mlx 0.30.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/ext/mlx/extconf.rb +94 -0
- data/ext/mlx/native.cpp +8027 -0
- data/lib/mlx/core.rb +1678 -0
- data/lib/mlx/distributed_utils/common.rb +116 -0
- data/lib/mlx/distributed_utils/config.rb +600 -0
- data/lib/mlx/distributed_utils/launch.rb +490 -0
- data/lib/mlx/extension.rb +24 -0
- data/lib/mlx/nn/base.rb +388 -0
- data/lib/mlx/nn/init.rb +140 -0
- data/lib/mlx/nn/layers/activations.rb +336 -0
- data/lib/mlx/nn/layers/base.rb +6 -0
- data/lib/mlx/nn/layers/containers.rb +20 -0
- data/lib/mlx/nn/layers/convolution.rb +120 -0
- data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
- data/lib/mlx/nn/layers/distributed.rb +309 -0
- data/lib/mlx/nn/layers/dropout.rb +75 -0
- data/lib/mlx/nn/layers/embedding.rb +28 -0
- data/lib/mlx/nn/layers/linear.rb +79 -0
- data/lib/mlx/nn/layers/normalization.rb +216 -0
- data/lib/mlx/nn/layers/pooling.rb +167 -0
- data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
- data/lib/mlx/nn/layers/quantized.rb +215 -0
- data/lib/mlx/nn/layers/recurrent.rb +135 -0
- data/lib/mlx/nn/layers/transformer.rb +330 -0
- data/lib/mlx/nn/layers/upsample.rb +97 -0
- data/lib/mlx/nn/layers.rb +18 -0
- data/lib/mlx/nn/losses.rb +251 -0
- data/lib/mlx/nn/utils.rb +167 -0
- data/lib/mlx/nn.rb +12 -0
- data/lib/mlx/optimizers/optimizers.rb +808 -0
- data/lib/mlx/optimizers/schedulers.rb +62 -0
- data/lib/mlx/optimizers.rb +9 -0
- data/lib/mlx/utils.rb +171 -0
- data/lib/mlx/version.rb +5 -0
- data/lib/mlx.rb +64 -0
- data/mlx/CMakeLists.txt +449 -0
- data/mlx/cmake/FindCUDNN.cmake +177 -0
- data/mlx/cmake/FindNCCL.cmake +54 -0
- data/mlx/cmake/Findnvpl.cmake +3 -0
- data/mlx/cmake/extension.cmake +50 -0
- data/mlx/mlx/3rdparty/.clang-format +2 -0
- data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
- data/mlx/mlx/CMakeLists.txt +107 -0
- data/mlx/mlx/allocator.h +75 -0
- data/mlx/mlx/api.h +29 -0
- data/mlx/mlx/array.cpp +354 -0
- data/mlx/mlx/array.h +647 -0
- data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
- data/mlx/mlx/backend/common/binary.h +97 -0
- data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
- data/mlx/mlx/backend/common/broadcasting.h +11 -0
- data/mlx/mlx/backend/common/buffer_cache.h +158 -0
- data/mlx/mlx/backend/common/common.cpp +305 -0
- data/mlx/mlx/backend/common/compiled.cpp +243 -0
- data/mlx/mlx/backend/common/compiled.h +77 -0
- data/mlx/mlx/backend/common/copy.h +50 -0
- data/mlx/mlx/backend/common/hadamard.h +109 -0
- data/mlx/mlx/backend/common/load.cpp +57 -0
- data/mlx/mlx/backend/common/matmul.h +67 -0
- data/mlx/mlx/backend/common/reduce.cpp +154 -0
- data/mlx/mlx/backend/common/reduce.h +59 -0
- data/mlx/mlx/backend/common/slicing.cpp +71 -0
- data/mlx/mlx/backend/common/slicing.h +20 -0
- data/mlx/mlx/backend/common/ternary.h +85 -0
- data/mlx/mlx/backend/common/unary.h +29 -0
- data/mlx/mlx/backend/common/utils.cpp +231 -0
- data/mlx/mlx/backend/common/utils.h +205 -0
- data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
- data/mlx/mlx/backend/cpu/arange.h +28 -0
- data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
- data/mlx/mlx/backend/cpu/binary.cpp +269 -0
- data/mlx/mlx/backend/cpu/binary.h +517 -0
- data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
- data/mlx/mlx/backend/cpu/binary_two.h +166 -0
- data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
- data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
- data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
- data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
- data/mlx/mlx/backend/cpu/copy.cpp +386 -0
- data/mlx/mlx/backend/cpu/copy.h +36 -0
- data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
- data/mlx/mlx/backend/cpu/device_info.h +28 -0
- data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
- data/mlx/mlx/backend/cpu/eig.cpp +281 -0
- data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
- data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
- data/mlx/mlx/backend/cpu/encoder.h +67 -0
- data/mlx/mlx/backend/cpu/eval.cpp +40 -0
- data/mlx/mlx/backend/cpu/eval.h +12 -0
- data/mlx/mlx/backend/cpu/fft.cpp +120 -0
- data/mlx/mlx/backend/cpu/gemm.h +26 -0
- data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
- data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
- data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
- data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
- data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
- data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
- data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
- data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
- data/mlx/mlx/backend/cpu/lapack.h +80 -0
- data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
- data/mlx/mlx/backend/cpu/luf.cpp +120 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
- data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
- data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
- data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
- data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
- data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
- data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
- data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
- data/mlx/mlx/backend/cpu/scan.cpp +338 -0
- data/mlx/mlx/backend/cpu/select.cpp +95 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
- data/mlx/mlx/backend/cpu/simd/math.h +193 -0
- data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
- data/mlx/mlx/backend/cpu/simd/type.h +11 -0
- data/mlx/mlx/backend/cpu/slicing.h +21 -0
- data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
- data/mlx/mlx/backend/cpu/sort.cpp +481 -0
- data/mlx/mlx/backend/cpu/svd.cpp +289 -0
- data/mlx/mlx/backend/cpu/ternary.h +154 -0
- data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
- data/mlx/mlx/backend/cpu/threefry.h +21 -0
- data/mlx/mlx/backend/cpu/unary.cpp +238 -0
- data/mlx/mlx/backend/cpu/unary.h +281 -0
- data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
- data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
- data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
- data/mlx/mlx/backend/cuda/allocator.h +94 -0
- data/mlx/mlx/backend/cuda/arange.cu +68 -0
- data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
- data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
- data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
- data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
- data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
- data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
- data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
- data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
- data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
- data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
- data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
- data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
- data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
- data/mlx/mlx/backend/cuda/conv.cpp +403 -0
- data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
- data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
- data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
- data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
- data/mlx/mlx/backend/cuda/copy.cu +132 -0
- data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
- data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
- data/mlx/mlx/backend/cuda/cuda.h +21 -0
- data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
- data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
- data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
- data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
- data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
- data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
- data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
- data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
- data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
- data/mlx/mlx/backend/cuda/device/config.h +12 -0
- data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
- data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
- data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
- data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
- data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
- data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
- data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
- data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
- data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
- data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
- data/mlx/mlx/backend/cuda/device.cpp +522 -0
- data/mlx/mlx/backend/cuda/device.h +195 -0
- data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
- data/mlx/mlx/backend/cuda/distributed.cu +121 -0
- data/mlx/mlx/backend/cuda/eval.cpp +66 -0
- data/mlx/mlx/backend/cuda/event.cu +415 -0
- data/mlx/mlx/backend/cuda/event.h +79 -0
- data/mlx/mlx/backend/cuda/fence.cpp +42 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
- data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
- data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
- data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
- data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
- data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
- data/mlx/mlx/backend/cuda/jit_module.h +120 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
- data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
- data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
- data/mlx/mlx/backend/cuda/load.cpp +60 -0
- data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
- data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
- data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
- data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
- data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
- data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
- data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
- data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
- data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
- data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
- data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
- data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
- data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
- data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
- data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
- data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
- data/mlx/mlx/backend/cuda/random.cu +202 -0
- data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
- data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
- data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
- data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
- data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
- data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
- data/mlx/mlx/backend/cuda/reduce.cu +73 -0
- data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
- data/mlx/mlx/backend/cuda/rope.cu +429 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
- data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
- data/mlx/mlx/backend/cuda/scan.cu +468 -0
- data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
- data/mlx/mlx/backend/cuda/softmax.cu +162 -0
- data/mlx/mlx/backend/cuda/sort.cu +1076 -0
- data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
- data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
- data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
- data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
- data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
- data/mlx/mlx/backend/cuda/ternary.cu +271 -0
- data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
- data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
- data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
- data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
- data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
- data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
- data/mlx/mlx/backend/cuda/utils.cpp +116 -0
- data/mlx/mlx/backend/cuda/utils.h +49 -0
- data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
- data/mlx/mlx/backend/cuda/worker.cpp +79 -0
- data/mlx/mlx/backend/cuda/worker.h +55 -0
- data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
- data/mlx/mlx/backend/gpu/copy.cpp +89 -0
- data/mlx/mlx/backend/gpu/copy.h +57 -0
- data/mlx/mlx/backend/gpu/device_info.h +36 -0
- data/mlx/mlx/backend/gpu/eval.h +18 -0
- data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
- data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
- data/mlx/mlx/backend/gpu/slicing.h +36 -0
- data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
- data/mlx/mlx/backend/metal/allocator.cpp +279 -0
- data/mlx/mlx/backend/metal/allocator.h +79 -0
- data/mlx/mlx/backend/metal/binary.cpp +257 -0
- data/mlx/mlx/backend/metal/binary.h +33 -0
- data/mlx/mlx/backend/metal/compiled.cpp +471 -0
- data/mlx/mlx/backend/metal/conv.cpp +1118 -0
- data/mlx/mlx/backend/metal/copy.cpp +235 -0
- data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
- data/mlx/mlx/backend/metal/device.cpp +816 -0
- data/mlx/mlx/backend/metal/device.h +289 -0
- data/mlx/mlx/backend/metal/device_info.cpp +58 -0
- data/mlx/mlx/backend/metal/distributed.cpp +38 -0
- data/mlx/mlx/backend/metal/eval.cpp +97 -0
- data/mlx/mlx/backend/metal/event.cpp +62 -0
- data/mlx/mlx/backend/metal/fence.cpp +162 -0
- data/mlx/mlx/backend/metal/fft.cpp +807 -0
- data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
- data/mlx/mlx/backend/metal/indexing.cpp +727 -0
- data/mlx/mlx/backend/metal/jit/includes.h +58 -0
- data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
- data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
- data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
- data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
- data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
- data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
- data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
- data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
- data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
- data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
- data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
- data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
- data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
- data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
- data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
- data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
- data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
- data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
- data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
- data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
- data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
- data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
- data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
- data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
- data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
- data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
- data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
- data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
- data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
- data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
- data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
- data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
- data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
- data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
- data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
- data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
- data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
- data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
- data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
- data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
- data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
- data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
- data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
- data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
- data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
- data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
- data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
- data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
- data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
- data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
- data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
- data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
- data/mlx/mlx/backend/metal/kernels.h +375 -0
- data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
- data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
- data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
- data/mlx/mlx/backend/metal/matmul.h +144 -0
- data/mlx/mlx/backend/metal/metal.cpp +50 -0
- data/mlx/mlx/backend/metal/metal.h +25 -0
- data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
- data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
- data/mlx/mlx/backend/metal/normalization.cpp +433 -0
- data/mlx/mlx/backend/metal/primitives.cpp +242 -0
- data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
- data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
- data/mlx/mlx/backend/metal/reduce.h +41 -0
- data/mlx/mlx/backend/metal/resident.cpp +100 -0
- data/mlx/mlx/backend/metal/resident.h +32 -0
- data/mlx/mlx/backend/metal/rope.cpp +165 -0
- data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
- data/mlx/mlx/backend/metal/scan.cpp +145 -0
- data/mlx/mlx/backend/metal/scan.h +17 -0
- data/mlx/mlx/backend/metal/slicing.cpp +99 -0
- data/mlx/mlx/backend/metal/softmax.cpp +87 -0
- data/mlx/mlx/backend/metal/sort.cpp +368 -0
- data/mlx/mlx/backend/metal/ternary.cpp +160 -0
- data/mlx/mlx/backend/metal/ternary.h +21 -0
- data/mlx/mlx/backend/metal/unary.cpp +161 -0
- data/mlx/mlx/backend/metal/unary.h +21 -0
- data/mlx/mlx/backend/metal/utils.cpp +77 -0
- data/mlx/mlx/backend/metal/utils.h +99 -0
- data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
- data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
- data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
- data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
- data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
- data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
- data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
- data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
- data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
- data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
- data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
- data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
- data/mlx/mlx/compile.cpp +1243 -0
- data/mlx/mlx/compile.h +45 -0
- data/mlx/mlx/compile_impl.h +70 -0
- data/mlx/mlx/device.cpp +72 -0
- data/mlx/mlx/device.h +56 -0
- data/mlx/mlx/distributed/CMakeLists.txt +14 -0
- data/mlx/mlx/distributed/distributed.cpp +197 -0
- data/mlx/mlx/distributed/distributed.h +61 -0
- data/mlx/mlx/distributed/distributed_impl.h +59 -0
- data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
- data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
- data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
- data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
- data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
- data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
- data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
- data/mlx/mlx/distributed/jaccl/ring.h +178 -0
- data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
- data/mlx/mlx/distributed/jaccl/utils.h +342 -0
- data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
- data/mlx/mlx/distributed/mpi/mpi.h +12 -0
- data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
- data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
- data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
- data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
- data/mlx/mlx/distributed/nccl/nccl.h +12 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
- data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
- data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
- data/mlx/mlx/distributed/ops.cpp +186 -0
- data/mlx/mlx/distributed/ops.h +57 -0
- data/mlx/mlx/distributed/primitives.cpp +95 -0
- data/mlx/mlx/distributed/primitives.h +156 -0
- data/mlx/mlx/distributed/reduction_ops.h +38 -0
- data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
- data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
- data/mlx/mlx/distributed/ring/ring.cpp +870 -0
- data/mlx/mlx/distributed/ring/ring.h +12 -0
- data/mlx/mlx/distributed/utils.cpp +206 -0
- data/mlx/mlx/distributed/utils.h +67 -0
- data/mlx/mlx/dtype.cpp +197 -0
- data/mlx/mlx/dtype.h +116 -0
- data/mlx/mlx/dtype_utils.cpp +42 -0
- data/mlx/mlx/dtype_utils.h +119 -0
- data/mlx/mlx/einsum.cpp +941 -0
- data/mlx/mlx/einsum.h +23 -0
- data/mlx/mlx/event.h +58 -0
- data/mlx/mlx/export.cpp +1130 -0
- data/mlx/mlx/export.h +137 -0
- data/mlx/mlx/export_impl.h +99 -0
- data/mlx/mlx/fast.cpp +941 -0
- data/mlx/mlx/fast.h +103 -0
- data/mlx/mlx/fast_primitives.h +427 -0
- data/mlx/mlx/fence.h +39 -0
- data/mlx/mlx/fft.cpp +262 -0
- data/mlx/mlx/fft.h +159 -0
- data/mlx/mlx/graph_utils.cpp +175 -0
- data/mlx/mlx/graph_utils.h +67 -0
- data/mlx/mlx/io/CMakeLists.txt +25 -0
- data/mlx/mlx/io/gguf.cpp +470 -0
- data/mlx/mlx/io/gguf.h +20 -0
- data/mlx/mlx/io/gguf_quants.cpp +164 -0
- data/mlx/mlx/io/load.cpp +397 -0
- data/mlx/mlx/io/load.h +175 -0
- data/mlx/mlx/io/no_gguf.cpp +20 -0
- data/mlx/mlx/io/no_safetensors.cpp +37 -0
- data/mlx/mlx/io/safetensors.cpp +234 -0
- data/mlx/mlx/io.h +61 -0
- data/mlx/mlx/linalg.cpp +708 -0
- data/mlx/mlx/linalg.h +115 -0
- data/mlx/mlx/memory.h +80 -0
- data/mlx/mlx/mlx.h +25 -0
- data/mlx/mlx/ops.cpp +6094 -0
- data/mlx/mlx/ops.h +1610 -0
- data/mlx/mlx/primitives.cpp +5850 -0
- data/mlx/mlx/primitives.h +2525 -0
- data/mlx/mlx/random.cpp +492 -0
- data/mlx/mlx/random.h +283 -0
- data/mlx/mlx/scheduler.cpp +73 -0
- data/mlx/mlx/scheduler.h +189 -0
- data/mlx/mlx/small_vector.h +540 -0
- data/mlx/mlx/stream.h +42 -0
- data/mlx/mlx/threadpool.h +133 -0
- data/mlx/mlx/transforms.cpp +1065 -0
- data/mlx/mlx/transforms.h +231 -0
- data/mlx/mlx/transforms_impl.h +88 -0
- data/mlx/mlx/types/bf16.h +187 -0
- data/mlx/mlx/types/complex.h +113 -0
- data/mlx/mlx/types/fp16.h +234 -0
- data/mlx/mlx/types/half_types.h +58 -0
- data/mlx/mlx/types/limits.h +70 -0
- data/mlx/mlx/utils.cpp +302 -0
- data/mlx/mlx/utils.h +174 -0
- data/mlx/mlx/version.cpp +11 -0
- data/mlx/mlx/version.h +22 -0
- data/mlx/mlx.pc.in +52 -0
- metadata +643 -0
data/mlx/mlx/fast.cpp
ADDED
|
@@ -0,0 +1,941 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
#include <cassert>
|
|
3
|
+
#include <numeric>
|
|
4
|
+
|
|
5
|
+
#include "mlx/fast.h"
|
|
6
|
+
#include "mlx/fast_primitives.h"
|
|
7
|
+
#include "mlx/ops.h"
|
|
8
|
+
#include "mlx/transforms.h"
|
|
9
|
+
#include "mlx/transforms_impl.h"
|
|
10
|
+
|
|
11
|
+
namespace mlx::core::fast {
|
|
12
|
+
|
|
13
|
+
std::vector<array> Custom::vjp(
|
|
14
|
+
const std::vector<array>& primals,
|
|
15
|
+
const std::vector<array>& cotangents,
|
|
16
|
+
const std::vector<int>& argnums,
|
|
17
|
+
const std::vector<array>& outputs) {
|
|
18
|
+
auto [_, vjps] = mlx::core::vjp(fallback_, primals, cotangents);
|
|
19
|
+
std::vector<array> vjp_outs;
|
|
20
|
+
for (int i = 0, j = 0; i < vjps.size(); ++i) {
|
|
21
|
+
if (j < argnums.size() && i == argnums[j]) {
|
|
22
|
+
vjp_outs.push_back(vjps[i]);
|
|
23
|
+
j++;
|
|
24
|
+
}
|
|
25
|
+
}
|
|
26
|
+
return vjp_outs;
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
std::vector<array> Custom::jvp(
|
|
30
|
+
const std::vector<array>& primals,
|
|
31
|
+
const std::vector<array>& tangents,
|
|
32
|
+
const std::vector<int>& argnums) {
|
|
33
|
+
std::vector<array> all_tangents;
|
|
34
|
+
for (int i = 0, j = 0; i < primals.size(); i++) {
|
|
35
|
+
if (j < argnums.size() && i == argnums[j]) {
|
|
36
|
+
all_tangents.emplace_back(tangents[j++]);
|
|
37
|
+
} else {
|
|
38
|
+
all_tangents.emplace_back(zeros_like(primals[i]));
|
|
39
|
+
}
|
|
40
|
+
}
|
|
41
|
+
auto [_, jvps] = mlx::core::jvp(fallback_, primals, all_tangents);
|
|
42
|
+
return jvps;
|
|
43
|
+
}
|
|
44
|
+
|
|
45
|
+
std::pair<std::vector<array>, std::vector<int>> Custom::vmap(
|
|
46
|
+
const std::vector<array>& inputs,
|
|
47
|
+
const std::vector<int>& axes) {
|
|
48
|
+
auto outputs = mlx::core::vmap(fallback_, axes)(inputs);
|
|
49
|
+
auto out_axes = std::vector<int>(outputs.size(), 0);
|
|
50
|
+
return {outputs, out_axes};
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
array rms_norm(
|
|
54
|
+
const array& x,
|
|
55
|
+
const std::optional<array>& weight,
|
|
56
|
+
float eps,
|
|
57
|
+
StreamOrDevice s_ /* = {} */) {
|
|
58
|
+
bool has_weight = weight.has_value();
|
|
59
|
+
|
|
60
|
+
if (x.ndim() == 0) {
|
|
61
|
+
std::ostringstream msg;
|
|
62
|
+
msg << "[rms_norm] Input must have at least 1 dimension but got input with "
|
|
63
|
+
"0 dimensions.";
|
|
64
|
+
throw std::invalid_argument(msg.str());
|
|
65
|
+
}
|
|
66
|
+
if (has_weight) {
|
|
67
|
+
if ((*weight).ndim() != 1) {
|
|
68
|
+
std::ostringstream msg;
|
|
69
|
+
msg << "[rms_norm] (*weight) must have 1 dimension but has "
|
|
70
|
+
<< (*weight).ndim() << " dimensions.";
|
|
71
|
+
throw std::invalid_argument(msg.str());
|
|
72
|
+
}
|
|
73
|
+
if ((*weight).size() != x.shape(-1)) {
|
|
74
|
+
std::ostringstream msg;
|
|
75
|
+
msg << "[rms_norm] (*weight) must have the same size as the last dimension of"
|
|
76
|
+
" x but has "
|
|
77
|
+
<< (*weight).size() << " elements.";
|
|
78
|
+
throw std::invalid_argument(msg.str());
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
auto out_type = (weight.has_value()) ? result_type(x, (*weight)) : x.dtype();
|
|
83
|
+
if (!issubdtype(out_type, floating)) {
|
|
84
|
+
std::ostringstream msg;
|
|
85
|
+
msg << "[rms_norm] Received unsupported type " << out_type << ".";
|
|
86
|
+
throw std::invalid_argument(msg.str());
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
auto s = to_stream(s_);
|
|
90
|
+
auto fallback =
|
|
91
|
+
[has_weight, eps, out_type, s](const std::vector<array>& inputs) {
|
|
92
|
+
auto x = astype(inputs[0], float32, s);
|
|
93
|
+
x = multiply(
|
|
94
|
+
x,
|
|
95
|
+
rsqrt(
|
|
96
|
+
add(mean(square(x, s), -1, /* keepdims */ true, s),
|
|
97
|
+
array(eps, float32),
|
|
98
|
+
s),
|
|
99
|
+
s),
|
|
100
|
+
s);
|
|
101
|
+
x = astype(x, out_type, s);
|
|
102
|
+
|
|
103
|
+
if (has_weight) {
|
|
104
|
+
x = multiply(x, inputs[1], s);
|
|
105
|
+
}
|
|
106
|
+
|
|
107
|
+
return std::vector<array>{x};
|
|
108
|
+
};
|
|
109
|
+
|
|
110
|
+
auto passed_weight =
|
|
111
|
+
(has_weight) ? astype(*weight, out_type, s) : array(1, out_type);
|
|
112
|
+
|
|
113
|
+
if (!RMSNorm::use_fallback(s)) {
|
|
114
|
+
return array(
|
|
115
|
+
x.shape(),
|
|
116
|
+
out_type,
|
|
117
|
+
std::make_shared<RMSNorm>(s, fallback, eps),
|
|
118
|
+
{astype(x, out_type, s), passed_weight});
|
|
119
|
+
}
|
|
120
|
+
return fallback({x, passed_weight})[0];
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
std::vector<array> RMSNorm::vjp(
|
|
124
|
+
const std::vector<array>& primals,
|
|
125
|
+
const std::vector<array>& cotangents,
|
|
126
|
+
const std::vector<int>& argnums,
|
|
127
|
+
const std::vector<array>& outputs) {
|
|
128
|
+
assert(primals.size() == 2);
|
|
129
|
+
assert(outputs.size() == 1);
|
|
130
|
+
assert(cotangents.size() == 1);
|
|
131
|
+
|
|
132
|
+
auto s = stream();
|
|
133
|
+
auto fallback = [eps = eps_, s](const std::vector<array>& inputs) {
|
|
134
|
+
auto& x = inputs[0];
|
|
135
|
+
auto& w = inputs[1];
|
|
136
|
+
auto& g = inputs[2];
|
|
137
|
+
|
|
138
|
+
std::vector<array> vjps;
|
|
139
|
+
|
|
140
|
+
auto n = rsqrt(
|
|
141
|
+
add(mean(square(x, s), /* axis= */ -1, /* keepdims= */ true, s),
|
|
142
|
+
array(eps, x.dtype()),
|
|
143
|
+
s),
|
|
144
|
+
s);
|
|
145
|
+
auto n3 = power(n, array(3, x.dtype()), s);
|
|
146
|
+
|
|
147
|
+
// df/dx
|
|
148
|
+
auto gw = multiply(g, w, s);
|
|
149
|
+
auto t = mean(multiply(gw, x, s), /* axis= */ -1, /* keepdims= */ true, s);
|
|
150
|
+
t = multiply(multiply(x, t, s), n3, s);
|
|
151
|
+
vjps.push_back(subtract(multiply(gw, n, s), t, s));
|
|
152
|
+
|
|
153
|
+
// df/dw
|
|
154
|
+
std::vector<int> axes(g.ndim() - 1);
|
|
155
|
+
std::iota(axes.begin(), axes.end(), 0);
|
|
156
|
+
if (w.ndim() == 0) {
|
|
157
|
+
vjps.push_back(zeros_like(w, s));
|
|
158
|
+
} else {
|
|
159
|
+
vjps.push_back(sum(
|
|
160
|
+
multiply(g, multiply(x, n, s), s), axes, /* keepdims= */ false, s));
|
|
161
|
+
}
|
|
162
|
+
|
|
163
|
+
return vjps;
|
|
164
|
+
};
|
|
165
|
+
|
|
166
|
+
auto vjps = array::make_arrays(
|
|
167
|
+
{primals[0].shape(), primals[1].shape()},
|
|
168
|
+
{primals[0].dtype(), primals[1].dtype()},
|
|
169
|
+
std::make_shared<RMSNormVJP>(s, fallback, eps_),
|
|
170
|
+
{primals[0], primals[1], cotangents[0]});
|
|
171
|
+
|
|
172
|
+
std::vector<array> returned_vjps;
|
|
173
|
+
for (auto& arg : argnums) {
|
|
174
|
+
returned_vjps.push_back(std::move(vjps[arg]));
|
|
175
|
+
}
|
|
176
|
+
|
|
177
|
+
return returned_vjps;
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
bool RMSNorm::is_equivalent(const Primitive& other) const {
|
|
181
|
+
const RMSNorm& a_other = static_cast<const RMSNorm&>(other);
|
|
182
|
+
return eps_ == a_other.eps_;
|
|
183
|
+
}
|
|
184
|
+
|
|
185
|
+
bool RMSNormVJP::is_equivalent(const Primitive& other) const {
|
|
186
|
+
const RMSNormVJP& a_other = static_cast<const RMSNormVJP&>(other);
|
|
187
|
+
return eps_ == a_other.eps_;
|
|
188
|
+
}
|
|
189
|
+
|
|
190
|
+
array layer_norm(
|
|
191
|
+
const array& x,
|
|
192
|
+
const std::optional<array>& weight,
|
|
193
|
+
const std::optional<array>& bias,
|
|
194
|
+
float eps,
|
|
195
|
+
StreamOrDevice s_ /* = {} */) {
|
|
196
|
+
bool has_weight = weight.has_value();
|
|
197
|
+
bool has_bias = bias.has_value();
|
|
198
|
+
|
|
199
|
+
if (x.ndim() == 0) {
|
|
200
|
+
std::ostringstream msg;
|
|
201
|
+
msg << "[layer_norm] Input must have at least 1 dimension but got input with "
|
|
202
|
+
"0 dimensions.";
|
|
203
|
+
throw std::invalid_argument(msg.str());
|
|
204
|
+
}
|
|
205
|
+
if (has_weight) {
|
|
206
|
+
if ((*weight).ndim() != 1) {
|
|
207
|
+
std::ostringstream msg;
|
|
208
|
+
msg << "[layer_norm] weight must have 1 dimension but has "
|
|
209
|
+
<< (*weight).ndim() << " dimensions.";
|
|
210
|
+
throw std::invalid_argument(msg.str());
|
|
211
|
+
}
|
|
212
|
+
if ((*weight).size() != x.shape(-1)) {
|
|
213
|
+
std::ostringstream msg;
|
|
214
|
+
msg << "[layer_norm] weight must have the same size as the last dimension of"
|
|
215
|
+
" x but has "
|
|
216
|
+
<< (*weight).size() << " elements.";
|
|
217
|
+
throw std::invalid_argument(msg.str());
|
|
218
|
+
}
|
|
219
|
+
}
|
|
220
|
+
if (has_bias) {
|
|
221
|
+
if ((*bias).ndim() != 1) {
|
|
222
|
+
std::ostringstream msg;
|
|
223
|
+
msg << "[layer_norm] bias must have 1 dimension but has "
|
|
224
|
+
<< (*bias).ndim() << " dimensions.";
|
|
225
|
+
throw std::invalid_argument(msg.str());
|
|
226
|
+
}
|
|
227
|
+
if ((*bias).size() != x.shape(-1)) {
|
|
228
|
+
std::ostringstream msg;
|
|
229
|
+
msg << "[layer_norm] bias must have the same size as the last dimension of"
|
|
230
|
+
" x but has "
|
|
231
|
+
<< (*bias).size() << " elements.";
|
|
232
|
+
throw std::invalid_argument(msg.str());
|
|
233
|
+
}
|
|
234
|
+
}
|
|
235
|
+
|
|
236
|
+
auto out_type = (has_weight)
|
|
237
|
+
? ((has_bias) ? result_type(x, *weight, *bias) : result_type(x, *weight))
|
|
238
|
+
: x.dtype();
|
|
239
|
+
if (!issubdtype(out_type, floating)) {
|
|
240
|
+
std::ostringstream msg;
|
|
241
|
+
msg << "[layer_norm] Received unsupported type " << out_type << ".";
|
|
242
|
+
throw std::invalid_argument(msg.str());
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
auto s = to_stream(s_);
|
|
246
|
+
auto fallback = [has_weight, has_bias, eps, out_type, s](
|
|
247
|
+
const std::vector<array>& inputs) {
|
|
248
|
+
auto x = astype(inputs[0], float32, s);
|
|
249
|
+
|
|
250
|
+
auto mu = mean(x, /* axis= */ -1, /* keepdims= */ true, s);
|
|
251
|
+
auto xc = subtract(x, mu, s);
|
|
252
|
+
auto v = mean(square(xc, s), /* axis= */ -1, /* keepdims= */ true, s);
|
|
253
|
+
|
|
254
|
+
x = multiply(xc, rsqrt(add(v, array(eps, float32), s), s));
|
|
255
|
+
x = astype(x, out_type, s);
|
|
256
|
+
|
|
257
|
+
// If the LN is affine then transform x according to the weight and bias
|
|
258
|
+
if (has_weight) {
|
|
259
|
+
x = multiply(x, inputs[1], s);
|
|
260
|
+
}
|
|
261
|
+
if (has_bias) {
|
|
262
|
+
x = add(x, inputs[2], s);
|
|
263
|
+
}
|
|
264
|
+
|
|
265
|
+
return std::vector<array>{x};
|
|
266
|
+
};
|
|
267
|
+
|
|
268
|
+
auto passed_weight =
|
|
269
|
+
(has_weight) ? astype(*weight, out_type, s) : array(1, out_type);
|
|
270
|
+
auto passed_bias =
|
|
271
|
+
(has_bias) ? astype(*bias, out_type, s) : array(0, out_type);
|
|
272
|
+
|
|
273
|
+
if (!LayerNorm::use_fallback(s)) {
|
|
274
|
+
return array(
|
|
275
|
+
x.shape(),
|
|
276
|
+
out_type,
|
|
277
|
+
std::make_shared<LayerNorm>(s, fallback, eps),
|
|
278
|
+
{astype(x, out_type, s), passed_weight, passed_bias});
|
|
279
|
+
}
|
|
280
|
+
return fallback({x, passed_weight, passed_bias})[0];
|
|
281
|
+
}
|
|
282
|
+
|
|
283
|
+
std::vector<array> LayerNorm::vjp(
|
|
284
|
+
const std::vector<array>& primals,
|
|
285
|
+
const std::vector<array>& cotangents,
|
|
286
|
+
const std::vector<int>& argnums,
|
|
287
|
+
const std::vector<array>& outputs) {
|
|
288
|
+
assert(primals.size() == 3);
|
|
289
|
+
assert(outputs.size() == 1);
|
|
290
|
+
assert(cotangents.size() == 1);
|
|
291
|
+
|
|
292
|
+
auto s = stream();
|
|
293
|
+
auto fallback = [eps = eps_, s](const std::vector<array>& inputs) {
|
|
294
|
+
auto& x = inputs[0];
|
|
295
|
+
auto& w = inputs[1];
|
|
296
|
+
auto& b = inputs[2];
|
|
297
|
+
auto& g = inputs[3];
|
|
298
|
+
|
|
299
|
+
std::vector<array> vjps;
|
|
300
|
+
|
|
301
|
+
auto norm = number_of_elements(x, {-1}, true, x.dtype(), s);
|
|
302
|
+
auto sumx = sum(x, /* axis= */ -1, /* keepdims= */ true, s);
|
|
303
|
+
auto sumx2 = sum(square(x, s), /* axis= */ -1, /* keepdims= */ true, s);
|
|
304
|
+
auto mu = multiply(sumx, norm, s);
|
|
305
|
+
auto mu2 = multiply(sumx2, norm, s);
|
|
306
|
+
auto var = subtract(mu2, square(mu, s), s);
|
|
307
|
+
auto n = rsqrt(add(var, array(eps, x.dtype()), s));
|
|
308
|
+
auto n3 = power(n, array(3, x.dtype()), s);
|
|
309
|
+
auto x_c = subtract(x, mu, s);
|
|
310
|
+
|
|
311
|
+
// df/dx
|
|
312
|
+
auto wg = multiply(w, g, s);
|
|
313
|
+
auto sumwg =
|
|
314
|
+
multiply(sum(wg, /* axis= */ -1, /* keepdims= */ true, s), norm, s);
|
|
315
|
+
auto sumwgxc = multiply(
|
|
316
|
+
sum(multiply(wg, x_c, s), /* axis= */ -1, /* keepdims= */ true, s),
|
|
317
|
+
norm,
|
|
318
|
+
s);
|
|
319
|
+
auto t1 = multiply(multiply(x_c, sumwgxc, s), n3, s);
|
|
320
|
+
auto t2 = multiply(subtract(wg, sumwg, s), n, s);
|
|
321
|
+
vjps.push_back(subtract(t2, t1, s));
|
|
322
|
+
|
|
323
|
+
// df/dw
|
|
324
|
+
std::vector<int> axes(g.ndim() - 1);
|
|
325
|
+
std::iota(axes.begin(), axes.end(), 0);
|
|
326
|
+
if (w.ndim() == 0) {
|
|
327
|
+
vjps.push_back(zeros_like(w, s));
|
|
328
|
+
} else {
|
|
329
|
+
vjps.push_back(sum(
|
|
330
|
+
multiply(g, multiply(x_c, n, s), s), axes, /* keepdims= */ false, s));
|
|
331
|
+
}
|
|
332
|
+
|
|
333
|
+
// df/db
|
|
334
|
+
if (b.ndim() == 0) {
|
|
335
|
+
vjps.push_back(zeros_like(w, s));
|
|
336
|
+
} else {
|
|
337
|
+
vjps.push_back(sum(g, axes, /* keepdims= */ false, s));
|
|
338
|
+
}
|
|
339
|
+
|
|
340
|
+
return vjps;
|
|
341
|
+
};
|
|
342
|
+
|
|
343
|
+
auto vjps = array::make_arrays(
|
|
344
|
+
{primals[0].shape(), primals[1].shape(), primals[2].shape()},
|
|
345
|
+
{primals[0].dtype(), primals[1].dtype(), primals[2].dtype()},
|
|
346
|
+
std::make_shared<LayerNormVJP>(s, fallback, eps_),
|
|
347
|
+
{primals[0], primals[1], primals[2], cotangents[0]});
|
|
348
|
+
|
|
349
|
+
std::vector<array> returned_vjps;
|
|
350
|
+
for (auto& arg : argnums) {
|
|
351
|
+
returned_vjps.push_back(std::move(vjps[arg]));
|
|
352
|
+
}
|
|
353
|
+
|
|
354
|
+
return returned_vjps;
|
|
355
|
+
}
|
|
356
|
+
|
|
357
|
+
bool LayerNorm::is_equivalent(const Primitive& other) const {
|
|
358
|
+
const LayerNorm& a_other = static_cast<const LayerNorm&>(other);
|
|
359
|
+
return eps_ == a_other.eps_;
|
|
360
|
+
}
|
|
361
|
+
|
|
362
|
+
bool LayerNormVJP::is_equivalent(const Primitive& other) const {
|
|
363
|
+
const LayerNormVJP& a_other = static_cast<const LayerNormVJP&>(other);
|
|
364
|
+
return eps_ == a_other.eps_;
|
|
365
|
+
}
|
|
366
|
+
|
|
367
|
+
array rope(
|
|
368
|
+
std::vector<array> inputs,
|
|
369
|
+
int dims,
|
|
370
|
+
bool traditional,
|
|
371
|
+
float base,
|
|
372
|
+
float scale,
|
|
373
|
+
bool forward,
|
|
374
|
+
StreamOrDevice s) {
|
|
375
|
+
auto& x = inputs[0];
|
|
376
|
+
auto& offset = inputs[1];
|
|
377
|
+
if (x.ndim() < 3) {
|
|
378
|
+
std::ostringstream msg;
|
|
379
|
+
msg << "[rope] Input must have at least 3 dimensions but got input with "
|
|
380
|
+
<< x.ndim() << " dimensions.";
|
|
381
|
+
throw std::invalid_argument(msg.str());
|
|
382
|
+
}
|
|
383
|
+
if (!issubdtype(x.dtype(), floating)) {
|
|
384
|
+
std::ostringstream msg;
|
|
385
|
+
msg << "[rope] Input must be a floating type but got " << x.dtype() << ".";
|
|
386
|
+
throw std::invalid_argument(msg.str());
|
|
387
|
+
}
|
|
388
|
+
if (offset.ndim() > 1) {
|
|
389
|
+
std::ostringstream msg;
|
|
390
|
+
msg << "[rope] offset must have at most one dimension but has shape "
|
|
391
|
+
<< offset.shape() << ".";
|
|
392
|
+
throw std::invalid_argument(msg.str());
|
|
393
|
+
}
|
|
394
|
+
if (offset.size() != 1 && offset.size() != x.shape(0)) {
|
|
395
|
+
std::ostringstream msg;
|
|
396
|
+
msg << "[rope] offset must be a scalar or vector with " << x.shape(0)
|
|
397
|
+
<< " elements but has shape " << offset.shape() << ".";
|
|
398
|
+
throw std::invalid_argument(msg.str());
|
|
399
|
+
}
|
|
400
|
+
if (!issubdtype(offset.dtype(), integer)) {
|
|
401
|
+
std::ostringstream msg;
|
|
402
|
+
msg << "[rope] offset must be an integer but got type " << offset.dtype()
|
|
403
|
+
<< ".";
|
|
404
|
+
throw std::invalid_argument(msg.str());
|
|
405
|
+
}
|
|
406
|
+
if (offset.dtype().size() != 4) {
|
|
407
|
+
inputs[1] = astype(offset, int32, s);
|
|
408
|
+
}
|
|
409
|
+
if (inputs.size() == 3 &&
|
|
410
|
+
(inputs[2].ndim() != 1 || inputs[2].shape(0) != dims / 2)) {
|
|
411
|
+
std::ostringstream msg;
|
|
412
|
+
msg << "[rope] freqs must be one dimensional with size " << dims / 2
|
|
413
|
+
<< " but got shape " << inputs[2].shape() << ".";
|
|
414
|
+
throw std::invalid_argument(msg.str());
|
|
415
|
+
}
|
|
416
|
+
|
|
417
|
+
auto fallback = [dims, traditional, base, scale, forward, s](
|
|
418
|
+
std::vector<array> inputs) {
|
|
419
|
+
auto x = inputs[0];
|
|
420
|
+
auto shape = x.shape();
|
|
421
|
+
if (x.ndim() == 3) {
|
|
422
|
+
x = expand_dims(x, 1, s);
|
|
423
|
+
} else if (x.ndim() > 4) {
|
|
424
|
+
x = flatten(x, 1, 1 + (x.ndim() - 4), s);
|
|
425
|
+
}
|
|
426
|
+
|
|
427
|
+
auto B = x.shape(0);
|
|
428
|
+
auto N = x.shape(1);
|
|
429
|
+
auto T = x.shape(2);
|
|
430
|
+
auto t = x.dtype();
|
|
431
|
+
// Compute sines and cosines
|
|
432
|
+
auto half_dims = dims / 2;
|
|
433
|
+
auto offset = inputs[1];
|
|
434
|
+
if (offset.size() > 1) {
|
|
435
|
+
offset = expand_dims(offset, {-1, -2}, s);
|
|
436
|
+
}
|
|
437
|
+
auto positions = multiply(
|
|
438
|
+
add(arange(x.shape(2), float32, s), offset, s),
|
|
439
|
+
array(scale, float32),
|
|
440
|
+
s);
|
|
441
|
+
|
|
442
|
+
auto default_inv_freqs = [&s, base, half_dims]() {
|
|
443
|
+
return exp(
|
|
444
|
+
multiply(
|
|
445
|
+
arange(0, -half_dims, -1, float32, s),
|
|
446
|
+
array(std::log(base) / half_dims, float32),
|
|
447
|
+
s),
|
|
448
|
+
s);
|
|
449
|
+
};
|
|
450
|
+
|
|
451
|
+
auto inv_freqs =
|
|
452
|
+
inputs.size() == 3 ? reciprocal(inputs[2], s) : default_inv_freqs();
|
|
453
|
+
auto theta = multiply(expand_dims(positions, -1, s), inv_freqs, s);
|
|
454
|
+
auto coss = astype(cos(theta, s), t, s);
|
|
455
|
+
auto sins = astype(sin(theta, s), t, s);
|
|
456
|
+
|
|
457
|
+
auto apply_rope = [forward, s](
|
|
458
|
+
const array& x1,
|
|
459
|
+
const array& x2,
|
|
460
|
+
const array& coss,
|
|
461
|
+
const array& sins) {
|
|
462
|
+
std::vector<array> outs;
|
|
463
|
+
if (forward) {
|
|
464
|
+
outs.push_back(
|
|
465
|
+
subtract(multiply(x1, coss, s), multiply(x2, sins, s), s));
|
|
466
|
+
outs.push_back(add(multiply(x1, sins, s), multiply(x2, coss, s), s));
|
|
467
|
+
} else {
|
|
468
|
+
outs.push_back(add(multiply(x2, sins, s), multiply(x1, coss, s), s));
|
|
469
|
+
outs.push_back(
|
|
470
|
+
subtract(multiply(x2, coss, s), multiply(x1, sins, s), s));
|
|
471
|
+
}
|
|
472
|
+
return outs;
|
|
473
|
+
};
|
|
474
|
+
|
|
475
|
+
if (traditional) {
|
|
476
|
+
auto x1 = slice(x, {0, 0, 0, 0}, {B, N, T, dims}, {1, 1, 1, 2}, s);
|
|
477
|
+
auto x2 = slice(x, {0, 0, 0, 1}, {B, N, T, dims}, {1, 1, 1, 2}, s);
|
|
478
|
+
auto outs = apply_rope(x1, x2, coss, sins);
|
|
479
|
+
for (auto& o : outs) {
|
|
480
|
+
o = expand_dims(o, -1, s);
|
|
481
|
+
}
|
|
482
|
+
auto out = reshape(concatenate(outs, -1, s), {B, N, T, dims}, s);
|
|
483
|
+
if (dims < x.shape(-1)) {
|
|
484
|
+
out =
|
|
485
|
+
concatenate({out, slice(x, {0, 0, 0, dims}, x.shape(), s)}, -1, s);
|
|
486
|
+
}
|
|
487
|
+
return std::vector<array>{reshape(out, shape, s)};
|
|
488
|
+
} else {
|
|
489
|
+
auto out_s = x.shape();
|
|
490
|
+
out_s.back() = half_dims;
|
|
491
|
+
auto x1 = slice(x, {0, 0, 0, 0}, out_s, s);
|
|
492
|
+
out_s.back() = dims;
|
|
493
|
+
auto x2 = slice(x, {0, 0, 0, half_dims}, out_s, s);
|
|
494
|
+
|
|
495
|
+
auto outs = apply_rope(x1, x2, coss, sins);
|
|
496
|
+
if (dims < x.shape(-1)) {
|
|
497
|
+
outs.push_back(slice(x, {0, 0, 0, dims}, x.shape(), s));
|
|
498
|
+
}
|
|
499
|
+
return std::vector<array>{reshape(concatenate(outs, -1, s), shape, s)};
|
|
500
|
+
}
|
|
501
|
+
};
|
|
502
|
+
auto stream = to_stream(s);
|
|
503
|
+
if (!RoPE::use_fallback(stream)) {
|
|
504
|
+
return array(
|
|
505
|
+
x.shape(),
|
|
506
|
+
x.dtype(),
|
|
507
|
+
std::make_shared<RoPE>(
|
|
508
|
+
stream, fallback, dims, traditional, base, scale, forward),
|
|
509
|
+
std::move(inputs));
|
|
510
|
+
}
|
|
511
|
+
return fallback(std::move(inputs))[0];
|
|
512
|
+
}
|
|
513
|
+
|
|
514
|
+
array rope(
|
|
515
|
+
const array& x,
|
|
516
|
+
int dims,
|
|
517
|
+
bool traditional,
|
|
518
|
+
std::optional<float> base,
|
|
519
|
+
float scale,
|
|
520
|
+
const array& offset,
|
|
521
|
+
const std::optional<array>& freqs /* = std::nullopt */,
|
|
522
|
+
StreamOrDevice s /* = {} */) {
|
|
523
|
+
std::vector<array> inputs = {x, offset};
|
|
524
|
+
if (freqs) {
|
|
525
|
+
inputs.push_back(astype(*freqs, float32, s));
|
|
526
|
+
if (base) {
|
|
527
|
+
throw std::invalid_argument(
|
|
528
|
+
"[rope] Only one of base or freqs can have a value.");
|
|
529
|
+
}
|
|
530
|
+
} else if (!base) {
|
|
531
|
+
throw std::invalid_argument("[rope] Neither base nor freqs has a value.");
|
|
532
|
+
}
|
|
533
|
+
return rope(
|
|
534
|
+
std::move(inputs),
|
|
535
|
+
dims,
|
|
536
|
+
traditional,
|
|
537
|
+
base.has_value() ? *base : 1.0,
|
|
538
|
+
scale,
|
|
539
|
+
true,
|
|
540
|
+
s);
|
|
541
|
+
}
|
|
542
|
+
|
|
543
|
+
array rope(
|
|
544
|
+
const array& x,
|
|
545
|
+
int dims,
|
|
546
|
+
bool traditional,
|
|
547
|
+
std::optional<float> base,
|
|
548
|
+
float scale,
|
|
549
|
+
int offset,
|
|
550
|
+
const std::optional<array>& freqs /* = std::nullopt */,
|
|
551
|
+
StreamOrDevice s /* = {} */) {
|
|
552
|
+
return rope(
|
|
553
|
+
x, dims, traditional, base, scale, array(offset, int32), freqs, s);
|
|
554
|
+
}
|
|
555
|
+
|
|
556
|
+
std::vector<array> RoPE::vjp(
|
|
557
|
+
const std::vector<array>& primals,
|
|
558
|
+
const std::vector<array>& cotangents,
|
|
559
|
+
const std::vector<int>& argnums,
|
|
560
|
+
const std::vector<array>& outputs) {
|
|
561
|
+
auto s = stream();
|
|
562
|
+
auto fallback = [dims = dims_,
|
|
563
|
+
traditional = traditional_,
|
|
564
|
+
base = base_,
|
|
565
|
+
scale = scale_,
|
|
566
|
+
forward = forward_,
|
|
567
|
+
s](std::vector<array> inputs) {
|
|
568
|
+
return std::vector<array>{
|
|
569
|
+
rope(std::move(inputs), dims, traditional, base, scale, !forward, s)};
|
|
570
|
+
};
|
|
571
|
+
if (argnums.size() > 1 || argnums[0] != 0) {
|
|
572
|
+
throw std::invalid_argument(
|
|
573
|
+
"[RoPE::vjp] vjp for offset or frequencies not supported");
|
|
574
|
+
}
|
|
575
|
+
auto inputs = std::vector<array>{cotangents[0], primals[1]};
|
|
576
|
+
if (primals.size() == 3) {
|
|
577
|
+
inputs.push_back(primals[2]);
|
|
578
|
+
}
|
|
579
|
+
return {array(
|
|
580
|
+
cotangents[0].shape(),
|
|
581
|
+
cotangents[0].dtype(),
|
|
582
|
+
std::make_shared<RoPE>(
|
|
583
|
+
s, fallback, dims_, traditional_, base_, scale_, !forward_),
|
|
584
|
+
std::move(inputs))};
|
|
585
|
+
}
|
|
586
|
+
|
|
587
|
+
bool RoPE::is_equivalent(const Primitive& other) const {
|
|
588
|
+
const RoPE& a_other = static_cast<const RoPE&>(other);
|
|
589
|
+
return (
|
|
590
|
+
dims_ == a_other.dims_ && base_ == a_other.base_ &&
|
|
591
|
+
scale_ == a_other.scale_ && traditional_ == a_other.traditional_ &&
|
|
592
|
+
forward_ == a_other.forward_);
|
|
593
|
+
}
|
|
594
|
+
|
|
595
|
+
/** Computes: O = softmax(Q @ K.T) @ V **/
|
|
596
|
+
array scaled_dot_product_attention(
|
|
597
|
+
const array& queries,
|
|
598
|
+
const array& keys,
|
|
599
|
+
const array& values,
|
|
600
|
+
const float scale,
|
|
601
|
+
const std::string& mask_mode /* = "" */,
|
|
602
|
+
std::optional<array> mask_arr /* = {} */,
|
|
603
|
+
const std::optional<array>& sinks /* = {} */,
|
|
604
|
+
StreamOrDevice s /* = {}*/) {
|
|
605
|
+
for (const auto& tensor : {queries, keys, values}) {
|
|
606
|
+
if (tensor.ndim() != 4) {
|
|
607
|
+
std::ostringstream msg;
|
|
608
|
+
msg << "[scaled_dot_product_attention] input with shape "
|
|
609
|
+
<< tensor.shape() << " expected to be rank 4";
|
|
610
|
+
throw std::invalid_argument(msg.str());
|
|
611
|
+
}
|
|
612
|
+
}
|
|
613
|
+
// Check valid mask
|
|
614
|
+
if (mask_mode != "" && mask_mode != "causal" && mask_mode != "array") {
|
|
615
|
+
std::ostringstream msg;
|
|
616
|
+
msg << "[scaled_dot_product_attention] Invalid mask_mode " << mask_mode
|
|
617
|
+
<< ". mask_mode must be 'causal', 'array' or ''.";
|
|
618
|
+
throw std::invalid_argument(msg.str());
|
|
619
|
+
}
|
|
620
|
+
|
|
621
|
+
bool do_causal = false;
|
|
622
|
+
bool has_mask = false;
|
|
623
|
+
bool has_arr_mask = false;
|
|
624
|
+
bool has_bool_mask = false;
|
|
625
|
+
|
|
626
|
+
if (mask_mode == "causal") {
|
|
627
|
+
has_mask = true;
|
|
628
|
+
do_causal = true;
|
|
629
|
+
|
|
630
|
+
if (mask_arr) {
|
|
631
|
+
std::ostringstream msg;
|
|
632
|
+
msg << "[scaled_dot_product_attention] Invalid mask_arr for mask_mode "
|
|
633
|
+
<< "'casusal'. No array mask should be passed.";
|
|
634
|
+
throw std::invalid_argument(msg.str());
|
|
635
|
+
}
|
|
636
|
+
} else if (mask_arr) {
|
|
637
|
+
has_mask = true;
|
|
638
|
+
has_arr_mask = true;
|
|
639
|
+
has_bool_mask = mask_arr->dtype() == bool_;
|
|
640
|
+
}
|
|
641
|
+
|
|
642
|
+
if (has_arr_mask && mask_arr->ndim() > 4) {
|
|
643
|
+
std::ostringstream msg;
|
|
644
|
+
msg << "[scaled_dot_product_attention] the mask with shape "
|
|
645
|
+
<< mask_arr->shape() << " expected to have at most rank 4.";
|
|
646
|
+
throw std::invalid_argument(msg.str());
|
|
647
|
+
}
|
|
648
|
+
|
|
649
|
+
const size_t batch_dim = queries.shape(0);
|
|
650
|
+
for (const auto& tensor : {keys, values}) {
|
|
651
|
+
if (tensor.shape(0) != batch_dim) {
|
|
652
|
+
std::ostringstream msg;
|
|
653
|
+
msg << "[scaled_dot_product_attention] mismatching batch dimension for input with shape "
|
|
654
|
+
<< tensor.shape() << ".";
|
|
655
|
+
throw std::invalid_argument(msg.str());
|
|
656
|
+
}
|
|
657
|
+
}
|
|
658
|
+
|
|
659
|
+
// Q, K must have matching last dims (d_k aka 'head_dim');
|
|
660
|
+
if (queries.shape(-1) != keys.shape(-1)) {
|
|
661
|
+
std::ostringstream msg;
|
|
662
|
+
msg << "[scaled_dot_product_attention] query, keys expected to have matching last dimension; found query shape "
|
|
663
|
+
<< queries.shape() << " for keys shape " << keys.shape() << ".";
|
|
664
|
+
throw std::invalid_argument(msg.str());
|
|
665
|
+
}
|
|
666
|
+
|
|
667
|
+
// K, V must have matching number of heads (n_kv_heads);
|
|
668
|
+
auto n_q_heads = queries.shape(-3);
|
|
669
|
+
auto n_kv_heads = keys.shape(-3);
|
|
670
|
+
|
|
671
|
+
if (keys.shape(-3) != values.shape(-3)) {
|
|
672
|
+
std::ostringstream msg;
|
|
673
|
+
msg << "[scaled_dot_product_attention] keys, values expected to have matching n_kv_heads; found keys with n_heads "
|
|
674
|
+
<< keys.shape(-3) << " for values with n_heads " << values.shape(-3)
|
|
675
|
+
<< ".";
|
|
676
|
+
throw std::invalid_argument(msg.str());
|
|
677
|
+
}
|
|
678
|
+
|
|
679
|
+
// n_heads % n_kv_heads == 0; n_heads >= 1, n_kv_heads >= 1.
|
|
680
|
+
if (n_q_heads % n_kv_heads != 0) {
|
|
681
|
+
std::ostringstream msg;
|
|
682
|
+
msg << "[scaled_dot_product_attention] n_heads must be a multiple of n_kv_heads, found n_heads "
|
|
683
|
+
<< n_q_heads << " for n_kv_heads " << n_kv_heads << ".";
|
|
684
|
+
throw std::invalid_argument(msg.str());
|
|
685
|
+
}
|
|
686
|
+
|
|
687
|
+
auto final_type = result_type(queries, keys, values);
|
|
688
|
+
if (!issubdtype(final_type, floating)) {
|
|
689
|
+
std::ostringstream msg;
|
|
690
|
+
msg << "[scaled_dot_product_attention] Received unsupported type "
|
|
691
|
+
<< final_type << ".";
|
|
692
|
+
throw std::invalid_argument(msg.str());
|
|
693
|
+
}
|
|
694
|
+
bool has_sinks = sinks.has_value();
|
|
695
|
+
|
|
696
|
+
auto q = astype(queries, final_type, s);
|
|
697
|
+
auto k = astype(keys, final_type, s);
|
|
698
|
+
auto v = astype(values, final_type, s);
|
|
699
|
+
|
|
700
|
+
auto fallback = [scale,
|
|
701
|
+
n_q_heads,
|
|
702
|
+
n_kv_heads,
|
|
703
|
+
do_causal,
|
|
704
|
+
has_sinks,
|
|
705
|
+
has_arr_mask,
|
|
706
|
+
s](const std::vector<array>& inputs) {
|
|
707
|
+
auto q = multiply(array(scale, inputs[0].dtype()), inputs[0], s);
|
|
708
|
+
int n_repeats = n_q_heads / n_kv_heads;
|
|
709
|
+
auto k = inputs[1];
|
|
710
|
+
auto v = inputs[2];
|
|
711
|
+
if (n_repeats > 1) {
|
|
712
|
+
q = unflatten(q, 1, {n_kv_heads, n_repeats}, s);
|
|
713
|
+
k = expand_dims(k, 2, s);
|
|
714
|
+
v = expand_dims(v, 2, s);
|
|
715
|
+
}
|
|
716
|
+
auto scores = matmul(q, swapaxes(k, -1, -2, s), s);
|
|
717
|
+
if (has_arr_mask || do_causal) {
|
|
718
|
+
// Mask must be broadcast-compatible with [B, n_q_heads, L_q, L_kv]
|
|
719
|
+
auto make_or_fetch_mask = [&]() {
|
|
720
|
+
if (do_causal) {
|
|
721
|
+
int kL = k.shape(-2);
|
|
722
|
+
int qL = q.shape(-2);
|
|
723
|
+
int offset = kL - qL;
|
|
724
|
+
auto q_idx = arange(offset, qL + offset, s);
|
|
725
|
+
auto k_idx = arange(0, kL, s);
|
|
726
|
+
q_idx = expand_dims(q_idx, 1, s);
|
|
727
|
+
k_idx = expand_dims(k_idx, 0, s);
|
|
728
|
+
return greater_equal(q_idx, k_idx, s);
|
|
729
|
+
}
|
|
730
|
+
return inputs[3];
|
|
731
|
+
};
|
|
732
|
+
auto mask = make_or_fetch_mask();
|
|
733
|
+
|
|
734
|
+
if (n_repeats > 1 && mask.ndim() >= 3) {
|
|
735
|
+
if (mask.shape(-3) == 1) {
|
|
736
|
+
mask = expand_dims(mask, -3, s);
|
|
737
|
+
} else {
|
|
738
|
+
mask = unflatten(mask, -3, {n_kv_heads, n_repeats}, s);
|
|
739
|
+
}
|
|
740
|
+
}
|
|
741
|
+
if (mask.dtype() == bool_) {
|
|
742
|
+
scores = where(
|
|
743
|
+
mask, scores, array(finfo(scores.dtype()).min, scores.dtype()), s);
|
|
744
|
+
} else {
|
|
745
|
+
scores = add(scores, mask, s);
|
|
746
|
+
}
|
|
747
|
+
}
|
|
748
|
+
if (has_sinks) {
|
|
749
|
+
auto sinks = inputs.back();
|
|
750
|
+
// scores has shape B N_q N_k L_q L_k
|
|
751
|
+
sinks = expand_dims(sinks, {0, 2, 3}, s);
|
|
752
|
+
if (scores.ndim() == 5) {
|
|
753
|
+
sinks = unflatten(sinks, 1, {n_kv_heads, n_repeats}, s);
|
|
754
|
+
}
|
|
755
|
+
auto bsx_shape = scores.shape();
|
|
756
|
+
bsx_shape.back() = 1;
|
|
757
|
+
scores = concatenate({broadcast_to(sinks, bsx_shape, s), scores}, -1, s);
|
|
758
|
+
}
|
|
759
|
+
scores = softmax(scores, std::vector<int>{-1}, true, s);
|
|
760
|
+
if (has_sinks) {
|
|
761
|
+
// Slice off scores
|
|
762
|
+
auto start = Shape(scores.ndim(), 0);
|
|
763
|
+
start.back() = 1;
|
|
764
|
+
auto stop = scores.shape();
|
|
765
|
+
scores = slice(scores, std::move(start), std::move(stop), s);
|
|
766
|
+
}
|
|
767
|
+
auto out = matmul(scores, v, s);
|
|
768
|
+
if (n_repeats > 1) {
|
|
769
|
+
out = flatten(out, 1, 2, s);
|
|
770
|
+
}
|
|
771
|
+
return std::vector<array>{out};
|
|
772
|
+
};
|
|
773
|
+
|
|
774
|
+
auto stream = to_stream(s);
|
|
775
|
+
std::vector<array> inputs = {q, k, v};
|
|
776
|
+
if (has_arr_mask) {
|
|
777
|
+
// Check type
|
|
778
|
+
has_bool_mask = mask_arr->dtype() == bool_;
|
|
779
|
+
if (promote_types(mask_arr->dtype(), final_type) != final_type) {
|
|
780
|
+
std::ostringstream msg;
|
|
781
|
+
msg << "[scaled_dot_product_attention] Mask type must promote to output type "
|
|
782
|
+
<< final_type << ".";
|
|
783
|
+
throw std::invalid_argument(msg.str());
|
|
784
|
+
} else if (!has_bool_mask) {
|
|
785
|
+
mask_arr = astype(*mask_arr, final_type, stream);
|
|
786
|
+
}
|
|
787
|
+
// Broadcast mask
|
|
788
|
+
auto mask_shape = queries.shape();
|
|
789
|
+
mask_shape.back() = keys.shape(-2);
|
|
790
|
+
inputs.push_back(broadcast_to(*mask_arr, mask_shape, stream));
|
|
791
|
+
}
|
|
792
|
+
if (has_sinks) {
|
|
793
|
+
if (promote_types(sinks->dtype(), final_type) != final_type) {
|
|
794
|
+
std::ostringstream msg;
|
|
795
|
+
msg << "[scaled_dot_product_attention] Type of sinks must promote to output type "
|
|
796
|
+
<< final_type << ".";
|
|
797
|
+
throw std::invalid_argument(msg.str());
|
|
798
|
+
}
|
|
799
|
+
if (sinks->ndim() != 1 || sinks->shape(0) != n_q_heads) {
|
|
800
|
+
std::ostringstream msg;
|
|
801
|
+
msg << "[scaled_dot_product_attention] Received invalid shape for sinks "
|
|
802
|
+
<< sinks->shape() << ".";
|
|
803
|
+
throw std::invalid_argument(msg.str());
|
|
804
|
+
}
|
|
805
|
+
inputs.push_back(astype(*sinks, final_type, stream));
|
|
806
|
+
}
|
|
807
|
+
|
|
808
|
+
bool is_training = detail::in_grad_tracing();
|
|
809
|
+
bool has_fast_vjp = !ScaledDotProductAttentionVJP::use_fallback(q, stream);
|
|
810
|
+
bool output_logsumexp = is_training && has_fast_vjp;
|
|
811
|
+
if (!ScaledDotProductAttention::use_fallback(
|
|
812
|
+
q,
|
|
813
|
+
k,
|
|
814
|
+
v,
|
|
815
|
+
has_mask,
|
|
816
|
+
has_arr_mask,
|
|
817
|
+
do_causal,
|
|
818
|
+
is_training,
|
|
819
|
+
output_logsumexp,
|
|
820
|
+
stream)) {
|
|
821
|
+
if (has_bool_mask && !ScaledDotProductAttention::supports_bool_mask()) {
|
|
822
|
+
// Convert bool mask to additive mask.
|
|
823
|
+
float inf = std::numeric_limits<float>::infinity();
|
|
824
|
+
array& mask = inputs[3];
|
|
825
|
+
mask = where(
|
|
826
|
+
mask,
|
|
827
|
+
full_like(mask, 0, final_type, s),
|
|
828
|
+
full_like(mask, -inf, final_type, s));
|
|
829
|
+
}
|
|
830
|
+
Shape out_shape{q.shape(0), q.shape(1), q.shape(2), v.shape(-1)};
|
|
831
|
+
auto primitive = std::make_shared<ScaledDotProductAttention>(
|
|
832
|
+
stream, fallback, scale, do_causal, has_sinks, output_logsumexp);
|
|
833
|
+
if (output_logsumexp) {
|
|
834
|
+
return array::make_arrays(
|
|
835
|
+
{std::move(out_shape), Shape{q.shape(0), q.shape(1), q.shape(2), 1}},
|
|
836
|
+
{final_type, float32},
|
|
837
|
+
primitive,
|
|
838
|
+
std::move(inputs))[0];
|
|
839
|
+
} else {
|
|
840
|
+
return array(
|
|
841
|
+
std::move(out_shape), final_type, primitive, std::move(inputs));
|
|
842
|
+
}
|
|
843
|
+
}
|
|
844
|
+
return fallback(std::move(inputs))[0];
|
|
845
|
+
}
|
|
846
|
+
|
|
847
|
+
std::vector<array> ScaledDotProductAttention::vjp(
|
|
848
|
+
const std::vector<array>& primals,
|
|
849
|
+
const std::vector<array>& cotangents,
|
|
850
|
+
const std::vector<int>& argnums,
|
|
851
|
+
const std::vector<array>& outputs) {
|
|
852
|
+
assert(primals.size() >= 3);
|
|
853
|
+
assert(cotangents.size() == outputs.size());
|
|
854
|
+
|
|
855
|
+
auto s = stream();
|
|
856
|
+
if (ScaledDotProductAttentionVJP::use_fallback(primals[0], s)) {
|
|
857
|
+
assert(outputs.size() == 1);
|
|
858
|
+
return Custom::vjp(primals, cotangents, argnums, outputs);
|
|
859
|
+
}
|
|
860
|
+
|
|
861
|
+
auto fallback = [sdpa = fallback_, s](const std::vector<array>& inputs) {
|
|
862
|
+
std::vector<array> primals(inputs.begin(), std::prev(inputs.end()));
|
|
863
|
+
auto [_, vjps] = mlx::core::vjp(sdpa, primals, {inputs.back()});
|
|
864
|
+
return vjps;
|
|
865
|
+
};
|
|
866
|
+
|
|
867
|
+
std::vector<Shape> shapes;
|
|
868
|
+
std::vector<Dtype> dtypes;
|
|
869
|
+
for (int i = 0; i < /* outputs size */ 3; ++i) {
|
|
870
|
+
shapes.push_back(primals[i].shape());
|
|
871
|
+
dtypes.push_back(primals[i].dtype());
|
|
872
|
+
}
|
|
873
|
+
auto primitive = std::make_shared<ScaledDotProductAttentionVJP>(
|
|
874
|
+
s, fallback, scale_, do_causal_, has_sinks_);
|
|
875
|
+
std::vector<array> inputs = primals;
|
|
876
|
+
inputs.push_back(outputs[0]);
|
|
877
|
+
inputs.push_back(outputs[1]);
|
|
878
|
+
inputs.push_back(cotangents[0]);
|
|
879
|
+
auto vjps = array::make_arrays(std::move(shapes), dtypes, primitive, inputs);
|
|
880
|
+
|
|
881
|
+
std::vector<array> returned_vjps;
|
|
882
|
+
for (int arg : argnums) {
|
|
883
|
+
if (arg >= 3) {
|
|
884
|
+
throw std::invalid_argument(
|
|
885
|
+
"[scale_dot_product_attention] Does not support VJP with respect "
|
|
886
|
+
" to mask or attention sinks.");
|
|
887
|
+
}
|
|
888
|
+
returned_vjps.push_back(std::move(vjps[arg]));
|
|
889
|
+
}
|
|
890
|
+
return returned_vjps;
|
|
891
|
+
}
|
|
892
|
+
|
|
893
|
+
bool ScaledDotProductAttention::is_equivalent(const Primitive& other) const {
|
|
894
|
+
const ScaledDotProductAttention& a_other =
|
|
895
|
+
static_cast<const ScaledDotProductAttention&>(other);
|
|
896
|
+
return scale_ == a_other.scale_ && do_causal_ == a_other.do_causal_ &&
|
|
897
|
+
has_sinks_ == a_other.has_sinks_ &&
|
|
898
|
+
output_logsumexp_ == a_other.output_logsumexp_;
|
|
899
|
+
}
|
|
900
|
+
|
|
901
|
+
bool ScaledDotProductAttentionVJP::is_equivalent(const Primitive& other) const {
|
|
902
|
+
const ScaledDotProductAttentionVJP& a_other =
|
|
903
|
+
static_cast<const ScaledDotProductAttentionVJP&>(other);
|
|
904
|
+
return scale_ == a_other.scale_ && do_causal_ == a_other.do_causal_ &&
|
|
905
|
+
has_sinks_ == a_other.has_sinks_;
|
|
906
|
+
}
|
|
907
|
+
|
|
908
|
+
bool Quantize::is_equivalent(const Primitive& other) const {
|
|
909
|
+
const Quantize& p_other = static_cast<const Quantize&>(other);
|
|
910
|
+
return (
|
|
911
|
+
p_other.group_size_ == group_size_ && p_other.bits_ == bits_ &&
|
|
912
|
+
p_other.mode_ == mode_ && p_other.dequantize_ == dequantize_);
|
|
913
|
+
}
|
|
914
|
+
|
|
915
|
+
std::vector<Shape> Quantize::output_shapes(const std::vector<array>& inputs) {
|
|
916
|
+
auto& w = inputs[0];
|
|
917
|
+
if (dequantize_) {
|
|
918
|
+
auto out_size = w.shape(-1) * 32 / bits_;
|
|
919
|
+
auto out_shape = w.shape();
|
|
920
|
+
out_shape.back() = out_size;
|
|
921
|
+
return {std::move(out_shape)};
|
|
922
|
+
} else {
|
|
923
|
+
auto wq_shape = w.shape();
|
|
924
|
+
wq_shape.back() = w.shape(-1) * bits_ / 32;
|
|
925
|
+
auto sshape = w.shape();
|
|
926
|
+
sshape.back() = w.shape(-1) / group_size_;
|
|
927
|
+
if (inputs.size() == 2) {
|
|
928
|
+
return {std::move(wq_shape), std::move(sshape)};
|
|
929
|
+
} else {
|
|
930
|
+
auto bshape = sshape;
|
|
931
|
+
return {std::move(wq_shape), std::move(sshape), std::move(bshape)};
|
|
932
|
+
}
|
|
933
|
+
}
|
|
934
|
+
}
|
|
935
|
+
|
|
936
|
+
bool ConvertFP8::is_equivalent(const Primitive& other) const {
|
|
937
|
+
const ConvertFP8& a_other = static_cast<const ConvertFP8&>(other);
|
|
938
|
+
return to_fp8_ == a_other.to_fp8_;
|
|
939
|
+
}
|
|
940
|
+
|
|
941
|
+
} // namespace mlx::core::fast
|