast<float>(xn[i]);
243
+ float wi = wn[i];
244
+ float gi = gn[i];
245
+ float wg = wi * gi;
246
+ factors = plus_f2(factors, {wg * t, t * t});
247
+ }
248
+ }
249
+ factors = BlockReduceF2{block, temp}.Reduce(factors, plus_f2, {});
250
+ float meangwx = factors.x / axis_size;
251
+ float normalizer = rsqrt(factors.y / axis_size + eps);
252
+ float normalizer3 = normalizer * normalizer * normalizer;
253
+
254
+ // Outputs.
255
+ for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
256
+ auto index = r * BLOCK_DIM + block.thread_rank();
257
+ auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
258
+ auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
259
+ auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
260
+ for (int i = 0; i < N_READS; i++) {
261
+ float xi = xn[i];
262
+ float wi = wn[i];
263
+ float gi = gn[i];
264
+ xn[i] = static_cast<T>(normalizer * wi * gi - xi * meangwx * normalizer3);
265
+ if constexpr (HAS_W) {
266
+ wn[i] = static_cast<T>(gi * xi * normalizer);
267
+ }
268
+ }
269
+ store_vector<N_READS>(gx, index, xn, axis_size);
270
+ if constexpr (HAS_W) {
271
+ store_vector<N_READS>(gw, index, wn, axis_size);
272
+ }
273
+ }
274
+ }
275
+
276
+ } // namespace cu
277
+
278
+ namespace fast {
279
+
280
+ bool RMSNorm::use_fallback(Stream s) {
281
+ return s.device == Device::cpu;
282
+ }
283
+
284
+ template <int n_per_thread, typename F>
285
+ void dispatch_group_dim(int axis_size, F&& f) {
286
+ if (axis_size <= n_per_thread * 8) {
287
+ f(std::integral_constant<int, 8>{},
288
+ std::integral_constant<int, 1>(),
289
+ std::integral_constant<int, 16>());
290
+ } else if (axis_size <= n_per_thread * 16) {
291
+ f(std::integral_constant<int, 16>{},
292
+ std::integral_constant<int, 1>(),
293
+ std::integral_constant<int, 8>());
294
+ } else if (axis_size <= n_per_thread * 32) {
295
+ f(std::integral_constant<int, 32>{},
296
+ std::integral_constant<int, 1>(),
297
+ std::integral_constant<int, 4>());
298
+ } else if (axis_size <= n_per_thread * 32 * 2) {
299
+ f(std::integral_constant<int, 32>{},
300
+ std::integral_constant<int, 2>(),
301
+ std::integral_constant<int, 2>());
302
+ } else if (axis_size <= n_per_thread * 32 * 4) {
303
+ f(std::integral_constant<int, 32>{},
304
+ std::integral_constant<int, 4>(),
305
+ std::integral_constant<int, 1>());
306
+ } else if (axis_size <= n_per_thread * 32 * 8) {
307
+ f(std::integral_constant<int, 32>{},
308
+ std::integral_constant<int, 8>(),
309
+ std::integral_constant<int, 1>());
310
+ } else if (axis_size <= n_per_thread * 32 * 16) {
311
+ f(std::integral_constant<int, 32>{},
312
+ std::integral_constant<int, 16>(),
313
+ std::integral_constant<int, 1>());
314
+ } else {
315
+ f(std::integral_constant<int, 32>{},
316
+ std::integral_constant<int, 32>(),
317
+ std::integral_constant<int, 1>());
318
+ }
319
+ }
320
+
321
+ // TODO: There are duplicate code with backend/metal/normalization.cpp
322
+ void RMSNorm::eval_gpu(
323
+ const std::vector<array>& inputs,
324
+ std::vector<array>& outputs) {
325
+ nvtx3::scoped_range r("RMSNorm::eval_gpu");
326
+ auto& s = stream();
327
+ auto& out = outputs[0];
328
+ auto& encoder = cu::get_command_encoder(s);
329
+
330
+ // Make sure that the last dimension is contiguous.
331
+ auto set_output = [&s, &out, &encoder](const array& x) {
332
+ bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
333
+ if (no_copy && x.ndim() > 1) {
334
+ auto s = x.strides()[x.ndim() - 2];
335
+ no_copy &= (s == 0 || s == x.shape().back());
336
+ }
337
+ if (no_copy) {
338
+ if (x.is_donatable()) {
339
+ out.copy_shared_buffer(x);
340
+ } else {
341
+ out.set_data(
342
+ cu::malloc_async(x.data_size() * x.itemsize(), encoder),
343
+ x.data_size(),
344
+ x.strides(),
345
+ x.flags());
346
+ }
347
+ return x;
348
+ } else {
349
+ array x_copy = contiguous_copy_gpu(x, s);
350
+ out.copy_shared_buffer(x_copy);
351
+ return x_copy;
352
+ }
353
+ };
354
+
355
+ const array x = set_output(inputs[0]);
356
+ const array& w = inputs[1];
357
+
358
+ int32_t axis_size = x.shape().back();
359
+ int32_t n_rows = x.data_size() / axis_size;
360
+ int64_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
361
+
362
+ encoder.set_input_array(x);
363
+ encoder.set_input_array(w);
364
+ encoder.set_output_array(out);
365
+ dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
366
+ using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
367
+ constexpr int N_READS = 16 / sizeof(DataType);
368
+ if (axis_size <= N_READS * 1024) {
369
+ dispatch_group_dim<N_READS>(
370
+ axis_size, [&](auto group_dim, auto n_groups, auto groups_per_block) {
371
+ constexpr int block_dim = n_groups() * group_dim();
372
+ auto kernel =
373
+ cu::rms_norm_small<DataType, block_dim, group_dim(), N_READS>;
374
+ auto n_blocks =
375
+ (n_rows + groups_per_block() - 1) / groups_per_block();
376
+ encoder.add_kernel_node(
377
+ kernel,
378
+ n_blocks,
379
+ {block_dim, groups_per_block()},
380
+ 0,
381
+ gpu_ptr<DataType>(x),
382
+ gpu_ptr<DataType>(w),
383
+ gpu_ptr<DataType>(out),
384
+ eps_,
385
+ axis_size,
386
+ n_rows,
387
+ w_stride);
388
+ });
389
+ } else {
390
+ auto kernel = cu::rms_norm<DataType, 1024, N_READS>;
391
+ encoder.add_kernel_node(
392
+ kernel,
393
+ n_rows,
394
+ 1024,
395
+ 0,
396
+ gpu_ptr<DataType>(x),
397
+ gpu_ptr<DataType>(w),
398
+ gpu_ptr<DataType>(out),
399
+ eps_,
400
+ axis_size,
401
+ w_stride);
402
+ }
403
+ });
404
+ }
405
+
406
+ void RMSNormVJP::eval_gpu(
407
+ const std::vector<array>& inputs,
408
+ std::vector<array>& outputs) {
409
+ nvtx3::scoped_range r("RMSNormVJP::eval_gpu");
410
+ auto& s = stream();
411
+ auto& encoder = cu::get_command_encoder(s);
412
+
413
+ // Ensure row contiguity. We could relax this step by checking that the array
414
+ // is contiguous (no broadcasts or holes) and that the input strides are the
415
+ // same as the cotangent strides but for now this is simpler.
416
+ auto check_input = [&s](const array& x, bool& copied) {
417
+ if (x.flags().row_contiguous) {
418
+ copied = false;
419
+ return x;
420
+ }
421
+ copied = true;
422
+ return contiguous_copy_gpu(x, s);
423
+ };
424
+ bool donate_x = inputs[0].is_donatable();
425
+ bool donate_g = inputs[2].is_donatable();
426
+ bool copied;
427
+ auto x = check_input(inputs[0], copied);
428
+ donate_x |= copied;
429
+ const array& w = inputs[1];
430
+ bool g_copied;
431
+ auto g = check_input(inputs[2], g_copied);
432
+ donate_g |= g_copied;
433
+ array& gx = outputs[0];
434
+ array& gw = outputs[1];
435
+
436
+ // Check whether we had a weight.
437
+ bool has_w = w.ndim() != 0;
438
+
439
+ // Allocate space for the outputs.
440
+ bool g_in_gx = false;
441
+ if (donate_x) {
442
+ gx.copy_shared_buffer(x);
443
+ } else if (donate_g) {
444
+ gx.copy_shared_buffer(g);
445
+ g_in_gx = true;
446
+ } else {
447
+ gx.set_data(cu::malloc_async(gx.nbytes(), encoder));
448
+ }
449
+ if (g_copied && !g_in_gx) {
450
+ encoder.add_temporary(g);
451
+ }
452
+
453
+ int32_t axis_size = x.shape().back();
454
+ int32_t n_rows = x.data_size() / axis_size;
455
+ int64_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
456
+
457
+ // Allocate a temporary to store the gradients for w and allocate the output
458
+ // gradient accumulators.
459
+ array gw_temp =
460
+ (has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
461
+ if (has_w) {
462
+ if (!g_in_gx && donate_g) {
463
+ gw_temp.copy_shared_buffer(g);
464
+ } else {
465
+ gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder));
466
+ encoder.add_temporary(gw_temp);
467
+ }
468
+ }
469
+
470
+ encoder.set_input_array(x);
471
+ encoder.set_input_array(w);
472
+ encoder.set_input_array(g);
473
+ encoder.set_output_array(gx);
474
+ encoder.set_output_array(gw_temp);
475
+ dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
476
+ dispatch_bool(has_w, [&](auto has_w_constant) {
477
+ using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
478
+ constexpr int N_READS = 16 / sizeof(DataType);
479
+ if (axis_size <= N_READS * 1024) {
480
+ dispatch_group_dim<N_READS>(
481
+ axis_size,
482
+ [&](auto group_dim, auto n_groups, auto groups_per_block) {
483
+ constexpr int block_dim = group_dim() * n_groups();
484
+ auto kernel = cu::rms_norm_vjp_small<
485
+ DataType,
486
+ has_w_constant.value,
487
+ block_dim,
488
+ group_dim(),
489
+ N_READS>;
490
+ auto n_blocks =
491
+ (n_rows + groups_per_block() - 1) / groups_per_block();
492
+ encoder.add_kernel_node(
493
+ kernel,
494
+ n_blocks,
495
+ {block_dim, groups_per_block()},
496
+ 0,
497
+ gpu_ptr<DataType>(x),
498
+ gpu_ptr<DataType>(w),
499
+ gpu_ptr<DataType>(g),
500
+ gpu_ptr<DataType>(gx),
501
+ gpu_ptr<DataType>(gw_temp),
502
+ eps_,
503
+ axis_size,
504
+ n_rows,
505
+ w_stride);
506
+ });
507
+ } else {
508
+ auto kernel =
509
+ cu::rms_norm_vjp<DataType, has_w_constant.value, 1024, N_READS>;
510
+ encoder.add_kernel_node(
511
+ kernel,
512
+ n_rows,
513
+ 1024,
514
+ 0,
515
+ gpu_ptr<DataType>(x),
516
+ gpu_ptr<DataType>(w),
517
+ gpu_ptr<DataType>(g),
518
+ gpu_ptr<DataType>(gx),
519
+ gpu_ptr<DataType>(gw_temp),
520
+ eps_,
521
+ axis_size,
522
+ w_stride);
523
+ }
524
+ });
525
+ });
526
+
527
+ if (has_w) {
528
+ ReductionPlan plan(
529
+ ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
530
+ col_reduce(encoder, gw_temp, gw, Reduce::ReduceType::Sum, {0}, plan);
531
+ }
532
+ }
533
+
534
+ } // namespace fast
535
+
536
+ } // namespace mlx::core