mlx 0.30.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (599) hide show
  1. checksums.yaml +7 -0
  2. data/ext/mlx/extconf.rb +94 -0
  3. data/ext/mlx/native.cpp +8027 -0
  4. data/lib/mlx/core.rb +1678 -0
  5. data/lib/mlx/distributed_utils/common.rb +116 -0
  6. data/lib/mlx/distributed_utils/config.rb +600 -0
  7. data/lib/mlx/distributed_utils/launch.rb +490 -0
  8. data/lib/mlx/extension.rb +24 -0
  9. data/lib/mlx/nn/base.rb +388 -0
  10. data/lib/mlx/nn/init.rb +140 -0
  11. data/lib/mlx/nn/layers/activations.rb +336 -0
  12. data/lib/mlx/nn/layers/base.rb +6 -0
  13. data/lib/mlx/nn/layers/containers.rb +20 -0
  14. data/lib/mlx/nn/layers/convolution.rb +120 -0
  15. data/lib/mlx/nn/layers/convolution_transpose.rb +114 -0
  16. data/lib/mlx/nn/layers/distributed.rb +309 -0
  17. data/lib/mlx/nn/layers/dropout.rb +75 -0
  18. data/lib/mlx/nn/layers/embedding.rb +28 -0
  19. data/lib/mlx/nn/layers/linear.rb +79 -0
  20. data/lib/mlx/nn/layers/normalization.rb +216 -0
  21. data/lib/mlx/nn/layers/pooling.rb +167 -0
  22. data/lib/mlx/nn/layers/positional_encoding.rb +126 -0
  23. data/lib/mlx/nn/layers/quantized.rb +215 -0
  24. data/lib/mlx/nn/layers/recurrent.rb +135 -0
  25. data/lib/mlx/nn/layers/transformer.rb +330 -0
  26. data/lib/mlx/nn/layers/upsample.rb +97 -0
  27. data/lib/mlx/nn/layers.rb +18 -0
  28. data/lib/mlx/nn/losses.rb +251 -0
  29. data/lib/mlx/nn/utils.rb +167 -0
  30. data/lib/mlx/nn.rb +12 -0
  31. data/lib/mlx/optimizers/optimizers.rb +808 -0
  32. data/lib/mlx/optimizers/schedulers.rb +62 -0
  33. data/lib/mlx/optimizers.rb +9 -0
  34. data/lib/mlx/utils.rb +171 -0
  35. data/lib/mlx/version.rb +5 -0
  36. data/lib/mlx.rb +64 -0
  37. data/mlx/CMakeLists.txt +449 -0
  38. data/mlx/cmake/FindCUDNN.cmake +177 -0
  39. data/mlx/cmake/FindNCCL.cmake +54 -0
  40. data/mlx/cmake/Findnvpl.cmake +3 -0
  41. data/mlx/cmake/extension.cmake +50 -0
  42. data/mlx/mlx/3rdparty/.clang-format +2 -0
  43. data/mlx/mlx/3rdparty/pocketfft.h +3581 -0
  44. data/mlx/mlx/CMakeLists.txt +107 -0
  45. data/mlx/mlx/allocator.h +75 -0
  46. data/mlx/mlx/api.h +29 -0
  47. data/mlx/mlx/array.cpp +354 -0
  48. data/mlx/mlx/array.h +647 -0
  49. data/mlx/mlx/backend/common/CMakeLists.txt +9 -0
  50. data/mlx/mlx/backend/common/binary.h +97 -0
  51. data/mlx/mlx/backend/common/broadcasting.cpp +24 -0
  52. data/mlx/mlx/backend/common/broadcasting.h +11 -0
  53. data/mlx/mlx/backend/common/buffer_cache.h +158 -0
  54. data/mlx/mlx/backend/common/common.cpp +305 -0
  55. data/mlx/mlx/backend/common/compiled.cpp +243 -0
  56. data/mlx/mlx/backend/common/compiled.h +77 -0
  57. data/mlx/mlx/backend/common/copy.h +50 -0
  58. data/mlx/mlx/backend/common/hadamard.h +109 -0
  59. data/mlx/mlx/backend/common/load.cpp +57 -0
  60. data/mlx/mlx/backend/common/matmul.h +67 -0
  61. data/mlx/mlx/backend/common/reduce.cpp +154 -0
  62. data/mlx/mlx/backend/common/reduce.h +59 -0
  63. data/mlx/mlx/backend/common/slicing.cpp +71 -0
  64. data/mlx/mlx/backend/common/slicing.h +20 -0
  65. data/mlx/mlx/backend/common/ternary.h +85 -0
  66. data/mlx/mlx/backend/common/unary.h +29 -0
  67. data/mlx/mlx/backend/common/utils.cpp +231 -0
  68. data/mlx/mlx/backend/common/utils.h +205 -0
  69. data/mlx/mlx/backend/cpu/CMakeLists.txt +88 -0
  70. data/mlx/mlx/backend/cpu/arange.h +28 -0
  71. data/mlx/mlx/backend/cpu/arg_reduce.cpp +124 -0
  72. data/mlx/mlx/backend/cpu/binary.cpp +269 -0
  73. data/mlx/mlx/backend/cpu/binary.h +517 -0
  74. data/mlx/mlx/backend/cpu/binary_ops.h +98 -0
  75. data/mlx/mlx/backend/cpu/binary_two.h +166 -0
  76. data/mlx/mlx/backend/cpu/cholesky.cpp +85 -0
  77. data/mlx/mlx/backend/cpu/compiled.cpp +357 -0
  78. data/mlx/mlx/backend/cpu/compiled_preamble.h +12 -0
  79. data/mlx/mlx/backend/cpu/conv.cpp +1351 -0
  80. data/mlx/mlx/backend/cpu/copy.cpp +386 -0
  81. data/mlx/mlx/backend/cpu/copy.h +36 -0
  82. data/mlx/mlx/backend/cpu/device_info.cpp +113 -0
  83. data/mlx/mlx/backend/cpu/device_info.h +28 -0
  84. data/mlx/mlx/backend/cpu/distributed.cpp +103 -0
  85. data/mlx/mlx/backend/cpu/eig.cpp +281 -0
  86. data/mlx/mlx/backend/cpu/eigh.cpp +241 -0
  87. data/mlx/mlx/backend/cpu/encoder.cpp +16 -0
  88. data/mlx/mlx/backend/cpu/encoder.h +67 -0
  89. data/mlx/mlx/backend/cpu/eval.cpp +40 -0
  90. data/mlx/mlx/backend/cpu/eval.h +12 -0
  91. data/mlx/mlx/backend/cpu/fft.cpp +120 -0
  92. data/mlx/mlx/backend/cpu/gemm.h +26 -0
  93. data/mlx/mlx/backend/cpu/gemms/bnns.cpp +214 -0
  94. data/mlx/mlx/backend/cpu/gemms/cblas.cpp +134 -0
  95. data/mlx/mlx/backend/cpu/gemms/simd_bf16.cpp +45 -0
  96. data/mlx/mlx/backend/cpu/gemms/simd_fp16.cpp +45 -0
  97. data/mlx/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
  98. data/mlx/mlx/backend/cpu/hadamard.cpp +121 -0
  99. data/mlx/mlx/backend/cpu/indexing.cpp +854 -0
  100. data/mlx/mlx/backend/cpu/inverse.cpp +160 -0
  101. data/mlx/mlx/backend/cpu/jit_compiler.cpp +166 -0
  102. data/mlx/mlx/backend/cpu/jit_compiler.h +20 -0
  103. data/mlx/mlx/backend/cpu/lapack.h +80 -0
  104. data/mlx/mlx/backend/cpu/logsumexp.cpp +139 -0
  105. data/mlx/mlx/backend/cpu/luf.cpp +120 -0
  106. data/mlx/mlx/backend/cpu/make_compiled_preamble.ps1 +38 -0
  107. data/mlx/mlx/backend/cpu/make_compiled_preamble.sh +41 -0
  108. data/mlx/mlx/backend/cpu/masked_mm.cpp +608 -0
  109. data/mlx/mlx/backend/cpu/matmul.cpp +166 -0
  110. data/mlx/mlx/backend/cpu/primitives.cpp +478 -0
  111. data/mlx/mlx/backend/cpu/qrf.cpp +147 -0
  112. data/mlx/mlx/backend/cpu/quantized.cpp +1370 -0
  113. data/mlx/mlx/backend/cpu/reduce.cpp +587 -0
  114. data/mlx/mlx/backend/cpu/scan.cpp +338 -0
  115. data/mlx/mlx/backend/cpu/select.cpp +95 -0
  116. data/mlx/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
  117. data/mlx/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
  118. data/mlx/mlx/backend/cpu/simd/base_simd.h +319 -0
  119. data/mlx/mlx/backend/cpu/simd/math.h +193 -0
  120. data/mlx/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
  121. data/mlx/mlx/backend/cpu/simd/simd.h +4 -0
  122. data/mlx/mlx/backend/cpu/simd/type.h +11 -0
  123. data/mlx/mlx/backend/cpu/slicing.h +21 -0
  124. data/mlx/mlx/backend/cpu/softmax.cpp +170 -0
  125. data/mlx/mlx/backend/cpu/sort.cpp +481 -0
  126. data/mlx/mlx/backend/cpu/svd.cpp +289 -0
  127. data/mlx/mlx/backend/cpu/ternary.h +154 -0
  128. data/mlx/mlx/backend/cpu/threefry.cpp +31 -0
  129. data/mlx/mlx/backend/cpu/threefry.h +21 -0
  130. data/mlx/mlx/backend/cpu/unary.cpp +238 -0
  131. data/mlx/mlx/backend/cpu/unary.h +281 -0
  132. data/mlx/mlx/backend/cpu/unary_ops.h +175 -0
  133. data/mlx/mlx/backend/cuda/CMakeLists.txt +265 -0
  134. data/mlx/mlx/backend/cuda/allocator.cpp +451 -0
  135. data/mlx/mlx/backend/cuda/allocator.h +94 -0
  136. data/mlx/mlx/backend/cuda/arange.cu +68 -0
  137. data/mlx/mlx/backend/cuda/arg_reduce.cu +189 -0
  138. data/mlx/mlx/backend/cuda/bin2h.cmake +150 -0
  139. data/mlx/mlx/backend/cuda/binary/CMakeLists.txt +21 -0
  140. data/mlx/mlx/backend/cuda/binary/add.cu +7 -0
  141. data/mlx/mlx/backend/cuda/binary/arctan2.cu +7 -0
  142. data/mlx/mlx/backend/cuda/binary/binary.cuh +383 -0
  143. data/mlx/mlx/backend/cuda/binary/bitwise_binary.cu +27 -0
  144. data/mlx/mlx/backend/cuda/binary/divide.cu +7 -0
  145. data/mlx/mlx/backend/cuda/binary/equal.cu +15 -0
  146. data/mlx/mlx/backend/cuda/binary/greater.cu +7 -0
  147. data/mlx/mlx/backend/cuda/binary/greater_equal.cu +7 -0
  148. data/mlx/mlx/backend/cuda/binary/less.cu +7 -0
  149. data/mlx/mlx/backend/cuda/binary/less_equal.cu +7 -0
  150. data/mlx/mlx/backend/cuda/binary/log_add_exp.cu +7 -0
  151. data/mlx/mlx/backend/cuda/binary/logical_and.cu +7 -0
  152. data/mlx/mlx/backend/cuda/binary/logical_or.cu +7 -0
  153. data/mlx/mlx/backend/cuda/binary/maximum.cu +7 -0
  154. data/mlx/mlx/backend/cuda/binary/minimum.cu +7 -0
  155. data/mlx/mlx/backend/cuda/binary/multiply.cu +7 -0
  156. data/mlx/mlx/backend/cuda/binary/not_equal.cu +7 -0
  157. data/mlx/mlx/backend/cuda/binary/power.cu +7 -0
  158. data/mlx/mlx/backend/cuda/binary/remainder.cu +7 -0
  159. data/mlx/mlx/backend/cuda/binary/subtract.cu +7 -0
  160. data/mlx/mlx/backend/cuda/binary_two.cu +412 -0
  161. data/mlx/mlx/backend/cuda/compiled.cpp +357 -0
  162. data/mlx/mlx/backend/cuda/conv/conv.h +126 -0
  163. data/mlx/mlx/backend/cuda/conv/gemm_conv.cu +217 -0
  164. data/mlx/mlx/backend/cuda/conv/gemm_grouped_conv.cu +231 -0
  165. data/mlx/mlx/backend/cuda/conv.cpp +403 -0
  166. data/mlx/mlx/backend/cuda/copy/copy.cuh +55 -0
  167. data/mlx/mlx/backend/cuda/copy/copy_contiguous.cu +88 -0
  168. data/mlx/mlx/backend/cuda/copy/copy_general.cu +171 -0
  169. data/mlx/mlx/backend/cuda/copy/copy_general_dynamic.cu +118 -0
  170. data/mlx/mlx/backend/cuda/copy/copy_general_input.cu +229 -0
  171. data/mlx/mlx/backend/cuda/copy.cu +132 -0
  172. data/mlx/mlx/backend/cuda/cublas_utils.cpp +222 -0
  173. data/mlx/mlx/backend/cuda/cublas_utils.h +95 -0
  174. data/mlx/mlx/backend/cuda/cuda.h +21 -0
  175. data/mlx/mlx/backend/cuda/cuda_utils.h +90 -0
  176. data/mlx/mlx/backend/cuda/cudnn_utils.cpp +133 -0
  177. data/mlx/mlx/backend/cuda/cudnn_utils.h +187 -0
  178. data/mlx/mlx/backend/cuda/custom_kernel.cpp +379 -0
  179. data/mlx/mlx/backend/cuda/cutlass_utils.cuh +46 -0
  180. data/mlx/mlx/backend/cuda/delayload.cpp +80 -0
  181. data/mlx/mlx/backend/cuda/device/atomic_ops.cuh +63 -0
  182. data/mlx/mlx/backend/cuda/device/binary_ops.cuh +300 -0
  183. data/mlx/mlx/backend/cuda/device/cast_op.cuh +118 -0
  184. data/mlx/mlx/backend/cuda/device/complex.cuh +60 -0
  185. data/mlx/mlx/backend/cuda/device/config.h +12 -0
  186. data/mlx/mlx/backend/cuda/device/fp16_math.cuh +96 -0
  187. data/mlx/mlx/backend/cuda/device/gather.cuh +53 -0
  188. data/mlx/mlx/backend/cuda/device/gather_axis.cuh +65 -0
  189. data/mlx/mlx/backend/cuda/device/indexing.cuh +30 -0
  190. data/mlx/mlx/backend/cuda/device/scatter.cuh +68 -0
  191. data/mlx/mlx/backend/cuda/device/scatter_axis.cuh +67 -0
  192. data/mlx/mlx/backend/cuda/device/scatter_ops.cuh +44 -0
  193. data/mlx/mlx/backend/cuda/device/ternary_ops.cuh +13 -0
  194. data/mlx/mlx/backend/cuda/device/unary_ops.cuh +350 -0
  195. data/mlx/mlx/backend/cuda/device/utils.cuh +464 -0
  196. data/mlx/mlx/backend/cuda/device.cpp +522 -0
  197. data/mlx/mlx/backend/cuda/device.h +195 -0
  198. data/mlx/mlx/backend/cuda/device_info.cpp +232 -0
  199. data/mlx/mlx/backend/cuda/distributed.cu +121 -0
  200. data/mlx/mlx/backend/cuda/eval.cpp +66 -0
  201. data/mlx/mlx/backend/cuda/event.cu +415 -0
  202. data/mlx/mlx/backend/cuda/event.h +79 -0
  203. data/mlx/mlx/backend/cuda/fence.cpp +42 -0
  204. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.cpp +233 -0
  205. data/mlx/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
  206. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_0.cpp +77 -0
  207. data/mlx/mlx/backend/cuda/gemms/cublas_gemm_batched_12_9.cu +329 -0
  208. data/mlx/mlx/backend/cuda/gemms/gemv.cu +327 -0
  209. data/mlx/mlx/backend/cuda/gemms/gemv.h +34 -0
  210. data/mlx/mlx/backend/cuda/gemms/grouped_gemm.h +25 -0
  211. data/mlx/mlx/backend/cuda/gemms/grouped_gemm_unaligned.cu +358 -0
  212. data/mlx/mlx/backend/cuda/indexing.cpp +434 -0
  213. data/mlx/mlx/backend/cuda/jit_module.cpp +443 -0
  214. data/mlx/mlx/backend/cuda/jit_module.h +120 -0
  215. data/mlx/mlx/backend/cuda/kernel_utils.cu +52 -0
  216. data/mlx/mlx/backend/cuda/kernel_utils.cuh +148 -0
  217. data/mlx/mlx/backend/cuda/layer_norm.cu +417 -0
  218. data/mlx/mlx/backend/cuda/load.cpp +60 -0
  219. data/mlx/mlx/backend/cuda/logsumexp.cu +161 -0
  220. data/mlx/mlx/backend/cuda/lru_cache.h +190 -0
  221. data/mlx/mlx/backend/cuda/matmul.cpp +373 -0
  222. data/mlx/mlx/backend/cuda/no_cuda.cpp +47 -0
  223. data/mlx/mlx/backend/cuda/primitives.cpp +46 -0
  224. data/mlx/mlx/backend/cuda/quantized/affine_quantize.cu +329 -0
  225. data/mlx/mlx/backend/cuda/quantized/convert_fp8.cu +19 -0
  226. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.cpp +206 -0
  227. data/mlx/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
  228. data/mlx/mlx/backend/cuda/quantized/cuda_fp4.h +100 -0
  229. data/mlx/mlx/backend/cuda/quantized/fp_quantize.cu +496 -0
  230. data/mlx/mlx/backend/cuda/quantized/mxfp8_quantize.cuh +32 -0
  231. data/mlx/mlx/backend/cuda/quantized/no_qqmm_impl.cpp +26 -0
  232. data/mlx/mlx/backend/cuda/quantized/nvfp4_quantize.cuh +334 -0
  233. data/mlx/mlx/backend/cuda/quantized/qmv.cu +304 -0
  234. data/mlx/mlx/backend/cuda/quantized/qmv.h +21 -0
  235. data/mlx/mlx/backend/cuda/quantized/qqmm.cpp +158 -0
  236. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.cpp +50 -0
  237. data/mlx/mlx/backend/cuda/quantized/qqmm_impl.h +26 -0
  238. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.cu +227 -0
  239. data/mlx/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
  240. data/mlx/mlx/backend/cuda/quantized/quantized.cpp +85 -0
  241. data/mlx/mlx/backend/cuda/quantized/quantized.h +53 -0
  242. data/mlx/mlx/backend/cuda/quantized/quantized_utils.cuh +88 -0
  243. data/mlx/mlx/backend/cuda/quantized/quantized_utils.h +50 -0
  244. data/mlx/mlx/backend/cuda/random.cu +202 -0
  245. data/mlx/mlx/backend/cuda/reduce/all_reduce.cu +159 -0
  246. data/mlx/mlx/backend/cuda/reduce/col_reduce.cu +510 -0
  247. data/mlx/mlx/backend/cuda/reduce/init_reduce.cu +50 -0
  248. data/mlx/mlx/backend/cuda/reduce/reduce.cuh +71 -0
  249. data/mlx/mlx/backend/cuda/reduce/reduce_ops.cuh +211 -0
  250. data/mlx/mlx/backend/cuda/reduce/reduce_utils.cuh +145 -0
  251. data/mlx/mlx/backend/cuda/reduce/row_reduce.cu +361 -0
  252. data/mlx/mlx/backend/cuda/reduce.cu +73 -0
  253. data/mlx/mlx/backend/cuda/rms_norm.cu +536 -0
  254. data/mlx/mlx/backend/cuda/rope.cu +429 -0
  255. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cpp +681 -0
  256. data/mlx/mlx/backend/cuda/scaled_dot_product_attention.cu +796 -0
  257. data/mlx/mlx/backend/cuda/scan.cu +468 -0
  258. data/mlx/mlx/backend/cuda/slicing.cpp +111 -0
  259. data/mlx/mlx/backend/cuda/softmax.cu +162 -0
  260. data/mlx/mlx/backend/cuda/sort.cu +1076 -0
  261. data/mlx/mlx/backend/cuda/steel/defines.cuh +9 -0
  262. data/mlx/mlx/backend/cuda/steel/gemm.cuh +101 -0
  263. data/mlx/mlx/backend/cuda/steel/mma.cuh +117 -0
  264. data/mlx/mlx/backend/cuda/steel/tiles.cuh +450 -0
  265. data/mlx/mlx/backend/cuda/steel/utils.cuh +89 -0
  266. data/mlx/mlx/backend/cuda/ternary.cu +271 -0
  267. data/mlx/mlx/backend/cuda/unary/CMakeLists.txt +34 -0
  268. data/mlx/mlx/backend/cuda/unary/abs.cu +7 -0
  269. data/mlx/mlx/backend/cuda/unary/arccos.cu +7 -0
  270. data/mlx/mlx/backend/cuda/unary/arccosh.cu +7 -0
  271. data/mlx/mlx/backend/cuda/unary/arcsin.cu +7 -0
  272. data/mlx/mlx/backend/cuda/unary/arcsinh.cu +7 -0
  273. data/mlx/mlx/backend/cuda/unary/arctan.cu +7 -0
  274. data/mlx/mlx/backend/cuda/unary/arctanh.cu +7 -0
  275. data/mlx/mlx/backend/cuda/unary/bitwise_invert.cu +7 -0
  276. data/mlx/mlx/backend/cuda/unary/ceil.cu +7 -0
  277. data/mlx/mlx/backend/cuda/unary/conjugate.cu +7 -0
  278. data/mlx/mlx/backend/cuda/unary/cos.cu +7 -0
  279. data/mlx/mlx/backend/cuda/unary/cosh.cu +7 -0
  280. data/mlx/mlx/backend/cuda/unary/erf.cu +7 -0
  281. data/mlx/mlx/backend/cuda/unary/erf_inv.cu +7 -0
  282. data/mlx/mlx/backend/cuda/unary/exp.cu +7 -0
  283. data/mlx/mlx/backend/cuda/unary/expm1.cu +7 -0
  284. data/mlx/mlx/backend/cuda/unary/floor.cu +7 -0
  285. data/mlx/mlx/backend/cuda/unary/imag.cu +7 -0
  286. data/mlx/mlx/backend/cuda/unary/log.cu +21 -0
  287. data/mlx/mlx/backend/cuda/unary/log1p.cu +7 -0
  288. data/mlx/mlx/backend/cuda/unary/logical_not.cu +7 -0
  289. data/mlx/mlx/backend/cuda/unary/negative.cu +7 -0
  290. data/mlx/mlx/backend/cuda/unary/real.cu +7 -0
  291. data/mlx/mlx/backend/cuda/unary/round.cu +18 -0
  292. data/mlx/mlx/backend/cuda/unary/sigmoid.cu +7 -0
  293. data/mlx/mlx/backend/cuda/unary/sign.cu +7 -0
  294. data/mlx/mlx/backend/cuda/unary/sin.cu +7 -0
  295. data/mlx/mlx/backend/cuda/unary/sinh.cu +7 -0
  296. data/mlx/mlx/backend/cuda/unary/sqrt.cu +15 -0
  297. data/mlx/mlx/backend/cuda/unary/square.cu +7 -0
  298. data/mlx/mlx/backend/cuda/unary/tan.cu +7 -0
  299. data/mlx/mlx/backend/cuda/unary/tanh.cu +7 -0
  300. data/mlx/mlx/backend/cuda/unary/unary.cuh +224 -0
  301. data/mlx/mlx/backend/cuda/utils.cpp +116 -0
  302. data/mlx/mlx/backend/cuda/utils.h +49 -0
  303. data/mlx/mlx/backend/cuda/vector_types.cuh +48 -0
  304. data/mlx/mlx/backend/cuda/worker.cpp +79 -0
  305. data/mlx/mlx/backend/cuda/worker.h +55 -0
  306. data/mlx/mlx/backend/gpu/CMakeLists.txt +5 -0
  307. data/mlx/mlx/backend/gpu/copy.cpp +89 -0
  308. data/mlx/mlx/backend/gpu/copy.h +57 -0
  309. data/mlx/mlx/backend/gpu/device_info.h +36 -0
  310. data/mlx/mlx/backend/gpu/eval.h +18 -0
  311. data/mlx/mlx/backend/gpu/primitives.cpp +307 -0
  312. data/mlx/mlx/backend/gpu/slicing.cpp +44 -0
  313. data/mlx/mlx/backend/gpu/slicing.h +36 -0
  314. data/mlx/mlx/backend/metal/CMakeLists.txt +144 -0
  315. data/mlx/mlx/backend/metal/allocator.cpp +279 -0
  316. data/mlx/mlx/backend/metal/allocator.h +79 -0
  317. data/mlx/mlx/backend/metal/binary.cpp +257 -0
  318. data/mlx/mlx/backend/metal/binary.h +33 -0
  319. data/mlx/mlx/backend/metal/compiled.cpp +471 -0
  320. data/mlx/mlx/backend/metal/conv.cpp +1118 -0
  321. data/mlx/mlx/backend/metal/copy.cpp +235 -0
  322. data/mlx/mlx/backend/metal/custom_kernel.cpp +430 -0
  323. data/mlx/mlx/backend/metal/device.cpp +816 -0
  324. data/mlx/mlx/backend/metal/device.h +289 -0
  325. data/mlx/mlx/backend/metal/device_info.cpp +58 -0
  326. data/mlx/mlx/backend/metal/distributed.cpp +38 -0
  327. data/mlx/mlx/backend/metal/eval.cpp +97 -0
  328. data/mlx/mlx/backend/metal/event.cpp +62 -0
  329. data/mlx/mlx/backend/metal/fence.cpp +162 -0
  330. data/mlx/mlx/backend/metal/fft.cpp +807 -0
  331. data/mlx/mlx/backend/metal/hadamard.cpp +198 -0
  332. data/mlx/mlx/backend/metal/indexing.cpp +727 -0
  333. data/mlx/mlx/backend/metal/jit/includes.h +58 -0
  334. data/mlx/mlx/backend/metal/jit/indexing.h +76 -0
  335. data/mlx/mlx/backend/metal/jit_kernels.cpp +1118 -0
  336. data/mlx/mlx/backend/metal/kernels/CMakeLists.txt +193 -0
  337. data/mlx/mlx/backend/metal/kernels/arange.h +9 -0
  338. data/mlx/mlx/backend/metal/kernels/arange.metal +20 -0
  339. data/mlx/mlx/backend/metal/kernels/arg_reduce.metal +182 -0
  340. data/mlx/mlx/backend/metal/kernels/atomic.h +345 -0
  341. data/mlx/mlx/backend/metal/kernels/bf16.h +16 -0
  342. data/mlx/mlx/backend/metal/kernels/bf16_math.h +380 -0
  343. data/mlx/mlx/backend/metal/kernels/binary.h +199 -0
  344. data/mlx/mlx/backend/metal/kernels/binary.metal +109 -0
  345. data/mlx/mlx/backend/metal/kernels/binary_ops.h +330 -0
  346. data/mlx/mlx/backend/metal/kernels/binary_two.h +244 -0
  347. data/mlx/mlx/backend/metal/kernels/binary_two.metal +54 -0
  348. data/mlx/mlx/backend/metal/kernels/cexpf.h +134 -0
  349. data/mlx/mlx/backend/metal/kernels/complex.h +173 -0
  350. data/mlx/mlx/backend/metal/kernels/conv.metal +701 -0
  351. data/mlx/mlx/backend/metal/kernels/copy.h +276 -0
  352. data/mlx/mlx/backend/metal/kernels/copy.metal +75 -0
  353. data/mlx/mlx/backend/metal/kernels/defines.h +24 -0
  354. data/mlx/mlx/backend/metal/kernels/erf.h +69 -0
  355. data/mlx/mlx/backend/metal/kernels/expm1f.h +90 -0
  356. data/mlx/mlx/backend/metal/kernels/fence.metal +52 -0
  357. data/mlx/mlx/backend/metal/kernels/fft/radix.h +328 -0
  358. data/mlx/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
  359. data/mlx/mlx/backend/metal/kernels/fft.h +486 -0
  360. data/mlx/mlx/backend/metal/kernels/fft.metal +67 -0
  361. data/mlx/mlx/backend/metal/kernels/fp4.h +48 -0
  362. data/mlx/mlx/backend/metal/kernels/fp8.h +80 -0
  363. data/mlx/mlx/backend/metal/kernels/fp_quantized.h +1850 -0
  364. data/mlx/mlx/backend/metal/kernels/fp_quantized.metal +153 -0
  365. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.h +1044 -0
  366. data/mlx/mlx/backend/metal/kernels/fp_quantized_nax.metal +79 -0
  367. data/mlx/mlx/backend/metal/kernels/gemv.metal +868 -0
  368. data/mlx/mlx/backend/metal/kernels/gemv_masked.h +827 -0
  369. data/mlx/mlx/backend/metal/kernels/gemv_masked.metal +76 -0
  370. data/mlx/mlx/backend/metal/kernels/hadamard.h +182 -0
  371. data/mlx/mlx/backend/metal/kernels/indexing/gather.h +51 -0
  372. data/mlx/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
  373. data/mlx/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
  374. data/mlx/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
  375. data/mlx/mlx/backend/metal/kernels/indexing/masked_scatter.h +41 -0
  376. data/mlx/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
  377. data/mlx/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
  378. data/mlx/mlx/backend/metal/kernels/layer_norm.metal +433 -0
  379. data/mlx/mlx/backend/metal/kernels/logging.h +26 -0
  380. data/mlx/mlx/backend/metal/kernels/logsumexp.h +140 -0
  381. data/mlx/mlx/backend/metal/kernels/logsumexp.metal +18 -0
  382. data/mlx/mlx/backend/metal/kernels/quantized.h +2508 -0
  383. data/mlx/mlx/backend/metal/kernels/quantized.metal +144 -0
  384. data/mlx/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
  385. data/mlx/mlx/backend/metal/kernels/quantized_nax.metal +106 -0
  386. data/mlx/mlx/backend/metal/kernels/quantized_utils.h +90 -0
  387. data/mlx/mlx/backend/metal/kernels/random.metal +103 -0
  388. data/mlx/mlx/backend/metal/kernels/reduce.h +5 -0
  389. data/mlx/mlx/backend/metal/kernels/reduce.metal +169 -0
  390. data/mlx/mlx/backend/metal/kernels/reduce_utils.h +6 -0
  391. data/mlx/mlx/backend/metal/kernels/reduction/ops.h +275 -0
  392. data/mlx/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
  393. data/mlx/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
  394. data/mlx/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
  395. data/mlx/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
  396. data/mlx/mlx/backend/metal/kernels/rms_norm.metal +391 -0
  397. data/mlx/mlx/backend/metal/kernels/rope.metal +229 -0
  398. data/mlx/mlx/backend/metal/kernels/scaled_dot_product_attention.metal +44 -0
  399. data/mlx/mlx/backend/metal/kernels/scan.h +514 -0
  400. data/mlx/mlx/backend/metal/kernels/scan.metal +109 -0
  401. data/mlx/mlx/backend/metal/kernels/sdpa_vector.h +394 -0
  402. data/mlx/mlx/backend/metal/kernels/softmax.h +190 -0
  403. data/mlx/mlx/backend/metal/kernels/softmax.metal +24 -0
  404. data/mlx/mlx/backend/metal/kernels/sort.h +719 -0
  405. data/mlx/mlx/backend/metal/kernels/sort.metal +80 -0
  406. data/mlx/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
  407. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +471 -0
  408. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.metal +27 -0
  409. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
  410. data/mlx/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.metal +28 -0
  411. data/mlx/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
  412. data/mlx/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
  413. data/mlx/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
  414. data/mlx/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
  415. data/mlx/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
  416. data/mlx/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
  417. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
  418. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.metal +56 -0
  419. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
  420. data/mlx/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.metal +47 -0
  421. data/mlx/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
  422. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
  423. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
  424. data/mlx/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
  425. data/mlx/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
  426. data/mlx/mlx/backend/metal/kernels/steel/defines.h +7 -0
  427. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
  428. data/mlx/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +157 -0
  429. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
  430. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.metal +34 -0
  431. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +219 -0
  432. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.metal +30 -0
  433. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
  434. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.metal +59 -0
  435. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +143 -0
  436. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.metal +37 -0
  437. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
  438. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.metal +76 -0
  439. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
  440. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.metal +43 -0
  441. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
  442. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.metal +76 -0
  443. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.h +152 -0
  444. data/mlx/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk_nax.metal +30 -0
  445. data/mlx/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
  446. data/mlx/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
  447. data/mlx/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
  448. data/mlx/mlx/backend/metal/kernels/steel/gemm/params.h +65 -0
  449. data/mlx/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
  450. data/mlx/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
  451. data/mlx/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
  452. data/mlx/mlx/backend/metal/kernels/steel/utils.h +42 -0
  453. data/mlx/mlx/backend/metal/kernels/ternary.h +145 -0
  454. data/mlx/mlx/backend/metal/kernels/ternary.metal +48 -0
  455. data/mlx/mlx/backend/metal/kernels/ternary_ops.h +10 -0
  456. data/mlx/mlx/backend/metal/kernels/unary.h +63 -0
  457. data/mlx/mlx/backend/metal/kernels/unary.metal +115 -0
  458. data/mlx/mlx/backend/metal/kernels/unary_ops.h +454 -0
  459. data/mlx/mlx/backend/metal/kernels/utils.h +445 -0
  460. data/mlx/mlx/backend/metal/kernels.h +375 -0
  461. data/mlx/mlx/backend/metal/logsumexp.cpp +95 -0
  462. data/mlx/mlx/backend/metal/make_compiled_preamble.sh +120 -0
  463. data/mlx/mlx/backend/metal/matmul.cpp +2572 -0
  464. data/mlx/mlx/backend/metal/matmul.h +144 -0
  465. data/mlx/mlx/backend/metal/metal.cpp +50 -0
  466. data/mlx/mlx/backend/metal/metal.h +25 -0
  467. data/mlx/mlx/backend/metal/no_metal.cpp +42 -0
  468. data/mlx/mlx/backend/metal/nojit_kernels.cpp +414 -0
  469. data/mlx/mlx/backend/metal/normalization.cpp +433 -0
  470. data/mlx/mlx/backend/metal/primitives.cpp +242 -0
  471. data/mlx/mlx/backend/metal/quantized.cpp +1651 -0
  472. data/mlx/mlx/backend/metal/reduce.cpp +1038 -0
  473. data/mlx/mlx/backend/metal/reduce.h +41 -0
  474. data/mlx/mlx/backend/metal/resident.cpp +100 -0
  475. data/mlx/mlx/backend/metal/resident.h +32 -0
  476. data/mlx/mlx/backend/metal/rope.cpp +165 -0
  477. data/mlx/mlx/backend/metal/scaled_dot_product_attention.cpp +798 -0
  478. data/mlx/mlx/backend/metal/scan.cpp +145 -0
  479. data/mlx/mlx/backend/metal/scan.h +17 -0
  480. data/mlx/mlx/backend/metal/slicing.cpp +99 -0
  481. data/mlx/mlx/backend/metal/softmax.cpp +87 -0
  482. data/mlx/mlx/backend/metal/sort.cpp +368 -0
  483. data/mlx/mlx/backend/metal/ternary.cpp +160 -0
  484. data/mlx/mlx/backend/metal/ternary.h +21 -0
  485. data/mlx/mlx/backend/metal/unary.cpp +161 -0
  486. data/mlx/mlx/backend/metal/unary.h +21 -0
  487. data/mlx/mlx/backend/metal/utils.cpp +77 -0
  488. data/mlx/mlx/backend/metal/utils.h +99 -0
  489. data/mlx/mlx/backend/no_cpu/CMakeLists.txt +7 -0
  490. data/mlx/mlx/backend/no_cpu/compiled.cpp +24 -0
  491. data/mlx/mlx/backend/no_cpu/device_info.cpp +22 -0
  492. data/mlx/mlx/backend/no_cpu/primitives.cpp +146 -0
  493. data/mlx/mlx/backend/no_gpu/CMakeLists.txt +8 -0
  494. data/mlx/mlx/backend/no_gpu/allocator.cpp +134 -0
  495. data/mlx/mlx/backend/no_gpu/apple_memory.h +16 -0
  496. data/mlx/mlx/backend/no_gpu/device_info.cpp +22 -0
  497. data/mlx/mlx/backend/no_gpu/eval.cpp +24 -0
  498. data/mlx/mlx/backend/no_gpu/event.cpp +53 -0
  499. data/mlx/mlx/backend/no_gpu/fence.cpp +54 -0
  500. data/mlx/mlx/backend/no_gpu/linux_memory.h +22 -0
  501. data/mlx/mlx/backend/no_gpu/primitives.cpp +185 -0
  502. data/mlx/mlx/compile.cpp +1243 -0
  503. data/mlx/mlx/compile.h +45 -0
  504. data/mlx/mlx/compile_impl.h +70 -0
  505. data/mlx/mlx/device.cpp +72 -0
  506. data/mlx/mlx/device.h +56 -0
  507. data/mlx/mlx/distributed/CMakeLists.txt +14 -0
  508. data/mlx/mlx/distributed/distributed.cpp +197 -0
  509. data/mlx/mlx/distributed/distributed.h +61 -0
  510. data/mlx/mlx/distributed/distributed_impl.h +59 -0
  511. data/mlx/mlx/distributed/jaccl/CMakeLists.txt +12 -0
  512. data/mlx/mlx/distributed/jaccl/jaccl.cpp +178 -0
  513. data/mlx/mlx/distributed/jaccl/jaccl.h +12 -0
  514. data/mlx/mlx/distributed/jaccl/mesh.cpp +451 -0
  515. data/mlx/mlx/distributed/jaccl/mesh.h +122 -0
  516. data/mlx/mlx/distributed/jaccl/no_jaccl.cpp +20 -0
  517. data/mlx/mlx/distributed/jaccl/ring.cpp +692 -0
  518. data/mlx/mlx/distributed/jaccl/ring.h +178 -0
  519. data/mlx/mlx/distributed/jaccl/utils.cpp +329 -0
  520. data/mlx/mlx/distributed/jaccl/utils.h +342 -0
  521. data/mlx/mlx/distributed/mpi/CMakeLists.txt +5 -0
  522. data/mlx/mlx/distributed/mpi/mpi.cpp +501 -0
  523. data/mlx/mlx/distributed/mpi/mpi.h +12 -0
  524. data/mlx/mlx/distributed/mpi/mpi_declarations.h +28 -0
  525. data/mlx/mlx/distributed/mpi/no_mpi.cpp +20 -0
  526. data/mlx/mlx/distributed/nccl/CMakeLists.txt +26 -0
  527. data/mlx/mlx/distributed/nccl/nccl.cpp +443 -0
  528. data/mlx/mlx/distributed/nccl/nccl.h +12 -0
  529. data/mlx/mlx/distributed/nccl/nccl_stub/CMakeLists.txt +1 -0
  530. data/mlx/mlx/distributed/nccl/nccl_stub/nccl_stubs.cpp +54 -0
  531. data/mlx/mlx/distributed/nccl/no_nccl.cpp +20 -0
  532. data/mlx/mlx/distributed/ops.cpp +186 -0
  533. data/mlx/mlx/distributed/ops.h +57 -0
  534. data/mlx/mlx/distributed/primitives.cpp +95 -0
  535. data/mlx/mlx/distributed/primitives.h +156 -0
  536. data/mlx/mlx/distributed/reduction_ops.h +38 -0
  537. data/mlx/mlx/distributed/ring/CMakeLists.txt +5 -0
  538. data/mlx/mlx/distributed/ring/no_ring.cpp +20 -0
  539. data/mlx/mlx/distributed/ring/ring.cpp +870 -0
  540. data/mlx/mlx/distributed/ring/ring.h +12 -0
  541. data/mlx/mlx/distributed/utils.cpp +206 -0
  542. data/mlx/mlx/distributed/utils.h +67 -0
  543. data/mlx/mlx/dtype.cpp +197 -0
  544. data/mlx/mlx/dtype.h +116 -0
  545. data/mlx/mlx/dtype_utils.cpp +42 -0
  546. data/mlx/mlx/dtype_utils.h +119 -0
  547. data/mlx/mlx/einsum.cpp +941 -0
  548. data/mlx/mlx/einsum.h +23 -0
  549. data/mlx/mlx/event.h +58 -0
  550. data/mlx/mlx/export.cpp +1130 -0
  551. data/mlx/mlx/export.h +137 -0
  552. data/mlx/mlx/export_impl.h +99 -0
  553. data/mlx/mlx/fast.cpp +941 -0
  554. data/mlx/mlx/fast.h +103 -0
  555. data/mlx/mlx/fast_primitives.h +427 -0
  556. data/mlx/mlx/fence.h +39 -0
  557. data/mlx/mlx/fft.cpp +262 -0
  558. data/mlx/mlx/fft.h +159 -0
  559. data/mlx/mlx/graph_utils.cpp +175 -0
  560. data/mlx/mlx/graph_utils.h +67 -0
  561. data/mlx/mlx/io/CMakeLists.txt +25 -0
  562. data/mlx/mlx/io/gguf.cpp +470 -0
  563. data/mlx/mlx/io/gguf.h +20 -0
  564. data/mlx/mlx/io/gguf_quants.cpp +164 -0
  565. data/mlx/mlx/io/load.cpp +397 -0
  566. data/mlx/mlx/io/load.h +175 -0
  567. data/mlx/mlx/io/no_gguf.cpp +20 -0
  568. data/mlx/mlx/io/no_safetensors.cpp +37 -0
  569. data/mlx/mlx/io/safetensors.cpp +234 -0
  570. data/mlx/mlx/io.h +61 -0
  571. data/mlx/mlx/linalg.cpp +708 -0
  572. data/mlx/mlx/linalg.h +115 -0
  573. data/mlx/mlx/memory.h +80 -0
  574. data/mlx/mlx/mlx.h +25 -0
  575. data/mlx/mlx/ops.cpp +6094 -0
  576. data/mlx/mlx/ops.h +1610 -0
  577. data/mlx/mlx/primitives.cpp +5850 -0
  578. data/mlx/mlx/primitives.h +2525 -0
  579. data/mlx/mlx/random.cpp +492 -0
  580. data/mlx/mlx/random.h +283 -0
  581. data/mlx/mlx/scheduler.cpp +73 -0
  582. data/mlx/mlx/scheduler.h +189 -0
  583. data/mlx/mlx/small_vector.h +540 -0
  584. data/mlx/mlx/stream.h +42 -0
  585. data/mlx/mlx/threadpool.h +133 -0
  586. data/mlx/mlx/transforms.cpp +1065 -0
  587. data/mlx/mlx/transforms.h +231 -0
  588. data/mlx/mlx/transforms_impl.h +88 -0
  589. data/mlx/mlx/types/bf16.h +187 -0
  590. data/mlx/mlx/types/complex.h +113 -0
  591. data/mlx/mlx/types/fp16.h +234 -0
  592. data/mlx/mlx/types/half_types.h +58 -0
  593. data/mlx/mlx/types/limits.h +70 -0
  594. data/mlx/mlx/utils.cpp +302 -0
  595. data/mlx/mlx/utils.h +174 -0
  596. data/mlx/mlx/version.cpp +11 -0
  597. data/mlx/mlx/version.h +22 -0
  598. data/mlx/mlx.pc.in +52 -0
  599. metadata +643 -0
data/mlx/mlx/fast.cpp ADDED
@@ -0,0 +1,941 @@
1
+ // Copyright © 2023-2024 Apple Inc.
2
+ #include <cassert>
3
+ #include <numeric>
4
+
5
+ #include "mlx/fast.h"
6
+ #include "mlx/fast_primitives.h"
7
+ #include "mlx/ops.h"
8
+ #include "mlx/transforms.h"
9
+ #include "mlx/transforms_impl.h"
10
+
11
+ namespace mlx::core::fast {
12
+
13
+ std::vector<array> Custom::vjp(
14
+ const std::vector<array>& primals,
15
+ const std::vector<array>& cotangents,
16
+ const std::vector<int>& argnums,
17
+ const std::vector<array>& outputs) {
18
+ auto [_, vjps] = mlx::core::vjp(fallback_, primals, cotangents);
19
+ std::vector<array> vjp_outs;
20
+ for (int i = 0, j = 0; i < vjps.size(); ++i) {
21
+ if (j < argnums.size() && i == argnums[j]) {
22
+ vjp_outs.push_back(vjps[i]);
23
+ j++;
24
+ }
25
+ }
26
+ return vjp_outs;
27
+ }
28
+
29
+ std::vector<array> Custom::jvp(
30
+ const std::vector<array>& primals,
31
+ const std::vector<array>& tangents,
32
+ const std::vector<int>& argnums) {
33
+ std::vector<array> all_tangents;
34
+ for (int i = 0, j = 0; i < primals.size(); i++) {
35
+ if (j < argnums.size() && i == argnums[j]) {
36
+ all_tangents.emplace_back(tangents[j++]);
37
+ } else {
38
+ all_tangents.emplace_back(zeros_like(primals[i]));
39
+ }
40
+ }
41
+ auto [_, jvps] = mlx::core::jvp(fallback_, primals, all_tangents);
42
+ return jvps;
43
+ }
44
+
45
+ std::pair<std::vector<array>, std::vector<int>> Custom::vmap(
46
+ const std::vector<array>& inputs,
47
+ const std::vector<int>& axes) {
48
+ auto outputs = mlx::core::vmap(fallback_, axes)(inputs);
49
+ auto out_axes = std::vector<int>(outputs.size(), 0);
50
+ return {outputs, out_axes};
51
+ }
52
+
53
+ array rms_norm(
54
+ const array& x,
55
+ const std::optional<array>& weight,
56
+ float eps,
57
+ StreamOrDevice s_ /* = {} */) {
58
+ bool has_weight = weight.has_value();
59
+
60
+ if (x.ndim() == 0) {
61
+ std::ostringstream msg;
62
+ msg << "[rms_norm] Input must have at least 1 dimension but got input with "
63
+ "0 dimensions.";
64
+ throw std::invalid_argument(msg.str());
65
+ }
66
+ if (has_weight) {
67
+ if ((*weight).ndim() != 1) {
68
+ std::ostringstream msg;
69
+ msg << "[rms_norm] (*weight) must have 1 dimension but has "
70
+ << (*weight).ndim() << " dimensions.";
71
+ throw std::invalid_argument(msg.str());
72
+ }
73
+ if ((*weight).size() != x.shape(-1)) {
74
+ std::ostringstream msg;
75
+ msg << "[rms_norm] (*weight) must have the same size as the last dimension of"
76
+ " x but has "
77
+ << (*weight).size() << " elements.";
78
+ throw std::invalid_argument(msg.str());
79
+ }
80
+ }
81
+
82
+ auto out_type = (weight.has_value()) ? result_type(x, (*weight)) : x.dtype();
83
+ if (!issubdtype(out_type, floating)) {
84
+ std::ostringstream msg;
85
+ msg << "[rms_norm] Received unsupported type " << out_type << ".";
86
+ throw std::invalid_argument(msg.str());
87
+ }
88
+
89
+ auto s = to_stream(s_);
90
+ auto fallback =
91
+ [has_weight, eps, out_type, s](const std::vector<array>& inputs) {
92
+ auto x = astype(inputs[0], float32, s);
93
+ x = multiply(
94
+ x,
95
+ rsqrt(
96
+ add(mean(square(x, s), -1, /* keepdims */ true, s),
97
+ array(eps, float32),
98
+ s),
99
+ s),
100
+ s);
101
+ x = astype(x, out_type, s);
102
+
103
+ if (has_weight) {
104
+ x = multiply(x, inputs[1], s);
105
+ }
106
+
107
+ return std::vector<array>{x};
108
+ };
109
+
110
+ auto passed_weight =
111
+ (has_weight) ? astype(*weight, out_type, s) : array(1, out_type);
112
+
113
+ if (!RMSNorm::use_fallback(s)) {
114
+ return array(
115
+ x.shape(),
116
+ out_type,
117
+ std::make_shared<RMSNorm>(s, fallback, eps),
118
+ {astype(x, out_type, s), passed_weight});
119
+ }
120
+ return fallback({x, passed_weight})[0];
121
+ }
122
+
123
+ std::vector<array> RMSNorm::vjp(
124
+ const std::vector<array>& primals,
125
+ const std::vector<array>& cotangents,
126
+ const std::vector<int>& argnums,
127
+ const std::vector<array>& outputs) {
128
+ assert(primals.size() == 2);
129
+ assert(outputs.size() == 1);
130
+ assert(cotangents.size() == 1);
131
+
132
+ auto s = stream();
133
+ auto fallback = [eps = eps_, s](const std::vector<array>& inputs) {
134
+ auto& x = inputs[0];
135
+ auto& w = inputs[1];
136
+ auto& g = inputs[2];
137
+
138
+ std::vector<array> vjps;
139
+
140
+ auto n = rsqrt(
141
+ add(mean(square(x, s), /* axis= */ -1, /* keepdims= */ true, s),
142
+ array(eps, x.dtype()),
143
+ s),
144
+ s);
145
+ auto n3 = power(n, array(3, x.dtype()), s);
146
+
147
+ // df/dx
148
+ auto gw = multiply(g, w, s);
149
+ auto t = mean(multiply(gw, x, s), /* axis= */ -1, /* keepdims= */ true, s);
150
+ t = multiply(multiply(x, t, s), n3, s);
151
+ vjps.push_back(subtract(multiply(gw, n, s), t, s));
152
+
153
+ // df/dw
154
+ std::vector<int> axes(g.ndim() - 1);
155
+ std::iota(axes.begin(), axes.end(), 0);
156
+ if (w.ndim() == 0) {
157
+ vjps.push_back(zeros_like(w, s));
158
+ } else {
159
+ vjps.push_back(sum(
160
+ multiply(g, multiply(x, n, s), s), axes, /* keepdims= */ false, s));
161
+ }
162
+
163
+ return vjps;
164
+ };
165
+
166
+ auto vjps = array::make_arrays(
167
+ {primals[0].shape(), primals[1].shape()},
168
+ {primals[0].dtype(), primals[1].dtype()},
169
+ std::make_shared<RMSNormVJP>(s, fallback, eps_),
170
+ {primals[0], primals[1], cotangents[0]});
171
+
172
+ std::vector<array> returned_vjps;
173
+ for (auto& arg : argnums) {
174
+ returned_vjps.push_back(std::move(vjps[arg]));
175
+ }
176
+
177
+ return returned_vjps;
178
+ }
179
+
180
+ bool RMSNorm::is_equivalent(const Primitive& other) const {
181
+ const RMSNorm& a_other = static_cast<const RMSNorm&>(other);
182
+ return eps_ == a_other.eps_;
183
+ }
184
+
185
+ bool RMSNormVJP::is_equivalent(const Primitive& other) const {
186
+ const RMSNormVJP& a_other = static_cast<const RMSNormVJP&>(other);
187
+ return eps_ == a_other.eps_;
188
+ }
189
+
190
+ array layer_norm(
191
+ const array& x,
192
+ const std::optional<array>& weight,
193
+ const std::optional<array>& bias,
194
+ float eps,
195
+ StreamOrDevice s_ /* = {} */) {
196
+ bool has_weight = weight.has_value();
197
+ bool has_bias = bias.has_value();
198
+
199
+ if (x.ndim() == 0) {
200
+ std::ostringstream msg;
201
+ msg << "[layer_norm] Input must have at least 1 dimension but got input with "
202
+ "0 dimensions.";
203
+ throw std::invalid_argument(msg.str());
204
+ }
205
+ if (has_weight) {
206
+ if ((*weight).ndim() != 1) {
207
+ std::ostringstream msg;
208
+ msg << "[layer_norm] weight must have 1 dimension but has "
209
+ << (*weight).ndim() << " dimensions.";
210
+ throw std::invalid_argument(msg.str());
211
+ }
212
+ if ((*weight).size() != x.shape(-1)) {
213
+ std::ostringstream msg;
214
+ msg << "[layer_norm] weight must have the same size as the last dimension of"
215
+ " x but has "
216
+ << (*weight).size() << " elements.";
217
+ throw std::invalid_argument(msg.str());
218
+ }
219
+ }
220
+ if (has_bias) {
221
+ if ((*bias).ndim() != 1) {
222
+ std::ostringstream msg;
223
+ msg << "[layer_norm] bias must have 1 dimension but has "
224
+ << (*bias).ndim() << " dimensions.";
225
+ throw std::invalid_argument(msg.str());
226
+ }
227
+ if ((*bias).size() != x.shape(-1)) {
228
+ std::ostringstream msg;
229
+ msg << "[layer_norm] bias must have the same size as the last dimension of"
230
+ " x but has "
231
+ << (*bias).size() << " elements.";
232
+ throw std::invalid_argument(msg.str());
233
+ }
234
+ }
235
+
236
+ auto out_type = (has_weight)
237
+ ? ((has_bias) ? result_type(x, *weight, *bias) : result_type(x, *weight))
238
+ : x.dtype();
239
+ if (!issubdtype(out_type, floating)) {
240
+ std::ostringstream msg;
241
+ msg << "[layer_norm] Received unsupported type " << out_type << ".";
242
+ throw std::invalid_argument(msg.str());
243
+ }
244
+
245
+ auto s = to_stream(s_);
246
+ auto fallback = [has_weight, has_bias, eps, out_type, s](
247
+ const std::vector<array>& inputs) {
248
+ auto x = astype(inputs[0], float32, s);
249
+
250
+ auto mu = mean(x, /* axis= */ -1, /* keepdims= */ true, s);
251
+ auto xc = subtract(x, mu, s);
252
+ auto v = mean(square(xc, s), /* axis= */ -1, /* keepdims= */ true, s);
253
+
254
+ x = multiply(xc, rsqrt(add(v, array(eps, float32), s), s));
255
+ x = astype(x, out_type, s);
256
+
257
+ // If the LN is affine then transform x according to the weight and bias
258
+ if (has_weight) {
259
+ x = multiply(x, inputs[1], s);
260
+ }
261
+ if (has_bias) {
262
+ x = add(x, inputs[2], s);
263
+ }
264
+
265
+ return std::vector<array>{x};
266
+ };
267
+
268
+ auto passed_weight =
269
+ (has_weight) ? astype(*weight, out_type, s) : array(1, out_type);
270
+ auto passed_bias =
271
+ (has_bias) ? astype(*bias, out_type, s) : array(0, out_type);
272
+
273
+ if (!LayerNorm::use_fallback(s)) {
274
+ return array(
275
+ x.shape(),
276
+ out_type,
277
+ std::make_shared<LayerNorm>(s, fallback, eps),
278
+ {astype(x, out_type, s), passed_weight, passed_bias});
279
+ }
280
+ return fallback({x, passed_weight, passed_bias})[0];
281
+ }
282
+
283
+ std::vector<array> LayerNorm::vjp(
284
+ const std::vector<array>& primals,
285
+ const std::vector<array>& cotangents,
286
+ const std::vector<int>& argnums,
287
+ const std::vector<array>& outputs) {
288
+ assert(primals.size() == 3);
289
+ assert(outputs.size() == 1);
290
+ assert(cotangents.size() == 1);
291
+
292
+ auto s = stream();
293
+ auto fallback = [eps = eps_, s](const std::vector<array>& inputs) {
294
+ auto& x = inputs[0];
295
+ auto& w = inputs[1];
296
+ auto& b = inputs[2];
297
+ auto& g = inputs[3];
298
+
299
+ std::vector<array> vjps;
300
+
301
+ auto norm = number_of_elements(x, {-1}, true, x.dtype(), s);
302
+ auto sumx = sum(x, /* axis= */ -1, /* keepdims= */ true, s);
303
+ auto sumx2 = sum(square(x, s), /* axis= */ -1, /* keepdims= */ true, s);
304
+ auto mu = multiply(sumx, norm, s);
305
+ auto mu2 = multiply(sumx2, norm, s);
306
+ auto var = subtract(mu2, square(mu, s), s);
307
+ auto n = rsqrt(add(var, array(eps, x.dtype()), s));
308
+ auto n3 = power(n, array(3, x.dtype()), s);
309
+ auto x_c = subtract(x, mu, s);
310
+
311
+ // df/dx
312
+ auto wg = multiply(w, g, s);
313
+ auto sumwg =
314
+ multiply(sum(wg, /* axis= */ -1, /* keepdims= */ true, s), norm, s);
315
+ auto sumwgxc = multiply(
316
+ sum(multiply(wg, x_c, s), /* axis= */ -1, /* keepdims= */ true, s),
317
+ norm,
318
+ s);
319
+ auto t1 = multiply(multiply(x_c, sumwgxc, s), n3, s);
320
+ auto t2 = multiply(subtract(wg, sumwg, s), n, s);
321
+ vjps.push_back(subtract(t2, t1, s));
322
+
323
+ // df/dw
324
+ std::vector<int> axes(g.ndim() - 1);
325
+ std::iota(axes.begin(), axes.end(), 0);
326
+ if (w.ndim() == 0) {
327
+ vjps.push_back(zeros_like(w, s));
328
+ } else {
329
+ vjps.push_back(sum(
330
+ multiply(g, multiply(x_c, n, s), s), axes, /* keepdims= */ false, s));
331
+ }
332
+
333
+ // df/db
334
+ if (b.ndim() == 0) {
335
+ vjps.push_back(zeros_like(w, s));
336
+ } else {
337
+ vjps.push_back(sum(g, axes, /* keepdims= */ false, s));
338
+ }
339
+
340
+ return vjps;
341
+ };
342
+
343
+ auto vjps = array::make_arrays(
344
+ {primals[0].shape(), primals[1].shape(), primals[2].shape()},
345
+ {primals[0].dtype(), primals[1].dtype(), primals[2].dtype()},
346
+ std::make_shared<LayerNormVJP>(s, fallback, eps_),
347
+ {primals[0], primals[1], primals[2], cotangents[0]});
348
+
349
+ std::vector<array> returned_vjps;
350
+ for (auto& arg : argnums) {
351
+ returned_vjps.push_back(std::move(vjps[arg]));
352
+ }
353
+
354
+ return returned_vjps;
355
+ }
356
+
357
+ bool LayerNorm::is_equivalent(const Primitive& other) const {
358
+ const LayerNorm& a_other = static_cast<const LayerNorm&>(other);
359
+ return eps_ == a_other.eps_;
360
+ }
361
+
362
+ bool LayerNormVJP::is_equivalent(const Primitive& other) const {
363
+ const LayerNormVJP& a_other = static_cast<const LayerNormVJP&>(other);
364
+ return eps_ == a_other.eps_;
365
+ }
366
+
367
+ array rope(
368
+ std::vector<array> inputs,
369
+ int dims,
370
+ bool traditional,
371
+ float base,
372
+ float scale,
373
+ bool forward,
374
+ StreamOrDevice s) {
375
+ auto& x = inputs[0];
376
+ auto& offset = inputs[1];
377
+ if (x.ndim() < 3) {
378
+ std::ostringstream msg;
379
+ msg << "[rope] Input must have at least 3 dimensions but got input with "
380
+ << x.ndim() << " dimensions.";
381
+ throw std::invalid_argument(msg.str());
382
+ }
383
+ if (!issubdtype(x.dtype(), floating)) {
384
+ std::ostringstream msg;
385
+ msg << "[rope] Input must be a floating type but got " << x.dtype() << ".";
386
+ throw std::invalid_argument(msg.str());
387
+ }
388
+ if (offset.ndim() > 1) {
389
+ std::ostringstream msg;
390
+ msg << "[rope] offset must have at most one dimension but has shape "
391
+ << offset.shape() << ".";
392
+ throw std::invalid_argument(msg.str());
393
+ }
394
+ if (offset.size() != 1 && offset.size() != x.shape(0)) {
395
+ std::ostringstream msg;
396
+ msg << "[rope] offset must be a scalar or vector with " << x.shape(0)
397
+ << " elements but has shape " << offset.shape() << ".";
398
+ throw std::invalid_argument(msg.str());
399
+ }
400
+ if (!issubdtype(offset.dtype(), integer)) {
401
+ std::ostringstream msg;
402
+ msg << "[rope] offset must be an integer but got type " << offset.dtype()
403
+ << ".";
404
+ throw std::invalid_argument(msg.str());
405
+ }
406
+ if (offset.dtype().size() != 4) {
407
+ inputs[1] = astype(offset, int32, s);
408
+ }
409
+ if (inputs.size() == 3 &&
410
+ (inputs[2].ndim() != 1 || inputs[2].shape(0) != dims / 2)) {
411
+ std::ostringstream msg;
412
+ msg << "[rope] freqs must be one dimensional with size " << dims / 2
413
+ << " but got shape " << inputs[2].shape() << ".";
414
+ throw std::invalid_argument(msg.str());
415
+ }
416
+
417
+ auto fallback = [dims, traditional, base, scale, forward, s](
418
+ std::vector<array> inputs) {
419
+ auto x = inputs[0];
420
+ auto shape = x.shape();
421
+ if (x.ndim() == 3) {
422
+ x = expand_dims(x, 1, s);
423
+ } else if (x.ndim() > 4) {
424
+ x = flatten(x, 1, 1 + (x.ndim() - 4), s);
425
+ }
426
+
427
+ auto B = x.shape(0);
428
+ auto N = x.shape(1);
429
+ auto T = x.shape(2);
430
+ auto t = x.dtype();
431
+ // Compute sines and cosines
432
+ auto half_dims = dims / 2;
433
+ auto offset = inputs[1];
434
+ if (offset.size() > 1) {
435
+ offset = expand_dims(offset, {-1, -2}, s);
436
+ }
437
+ auto positions = multiply(
438
+ add(arange(x.shape(2), float32, s), offset, s),
439
+ array(scale, float32),
440
+ s);
441
+
442
+ auto default_inv_freqs = [&s, base, half_dims]() {
443
+ return exp(
444
+ multiply(
445
+ arange(0, -half_dims, -1, float32, s),
446
+ array(std::log(base) / half_dims, float32),
447
+ s),
448
+ s);
449
+ };
450
+
451
+ auto inv_freqs =
452
+ inputs.size() == 3 ? reciprocal(inputs[2], s) : default_inv_freqs();
453
+ auto theta = multiply(expand_dims(positions, -1, s), inv_freqs, s);
454
+ auto coss = astype(cos(theta, s), t, s);
455
+ auto sins = astype(sin(theta, s), t, s);
456
+
457
+ auto apply_rope = [forward, s](
458
+ const array& x1,
459
+ const array& x2,
460
+ const array& coss,
461
+ const array& sins) {
462
+ std::vector<array> outs;
463
+ if (forward) {
464
+ outs.push_back(
465
+ subtract(multiply(x1, coss, s), multiply(x2, sins, s), s));
466
+ outs.push_back(add(multiply(x1, sins, s), multiply(x2, coss, s), s));
467
+ } else {
468
+ outs.push_back(add(multiply(x2, sins, s), multiply(x1, coss, s), s));
469
+ outs.push_back(
470
+ subtract(multiply(x2, coss, s), multiply(x1, sins, s), s));
471
+ }
472
+ return outs;
473
+ };
474
+
475
+ if (traditional) {
476
+ auto x1 = slice(x, {0, 0, 0, 0}, {B, N, T, dims}, {1, 1, 1, 2}, s);
477
+ auto x2 = slice(x, {0, 0, 0, 1}, {B, N, T, dims}, {1, 1, 1, 2}, s);
478
+ auto outs = apply_rope(x1, x2, coss, sins);
479
+ for (auto& o : outs) {
480
+ o = expand_dims(o, -1, s);
481
+ }
482
+ auto out = reshape(concatenate(outs, -1, s), {B, N, T, dims}, s);
483
+ if (dims < x.shape(-1)) {
484
+ out =
485
+ concatenate({out, slice(x, {0, 0, 0, dims}, x.shape(), s)}, -1, s);
486
+ }
487
+ return std::vector<array>{reshape(out, shape, s)};
488
+ } else {
489
+ auto out_s = x.shape();
490
+ out_s.back() = half_dims;
491
+ auto x1 = slice(x, {0, 0, 0, 0}, out_s, s);
492
+ out_s.back() = dims;
493
+ auto x2 = slice(x, {0, 0, 0, half_dims}, out_s, s);
494
+
495
+ auto outs = apply_rope(x1, x2, coss, sins);
496
+ if (dims < x.shape(-1)) {
497
+ outs.push_back(slice(x, {0, 0, 0, dims}, x.shape(), s));
498
+ }
499
+ return std::vector<array>{reshape(concatenate(outs, -1, s), shape, s)};
500
+ }
501
+ };
502
+ auto stream = to_stream(s);
503
+ if (!RoPE::use_fallback(stream)) {
504
+ return array(
505
+ x.shape(),
506
+ x.dtype(),
507
+ std::make_shared<RoPE>(
508
+ stream, fallback, dims, traditional, base, scale, forward),
509
+ std::move(inputs));
510
+ }
511
+ return fallback(std::move(inputs))[0];
512
+ }
513
+
514
+ array rope(
515
+ const array& x,
516
+ int dims,
517
+ bool traditional,
518
+ std::optional<float> base,
519
+ float scale,
520
+ const array& offset,
521
+ const std::optional<array>& freqs /* = std::nullopt */,
522
+ StreamOrDevice s /* = {} */) {
523
+ std::vector<array> inputs = {x, offset};
524
+ if (freqs) {
525
+ inputs.push_back(astype(*freqs, float32, s));
526
+ if (base) {
527
+ throw std::invalid_argument(
528
+ "[rope] Only one of base or freqs can have a value.");
529
+ }
530
+ } else if (!base) {
531
+ throw std::invalid_argument("[rope] Neither base nor freqs has a value.");
532
+ }
533
+ return rope(
534
+ std::move(inputs),
535
+ dims,
536
+ traditional,
537
+ base.has_value() ? *base : 1.0,
538
+ scale,
539
+ true,
540
+ s);
541
+ }
542
+
543
+ array rope(
544
+ const array& x,
545
+ int dims,
546
+ bool traditional,
547
+ std::optional<float> base,
548
+ float scale,
549
+ int offset,
550
+ const std::optional<array>& freqs /* = std::nullopt */,
551
+ StreamOrDevice s /* = {} */) {
552
+ return rope(
553
+ x, dims, traditional, base, scale, array(offset, int32), freqs, s);
554
+ }
555
+
556
+ std::vector<array> RoPE::vjp(
557
+ const std::vector<array>& primals,
558
+ const std::vector<array>& cotangents,
559
+ const std::vector<int>& argnums,
560
+ const std::vector<array>& outputs) {
561
+ auto s = stream();
562
+ auto fallback = [dims = dims_,
563
+ traditional = traditional_,
564
+ base = base_,
565
+ scale = scale_,
566
+ forward = forward_,
567
+ s](std::vector<array> inputs) {
568
+ return std::vector<array>{
569
+ rope(std::move(inputs), dims, traditional, base, scale, !forward, s)};
570
+ };
571
+ if (argnums.size() > 1 || argnums[0] != 0) {
572
+ throw std::invalid_argument(
573
+ "[RoPE::vjp] vjp for offset or frequencies not supported");
574
+ }
575
+ auto inputs = std::vector<array>{cotangents[0], primals[1]};
576
+ if (primals.size() == 3) {
577
+ inputs.push_back(primals[2]);
578
+ }
579
+ return {array(
580
+ cotangents[0].shape(),
581
+ cotangents[0].dtype(),
582
+ std::make_shared<RoPE>(
583
+ s, fallback, dims_, traditional_, base_, scale_, !forward_),
584
+ std::move(inputs))};
585
+ }
586
+
587
+ bool RoPE::is_equivalent(const Primitive& other) const {
588
+ const RoPE& a_other = static_cast<const RoPE&>(other);
589
+ return (
590
+ dims_ == a_other.dims_ && base_ == a_other.base_ &&
591
+ scale_ == a_other.scale_ && traditional_ == a_other.traditional_ &&
592
+ forward_ == a_other.forward_);
593
+ }
594
+
595
+ /** Computes: O = softmax(Q @ K.T) @ V **/
596
+ array scaled_dot_product_attention(
597
+ const array& queries,
598
+ const array& keys,
599
+ const array& values,
600
+ const float scale,
601
+ const std::string& mask_mode /* = "" */,
602
+ std::optional<array> mask_arr /* = {} */,
603
+ const std::optional<array>& sinks /* = {} */,
604
+ StreamOrDevice s /* = {}*/) {
605
+ for (const auto& tensor : {queries, keys, values}) {
606
+ if (tensor.ndim() != 4) {
607
+ std::ostringstream msg;
608
+ msg << "[scaled_dot_product_attention] input with shape "
609
+ << tensor.shape() << " expected to be rank 4";
610
+ throw std::invalid_argument(msg.str());
611
+ }
612
+ }
613
+ // Check valid mask
614
+ if (mask_mode != "" && mask_mode != "causal" && mask_mode != "array") {
615
+ std::ostringstream msg;
616
+ msg << "[scaled_dot_product_attention] Invalid mask_mode " << mask_mode
617
+ << ". mask_mode must be 'causal', 'array' or ''.";
618
+ throw std::invalid_argument(msg.str());
619
+ }
620
+
621
+ bool do_causal = false;
622
+ bool has_mask = false;
623
+ bool has_arr_mask = false;
624
+ bool has_bool_mask = false;
625
+
626
+ if (mask_mode == "causal") {
627
+ has_mask = true;
628
+ do_causal = true;
629
+
630
+ if (mask_arr) {
631
+ std::ostringstream msg;
632
+ msg << "[scaled_dot_product_attention] Invalid mask_arr for mask_mode "
633
+ << "'casusal'. No array mask should be passed.";
634
+ throw std::invalid_argument(msg.str());
635
+ }
636
+ } else if (mask_arr) {
637
+ has_mask = true;
638
+ has_arr_mask = true;
639
+ has_bool_mask = mask_arr->dtype() == bool_;
640
+ }
641
+
642
+ if (has_arr_mask && mask_arr->ndim() > 4) {
643
+ std::ostringstream msg;
644
+ msg << "[scaled_dot_product_attention] the mask with shape "
645
+ << mask_arr->shape() << " expected to have at most rank 4.";
646
+ throw std::invalid_argument(msg.str());
647
+ }
648
+
649
+ const size_t batch_dim = queries.shape(0);
650
+ for (const auto& tensor : {keys, values}) {
651
+ if (tensor.shape(0) != batch_dim) {
652
+ std::ostringstream msg;
653
+ msg << "[scaled_dot_product_attention] mismatching batch dimension for input with shape "
654
+ << tensor.shape() << ".";
655
+ throw std::invalid_argument(msg.str());
656
+ }
657
+ }
658
+
659
+ // Q, K must have matching last dims (d_k aka 'head_dim');
660
+ if (queries.shape(-1) != keys.shape(-1)) {
661
+ std::ostringstream msg;
662
+ msg << "[scaled_dot_product_attention] query, keys expected to have matching last dimension; found query shape "
663
+ << queries.shape() << " for keys shape " << keys.shape() << ".";
664
+ throw std::invalid_argument(msg.str());
665
+ }
666
+
667
+ // K, V must have matching number of heads (n_kv_heads);
668
+ auto n_q_heads = queries.shape(-3);
669
+ auto n_kv_heads = keys.shape(-3);
670
+
671
+ if (keys.shape(-3) != values.shape(-3)) {
672
+ std::ostringstream msg;
673
+ msg << "[scaled_dot_product_attention] keys, values expected to have matching n_kv_heads; found keys with n_heads "
674
+ << keys.shape(-3) << " for values with n_heads " << values.shape(-3)
675
+ << ".";
676
+ throw std::invalid_argument(msg.str());
677
+ }
678
+
679
+ // n_heads % n_kv_heads == 0; n_heads >= 1, n_kv_heads >= 1.
680
+ if (n_q_heads % n_kv_heads != 0) {
681
+ std::ostringstream msg;
682
+ msg << "[scaled_dot_product_attention] n_heads must be a multiple of n_kv_heads, found n_heads "
683
+ << n_q_heads << " for n_kv_heads " << n_kv_heads << ".";
684
+ throw std::invalid_argument(msg.str());
685
+ }
686
+
687
+ auto final_type = result_type(queries, keys, values);
688
+ if (!issubdtype(final_type, floating)) {
689
+ std::ostringstream msg;
690
+ msg << "[scaled_dot_product_attention] Received unsupported type "
691
+ << final_type << ".";
692
+ throw std::invalid_argument(msg.str());
693
+ }
694
+ bool has_sinks = sinks.has_value();
695
+
696
+ auto q = astype(queries, final_type, s);
697
+ auto k = astype(keys, final_type, s);
698
+ auto v = astype(values, final_type, s);
699
+
700
+ auto fallback = [scale,
701
+ n_q_heads,
702
+ n_kv_heads,
703
+ do_causal,
704
+ has_sinks,
705
+ has_arr_mask,
706
+ s](const std::vector<array>& inputs) {
707
+ auto q = multiply(array(scale, inputs[0].dtype()), inputs[0], s);
708
+ int n_repeats = n_q_heads / n_kv_heads;
709
+ auto k = inputs[1];
710
+ auto v = inputs[2];
711
+ if (n_repeats > 1) {
712
+ q = unflatten(q, 1, {n_kv_heads, n_repeats}, s);
713
+ k = expand_dims(k, 2, s);
714
+ v = expand_dims(v, 2, s);
715
+ }
716
+ auto scores = matmul(q, swapaxes(k, -1, -2, s), s);
717
+ if (has_arr_mask || do_causal) {
718
+ // Mask must be broadcast-compatible with [B, n_q_heads, L_q, L_kv]
719
+ auto make_or_fetch_mask = [&]() {
720
+ if (do_causal) {
721
+ int kL = k.shape(-2);
722
+ int qL = q.shape(-2);
723
+ int offset = kL - qL;
724
+ auto q_idx = arange(offset, qL + offset, s);
725
+ auto k_idx = arange(0, kL, s);
726
+ q_idx = expand_dims(q_idx, 1, s);
727
+ k_idx = expand_dims(k_idx, 0, s);
728
+ return greater_equal(q_idx, k_idx, s);
729
+ }
730
+ return inputs[3];
731
+ };
732
+ auto mask = make_or_fetch_mask();
733
+
734
+ if (n_repeats > 1 && mask.ndim() >= 3) {
735
+ if (mask.shape(-3) == 1) {
736
+ mask = expand_dims(mask, -3, s);
737
+ } else {
738
+ mask = unflatten(mask, -3, {n_kv_heads, n_repeats}, s);
739
+ }
740
+ }
741
+ if (mask.dtype() == bool_) {
742
+ scores = where(
743
+ mask, scores, array(finfo(scores.dtype()).min, scores.dtype()), s);
744
+ } else {
745
+ scores = add(scores, mask, s);
746
+ }
747
+ }
748
+ if (has_sinks) {
749
+ auto sinks = inputs.back();
750
+ // scores has shape B N_q N_k L_q L_k
751
+ sinks = expand_dims(sinks, {0, 2, 3}, s);
752
+ if (scores.ndim() == 5) {
753
+ sinks = unflatten(sinks, 1, {n_kv_heads, n_repeats}, s);
754
+ }
755
+ auto bsx_shape = scores.shape();
756
+ bsx_shape.back() = 1;
757
+ scores = concatenate({broadcast_to(sinks, bsx_shape, s), scores}, -1, s);
758
+ }
759
+ scores = softmax(scores, std::vector<int>{-1}, true, s);
760
+ if (has_sinks) {
761
+ // Slice off scores
762
+ auto start = Shape(scores.ndim(), 0);
763
+ start.back() = 1;
764
+ auto stop = scores.shape();
765
+ scores = slice(scores, std::move(start), std::move(stop), s);
766
+ }
767
+ auto out = matmul(scores, v, s);
768
+ if (n_repeats > 1) {
769
+ out = flatten(out, 1, 2, s);
770
+ }
771
+ return std::vector<array>{out};
772
+ };
773
+
774
+ auto stream = to_stream(s);
775
+ std::vector<array> inputs = {q, k, v};
776
+ if (has_arr_mask) {
777
+ // Check type
778
+ has_bool_mask = mask_arr->dtype() == bool_;
779
+ if (promote_types(mask_arr->dtype(), final_type) != final_type) {
780
+ std::ostringstream msg;
781
+ msg << "[scaled_dot_product_attention] Mask type must promote to output type "
782
+ << final_type << ".";
783
+ throw std::invalid_argument(msg.str());
784
+ } else if (!has_bool_mask) {
785
+ mask_arr = astype(*mask_arr, final_type, stream);
786
+ }
787
+ // Broadcast mask
788
+ auto mask_shape = queries.shape();
789
+ mask_shape.back() = keys.shape(-2);
790
+ inputs.push_back(broadcast_to(*mask_arr, mask_shape, stream));
791
+ }
792
+ if (has_sinks) {
793
+ if (promote_types(sinks->dtype(), final_type) != final_type) {
794
+ std::ostringstream msg;
795
+ msg << "[scaled_dot_product_attention] Type of sinks must promote to output type "
796
+ << final_type << ".";
797
+ throw std::invalid_argument(msg.str());
798
+ }
799
+ if (sinks->ndim() != 1 || sinks->shape(0) != n_q_heads) {
800
+ std::ostringstream msg;
801
+ msg << "[scaled_dot_product_attention] Received invalid shape for sinks "
802
+ << sinks->shape() << ".";
803
+ throw std::invalid_argument(msg.str());
804
+ }
805
+ inputs.push_back(astype(*sinks, final_type, stream));
806
+ }
807
+
808
+ bool is_training = detail::in_grad_tracing();
809
+ bool has_fast_vjp = !ScaledDotProductAttentionVJP::use_fallback(q, stream);
810
+ bool output_logsumexp = is_training && has_fast_vjp;
811
+ if (!ScaledDotProductAttention::use_fallback(
812
+ q,
813
+ k,
814
+ v,
815
+ has_mask,
816
+ has_arr_mask,
817
+ do_causal,
818
+ is_training,
819
+ output_logsumexp,
820
+ stream)) {
821
+ if (has_bool_mask && !ScaledDotProductAttention::supports_bool_mask()) {
822
+ // Convert bool mask to additive mask.
823
+ float inf = std::numeric_limits<float>::infinity();
824
+ array& mask = inputs[3];
825
+ mask = where(
826
+ mask,
827
+ full_like(mask, 0, final_type, s),
828
+ full_like(mask, -inf, final_type, s));
829
+ }
830
+ Shape out_shape{q.shape(0), q.shape(1), q.shape(2), v.shape(-1)};
831
+ auto primitive = std::make_shared<ScaledDotProductAttention>(
832
+ stream, fallback, scale, do_causal, has_sinks, output_logsumexp);
833
+ if (output_logsumexp) {
834
+ return array::make_arrays(
835
+ {std::move(out_shape), Shape{q.shape(0), q.shape(1), q.shape(2), 1}},
836
+ {final_type, float32},
837
+ primitive,
838
+ std::move(inputs))[0];
839
+ } else {
840
+ return array(
841
+ std::move(out_shape), final_type, primitive, std::move(inputs));
842
+ }
843
+ }
844
+ return fallback(std::move(inputs))[0];
845
+ }
846
+
847
+ std::vector<array> ScaledDotProductAttention::vjp(
848
+ const std::vector<array>& primals,
849
+ const std::vector<array>& cotangents,
850
+ const std::vector<int>& argnums,
851
+ const std::vector<array>& outputs) {
852
+ assert(primals.size() >= 3);
853
+ assert(cotangents.size() == outputs.size());
854
+
855
+ auto s = stream();
856
+ if (ScaledDotProductAttentionVJP::use_fallback(primals[0], s)) {
857
+ assert(outputs.size() == 1);
858
+ return Custom::vjp(primals, cotangents, argnums, outputs);
859
+ }
860
+
861
+ auto fallback = [sdpa = fallback_, s](const std::vector<array>& inputs) {
862
+ std::vector<array> primals(inputs.begin(), std::prev(inputs.end()));
863
+ auto [_, vjps] = mlx::core::vjp(sdpa, primals, {inputs.back()});
864
+ return vjps;
865
+ };
866
+
867
+ std::vector<Shape> shapes;
868
+ std::vector<Dtype> dtypes;
869
+ for (int i = 0; i < /* outputs size */ 3; ++i) {
870
+ shapes.push_back(primals[i].shape());
871
+ dtypes.push_back(primals[i].dtype());
872
+ }
873
+ auto primitive = std::make_shared<ScaledDotProductAttentionVJP>(
874
+ s, fallback, scale_, do_causal_, has_sinks_);
875
+ std::vector<array> inputs = primals;
876
+ inputs.push_back(outputs[0]);
877
+ inputs.push_back(outputs[1]);
878
+ inputs.push_back(cotangents[0]);
879
+ auto vjps = array::make_arrays(std::move(shapes), dtypes, primitive, inputs);
880
+
881
+ std::vector<array> returned_vjps;
882
+ for (int arg : argnums) {
883
+ if (arg >= 3) {
884
+ throw std::invalid_argument(
885
+ "[scale_dot_product_attention] Does not support VJP with respect "
886
+ " to mask or attention sinks.");
887
+ }
888
+ returned_vjps.push_back(std::move(vjps[arg]));
889
+ }
890
+ return returned_vjps;
891
+ }
892
+
893
+ bool ScaledDotProductAttention::is_equivalent(const Primitive& other) const {
894
+ const ScaledDotProductAttention& a_other =
895
+ static_cast<const ScaledDotProductAttention&>(other);
896
+ return scale_ == a_other.scale_ && do_causal_ == a_other.do_causal_ &&
897
+ has_sinks_ == a_other.has_sinks_ &&
898
+ output_logsumexp_ == a_other.output_logsumexp_;
899
+ }
900
+
901
+ bool ScaledDotProductAttentionVJP::is_equivalent(const Primitive& other) const {
902
+ const ScaledDotProductAttentionVJP& a_other =
903
+ static_cast<const ScaledDotProductAttentionVJP&>(other);
904
+ return scale_ == a_other.scale_ && do_causal_ == a_other.do_causal_ &&
905
+ has_sinks_ == a_other.has_sinks_;
906
+ }
907
+
908
+ bool Quantize::is_equivalent(const Primitive& other) const {
909
+ const Quantize& p_other = static_cast<const Quantize&>(other);
910
+ return (
911
+ p_other.group_size_ == group_size_ && p_other.bits_ == bits_ &&
912
+ p_other.mode_ == mode_ && p_other.dequantize_ == dequantize_);
913
+ }
914
+
915
+ std::vector<Shape> Quantize::output_shapes(const std::vector<array>& inputs) {
916
+ auto& w = inputs[0];
917
+ if (dequantize_) {
918
+ auto out_size = w.shape(-1) * 32 / bits_;
919
+ auto out_shape = w.shape();
920
+ out_shape.back() = out_size;
921
+ return {std::move(out_shape)};
922
+ } else {
923
+ auto wq_shape = w.shape();
924
+ wq_shape.back() = w.shape(-1) * bits_ / 32;
925
+ auto sshape = w.shape();
926
+ sshape.back() = w.shape(-1) / group_size_;
927
+ if (inputs.size() == 2) {
928
+ return {std::move(wq_shape), std::move(sshape)};
929
+ } else {
930
+ auto bshape = sshape;
931
+ return {std::move(wq_shape), std::move(sshape), std::move(bshape)};
932
+ }
933
+ }
934
+ }
935
+
936
+ bool ConvertFP8::is_equivalent(const Primitive& other) const {
937
+ const ConvertFP8& a_other = static_cast<const ConvertFP8&>(other);
938
+ return to_fp8_ == a_other.to_fp8_;
939
+ }
940
+
941
+ } // namespace mlx::core::fast