mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
|
@@ -0,0 +1,211 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/cuda/device/atomic_ops.cuh"
|
|
6
|
+
#include "mlx/backend/cuda/device/cast_op.cuh"
|
|
7
|
+
#include "mlx/backend/cuda/device/utils.cuh"
|
|
8
|
+
#include "mlx/backend/cuda/reduce/reduce_utils.cuh"
|
|
9
|
+
|
|
10
|
+
namespace mlx::core::cu {
|
|
11
|
+
|
|
12
|
+
// Reduce ops.
|
|
13
|
+
struct And {
|
|
14
|
+
__device__ __forceinline__ bool operator()(bool a, bool b) {
|
|
15
|
+
return a && b;
|
|
16
|
+
}
|
|
17
|
+
|
|
18
|
+
__device__ void atomic_update(bool* x, bool y) {
|
|
19
|
+
atomic_reduce<bool, And>(x, y);
|
|
20
|
+
}
|
|
21
|
+
};
|
|
22
|
+
|
|
23
|
+
struct Or {
|
|
24
|
+
__device__ __forceinline__ bool operator()(bool a, bool b) {
|
|
25
|
+
return a || b;
|
|
26
|
+
}
|
|
27
|
+
|
|
28
|
+
__device__ void atomic_update(bool* x, bool y) {
|
|
29
|
+
atomic_reduce<bool, Or>(x, y);
|
|
30
|
+
}
|
|
31
|
+
};
|
|
32
|
+
|
|
33
|
+
struct Sum {
|
|
34
|
+
template <typename T>
|
|
35
|
+
__device__ __forceinline__ T operator()(T a, T b) {
|
|
36
|
+
return a + b;
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
template <typename T>
|
|
40
|
+
__device__ void atomic_update(T* x, T y) {
|
|
41
|
+
atomic_reduce<T, Sum>(x, y);
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
__device__ void atomic_update(__nv_bfloat16* x, __nv_bfloat16 y) {
|
|
45
|
+
atomic_add(x, y);
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
__device__ void atomic_update(int* x, int y) {
|
|
49
|
+
atomic_add(x, y);
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
__device__ void atomic_update(float* x, float y) {
|
|
53
|
+
atomic_add(x, y);
|
|
54
|
+
}
|
|
55
|
+
};
|
|
56
|
+
|
|
57
|
+
struct Prod {
|
|
58
|
+
template <typename T>
|
|
59
|
+
__device__ __forceinline__ T operator()(T a, T b) {
|
|
60
|
+
return a * b;
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
template <typename T>
|
|
64
|
+
__device__ void atomic_update(T* x, T y) {
|
|
65
|
+
atomic_reduce<T, Prod>(x, y);
|
|
66
|
+
}
|
|
67
|
+
};
|
|
68
|
+
|
|
69
|
+
struct Min {
|
|
70
|
+
template <typename T>
|
|
71
|
+
__device__ __forceinline__ T operator()(T a, T b) {
|
|
72
|
+
if constexpr (is_complex_v<T>) {
|
|
73
|
+
if (cuda::std::isnan(a.real()) || cuda::std::isnan(a.imag())) {
|
|
74
|
+
return a;
|
|
75
|
+
}
|
|
76
|
+
if (cuda::std::isnan(b.real()) || cuda::std::isnan(b.imag())) {
|
|
77
|
+
return b;
|
|
78
|
+
}
|
|
79
|
+
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
|
80
|
+
if (cuda::std::isnan(a) || cuda::std::isnan(b)) {
|
|
81
|
+
return cuda::std::numeric_limits<float>::quiet_NaN();
|
|
82
|
+
}
|
|
83
|
+
}
|
|
84
|
+
return a < b ? a : b;
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
template <typename T>
|
|
88
|
+
__device__ void atomic_update(T* x, T y) {
|
|
89
|
+
atomic_reduce<T, Min>(x, y);
|
|
90
|
+
}
|
|
91
|
+
};
|
|
92
|
+
|
|
93
|
+
struct Max {
|
|
94
|
+
template <typename T>
|
|
95
|
+
__device__ __forceinline__ T operator()(T a, T b) {
|
|
96
|
+
if constexpr (is_complex_v<T>) {
|
|
97
|
+
if (cuda::std::isnan(a.real()) || cuda::std::isnan(a.imag())) {
|
|
98
|
+
return a;
|
|
99
|
+
}
|
|
100
|
+
if (cuda::std::isnan(b.real()) || cuda::std::isnan(b.imag())) {
|
|
101
|
+
return b;
|
|
102
|
+
}
|
|
103
|
+
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
|
104
|
+
if (cuda::std::isnan(a) || cuda::std::isnan(b)) {
|
|
105
|
+
return cuda::std::numeric_limits<float>::quiet_NaN();
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
return a > b ? a : b;
|
|
109
|
+
}
|
|
110
|
+
|
|
111
|
+
template <typename T>
|
|
112
|
+
__device__ void atomic_update(T* x, T y) {
|
|
113
|
+
atomic_reduce<T, Max>(x, y);
|
|
114
|
+
}
|
|
115
|
+
};
|
|
116
|
+
|
|
117
|
+
// Traits to get the result type of reduce op.
|
|
118
|
+
template <typename Op, typename T>
|
|
119
|
+
struct ReduceResult;
|
|
120
|
+
|
|
121
|
+
template <typename T>
|
|
122
|
+
struct ReduceResult<And, T> {
|
|
123
|
+
using type = bool;
|
|
124
|
+
};
|
|
125
|
+
|
|
126
|
+
template <typename T>
|
|
127
|
+
struct ReduceResult<Or, T> {
|
|
128
|
+
using type = bool;
|
|
129
|
+
};
|
|
130
|
+
|
|
131
|
+
template <typename T>
|
|
132
|
+
struct ReduceResult<Sum, T> {
|
|
133
|
+
using type = cuda::std::conditional_t<
|
|
134
|
+
(cuda::std::is_integral_v<T> && sizeof(T) <= 4),
|
|
135
|
+
int32_t,
|
|
136
|
+
T>;
|
|
137
|
+
};
|
|
138
|
+
|
|
139
|
+
template <typename T>
|
|
140
|
+
struct ReduceResult<Prod, T> {
|
|
141
|
+
using type = cuda::std::conditional_t<
|
|
142
|
+
(cuda::std::is_integral_v<T> && sizeof(T) <= 4),
|
|
143
|
+
int32_t,
|
|
144
|
+
T>;
|
|
145
|
+
};
|
|
146
|
+
|
|
147
|
+
template <typename T>
|
|
148
|
+
struct ReduceResult<Min, T> {
|
|
149
|
+
using type = T;
|
|
150
|
+
};
|
|
151
|
+
|
|
152
|
+
template <typename T>
|
|
153
|
+
struct ReduceResult<Max, T> {
|
|
154
|
+
using type = T;
|
|
155
|
+
};
|
|
156
|
+
|
|
157
|
+
// Traits to get the init value of reduce op.
|
|
158
|
+
template <typename Op, typename T>
|
|
159
|
+
struct ReduceInit;
|
|
160
|
+
|
|
161
|
+
template <typename T>
|
|
162
|
+
struct ReduceInit<And, T> {
|
|
163
|
+
static constexpr __host__ __device__ bool value() {
|
|
164
|
+
return true;
|
|
165
|
+
}
|
|
166
|
+
};
|
|
167
|
+
|
|
168
|
+
template <typename T>
|
|
169
|
+
struct ReduceInit<Or, T> {
|
|
170
|
+
static constexpr __host__ __device__ bool value() {
|
|
171
|
+
return false;
|
|
172
|
+
}
|
|
173
|
+
};
|
|
174
|
+
|
|
175
|
+
template <typename T>
|
|
176
|
+
struct ReduceInit<Sum, T> {
|
|
177
|
+
static constexpr __host__ __device__ auto value() {
|
|
178
|
+
if constexpr (is_complex_v<T>) {
|
|
179
|
+
return T{0, 0};
|
|
180
|
+
} else {
|
|
181
|
+
return cast_to<typename ReduceResult<Sum, T>::type>(0);
|
|
182
|
+
}
|
|
183
|
+
}
|
|
184
|
+
};
|
|
185
|
+
|
|
186
|
+
template <typename T>
|
|
187
|
+
struct ReduceInit<Prod, T> {
|
|
188
|
+
static constexpr __host__ __device__ auto value() {
|
|
189
|
+
if constexpr (is_complex_v<T>) {
|
|
190
|
+
return T{1, 0};
|
|
191
|
+
} else {
|
|
192
|
+
return cast_to<typename ReduceResult<Prod, T>::type>(1);
|
|
193
|
+
}
|
|
194
|
+
}
|
|
195
|
+
};
|
|
196
|
+
|
|
197
|
+
template <typename T>
|
|
198
|
+
struct ReduceInit<Min, T> {
|
|
199
|
+
static constexpr __host__ __device__ T value() {
|
|
200
|
+
return Limits<T>::max();
|
|
201
|
+
}
|
|
202
|
+
};
|
|
203
|
+
|
|
204
|
+
template <typename T>
|
|
205
|
+
struct ReduceInit<Max, T> {
|
|
206
|
+
static constexpr __host__ __device__ T value() {
|
|
207
|
+
return Limits<T>::min();
|
|
208
|
+
}
|
|
209
|
+
};
|
|
210
|
+
|
|
211
|
+
} // namespace mlx::core::cu
|
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include <numeric>
|
|
6
|
+
|
|
7
|
+
#include "mlx/backend/common/utils.h"
|
|
8
|
+
#include "mlx/backend/cuda/device.h"
|
|
9
|
+
#include "mlx/backend/cuda/device/utils.cuh"
|
|
10
|
+
|
|
11
|
+
#include <cooperative_groups.h>
|
|
12
|
+
#include <cooperative_groups/reduce.h>
|
|
13
|
+
|
|
14
|
+
namespace mlx::core {
|
|
15
|
+
|
|
16
|
+
namespace cu {
|
|
17
|
+
|
|
18
|
+
namespace cg = cooperative_groups;
|
|
19
|
+
|
|
20
|
+
template <size_t N>
|
|
21
|
+
struct uint_by_size;
|
|
22
|
+
template <>
|
|
23
|
+
struct uint_by_size<2> {
|
|
24
|
+
using type = uint16_t;
|
|
25
|
+
};
|
|
26
|
+
template <>
|
|
27
|
+
struct uint_by_size<4> {
|
|
28
|
+
using type = uint32_t;
|
|
29
|
+
};
|
|
30
|
+
template <>
|
|
31
|
+
struct uint_by_size<8> {
|
|
32
|
+
using type = unsigned long long int;
|
|
33
|
+
};
|
|
34
|
+
|
|
35
|
+
template <typename T, typename Op>
|
|
36
|
+
__device__ void atomic_reduce(T* x, T y) {
|
|
37
|
+
if constexpr (sizeof(T) == 1) {
|
|
38
|
+
using U = uint16_t;
|
|
39
|
+
U* x_int = (U*)((char*)x - ((size_t)x % 2));
|
|
40
|
+
int shift = ((char*)x - (char*)x_int) * 8;
|
|
41
|
+
int mask = 0xff << shift;
|
|
42
|
+
U old_val, new_val;
|
|
43
|
+
do {
|
|
44
|
+
old_val = *x_int;
|
|
45
|
+
T result = Op{}(static_cast<T>((old_val >> shift) & 0xff), y);
|
|
46
|
+
new_val = (old_val & ~mask) | (result << shift);
|
|
47
|
+
} while (atomicCAS(x_int, old_val, new_val) != old_val);
|
|
48
|
+
} else {
|
|
49
|
+
using U = typename uint_by_size<sizeof(T)>::type;
|
|
50
|
+
U* x_int = (U*)(x);
|
|
51
|
+
U old_val, new_val;
|
|
52
|
+
do {
|
|
53
|
+
old_val = *x_int;
|
|
54
|
+
T result = Op{}(*((T*)&old_val), y);
|
|
55
|
+
new_val = *((U*)&result);
|
|
56
|
+
} while (atomicCAS(x_int, old_val, new_val) != old_val);
|
|
57
|
+
}
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
template <typename T, int N, typename Block, typename Warp, typename Op>
|
|
61
|
+
inline __device__ void
|
|
62
|
+
block_reduce(Block block, Warp warp, T (&vals)[N], T* smem, Op op, T init) {
|
|
63
|
+
// First reduce in the current warp
|
|
64
|
+
for (int i = 0; i < N; i++) {
|
|
65
|
+
vals[i] = cg::reduce(warp, vals[i], op);
|
|
66
|
+
}
|
|
67
|
+
|
|
68
|
+
// Reduce across warps
|
|
69
|
+
if (warp.meta_group_size() > 1) {
|
|
70
|
+
if (warp.thread_rank() == 0) {
|
|
71
|
+
for (int i = 0; i < N; i++) {
|
|
72
|
+
smem[warp.meta_group_rank() * N + i] = vals[i];
|
|
73
|
+
}
|
|
74
|
+
}
|
|
75
|
+
block.sync();
|
|
76
|
+
if (warp.thread_rank() < warp.meta_group_size()) {
|
|
77
|
+
for (int i = 0; i < N; i++) {
|
|
78
|
+
vals[i] = smem[warp.thread_rank() * N + i];
|
|
79
|
+
}
|
|
80
|
+
} else {
|
|
81
|
+
for (int i = 0; i < N; i++) {
|
|
82
|
+
vals[i] = init;
|
|
83
|
+
}
|
|
84
|
+
}
|
|
85
|
+
for (int i = 0; i < N; i++) {
|
|
86
|
+
vals[i] = cg::reduce(warp, vals[i], op);
|
|
87
|
+
}
|
|
88
|
+
}
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
} // namespace cu
|
|
92
|
+
|
|
93
|
+
inline void allocate_same_layout(
|
|
94
|
+
array& out,
|
|
95
|
+
const array& in,
|
|
96
|
+
const std::vector<int>& axes,
|
|
97
|
+
cu::CommandEncoder& encoder) {
|
|
98
|
+
if (in.flags().row_contiguous) {
|
|
99
|
+
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
|
100
|
+
return;
|
|
101
|
+
}
|
|
102
|
+
|
|
103
|
+
if (out.ndim() < in.ndim()) {
|
|
104
|
+
throw std::runtime_error(
|
|
105
|
+
"Reduction without keepdims only supported for row-contiguous inputs");
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
// Calculate the transpositions applied to in in order to apply them to out.
|
|
109
|
+
std::vector<int> axis_order(in.ndim());
|
|
110
|
+
std::iota(axis_order.begin(), axis_order.end(), 0);
|
|
111
|
+
std::sort(axis_order.begin(), axis_order.end(), [&](int left, int right) {
|
|
112
|
+
return in.strides(left) > in.strides(right);
|
|
113
|
+
});
|
|
114
|
+
|
|
115
|
+
// Transpose the shape and calculate the strides
|
|
116
|
+
Shape out_shape(in.ndim());
|
|
117
|
+
Strides out_strides(in.ndim(), 1);
|
|
118
|
+
for (int i = 0; i < in.ndim(); i++) {
|
|
119
|
+
out_shape[i] = out.shape(axis_order[i]);
|
|
120
|
+
}
|
|
121
|
+
for (int i = in.ndim() - 2; i >= 0; i--) {
|
|
122
|
+
out_strides[i] = out_shape[i + 1] * out_strides[i + 1];
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
// Reverse the axis order to get the final strides
|
|
126
|
+
Strides final_strides(in.ndim());
|
|
127
|
+
for (int i = 0; i < in.ndim(); i++) {
|
|
128
|
+
final_strides[axis_order[i]] = out_strides[i];
|
|
129
|
+
}
|
|
130
|
+
|
|
131
|
+
// Calculate the resulting contiguity and do the memory allocation
|
|
132
|
+
auto [data_size, rc, cc] = check_contiguity(out.shape(), final_strides);
|
|
133
|
+
auto fl = in.flags();
|
|
134
|
+
fl.row_contiguous = rc;
|
|
135
|
+
fl.col_contiguous = cc;
|
|
136
|
+
fl.contiguous = true;
|
|
137
|
+
out.set_data(
|
|
138
|
+
cu::malloc_async(out.nbytes(), encoder),
|
|
139
|
+
data_size,
|
|
140
|
+
final_strides,
|
|
141
|
+
fl,
|
|
142
|
+
allocator::free);
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,361 @@
|
|
|
1
|
+
// Copyright © 2025 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#include <numeric>
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/cuda/device.h"
|
|
6
|
+
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
|
7
|
+
|
|
8
|
+
#include <cooperative_groups.h>
|
|
9
|
+
#include <cooperative_groups/reduce.h>
|
|
10
|
+
|
|
11
|
+
namespace mlx::core {
|
|
12
|
+
|
|
13
|
+
namespace cu {
|
|
14
|
+
|
|
15
|
+
namespace cg = cooperative_groups;
|
|
16
|
+
|
|
17
|
+
struct RowReduceArgs {
|
|
18
|
+
// The size of the row being reduced, i.e. the size of last dimension.
|
|
19
|
+
int row_size;
|
|
20
|
+
|
|
21
|
+
// Input shape and strides excluding the reduction axes.
|
|
22
|
+
Shape shape;
|
|
23
|
+
Strides strides;
|
|
24
|
+
int ndim;
|
|
25
|
+
|
|
26
|
+
// Input shape and strides of the reduction axes excluding last dimension.
|
|
27
|
+
Shape reduce_shape;
|
|
28
|
+
Strides reduce_strides;
|
|
29
|
+
int reduce_ndim;
|
|
30
|
+
|
|
31
|
+
// The number of rows we are reducing. Namely prod(reduce_shape).
|
|
32
|
+
size_t non_row_reductions;
|
|
33
|
+
|
|
34
|
+
RowReduceArgs(
|
|
35
|
+
const array& in,
|
|
36
|
+
const ReductionPlan& plan,
|
|
37
|
+
const std::vector<int>& axes) {
|
|
38
|
+
assert(!plan.shape.empty());
|
|
39
|
+
row_size = plan.shape.back();
|
|
40
|
+
|
|
41
|
+
auto [shape_vec, strides_vec] = shapes_without_reduction_axes(in, axes);
|
|
42
|
+
std::tie(shape_vec, strides_vec) =
|
|
43
|
+
collapse_contiguous_dims(shape_vec, strides_vec);
|
|
44
|
+
shape = const_param(shape_vec);
|
|
45
|
+
strides = const_param(strides_vec);
|
|
46
|
+
ndim = shape_vec.size();
|
|
47
|
+
|
|
48
|
+
reduce_shape = const_param(plan.shape);
|
|
49
|
+
reduce_strides = const_param(plan.strides);
|
|
50
|
+
reduce_ndim = plan.shape.size() - 1;
|
|
51
|
+
|
|
52
|
+
non_row_reductions = 1;
|
|
53
|
+
for (int i = 0; i < reduce_ndim; i++) {
|
|
54
|
+
non_row_reductions *= reduce_shape[i];
|
|
55
|
+
}
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
// Convert shape and strides as if in was contiguous
|
|
59
|
+
void sort_access_pattern(const array& in, const std::vector<int>& axes) {
|
|
60
|
+
auto shape_vec = in.shape();
|
|
61
|
+
auto strides_vec = in.strides();
|
|
62
|
+
std::tie(shape_vec, strides_vec) =
|
|
63
|
+
shapes_without_reduction_axes(shape_vec, strides_vec, axes);
|
|
64
|
+
std::vector<int> indices(shape_vec.size());
|
|
65
|
+
std::iota(indices.begin(), indices.end(), 0);
|
|
66
|
+
std::sort(indices.begin(), indices.end(), [&](int left, int right) {
|
|
67
|
+
return strides_vec[left] > strides_vec[right];
|
|
68
|
+
});
|
|
69
|
+
decltype(shape_vec) sorted_shape;
|
|
70
|
+
decltype(strides_vec) sorted_strides;
|
|
71
|
+
for (auto idx : indices) {
|
|
72
|
+
sorted_shape.push_back(shape_vec[idx]);
|
|
73
|
+
sorted_strides.push_back(strides_vec[idx]);
|
|
74
|
+
}
|
|
75
|
+
std::tie(shape_vec, strides_vec) =
|
|
76
|
+
collapse_contiguous_dims(sorted_shape, sorted_strides);
|
|
77
|
+
shape = const_param(shape_vec);
|
|
78
|
+
strides = const_param(strides_vec);
|
|
79
|
+
ndim = shape_vec.size();
|
|
80
|
+
}
|
|
81
|
+
};
|
|
82
|
+
|
|
83
|
+
template <typename T, typename U, typename ReduceOp, int N = 4, int M = 1>
|
|
84
|
+
__global__ void
|
|
85
|
+
row_reduce_simple(const T* in, U* out, size_t n_rows, int size) {
|
|
86
|
+
auto grid = cg::this_grid();
|
|
87
|
+
auto block = cg::this_thread_block();
|
|
88
|
+
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
89
|
+
|
|
90
|
+
const U init = cu::ReduceInit<ReduceOp, T>::value();
|
|
91
|
+
ReduceOp op;
|
|
92
|
+
|
|
93
|
+
AlignedVector<T, N> vals[M];
|
|
94
|
+
AlignedVector<U, M> accs;
|
|
95
|
+
for (int i = 0; i < M; i++) {
|
|
96
|
+
accs[i] = init;
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
const size_t start_row =
|
|
100
|
+
min(n_rows - M, static_cast<size_t>(grid.block_rank() * M));
|
|
101
|
+
const size_t full_blocks = size / (block.size() * N);
|
|
102
|
+
const size_t final_offset = full_blocks * (block.size() * N);
|
|
103
|
+
in += start_row * size + block.thread_rank() * N;
|
|
104
|
+
out += start_row;
|
|
105
|
+
|
|
106
|
+
for (size_t r = 0; r < full_blocks; r++) {
|
|
107
|
+
for (int k = 0; k < M; k++) {
|
|
108
|
+
vals[k] = load_vector<N>(in + k * size, 0);
|
|
109
|
+
}
|
|
110
|
+
for (int k = 0; k < M; k++) {
|
|
111
|
+
for (int j = 0; j < N; j++) {
|
|
112
|
+
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
|
113
|
+
}
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
in += block.size() * N;
|
|
117
|
+
}
|
|
118
|
+
|
|
119
|
+
if (final_offset < size) {
|
|
120
|
+
for (int k = 0; k < M; k++) {
|
|
121
|
+
for (int i = 0; i < N; i++) {
|
|
122
|
+
vals[k][i] = ((final_offset + block.thread_rank() * N + i) < size)
|
|
123
|
+
? in[k * size + i]
|
|
124
|
+
: cast_to<T>(init);
|
|
125
|
+
}
|
|
126
|
+
}
|
|
127
|
+
for (int k = 0; k < M; k++) {
|
|
128
|
+
for (int j = 0; j < N; j++) {
|
|
129
|
+
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
|
130
|
+
}
|
|
131
|
+
}
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
__shared__ U shared_accumulators[32 * M];
|
|
135
|
+
block_reduce(block, warp, accs.val, shared_accumulators, op, init);
|
|
136
|
+
|
|
137
|
+
if (block.thread_rank() == 0) {
|
|
138
|
+
if (grid.block_rank() * M + M <= n_rows) {
|
|
139
|
+
store_vector(out, 0, accs);
|
|
140
|
+
} else {
|
|
141
|
+
short offset = grid.block_rank() * M + M - n_rows;
|
|
142
|
+
for (int i = offset; i < M; i++) {
|
|
143
|
+
out[i] = accs[i];
|
|
144
|
+
}
|
|
145
|
+
}
|
|
146
|
+
}
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
|
150
|
+
__global__ void row_reduce_looped(
|
|
151
|
+
const T* in,
|
|
152
|
+
U* out,
|
|
153
|
+
const __grid_constant__ RowReduceArgs args) {
|
|
154
|
+
auto grid = cg::this_grid();
|
|
155
|
+
auto block = cg::this_thread_block();
|
|
156
|
+
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
|
157
|
+
|
|
158
|
+
size_t out_idx = grid.block_rank();
|
|
159
|
+
|
|
160
|
+
Op op;
|
|
161
|
+
|
|
162
|
+
U total[1];
|
|
163
|
+
U init = ReduceInit<Op, T>::value();
|
|
164
|
+
total[0] = init;
|
|
165
|
+
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
|
166
|
+
const size_t full_blocks = args.row_size / (block.size() * N_READS);
|
|
167
|
+
const size_t final_offset = full_blocks * (block.size() * N_READS);
|
|
168
|
+
|
|
169
|
+
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
|
170
|
+
in += block.thread_rank() * N_READS;
|
|
171
|
+
|
|
172
|
+
// Unaligned reduce
|
|
173
|
+
if (final_offset < args.row_size) {
|
|
174
|
+
bool mask[N_READS];
|
|
175
|
+
for (int i = 0; i < N_READS; i++) {
|
|
176
|
+
mask[i] =
|
|
177
|
+
(final_offset + block.thread_rank() * N_READS + i) < args.row_size;
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
|
181
|
+
const T* inlocal = in + loop.location();
|
|
182
|
+
|
|
183
|
+
for (size_t r = 0; r < full_blocks; r++) {
|
|
184
|
+
auto vals = load_vector<N_READS>(inlocal, 0);
|
|
185
|
+
for (int i = 0; i < N_READS; i++) {
|
|
186
|
+
total[0] = op(total[0], cast_to<U>(vals[i]));
|
|
187
|
+
}
|
|
188
|
+
inlocal += block.size() * N_READS;
|
|
189
|
+
}
|
|
190
|
+
|
|
191
|
+
{
|
|
192
|
+
T vals[N_READS];
|
|
193
|
+
for (int i = 0; i < N_READS; i++) {
|
|
194
|
+
vals[i] = mask[i] ? inlocal[i] : cast_to<T>(init);
|
|
195
|
+
}
|
|
196
|
+
for (int i = 0; i < N_READS; i++) {
|
|
197
|
+
total[0] = op(total[0], cast_to<U>(vals[i]));
|
|
198
|
+
}
|
|
199
|
+
}
|
|
200
|
+
|
|
201
|
+
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
|
202
|
+
}
|
|
203
|
+
}
|
|
204
|
+
|
|
205
|
+
// Aligned case
|
|
206
|
+
else {
|
|
207
|
+
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
|
208
|
+
const T* inlocal = in + loop.location();
|
|
209
|
+
|
|
210
|
+
for (size_t r = 0; r < full_blocks; r++) {
|
|
211
|
+
auto vals = load_vector<N_READS>(inlocal, 0);
|
|
212
|
+
for (int i = 0; i < N_READS; i++) {
|
|
213
|
+
total[0] = op(total[0], cast_to<U>(vals[i]));
|
|
214
|
+
}
|
|
215
|
+
inlocal += block.size() * N_READS;
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
|
219
|
+
}
|
|
220
|
+
}
|
|
221
|
+
|
|
222
|
+
__shared__ U shared_accumulators[32];
|
|
223
|
+
block_reduce(block, warp, total, shared_accumulators, op, init);
|
|
224
|
+
|
|
225
|
+
if (block.thread_rank() == 0) {
|
|
226
|
+
out[out_idx] = total[0];
|
|
227
|
+
}
|
|
228
|
+
}
|
|
229
|
+
|
|
230
|
+
} // namespace cu
|
|
231
|
+
|
|
232
|
+
void row_reduce_simple(
|
|
233
|
+
cu::CommandEncoder& encoder,
|
|
234
|
+
const array& in,
|
|
235
|
+
array& out,
|
|
236
|
+
Reduce::ReduceType reduce_type,
|
|
237
|
+
const std::vector<int>& axes,
|
|
238
|
+
const ReductionPlan& plan) {
|
|
239
|
+
// Allocate data for the output using in's layout to avoid elem_to_loc in the
|
|
240
|
+
// kernel.
|
|
241
|
+
allocate_same_layout(out, in, axes, encoder);
|
|
242
|
+
|
|
243
|
+
// TODO: If out.size() < 1024 which will be a common case then write this in
|
|
244
|
+
// 2 passes. Something like 32 * out.size() and then do a warp reduce.
|
|
245
|
+
encoder.set_input_array(in);
|
|
246
|
+
encoder.set_output_array(out);
|
|
247
|
+
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
248
|
+
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
|
249
|
+
using OP = MLX_GET_TYPE(reduce_type_tag);
|
|
250
|
+
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
251
|
+
using U = typename cu::ReduceResult<OP, T>::type;
|
|
252
|
+
|
|
253
|
+
constexpr int N_READS = 16 / sizeof(T);
|
|
254
|
+
|
|
255
|
+
// Calculate the grid and block dims
|
|
256
|
+
size_t reductions = (plan.shape.back() + N_READS - 1) / N_READS;
|
|
257
|
+
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
|
258
|
+
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
|
259
|
+
warps /= 4;
|
|
260
|
+
warps = std::max(std::min(warps, 32), 1);
|
|
261
|
+
int threads = warps * WARP_SIZE;
|
|
262
|
+
dim3 block(threads, 1, 1);
|
|
263
|
+
|
|
264
|
+
// Pick the kernel
|
|
265
|
+
auto kernel = cu::row_reduce_simple<T, U, OP, N_READS>;
|
|
266
|
+
if (grid.x >= 1024) {
|
|
267
|
+
grid.x = (grid.x + 1) / 2;
|
|
268
|
+
kernel = cu::row_reduce_simple<T, U, OP, N_READS, 2>;
|
|
269
|
+
}
|
|
270
|
+
|
|
271
|
+
T* indata = const_cast<T*>(gpu_ptr<T>(in));
|
|
272
|
+
int size = plan.shape.back();
|
|
273
|
+
encoder.add_kernel_node(
|
|
274
|
+
kernel, grid, block, 0, indata, gpu_ptr<U>(out), out.size(), size);
|
|
275
|
+
});
|
|
276
|
+
});
|
|
277
|
+
}
|
|
278
|
+
|
|
279
|
+
void row_reduce_looped(
|
|
280
|
+
cu::CommandEncoder& encoder,
|
|
281
|
+
const array& in,
|
|
282
|
+
array& out,
|
|
283
|
+
Reduce::ReduceType reduce_type,
|
|
284
|
+
const std::vector<int>& axes,
|
|
285
|
+
const ReductionPlan& plan,
|
|
286
|
+
cu::RowReduceArgs args) {
|
|
287
|
+
// Allocate data for the output using in's layout to access them as
|
|
288
|
+
// contiguously as possible.
|
|
289
|
+
allocate_same_layout(out, in, axes, encoder);
|
|
290
|
+
|
|
291
|
+
encoder.set_input_array(in);
|
|
292
|
+
encoder.set_output_array(out);
|
|
293
|
+
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
|
294
|
+
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
|
295
|
+
using OP = MLX_GET_TYPE(reduce_type_tag);
|
|
296
|
+
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
|
297
|
+
using U = typename cu::ReduceResult<OP, T>::type;
|
|
298
|
+
|
|
299
|
+
constexpr int N_READS = 16 / sizeof(T);
|
|
300
|
+
|
|
301
|
+
// Calculate the grid and block dims
|
|
302
|
+
args.sort_access_pattern(in, axes);
|
|
303
|
+
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
|
304
|
+
size_t reductions = (args.row_size + N_READS - 1) / N_READS;
|
|
305
|
+
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
|
306
|
+
warps /= 4;
|
|
307
|
+
warps = std::max(std::min(warps, 32), 1);
|
|
308
|
+
int threads = warps * WARP_SIZE;
|
|
309
|
+
dim3 block(threads, 1, 1);
|
|
310
|
+
|
|
311
|
+
// Pick the kernel
|
|
312
|
+
auto kernel = cu::row_reduce_looped<T, U, OP, 1, N_READS>;
|
|
313
|
+
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
|
314
|
+
kernel = cu::row_reduce_looped<T, U, OP, reduce_ndim.value, N_READS>;
|
|
315
|
+
});
|
|
316
|
+
|
|
317
|
+
encoder.add_kernel_node(
|
|
318
|
+
kernel, grid, block, 0, gpu_ptr<T>(in), gpu_ptr<U>(out), args);
|
|
319
|
+
});
|
|
320
|
+
});
|
|
321
|
+
}
|
|
322
|
+
|
|
323
|
+
void row_reduce(
|
|
324
|
+
cu::CommandEncoder& encoder,
|
|
325
|
+
const array& in,
|
|
326
|
+
array& out,
|
|
327
|
+
Reduce::ReduceType reduce_type,
|
|
328
|
+
const std::vector<int>& axes,
|
|
329
|
+
const ReductionPlan& plan) {
|
|
330
|
+
// Current row reduction options
|
|
331
|
+
//
|
|
332
|
+
// - row_reduce_simple
|
|
333
|
+
//
|
|
334
|
+
// That means that we are simply reducing across the fastest moving axis.
|
|
335
|
+
// We are reducing 1 or 2 rows per threadblock depending on the size of
|
|
336
|
+
// output.
|
|
337
|
+
//
|
|
338
|
+
// - row_reduce_looped
|
|
339
|
+
//
|
|
340
|
+
// It is a general row reduction. We are computing 1 output per
|
|
341
|
+
// threadblock. We read the fastest moving axis vectorized and loop over
|
|
342
|
+
// the rest of the axes.
|
|
343
|
+
//
|
|
344
|
+
// Notes: We opt to read as much in order as possible and leave
|
|
345
|
+
// transpositions as they are (contrary to our Metal backend).
|
|
346
|
+
|
|
347
|
+
// Simple row reduce means that we have 1 axis that we are reducing over and
|
|
348
|
+
// it has stride 1.
|
|
349
|
+
if (plan.shape.size() == 1) {
|
|
350
|
+
row_reduce_simple(encoder, in, out, reduce_type, axes, plan);
|
|
351
|
+
return;
|
|
352
|
+
}
|
|
353
|
+
|
|
354
|
+
// Make the args struct to help route to the best kernel
|
|
355
|
+
cu::RowReduceArgs args(in, plan, axes);
|
|
356
|
+
|
|
357
|
+
// Fallback row reduce
|
|
358
|
+
row_reduce_looped(encoder, in, out, reduce_type, axes, plan, std::move(args));
|
|
359
|
+
}
|
|
360
|
+
|
|
361
|
+
} // namespace mlx::core
|