mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
@@ -0,0 +1,433 @@
1
+ // Copyright © 2024 Apple Inc.
2
+ #include <algorithm>
3
+
4
+ #include "mlx/backend/gpu/copy.h"
5
+ #include "mlx/backend/metal/device.h"
6
+ #include "mlx/backend/metal/kernels/defines.h"
7
+ #include "mlx/backend/metal/reduce.h"
8
+ #include "mlx/backend/metal/utils.h"
9
+ #include "mlx/fast_primitives.h"
10
+
11
+ namespace mlx::core::fast {
12
+
13
+ bool RMSNorm::use_fallback(Stream s) {
14
+ return s.device == Device::cpu;
15
+ }
16
+
17
+ void RMSNorm::eval_gpu(
18
+ const std::vector<array>& inputs,
19
+ std::vector<array>& outputs) {
20
+ auto& s = stream();
21
+ auto& d = metal::device(s.device);
22
+ auto& out = outputs[0];
23
+
24
+ // Make sure that the last dimension is contiguous
25
+ auto set_output = [&s, &out](const array& x) {
26
+ bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
27
+ if (no_copy && x.ndim() > 1) {
28
+ auto s = x.strides()[x.ndim() - 2];
29
+ no_copy &= (s == 0 || s == x.shape().back() || x.shape(-2) == 1);
30
+ }
31
+ if (no_copy) {
32
+ if (x.is_donatable()) {
33
+ out.copy_shared_buffer(x);
34
+ } else {
35
+ out.set_data(
36
+ allocator::malloc(x.data_size() * x.itemsize()),
37
+ x.data_size(),
38
+ x.strides(),
39
+ x.flags());
40
+ }
41
+ return x;
42
+ } else {
43
+ array x_copy = contiguous_copy_gpu(x, s);
44
+ out.copy_shared_buffer(x_copy);
45
+ return x_copy;
46
+ }
47
+ };
48
+
49
+ const array x = set_output(inputs[0]);
50
+ const array& w = inputs[1];
51
+
52
+ auto axis_size = static_cast<uint32_t>(x.shape().back());
53
+ int n_rows = x.data_size() / axis_size;
54
+
55
+ const int simd_size = 32;
56
+ const int n_reads = RMS_N_READS;
57
+ const int looped_limit = RMS_LOOPED_LIMIT;
58
+ std::string op_name = "rms";
59
+ if (axis_size > looped_limit) {
60
+ op_name += "_looped";
61
+ }
62
+ op_name += type_to_name(out);
63
+ auto& compute_encoder = d.get_command_encoder(s.index);
64
+ {
65
+ auto kernel = d.get_kernel(op_name);
66
+
67
+ MTL::Size grid_dims, group_dims;
68
+ if (axis_size <= looped_limit) {
69
+ size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
70
+ size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
71
+ size_t threadgroup_size = simd_size * simds_needed;
72
+ assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
73
+ size_t n_threads = n_rows * threadgroup_size;
74
+ grid_dims = MTL::Size(n_threads, 1, 1);
75
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
76
+ } else {
77
+ size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
78
+ size_t n_threads = n_rows * threadgroup_size;
79
+ grid_dims = MTL::Size(n_threads, 1, 1);
80
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
81
+ }
82
+
83
+ uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
84
+ compute_encoder.set_compute_pipeline_state(kernel);
85
+ compute_encoder.set_input_array(x, 0);
86
+ compute_encoder.set_input_array(w, 1);
87
+ compute_encoder.set_output_array(out, 2);
88
+ compute_encoder.set_bytes(eps_, 3);
89
+ compute_encoder.set_bytes(axis_size, 4);
90
+ compute_encoder.set_bytes(w_stride, 5);
91
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
92
+ }
93
+ }
94
+
95
+ void RMSNormVJP::eval_gpu(
96
+ const std::vector<array>& inputs,
97
+ std::vector<array>& outputs) {
98
+ auto& s = stream();
99
+ auto& d = metal::device(s.device);
100
+
101
+ // Ensure row contiguity. We could relax this step by checking that the array
102
+ // is contiguous (no broadcasts or holes) and that the input strides are the
103
+ // same as the cotangent strides but for now this is simpler.
104
+ auto check_input = [&s](const array& x) -> std::pair<array, bool> {
105
+ if (x.flags().row_contiguous) {
106
+ return {x, false};
107
+ }
108
+ array x_copy = contiguous_copy_gpu(x, s);
109
+ return {x_copy, true};
110
+ };
111
+ bool donate_g = inputs[2].is_donatable();
112
+ auto [x, copied] = check_input(inputs[0]);
113
+ const array& w = inputs[1];
114
+ auto [g, g_copied] = check_input(inputs[2]);
115
+ donate_g |= g_copied;
116
+ array& gx = outputs[0];
117
+ array& gw = outputs[1];
118
+
119
+ // Check whether we had a weight
120
+ bool has_w = w.ndim() != 0;
121
+
122
+ // Allocate space for the outputs
123
+ bool g_in_gx = false;
124
+ if (x.is_donatable()) {
125
+ gx.copy_shared_buffer(x);
126
+ } else if (g.is_donatable()) {
127
+ gx.copy_shared_buffer(g);
128
+ g_in_gx = true;
129
+ } else {
130
+ gx.set_data(allocator::malloc(gx.nbytes()));
131
+ }
132
+ if (g_copied && !g_in_gx) {
133
+ d.add_temporary(g, s.index);
134
+ }
135
+
136
+ auto axis_size = static_cast<uint32_t>(x.shape().back());
137
+ int n_rows = x.data_size() / axis_size;
138
+
139
+ // Allocate the gradient accumulator gw and a temporary to store the
140
+ // gradients before they are accumulated.
141
+ array gw_temp =
142
+ (has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
143
+ if (has_w) {
144
+ if (!g_in_gx && donate_g) {
145
+ gw_temp.copy_shared_buffer(g);
146
+ } else {
147
+ gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
148
+ d.add_temporary(gw_temp, s.index);
149
+ }
150
+ }
151
+ gw.set_data(allocator::malloc(gw.nbytes()));
152
+
153
+ const int simd_size = 32;
154
+ const int n_reads = RMS_N_READS;
155
+ const int looped_limit = RMS_LOOPED_LIMIT;
156
+ std::string op_name = "vjp_rms";
157
+ if (axis_size > looped_limit) {
158
+ op_name += "_looped";
159
+ }
160
+ op_name += type_to_name(gx);
161
+
162
+ std::string hash_name = op_name + ((has_w) ? "_w" : "_now");
163
+ metal::MTLFCList func_consts = {
164
+ {&has_w, MTL::DataType::DataTypeBool, 20},
165
+ };
166
+
167
+ auto& compute_encoder = d.get_command_encoder(s.index);
168
+ {
169
+ auto kernel = d.get_kernel(op_name, hash_name, func_consts);
170
+
171
+ MTL::Size grid_dims, group_dims;
172
+ if (axis_size <= looped_limit) {
173
+ size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
174
+ size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
175
+ size_t threadgroup_size = simd_size * simds_needed;
176
+ assert(threadgroup_size <= kernel->maxTotalThreadsPerThreadgroup());
177
+ size_t n_threads = n_rows * threadgroup_size;
178
+ grid_dims = MTL::Size(n_threads, 1, 1);
179
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
180
+ } else {
181
+ size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
182
+ size_t n_threads = n_rows * threadgroup_size;
183
+ grid_dims = MTL::Size(n_threads, 1, 1);
184
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
185
+ }
186
+
187
+ uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
188
+ compute_encoder.set_compute_pipeline_state(kernel);
189
+ compute_encoder.set_input_array(x, 0);
190
+ compute_encoder.set_input_array(w, 1);
191
+ compute_encoder.set_input_array(g, 2);
192
+ compute_encoder.set_output_array(gx, 3);
193
+ compute_encoder.set_output_array(gw_temp, 4);
194
+ compute_encoder.set_bytes(eps_, 5);
195
+ compute_encoder.set_bytes(axis_size, 6);
196
+ compute_encoder.set_bytes(w_stride, 7);
197
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
198
+ }
199
+
200
+ if (has_w) {
201
+ ReductionPlan plan(
202
+ ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
203
+ strided_reduce_general_dispatch(
204
+ gw_temp, gw, "sum", plan, {0}, compute_encoder, d, s);
205
+ }
206
+ }
207
+
208
+ bool LayerNorm::use_fallback(Stream s) {
209
+ return s.device == Device::cpu;
210
+ }
211
+
212
+ void LayerNorm::eval_gpu(
213
+ const std::vector<array>& inputs,
214
+ std::vector<array>& outputs) {
215
+ auto& s = stream();
216
+ auto& d = metal::device(s.device);
217
+ auto& out = outputs[0];
218
+
219
+ // Make sure that the last dimension is contiguous
220
+ auto set_output = [&s, &out](const array& x) {
221
+ bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
222
+ if (no_copy && x.ndim() > 1) {
223
+ auto s = x.strides()[x.ndim() - 2];
224
+ no_copy &= (s == 0 || s == x.shape().back() || x.shape(-2) == 1);
225
+ }
226
+ if (no_copy) {
227
+ if (x.is_donatable()) {
228
+ out.copy_shared_buffer(x);
229
+ } else {
230
+ out.set_data(
231
+ allocator::malloc(x.data_size() * x.itemsize()),
232
+ x.data_size(),
233
+ x.strides(),
234
+ x.flags());
235
+ }
236
+ return x;
237
+ } else {
238
+ array x_copy = contiguous_copy_gpu(x, s);
239
+ out.copy_shared_buffer(x_copy);
240
+ return x_copy;
241
+ }
242
+ };
243
+
244
+ const array x = set_output(inputs[0]);
245
+ const array& w = inputs[1];
246
+ const array& b = inputs[2];
247
+
248
+ auto axis_size = static_cast<uint32_t>(x.shape().back());
249
+ int n_rows = x.data_size() / axis_size;
250
+
251
+ int simd_size = 32;
252
+ int n_reads = 8;
253
+ int looped_limit = 6656;
254
+ std::string op_name = "layer_norm";
255
+ if (axis_size > looped_limit) {
256
+ op_name += "_looped";
257
+ n_reads = 4;
258
+ }
259
+ op_name += type_to_name(out);
260
+ auto& compute_encoder = d.get_command_encoder(s.index);
261
+ {
262
+ auto kernel = d.get_kernel(op_name);
263
+
264
+ MTL::Size grid_dims, group_dims;
265
+ if (axis_size <= looped_limit) {
266
+ size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
267
+ size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
268
+ size_t threadgroup_size = simd_size * simds_needed;
269
+ if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
270
+ std::ostringstream msg;
271
+ msg << "[layer_norm] Threadgroup size " << threadgroup_size
272
+ << " is larger than the maximum allowed threadgroup size "
273
+ << kernel->maxTotalThreadsPerThreadgroup();
274
+ throw std::runtime_error(msg.str());
275
+ }
276
+ size_t n_threads = n_rows * threadgroup_size;
277
+ grid_dims = MTL::Size(n_threads, 1, 1);
278
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
279
+ } else {
280
+ size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
281
+ size_t n_threads = n_rows * threadgroup_size;
282
+ grid_dims = MTL::Size(n_threads, 1, 1);
283
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
284
+ }
285
+
286
+ uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
287
+ uint32_t b_stride = (b.ndim() == 1) ? b.strides()[0] : 0;
288
+ compute_encoder.set_compute_pipeline_state(kernel);
289
+ compute_encoder.set_input_array(x, 0);
290
+ compute_encoder.set_input_array(w, 1);
291
+ compute_encoder.set_input_array(b, 2);
292
+ compute_encoder.set_output_array(out, 3);
293
+ compute_encoder.set_bytes(eps_, 4);
294
+ compute_encoder.set_bytes(axis_size, 5);
295
+ compute_encoder.set_bytes(w_stride, 6);
296
+ compute_encoder.set_bytes(b_stride, 7);
297
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
298
+ }
299
+ }
300
+
301
+ void LayerNormVJP::eval_gpu(
302
+ const std::vector<array>& inputs,
303
+ std::vector<array>& outputs) {
304
+ auto& s = stream();
305
+ auto& d = metal::device(s.device);
306
+
307
+ // Ensure row contiguity. We could relax this step by checking that the array
308
+ // is contiguous (no broadcasts or holes) and that the input strides are the
309
+ // same as the cotangent strides but for now this is simpler.
310
+ auto check_input = [&s](const array& x) -> std::pair<array, bool> {
311
+ if (x.flags().row_contiguous) {
312
+ return {x, false};
313
+ }
314
+ array x_copy = contiguous_copy_gpu(x, s);
315
+ return {x_copy, true};
316
+ };
317
+ bool donate_x = inputs[0].is_donatable();
318
+ bool donate_g = inputs[3].is_donatable();
319
+ auto [x, copied] = check_input(inputs[0]);
320
+ donate_x |= copied;
321
+ const array& w = inputs[1];
322
+ auto [g, g_copied] = check_input(inputs[3]);
323
+ donate_g |= g_copied;
324
+ array& gx = outputs[0];
325
+ array& gw = outputs[1];
326
+ array& gb = outputs[2];
327
+
328
+ // Check whether we had a weight
329
+ bool has_w = w.ndim() != 0;
330
+
331
+ // Allocate space for the outputs
332
+ bool g_in_gx = false;
333
+ if (donate_x) {
334
+ gx.copy_shared_buffer(x);
335
+ } else if (donate_g) {
336
+ gx.copy_shared_buffer(g);
337
+ g_in_gx = true;
338
+ } else {
339
+ gx.set_data(allocator::malloc(gx.nbytes()));
340
+ }
341
+ if (g_copied && !g_in_gx) {
342
+ d.add_temporary(g, s.index);
343
+ }
344
+
345
+ auto axis_size = static_cast<uint32_t>(x.shape().back());
346
+ int n_rows = x.data_size() / axis_size;
347
+
348
+ // Allocate a temporary to store the gradients for w and allocate the output
349
+ // gradient accumulators.
350
+ array gw_temp =
351
+ (has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
352
+ if (has_w) {
353
+ if (!g_in_gx && donate_g) {
354
+ gw_temp.copy_shared_buffer(g);
355
+ } else {
356
+ gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
357
+ d.add_temporary(gw_temp, s.index);
358
+ }
359
+ }
360
+ gw.set_data(allocator::malloc(gw.nbytes()));
361
+ gb.set_data(allocator::malloc(gb.nbytes()));
362
+
363
+ // Finish with the gradient for b in case we had a b
364
+ auto& compute_encoder = d.get_command_encoder(s.index);
365
+ if (gb.ndim() == 1 && gb.size() == axis_size) {
366
+ ReductionPlan plan(
367
+ ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
368
+ strided_reduce_general_dispatch(
369
+ g, gb, "sum", plan, {0}, compute_encoder, d, s);
370
+ }
371
+
372
+ int simd_size = 32;
373
+ int n_reads = 8;
374
+ int looped_limit = 8192;
375
+ std::string op_name = "vjp_layer_norm";
376
+ if (axis_size > looped_limit) {
377
+ op_name += "_looped";
378
+ n_reads = 4;
379
+ }
380
+ op_name += type_to_name(gx);
381
+
382
+ std::string hash_name = op_name + ((has_w) ? "_w" : "_now");
383
+ metal::MTLFCList func_consts = {
384
+ {&has_w, MTL::DataType::DataTypeBool, 20},
385
+ };
386
+
387
+ {
388
+ auto kernel = d.get_kernel(op_name, hash_name, func_consts);
389
+
390
+ MTL::Size grid_dims, group_dims;
391
+ if (axis_size <= looped_limit) {
392
+ size_t threadgroup_needed = (axis_size + n_reads - 1) / n_reads;
393
+ size_t simds_needed = (threadgroup_needed + simd_size - 1) / simd_size;
394
+ size_t threadgroup_size = simd_size * simds_needed;
395
+ if (threadgroup_size > kernel->maxTotalThreadsPerThreadgroup()) {
396
+ std::ostringstream msg;
397
+ msg << "[vjp_layer_norm] Threadgroup size " << threadgroup_size
398
+ << " is larger than the maximum allowed threadgroup size "
399
+ << kernel->maxTotalThreadsPerThreadgroup();
400
+ throw std::runtime_error(msg.str());
401
+ }
402
+ size_t n_threads = n_rows * threadgroup_size;
403
+ grid_dims = MTL::Size(n_threads, 1, 1);
404
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
405
+ } else {
406
+ size_t threadgroup_size = kernel->maxTotalThreadsPerThreadgroup();
407
+ size_t n_threads = n_rows * threadgroup_size;
408
+ grid_dims = MTL::Size(n_threads, 1, 1);
409
+ group_dims = MTL::Size(threadgroup_size, 1, 1);
410
+ }
411
+
412
+ uint32_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
413
+ compute_encoder.set_compute_pipeline_state(kernel);
414
+ compute_encoder.set_input_array(x, 0);
415
+ compute_encoder.set_input_array(w, 1);
416
+ compute_encoder.set_input_array(g, 2);
417
+ compute_encoder.set_output_array(gx, 3);
418
+ compute_encoder.set_output_array(gw_temp, 4);
419
+ compute_encoder.set_bytes(eps_, 5);
420
+ compute_encoder.set_bytes(axis_size, 6);
421
+ compute_encoder.set_bytes(w_stride, 7);
422
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
423
+ }
424
+
425
+ if (has_w) {
426
+ ReductionPlan plan(
427
+ ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
428
+ strided_reduce_general_dispatch(
429
+ gw_temp, gw, "sum", plan, {0}, compute_encoder, d, s);
430
+ }
431
+ }
432
+
433
+ } // namespace mlx::core::fast
@@ -0,0 +1,242 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+ #include <algorithm>
3
+ #include <cassert>
4
+ #include <numeric>
5
+ #include <sstream>
6
+
7
+ #include "mlx/backend/common/slicing.h"
8
+ #include "mlx/backend/common/utils.h"
9
+ #include "mlx/backend/gpu/copy.h"
10
+ #include "mlx/backend/gpu/slicing.h"
11
+ #include "mlx/backend/metal/device.h"
12
+ #include "mlx/backend/metal/kernels.h"
13
+ #include "mlx/backend/metal/utils.h"
14
+ #include "mlx/primitives.h"
15
+ #include "mlx/scheduler.h"
16
+ #include "mlx/utils.h"
17
+
18
+ namespace mlx::core {
19
+
20
+ template <typename T>
21
+ void arange_set_scalars(T start, T next, metal::CommandEncoder& enc) {
22
+ enc.set_bytes(start, 0);
23
+ T step = next - start;
24
+ enc.set_bytes(step, 1);
25
+ }
26
+
27
+ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
28
+ assert(inputs.size() == 0);
29
+ out.set_data(allocator::malloc(out.nbytes()));
30
+ if (out.size() == 0) {
31
+ return;
32
+ }
33
+ auto& s = stream();
34
+ auto& d = metal::device(s.device);
35
+ auto kernel = get_arange_kernel(d, "arange" + type_to_name(out), out);
36
+ size_t nthreads = out.size();
37
+ MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
38
+ MTL::Size group_dims = MTL::Size(
39
+ std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
40
+ auto& compute_encoder = d.get_command_encoder(s.index);
41
+ compute_encoder.set_compute_pipeline_state(kernel);
42
+
43
+ switch (out.dtype()) {
44
+ case bool_: // unsupported
45
+ throw std::runtime_error("[Arange::eval_gpu] Does not support bool");
46
+ case uint8:
47
+ arange_set_scalars<uint8_t>(start_, start_ + step_, compute_encoder);
48
+ break;
49
+ case uint16:
50
+ arange_set_scalars<uint16_t>(start_, start_ + step_, compute_encoder);
51
+ break;
52
+ case uint32:
53
+ arange_set_scalars<uint32_t>(start_, start_ + step_, compute_encoder);
54
+ break;
55
+ case uint64:
56
+ arange_set_scalars<uint64_t>(start_, start_ + step_, compute_encoder);
57
+ break;
58
+ case int8:
59
+ arange_set_scalars<int8_t>(start_, start_ + step_, compute_encoder);
60
+ break;
61
+ case int16:
62
+ arange_set_scalars<int16_t>(start_, start_ + step_, compute_encoder);
63
+ break;
64
+ case int32:
65
+ arange_set_scalars<int32_t>(start_, start_ + step_, compute_encoder);
66
+ break;
67
+ case int64:
68
+ arange_set_scalars<int64_t>(start_, start_ + step_, compute_encoder);
69
+ break;
70
+ case float16:
71
+ arange_set_scalars<float16_t>(start_, start_ + step_, compute_encoder);
72
+ break;
73
+ case float32:
74
+ arange_set_scalars<float>(start_, start_ + step_, compute_encoder);
75
+ break;
76
+ case bfloat16:
77
+ arange_set_scalars<bfloat16_t>(start_, start_ + step_, compute_encoder);
78
+ break;
79
+ default:
80
+ throw std::runtime_error("[Arange::eval_gpu] Does not support type.");
81
+ }
82
+
83
+ compute_encoder.set_output_array(out, 2);
84
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
85
+ }
86
+
87
+ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
88
+ assert(inputs.size() == 1);
89
+ auto& in = inputs[0];
90
+ out.set_data(allocator::malloc(out.nbytes()));
91
+ auto& s = stream();
92
+ auto& d = metal::device(s.device);
93
+ std::string op_name;
94
+ switch (reduce_type_) {
95
+ case ArgReduce::ArgMin:
96
+ op_name = "argmin_";
97
+ break;
98
+ case ArgReduce::ArgMax:
99
+ op_name = "argmax_";
100
+ break;
101
+ }
102
+
103
+ // Prepare the shapes, strides and axis arguments.
104
+ auto in_strides = in.strides();
105
+ auto shape = in.shape();
106
+ auto out_strides = out.strides();
107
+ auto axis_stride = in_strides[axis_];
108
+ size_t axis_size = shape[axis_];
109
+ if (out_strides.size() == in_strides.size()) {
110
+ out_strides.erase(out_strides.begin() + axis_);
111
+ }
112
+ in_strides.erase(in_strides.begin() + axis_);
113
+ shape.erase(shape.begin() + axis_);
114
+ size_t ndim = shape.size();
115
+
116
+ // ArgReduce
117
+ int simd_size = 32;
118
+ int n_reads = 4;
119
+ auto& compute_encoder = d.get_command_encoder(s.index);
120
+ {
121
+ auto kernel = d.get_kernel(op_name + type_to_name(in));
122
+ NS::UInteger thread_group_size = std::min(
123
+ (axis_size + n_reads - 1) / n_reads,
124
+ kernel->maxTotalThreadsPerThreadgroup());
125
+ // round up to the closest number divisible by simd_size
126
+ thread_group_size =
127
+ (thread_group_size + simd_size - 1) / simd_size * simd_size;
128
+ assert(thread_group_size <= kernel->maxTotalThreadsPerThreadgroup());
129
+
130
+ auto gd = get_2d_grid_dims(out.shape(), out.strides());
131
+ MTL::Size grid_dims = MTL::Size(thread_group_size, gd.width, gd.height);
132
+ MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
133
+ compute_encoder.set_compute_pipeline_state(kernel);
134
+ compute_encoder.set_input_array(in, 0);
135
+ compute_encoder.set_output_array(out, 1);
136
+ if (ndim == 0) {
137
+ // Pass place holders so metal doesn't complain
138
+ int shape_ = 0;
139
+ int64_t stride_ = 0;
140
+ compute_encoder.set_bytes(shape_, 2);
141
+ compute_encoder.set_bytes(stride_, 3);
142
+ compute_encoder.set_bytes(stride_, 4);
143
+ } else {
144
+ compute_encoder.set_vector_bytes(shape, 2);
145
+ compute_encoder.set_vector_bytes(in_strides, 3);
146
+ compute_encoder.set_vector_bytes(out_strides, 4);
147
+ }
148
+ compute_encoder.set_bytes(ndim, 5);
149
+ compute_encoder.set_bytes(axis_stride, 6);
150
+ compute_encoder.set_bytes(axis_size, 7);
151
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
152
+ }
153
+ }
154
+
155
+ void Load::eval_gpu(const std::vector<array>& inputs, array& out) {
156
+ throw std::runtime_error("[Load::eval_gpu] Not implemented.");
157
+ }
158
+
159
+ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
160
+ assert(inputs.size() == 1);
161
+
162
+ // keys has shape (N1, ..., NK, 2)
163
+ // out has shape (N1, ..., NK, M1, M2, ...)
164
+ auto& keys = inputs[0];
165
+ size_t num_keys = keys.size() / 2;
166
+
167
+ size_t elems_per_key = out.size() / num_keys;
168
+ size_t bytes_per_key = out.itemsize() * elems_per_key;
169
+ out.set_data(allocator::malloc(out.nbytes()));
170
+ if (out.size() == 0) {
171
+ return;
172
+ }
173
+
174
+ size_t out_per_key = (bytes_per_key + 4 - 1) / 4;
175
+ size_t half_size = out_per_key / 2;
176
+ bool odd = out_per_key % 2;
177
+
178
+ auto& s = stream();
179
+ auto& d = metal::device(s.device);
180
+ std::string kname = keys.flags().row_contiguous ? "rbitsc" : "rbits";
181
+ auto kernel = d.get_kernel(kname);
182
+
183
+ // organize into grid nkeys x elem_per_key
184
+ MTL::Size grid_dims = MTL::Size(num_keys, half_size + odd, 1);
185
+ auto group_dims = get_block_dims(num_keys, half_size + odd, 1);
186
+ auto& compute_encoder = d.get_command_encoder(s.index);
187
+ compute_encoder.set_compute_pipeline_state(kernel);
188
+ compute_encoder.set_input_array(keys, 0);
189
+ compute_encoder.set_output_array(out, 1);
190
+ compute_encoder.set_bytes(odd, 2);
191
+ compute_encoder.set_bytes(bytes_per_key, 3);
192
+
193
+ if (!keys.flags().row_contiguous) {
194
+ int ndim = keys.ndim();
195
+ compute_encoder.set_bytes(ndim, 4);
196
+ compute_encoder.set_vector_bytes(keys.shape(), 5);
197
+ compute_encoder.set_vector_bytes(keys.strides(), 6);
198
+ }
199
+
200
+ compute_encoder.dispatch_threads(grid_dims, group_dims);
201
+ }
202
+
203
+ void QRF::eval_gpu(
204
+ const std::vector<array>& inputs,
205
+ std::vector<array>& outputs) {
206
+ throw std::runtime_error("[QRF::eval_gpu] Metal QR factorization NYI.");
207
+ }
208
+
209
+ void SVD::eval_gpu(
210
+ const std::vector<array>& inputs,
211
+ std::vector<array>& outputs) {
212
+ throw std::runtime_error("[SVD::eval_gpu] Metal SVD NYI.");
213
+ }
214
+
215
+ void Inverse::eval_gpu(const std::vector<array>& inputs, array& output) {
216
+ throw std::runtime_error("[Inverse::eval_gpu] Metal inversion NYI.");
217
+ }
218
+
219
+ void Cholesky::eval_gpu(const std::vector<array>& inputs, array& out) {
220
+ throw std::runtime_error(
221
+ "[Cholesky::eval_gpu] Metal Cholesky decomposition NYI.");
222
+ }
223
+
224
+ void Eig::eval_gpu(
225
+ const std::vector<array>& inputs,
226
+ std::vector<array>& outputs) {
227
+ throw std::runtime_error("[Eig::eval_gpu] Metal Eig NYI.");
228
+ }
229
+
230
+ void Eigh::eval_gpu(
231
+ const std::vector<array>& inputs,
232
+ std::vector<array>& outputs) {
233
+ throw std::runtime_error("[Eigh::eval_gpu] Metal Eigh NYI.");
234
+ }
235
+
236
+ void LUF::eval_gpu(
237
+ const std::vector<array>& inputs,
238
+ std::vector<array>& outputs) {
239
+ throw std::runtime_error("[LUF::eval_gpu] Metal LU factorization NYI.");
240
+ }
241
+
242
+ } // namespace mlx::core