euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 233
|
3
|
+
:name: Lattice points on a circle
|
4
|
+
:url: http://projecteuler.net/problem=233
|
5
|
+
:content: "\r\n<p>Let <var>f</var>(<var>N</var>) be the number of points with integer
|
6
|
+
coordinates that are on a circle passing through (0,0), (<var>N</var>,0),(0,<var>N</var>),
|
7
|
+
and (<var>N</var>,<var>N</var>).</p>\r\n<p>It can be shown that <var>f</var>(10000) = 36.</p>\r\n\r\n<p>What
|
8
|
+
is the sum of all positive integers <var>N</var> <img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>11</sup>
|
10
|
+
such that <var>f</var>(<var>N</var>) = 420 ?</p>\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 234
|
3
|
+
:name: Semidivisible numbers
|
4
|
+
:url: http://projecteuler.net/problem=234
|
5
|
+
:content: "\r\n<p>For an integer <var>n</var> <img src=\"images/symbol_ge.gif\" width=\"10\"
|
6
|
+
height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 4, we define
|
7
|
+
the <i>lower prime square root</i> of <var>n</var>, denoted by lps(<var>n</var>),
|
8
|
+
as the largest prime <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
9
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><img src=\"images/symbol_radic.gif\"
|
10
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
11
|
+
and the <i>upper prime square root</i> of <var>n</var>, ups(<var>n</var>), as the
|
12
|
+
smallest prime <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\"
|
13
|
+
border=\"0\" style=\"vertical-align:middle;\"><img src=\"images/symbol_radic.gif\"
|
14
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.</p>\r\n<p>So,
|
15
|
+
for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37.<br>\r\nLet us
|
16
|
+
call an integer <var>n</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
|
17
|
+
alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 4 <i>semidivisible</i>,
|
18
|
+
if one of lps(<var>n</var>) and ups(<var>n</var>) divides <var>n</var>, but not
|
19
|
+
both.</p>\r\n\r\n<p>The sum of the semidivisible numbers not exceeding 15 is 30,
|
20
|
+
the numbers are 8, 10 and 12.<br> 15 is not semidivisible because it is a multiple
|
21
|
+
of both lps(15) = 3 and ups(15) = 5.<br>\r\nAs a further example, the sum of the
|
22
|
+
92 semidivisible numbers up to 1000 is 34825.</p>\r\n\r\n<p>What is the sum of all
|
23
|
+
semidivisible numbers not exceeding 999966663333 ?</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 235
|
3
|
+
:name: An Arithmetic Geometric sequence
|
4
|
+
:url: http://projecteuler.net/problem=235
|
5
|
+
:content: "\r\n<p>\r\nGiven is the arithmetic-geometric sequence u(<var>k</var>) =
|
6
|
+
(900-3<var>k</var>)<var>r</var><sup><var>k</var>-1</sup>.<br>\r\nLet s(<var>n</var>)
|
7
|
+
= Σ<sub><var>k</var>=1...<var>n</var></sub>u(<var>k</var>).\r\n</p>\r\n<p>\r\nFind
|
8
|
+
the value of <var>r</var> for which s(5000) = -600,000,000,000.\r\n</p>\r\n<p>\r\nGive
|
9
|
+
your answer rounded to 12 places behind the decimal point.\r\n</p>\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,32 @@
|
|
1
|
+
---
|
2
|
+
:id: 236
|
3
|
+
:name: Luxury Hampers
|
4
|
+
:url: http://projecteuler.net/problem=236
|
5
|
+
:content: "\r\n<style type=\"text/css\">\r\ntable.p236, table.p236 th, table.p236
|
6
|
+
td {\r\n border-width: 1px 1px 1px 1px;\r\n border-style: solid solid solid solid;\r\n
|
7
|
+
\ border-color: black black black black;\r\n text-align:right;\r\n -moz-border-radius:
|
8
|
+
0px 0px 0px 0px;\r\n}\r\ntable.p236 {\r\n border-spacing: 1px;\r\n border-collapse:
|
9
|
+
separate;\r\n background-color: rgb(224,237,252);\r\n}\r\ntable.p236 th, table.p236
|
10
|
+
td {\r\n padding: 1px 6px 1px 6px;\r\n}\r\ntable.p236 th { background-color: rgb(193,218,249);
|
11
|
+
}\r\ntable.p236 td { background-color: rgb(255,255,255); }\r\n</style>\n<p>Suppliers
|
12
|
+
'A' and 'B' provided the following numbers of products for the luxury hamper market:</p>\r\n\r\n<p></p>\n<center><table
|
13
|
+
class=\"p236\">\n<tr>\n<th>Product</th>\n<th style=\"text-align:center\">'A'</th>\n<th
|
14
|
+
style=\"text-align:center\">'B'</th>\n</tr>\n<tr>\n<td>Beluga Caviar</td>\n<td>5248</td>\n<td>640</td>\n</tr>\n<tr>\n<td>Christmas
|
15
|
+
Cake</td>\n<td>1312</td>\n<td>1888</td>\n</tr>\n<tr>\n<td>Gammon Joint</td>\n<td>2624</td>\n<td>3776</td>\n</tr>\n<tr>\n<td>Vintage
|
16
|
+
Port</td>\n<td>5760</td>\n<td>3776</td>\n</tr>\n<tr>\n<td>Champagne Truffles</td>\n<td>3936</td>\n<td>5664</td>\n</tr>\n</table></center>\r\n\r\n<p>Although
|
17
|
+
the suppliers try very hard to ship their goods in perfect condition, there is inevitably
|
18
|
+
some spoilage - <i>i.e.</i> products gone bad.</p>\r\n\r\n<p>The suppliers compare
|
19
|
+
their performance using two types of statistic:</p>\n<ul>\n<li>The five <i>per-product
|
20
|
+
spoilage rates</i> for each supplier are equal to the number of products gone bad
|
21
|
+
divided by the number of products supplied, for each of the five products in turn.</li>\r\n
|
22
|
+
\ <li>The <i>overall spoilage rate</i> for each supplier is equal to the total number
|
23
|
+
of products gone bad divided by the total number of products provided by that supplier.</li>\n</ul>\n<p>To
|
24
|
+
their surprise, the suppliers found that each of the five per-product spoilage rates
|
25
|
+
was worse (higher) for 'B' than for 'A' by the same factor (ratio of spoilage rates),
|
26
|
+
<var>m</var>>1; and yet, paradoxically, the overall spoilage rate was worse for
|
27
|
+
'A' than for 'B', also by a factor of <var>m</var>.</p>\r\n\r\n<p>There are thirty-five
|
28
|
+
<var>m</var><img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\"
|
29
|
+
border=\"0\" style=\"vertical-align:middle;\">1 for which this surprising result
|
30
|
+
could have occurred, the smallest of which is 1476/1475.</p>\r\n\r\n<p>What's the
|
31
|
+
largest possible value of <var>m</var>?<br>\r\nGive your answer as a fraction reduced
|
32
|
+
to its lowest terms, in the form <var>u</var>/<var>v</var>.</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 237
|
3
|
+
:name: Tours on a 4 x n playing board
|
4
|
+
:url: http://projecteuler.net/problem=237
|
5
|
+
:content: "\r\n<p>Let T(<i>n</i>) be the number of tours over a 4 <img src=\"images/symbol_times.gif\"
|
6
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
7
|
+
playing board such that:</p>\r\n<ul>\n<li>The tour starts in the top left corner.</li>\r\n<li>The
|
8
|
+
tour consists of moves that are up, down, left, or right one square.</li>\r\n<li>The
|
9
|
+
tour visits each square exactly once.</li>\r\n<li>The tour ends in the bottom left
|
10
|
+
corner.</li>\r\n</ul>\n<p>The diagram shows one tour over a 4 <img src=\"images/symbol_times.gif\"
|
11
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
12
|
+
10 board:</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_237.gif\"
|
13
|
+
alt=\"\">\n</div>\r\n\r\n<p>T(10) is 2329. What is T(10<sup>12</sup>) modulo 10<sup>8</sup>?</p>\r\n"
|
@@ -0,0 +1,42 @@
|
|
1
|
+
---
|
2
|
+
:id: 238
|
3
|
+
:name: Infinite string tour
|
4
|
+
:url: http://projecteuler.net/problem=238
|
5
|
+
:content: "\r\n<style type=\"text/css\">\r\ntable.p238 td { padding: 0px 3px 0px 3px;
|
6
|
+
}\r\n</style>\n<p>Create a sequence of numbers using the \"Blum Blum Shub\" pseudo-random
|
7
|
+
number generator:</p>\r\n\r\n<center><table class=\"p238\">\n<tr>\n<td style=\"text-align:right\">\n<var>s</var><sub>0</sub>\n</td>\r\n
|
8
|
+
\ <td>=</td>\r\n <td>14025256</td>\r\n </tr>\n<tr>\n<td>\n<var>s</var><sub><var>n</var>+1</sub>\n</td>\r\n
|
9
|
+
\ <td>=</td>\r\n <td>\n<var>s</var><sub><var>n</var></sub><sup>2</sup> mod
|
10
|
+
20300713</td>\r\n </tr>\n</table></center>\r\n\r\n<p>Concatenate these numbers
|
11
|
+
<var>s</var><sub>0</sub><var>s</var><sub>1</sub><var>s</var><sub>2</sub>… to create
|
12
|
+
a string <var>w</var> of infinite length.<br>\r\nThen, <var>w</var> = <span style=\"font-family:courier
|
13
|
+
new;font-size:12pt;color:#0000ff;\">14025256741014958470038053646…</span></p>\r\n\r\n<p>For
|
14
|
+
a positive integer <var>k</var>, if no substring of <var>w</var> exists with a sum
|
15
|
+
of digits equal to <var>k</var>, <var>p</var>(<var>k</var>) is defined to be zero.
|
16
|
+
If at least one substring of <var>w</var> exists with a sum of digits equal to <var>k</var>,
|
17
|
+
we define <var>p</var>(<var>k</var>) = <var>z</var>, where <var>z</var> is the starting
|
18
|
+
position of the earliest such substring.</p>\r\n\r\n<p>For instance:</p>\r\n\r\n<p>The
|
19
|
+
substrings <span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">1</span>,
|
20
|
+
<span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">14</span>,
|
21
|
+
<span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">1402</span>,
|
22
|
+
… <br>\r\nwith respective sums of digits equal to 1, 5, 7, …<br>\r\nstart at position
|
23
|
+
<b>1</b>, hence <var>p</var>(1) = <var>p</var>(5) = <var>p</var>(7) = … = <b>1</b>.</p>\r\n\r\n<p>The
|
24
|
+
substrings <span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">4</span>,
|
25
|
+
<span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">402</span>,
|
26
|
+
<span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">4025</span>,
|
27
|
+
…<br>\r\nwith respective sums of digits equal to 4, 6, 11, …<br>\r\nstart at position
|
28
|
+
<b>2</b>, hence <var>p</var>(4) = <var>p</var>(6) = <var>p</var>(11) = … = <b>2</b>.</p>\r\n\r\n<p>The
|
29
|
+
substrings <span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">02</span>,
|
30
|
+
<span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">0252</span>,
|
31
|
+
…<br>\r\nwith respective sums of digits equal to 2, 9, …<br>\r\nstart at position
|
32
|
+
<b>3</b>, hence <var>p</var>(2) = <var>p</var>(9) = … = <b>3</b>.</p>\n<p>\r\n\r\n</p>\n<p>Note
|
33
|
+
that substring <span style=\"font-family:courier new;font-size:12pt;color:#0000ff;\">025</span>
|
34
|
+
starting at position <b>3</b>, has a sum of digits equal to 7, but there was an
|
35
|
+
earlier substring (starting at position <b>1</b>) with a sum of digits equal to
|
36
|
+
7, so <var>p</var>(7) = 1, <i>not</i> 3.</p>\r\n\r\n<p>We can verify that, for 0 k <img
|
37
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>3</sup>,
|
38
|
+
<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
39
|
+
style=\"vertical-align:middle;\"> <var>p</var>(<var>k</var>) = 4742.</p>\r\n\r\n<p>Find
|
40
|
+
<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
41
|
+
style=\"vertical-align:middle;\"> <var>p</var>(<var>k</var>), for 0 k <img src=\"images/symbol_le.gif\"
|
42
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 2·10<sup>15</sup>.</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 239
|
3
|
+
:name: Twenty-two Foolish Primes
|
4
|
+
:url: http://projecteuler.net/problem=239
|
5
|
+
:content: "\r\n<p>A set of disks numbered 1 through 100 are placed in a line in random
|
6
|
+
order.</p>\r\n\r\n<p>What is the probability that we have a partial derangement
|
7
|
+
such that exactly 22 prime number discs are found away from their natural positions?<br>\r\n(Any
|
8
|
+
number of non-prime disks may also be found in or out of their natural positions.)</p>\r\n\r\n<p>Give
|
9
|
+
your answer rounded to 12 places behind the decimal point in the form 0.abcdefghijkl.</p>\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 24
|
3
|
+
:name: Lexicographic permutations
|
4
|
+
:url: http://projecteuler.net/problem=24
|
5
|
+
:content: "\r\n<p>A permutation is an ordered arrangement of objects. For example,
|
6
|
+
3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations
|
7
|
+
are listed numerically or alphabetically, we call it lexicographic order. The lexicographic
|
8
|
+
permutations of 0, 1 and 2 are:</p>\r\n<p style=\"text-align:center;\">012 021
|
9
|
+
102 120 201 210</p>\r\n<p>What is the millionth lexicographic permutation
|
10
|
+
of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 240
|
3
|
+
:name: Top Dice
|
4
|
+
:url: http://projecteuler.net/problem=240
|
5
|
+
:content: "\r\n<p>There are 1111 ways in which five 6-sided dice (sides numbered 1
|
6
|
+
to 6) can be rolled so that the top three sum to 15. Some examples are:\r\n\r\n<br><br>\r\nD<sub>1</sub>,D<sub>2</sub>,D<sub>3</sub>,D<sub>4</sub>,D<sub>5</sub>
|
7
|
+
= 4,3,6,3,5\r\n<br>\r\nD<sub>1</sub>,D<sub>2</sub>,D<sub>3</sub>,D<sub>4</sub>,D<sub>5</sub>
|
8
|
+
= 4,3,3,5,6\r\n<br>\r\nD<sub>1</sub>,D<sub>2</sub>,D<sub>3</sub>,D<sub>4</sub>,D<sub>5</sub>
|
9
|
+
= 3,3,3,6,6\r\n<br>\r\nD<sub>1</sub>,D<sub>2</sub>,D<sub>3</sub>,D<sub>4</sub>,D<sub>5</sub>
|
10
|
+
= 6,6,3,3,3\r\n<br><br>\r\nIn how many ways can twenty 12-sided dice (sides numbered
|
11
|
+
1 to 12) be rolled so that the top ten sum to 70?</p>\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 241
|
3
|
+
:name: Perfection Quotients
|
4
|
+
:url: http://projecteuler.net/problem=241
|
5
|
+
:content: "\r\n<p>For a positive integer <var>n</var>, let σ(<var>n</var>) be the
|
6
|
+
sum of all divisors of <var>n</var>, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.\r\n</p>\r\n\r\n<p>A
|
7
|
+
perfect number, as you probably know, is a number with σ(<var>n</var>) = 2<var>n</var>.</p>\r\n\r\n<p></p>\n<div
|
8
|
+
style=\"text-align:left;\">\r\n<table><tr>\n<td>Let us define the <b>perfection
|
9
|
+
quotient</b> of a positive integer as</td>\n<td>\n<var>p</var>(<var>n</var>)</td>\n<td>= </td>\r\n<td><div
|
10
|
+
style=\"text-align:center;\">σ(<var>n</var>)<br><img src=\"images/blackdot.gif\"
|
11
|
+
width=\"30\" height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n<td>.</td>\r\n</tr></table>\n</div>\r\n\r\n<!--\r\n<p>Let
|
12
|
+
us define the <b>perfection quotient</b> of a positive integer as <var>p</var>(<var>n</var>)
|
13
|
+
= <font \"size=4\"> <sup>σ(<var>n</var>)</sup>⁄<sub><var>n</var></sub></font>.</p>\r\n-->\r\n<p>Find
|
14
|
+
the sum of all positive integers <var>n</var> <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
10<sup>18</sup> for which <var>p</var>(<var>n</var>) has the form <var>k</var> +
|
17
|
+
<sup>1</sup>⁄<sub>2</sub>, where <var>k</var> is an integer.</p>\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 242
|
3
|
+
:name: Odd Triplets
|
4
|
+
:url: http://projecteuler.net/problem=242
|
5
|
+
:content: "\r\n<p>Given the set {1,2,...,<var>n</var>}, we define <var>f</var>(<var>n</var>,<var>k</var>)
|
6
|
+
as the number of its <var>k</var>-element subsets with an odd sum of elements. For
|
7
|
+
example, <var>f</var>(5,3) = 4, since the set {1,2,3,4,5} has four 3-element subsets
|
8
|
+
having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.</p>\r\n\r\n<p>When
|
9
|
+
all three values <var>n</var>, <var>k</var> and <var>f</var>(<var>n</var>,<var>k</var>)
|
10
|
+
are odd, we say that they make <br>\r\nan <i>odd-triplet</i> [<var>n</var>,<var>k</var>,<var>f</var>(<var>n</var>,<var>k</var>)].</p>\r\n\r\n<p>There
|
11
|
+
are exactly five odd-triplets with <var>n</var> <img src=\"images/symbol_le.gif\"
|
12
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10,
|
13
|
+
namely:<br>\r\n[1,1,<var>f</var>(1,1) = 1], [5,1,<var>f</var>(5,1) = 3], [5,5,<var>f</var>(5,5) = 1],
|
14
|
+
[9,1,<var>f</var>(9,1) = 5] and [9,9,<var>f</var>(9,9) = 1].</p>\r\n\r\n<p>How many
|
15
|
+
odd-triplets are there with <var>n</var> <img src=\"images/symbol_le.gif\" width=\"10\"
|
16
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>12</sup> ?</p>\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 243
|
3
|
+
:name: Resilience
|
4
|
+
:url: http://projecteuler.net/problem=243
|
5
|
+
:content: "\r\n<p> </p>\r\n<p>A positive fraction whose numerator is less than its
|
6
|
+
denominator is called a proper fraction.<br>\r\nFor any denominator, <var>d</var>,
|
7
|
+
there will be <var>d</var><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
8
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1 proper fractions; for
|
9
|
+
example, with <var>d</var> = 12:<br><sup>1</sup>/<sub>12</sub> , <sup>2</sup>/<sub>12</sub>
|
10
|
+
, <sup>3</sup>/<sub>12</sub> , <sup>4</sup>/<sub>12</sub> , <sup>5</sup>/<sub>12</sub>
|
11
|
+
, <sup>6</sup>/<sub>12</sub> , <sup>7</sup>/<sub>12</sub> , <sup>8</sup>/<sub>12</sub>
|
12
|
+
, <sup>9</sup>/<sub>12</sub> , <sup>10</sup>/<sub>12</sub> , <sup>11</sup>/<sub>12</sub>
|
13
|
+
.\r\n</p>\r\n\r\n<p>We shall call a fraction that cannot be cancelled down a <i>resilient
|
14
|
+
fraction</i>.<br>\r\nFurthermore we shall define the <i>resilience</i> of a denominator,
|
15
|
+
<var>R</var>(<var>d</var>), to be the ratio of its proper fractions that are resilient;
|
16
|
+
for example, <var>R</var>(12) = <sup>4</sup>/<sub>11</sub> .<br>\r\nIn fact, <var>d</var> = 12
|
17
|
+
is the smallest denominator having a resilience <var>R</var>(<var>d</var>) 4/<sub>10</sub>
|
18
|
+
.</p>\r\n\r\n<p>Find the smallest denominator <var>d</var>, having a resilience
|
19
|
+
<var>R</var>(<var>d</var>) 15499/<sub>94744</sub> .</p>\r\n\r\n"
|
@@ -0,0 +1,32 @@
|
|
1
|
+
---
|
2
|
+
:id: 244
|
3
|
+
:name: Sliders
|
4
|
+
:url: http://projecteuler.net/problem=244
|
5
|
+
:content: "\r\n<p>You probably know the game <i>Fifteen Puzzle</i>. Here, instead
|
6
|
+
of numbered tiles, we have seven red tiles and eight blue tiles.</p>\r\n<p>A move
|
7
|
+
is denoted by the uppercase initial of the direction (Left, Right, Up, Down) in
|
8
|
+
which the tile is slid, e.g. starting from configuration (<b>S</b>), by the sequence
|
9
|
+
<b>LULUR</b> we reach the configuration (<b>E</b>):</p>\r\n<p></p>\n<div style=\"text-align:
|
10
|
+
center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"0\" align=\"center\"><tr>\n<td
|
11
|
+
width=\"25\">(<b>S</b>)</td>\n<td width=\"100\"><img src=\"project/images/p_244_start.gif\"></td>\n<td
|
12
|
+
width=\"25\">, (<b>E</b>)</td>\n<td width=\"100\"><img src=\"project/images/p_244_example.gif\"></td>\r\n</tr></table>\n</div>\r\n\r\n<p>For
|
13
|
+
each path, its checksum is calculated by (pseudocode):\r\n</p>\n<div style=\"margin-left:
|
14
|
+
100px;\">\r\nchecksum = 0<br>\r\nchecksum = (checksum <img src=\"images/symbol_times.gif\"
|
15
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
243 + <var>m</var><sub>1</sub>) mod 100 000 007<br>\r\nchecksum = (checksum <img
|
17
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 243 + <var>m</var><sub>2</sub>) mod 100 000 007<br>\r\n …<br>\r\nchecksum
|
19
|
+
= (checksum <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
20
|
+
border=\"0\" style=\"vertical-align:middle;\"> 243 + <var>m</var><sub><var>n</var></sub>)
|
21
|
+
mod 100 000 007<br>\n</div>\r\nwhere <var>m</var><sub><var>k</var></sub> is the
|
22
|
+
ASCII value of the <var>k</var><sup><var>th</var></sup> letter in the move sequence
|
23
|
+
and the ASCII values for the moves are:\r\n\r\n<div style=\"text-align:center;\">\r\n<table
|
24
|
+
cellspacing=\"0\" cellpadding=\"2\" border=\"1\" align=\"center\">\n<tr>\n<td width=\"30\"><b>L</b></td>\n<td
|
25
|
+
width=\"30\">76</td>\n</tr>\n<tr>\n<td><b>R</b></td>\n<td>82</td>\n</tr>\n<tr>\n<td><b>U</b></td>\n<td>85</td>\n</tr>\n<tr>\n<td><b>D</b></td>\n<td>68</td>\n</tr>\n</table>\n</div>\r\n\r\n<p>For
|
26
|
+
the sequence <b>LULUR</b> given above, the checksum would be 19761398.</p>\r\n<p>Now,
|
27
|
+
starting from configuration (<b>S</b>),\r\nfind all shortest ways to reach configuration
|
28
|
+
(<b>T</b>).</p>\r\n<p></p>\n<div style=\"text-align: center;\">\r\n<table cellspacing=\"0\"
|
29
|
+
cellpadding=\"2\" border=\"0\" align=\"center\"><tr>\n<td width=\"25\">(<b>S</b>)</td>\n<td
|
30
|
+
width=\"100\"><img src=\"project/images/p_244_start.gif\"></td>\n<td width=\"25\">, (<b>T</b>)</td>\n<td
|
31
|
+
width=\"100\"><img src=\"project/images/p_244_target.gif\"></td>\r\n</tr></table>\n</div>\r\n\r\n<p>What
|
32
|
+
is the sum of all checksums for the paths having the minimal length?</p>\r\n"
|
@@ -0,0 +1,36 @@
|
|
1
|
+
---
|
2
|
+
:id: 245
|
3
|
+
:name: Coresilience
|
4
|
+
:url: http://projecteuler.net/problem=245
|
5
|
+
:content: "\r\n<p>We shall call a fraction that cannot be cancelled down a resilient
|
6
|
+
fraction.<br> Furthermore we shall define the resilience of a denominator, <var>R</var>(<var>d</var>),
|
7
|
+
to be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
|
8
|
+
= <sup>4</sup>⁄<sub>11</sub>.</p>\r\n\r\n\r\n<div style=\"text-align:left;\">\r\n<table><tr>\n<td>The
|
9
|
+
resilience of a number <var>d</var> <img src=\"images/symbol_gt.gif\" width=\"10\"
|
10
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 1 is then</td>\r\n<td><div
|
11
|
+
style=\"text-align:center;\">φ(<var>d</var>)<br><img src=\"images/blackdot.gif\"
|
12
|
+
width=\"36\" height=\"1\" alt=\"\"><br><var>d</var> - 1</div></td>\n<td>, where
|
13
|
+
φ is Euler's totient function.</td>\r\n</tr></table>\n<table><tr>\n<td>We further
|
14
|
+
define the <b>coresilience</b> of a number <var>n</var> <img src=\"images/symbol_gt.gif\"
|
15
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
1 as <var>C</var>(<var>n</var>)</td>\n<td>= </td>\r\n<td><div style=\"text-align:center;\">\n<var>n</var>
|
17
|
+
- φ(<var>n</var>)<br><img src=\"images/blackdot.gif\" width=\"54\" height=\"1\"
|
18
|
+
alt=\"\"><br><var>n</var> - 1</div></td>\n<td>.</td>\r\n</tr></table>\n<table><tr>\n<td>The
|
19
|
+
coresilience of a prime <var>p</var> is <var>C</var>(<var>p</var>)</td>\r\n<td>= </td>\r\n<td><div
|
20
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"34\"
|
21
|
+
height=\"1\" alt=\"\"><br><var>p</var> - 1</div></td>\n<td>.</td>\r\n</tr></table>\n</div>\r\n\r\n<!--\r\n<p>The
|
22
|
+
resilience of a number <var>d</var> <img src='images/symbol_gt.gif' width='10' height='10'
|
23
|
+
alt='>' border='0' style='vertical-align:middle;' /> 1 is then <font \"size=4\"><sup>φ(<var>d</var>)</sup>⁄<sub>(<var>d</var>-1)</sub></font>,
|
24
|
+
where φ is Euler's totient function.</p>\r\n\r\n<p>We further define the <b>coresilience</b>
|
25
|
+
of a number <var>n</var> <img src='images/symbol_gt.gif' width='10' height='10'
|
26
|
+
alt='>' border='0' style='vertical-align:middle;' /> 1 as <var>C</var>(<var>n</var>)
|
27
|
+
= <font \"size=4\"><sup>(<var>n</var> - φ(<var>n</var>))</sup>⁄<sub>(<var>n</var>
|
28
|
+
- 1)</sub></font>.\r\n</p>\r\n\r\n<p>The coresilience of a prime <var>p</var> is
|
29
|
+
<var>C</var>(<var>p</var>) = <font \"size=4\"><sup>1</sup>⁄<sub>(<var>p</var>
|
30
|
+
- 1)</sub></font>.</p>\r\n-->\r\n\r\n<p>Find the sum of all <b>composite</b> integers
|
31
|
+
1 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
33
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
34
|
+
2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
35
|
+
style=\"vertical-align:middle;\">10<sup>11</sup>, for which <var>C</var>(<var>n</var>)
|
36
|
+
is a <dfn title=\"A fraction with numerator 1\">unit fraction</dfn>.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 246
|
3
|
+
:name: Tangents to an ellipse
|
4
|
+
:url: http://projecteuler.net/problem=246
|
5
|
+
:content: "\r\n<p>\r\nA definition for an ellipse is:<br>\r\nGiven a circle c with
|
6
|
+
centre M and radius r and a point G such that d(G,M)<img src=\"images/symbol_lt.gif\"
|
7
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">r,
|
8
|
+
the locus of the points that are equidistant from c and G form an ellipse.\r\n</p>\r\nThe
|
9
|
+
construction of the points of the ellipse is shown below.\r\n\r\n<div style=\"text-align:center;\">\r\n<img
|
10
|
+
src=\"project/images/p_246_anim.gif\" alt=\"\">\n</div>\r\n\r\n<p>\r\nGiven are
|
11
|
+
the points M(-2000,1500) and G(8000,1500).<br> \r\nGiven is also the circle c with
|
12
|
+
centre M and radius 15000.<br>\r\nThe locus of the points that are equidistant from
|
13
|
+
G and c form an ellipse e.<br>\r\nFrom a point P outside e the two tangents t<sub>1</sub>
|
14
|
+
and t<sub>2</sub> to the ellipse are drawn.<br>\r\nLet the points where t<sub>1</sub>
|
15
|
+
and t<sub>2</sub> touch the ellipse be R and S.\r\n</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
16
|
+
src=\"project/images/p_246_ellipse.gif\" alt=\"\">\n</div>\r\n<p>\r\nFor how many
|
17
|
+
lattice points P is angle RPS greater than 45 degrees?\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 247
|
3
|
+
:name: Squares under a hyperbola
|
4
|
+
:url: http://projecteuler.net/problem=247
|
5
|
+
:content: "\r\n<p>Consider the region constrained by 1 <img src=\"images/symbol_le.gif\"
|
6
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var>
|
7
|
+
and 0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"><var>y</var> <img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><sup>1</sup>/<sub><var>x</var></sub>.\r\n</p>\n<p>\r\nLet
|
10
|
+
S<sub>1</sub> be the largest square that can fit under the curve.<br>\r\nLet S<sub>2</sub>
|
11
|
+
be the largest square that fits in the remaining area, and so on. <br>\r\nLet the
|
12
|
+
<i>index</i> of S<sub><var>n</var></sub> be the pair (left, below) indicating the
|
13
|
+
number of squares to the left of S<sub><var>n</var></sub> and the number of squares
|
14
|
+
below S<sub><var>n</var></sub>.\r\n</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
15
|
+
src=\"project/images/p_247_hypersquares.gif\" alt=\"\">\n</div>\r\n<p>\r\nThe diagram
|
16
|
+
shows some such squares labelled by number. <br>\r\nS<sub>2</sub> has one square
|
17
|
+
to its left and none below, so the index of S<sub>2</sub> is (1,0).<br>\r\nIt can
|
18
|
+
be seen that the index of S<sub>32</sub> is (1,1) as is the index of S<sub>50</sub>.
|
19
|
+
<br>\r\n50 is the largest <var>n</var> for which the index of S<sub><var>n</var></sub>
|
20
|
+
is (1,1).\r\n</p>\r\n<p>\r\nWhat is the largest <var>n</var> for which the index
|
21
|
+
of S<sub><var>n</var></sub> is (3,3)?\r\n</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 249
|
3
|
+
:name: Prime Subset Sums
|
4
|
+
:url: http://projecteuler.net/problem=249
|
5
|
+
:content: "\r\n<p>Let <var>S</var> = {2, 3, 5, ..., 4999} be the set of prime numbers
|
6
|
+
less than 5000.</p>\r\n<p>Find the number of subsets of <var>S</var>, the sum of
|
7
|
+
whose elements is a prime number.<br>\r\nEnter the rightmost 16 digits as your answer.</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 25
|
3
|
+
:name: 1000-digit Fibonacci number
|
4
|
+
:url: http://projecteuler.net/problem=25
|
5
|
+
:content: "\r\n<p>The Fibonacci sequence is defined by the recurrence relation:</p>\r\n<blockquote>F<sub><i>n</i></sub>
|
6
|
+
= F<sub><i>n</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\">1</sub> + F<sub><i>n</i><img src=\"images/symbol_minus.gif\"
|
8
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</sub>,
|
9
|
+
where F<sub>1</sub> = 1 and F<sub>2</sub> = 1.</blockquote>\r\n<p>Hence the first
|
10
|
+
12 terms will be:</p>\r\n<blockquote>F<sub>1</sub> = 1<br>\r\nF<sub>2</sub> = 1<br>\r\nF<sub>3</sub>
|
11
|
+
= 2<br>\r\nF<sub>4</sub> = 3<br>\r\nF<sub>5</sub> = 5<br>\r\nF<sub>6</sub> = 8<br>\r\nF<sub>7</sub>
|
12
|
+
= 13<br>\r\nF<sub>8</sub> = 21<br>\r\nF<sub>9</sub> = 34<br>\r\nF<sub>10</sub> =
|
13
|
+
55<br>\r\nF<sub>11</sub> = 89<br>\r\nF<sub>12</sub> = 144</blockquote>\r\n<p>The
|
14
|
+
12th term, F<sub>12</sub>, is the first term to contain three digits.</p>\r\n<p>What
|
15
|
+
is the first term in the Fibonacci sequence to contain 1000 digits?</p>\r\n\r\n"
|
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 250
|
3
|
+
:name: '250250'
|
4
|
+
:url: http://projecteuler.net/problem=250
|
5
|
+
:content: "\r\n<p>Find the number of non-empty subsets of {1<sup>1</sup>, 2<sup>2</sup>,
|
6
|
+
3<sup>3</sup>,..., 250250<sup>250250</sup>}, the sum of whose elements is divisible
|
7
|
+
by 250. Enter the rightmost 16 digits as your answer.</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 251
|
3
|
+
:name: Cardano Triplets
|
4
|
+
:url: http://projecteuler.net/problem=251
|
5
|
+
:content: "\r\n<p>\r\nA triplet of positive integers (<var>a</var>,<var>b</var>,<var>c</var>)
|
6
|
+
is called a Cardano Triplet if it satisfies the condition:</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
7
|
+
src=\"project/images/p_251_cardano.gif\" alt=\"\">\n</div>\r\n<p>\r\nFor example,
|
8
|
+
(2,1,5) is a Cardano Triplet.\r\n</p>\r\n<p>\r\nThere exist 149 Cardano Triplets
|
9
|
+
for which <var>a</var>+<var>b</var>+<var>c</var> <img src=\"images/symbol_le.gif\"
|
10
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
1000.\r\n</p>\r\n<p>\r\nFind how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var>
|
12
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 110,000,000.\r\n \r\n\r\n</p>"
|
@@ -0,0 +1,31 @@
|
|
1
|
+
---
|
2
|
+
:id: 252
|
3
|
+
:name: Convex Holes
|
4
|
+
:url: http://projecteuler.net/problem=252
|
5
|
+
:content: "\r\n<p>\r\nGiven a set of points on a plane, we define a convex hole to
|
6
|
+
be a convex polygon having as vertices any of the given points and not containing
|
7
|
+
any of the given points in its interior (in addition to the vertices, other given
|
8
|
+
points may lie on the perimeter of the polygon). \r\n</p>\r\n<p>\r\nAs an example,
|
9
|
+
the image below shows a set of twenty points and a few such convex holes. \r\nThe
|
10
|
+
convex hole shown as a red heptagon has an area equal to 1049694.5 square units,
|
11
|
+
which is the highest possible area for a convex hole on the given set of points.\r\n</p>\r\n<div
|
12
|
+
style=\"text-align:center;\">\r\n<img src=\"project/images/p_252_convexhole.gif\"
|
13
|
+
alt=\"\">\n</div>\r\n<p>\r\n<style type=\"text/css\">\r\ntable.p252 td {\r\n padding:
|
14
|
+
0px 3px 0px 3px;\r\n vertical-align: bottom;\r\n text-align: left;\r\n}\r\n</style></p>\n<p>For
|
15
|
+
our example, we used the first 20 points (<var>T</var><sub>2<var>k</var><img src=\"images/symbol_minus.gif\"
|
16
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>, <var>T</var><sub>2<var>k</var></sub>),
|
17
|
+
for <var>k</var> = 1,2,…,20, produced with the pseudo-random number generator:</p>\r\n\r\n<center><table
|
18
|
+
class=\"p252\">\n<tr>\n<td style=\"text-align:right\">\n<var>S</var><sub>0</sub>\n</td>\r\n
|
19
|
+
\ <td>=<sub> </sub>\n</td>\r\n <td>290797<sub> </sub>\n</td>\r\n </tr>\n<tr>\n<td>\n<var>S</var><sub><var>n</var>+1</sub>\n</td>\r\n
|
20
|
+
\ <td>=<sub> </sub>\n</td>\r\n <td>\n<var>S</var><sub><var>n</var></sub><sup>2</sup>
|
21
|
+
mod 50515093</td>\r\n </tr>\n<tr>\n<td style=\"text-align:right\">\n<var>T</var><sub><var>n</var></sub>\n</td>\r\n
|
22
|
+
\ <td>=<sub> </sub>\n</td>\r\n <td>( <var>S</var><sub><var>n</var></sub> mod
|
23
|
+
2000 ) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\"> 1000<sup> </sup>\n</td>\r\n </tr>\n</table></center>\r\n\r\n<p>\r\n<i>i.e.</i>
|
25
|
+
(527, 144), (<img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
26
|
+
border=\"0\" style=\"vertical-align:middle;\">488, 732), (<img src=\"images/symbol_minus.gif\"
|
27
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">454, <img
|
28
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
29
|
+
style=\"vertical-align:middle;\">947), …\r\n</p>\r\n<p>\r\nWhat is the maximum area
|
30
|
+
for a convex hole on the set containing the first 500 points in the pseudo-random
|
31
|
+
sequence?<br> Specify your answer including one digit after the decimal point.\r\n</p>\r\n\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,36 @@
|
|
1
|
+
---
|
2
|
+
:id: 253
|
3
|
+
:name: Tidying up
|
4
|
+
:url: http://projecteuler.net/problem=253
|
5
|
+
:content: "\r\n<p>A small child has a “number caterpillar” consisting of forty jigsaw
|
6
|
+
pieces, each with one number on it, which, when connected together in a line, reveal
|
7
|
+
the numbers 1 to 40 in order.</p>\r\n\r\n<p>Every night, the child's father has
|
8
|
+
to pick up the pieces of the caterpillar that have been scattered across the play
|
9
|
+
room. He picks up the pieces at random and places them in the correct order.<br>
|
10
|
+
As the caterpillar is built up in this way, it forms distinct segments that gradually
|
11
|
+
merge together.<br> The number of segments starts at zero (no pieces placed), generally
|
12
|
+
increases up to about eleven or twelve, then tends to drop again before finishing
|
13
|
+
at a single segment (all pieces placed).</p>\n<p>\r\n\r\n</p>\n<p>For example:</p>\r\n<div
|
14
|
+
align=\"center\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\" align=\"center\">\n<tr
|
15
|
+
style=\"background-color:#c1daf9;\">\n<td width=\"80\" align=\"center\"><b>Piece
|
16
|
+
Placed</b></td>\r\n<td width=\"80\" align=\"center\"><b>Segments So Far</b></td>\n</tr>\n<tr>\n<td
|
17
|
+
align=\"center\">12</td>\n<td align=\"center\">1</td>\n</tr>\n<tr>\n<td align=\"center\">4</td>\n<td
|
18
|
+
align=\"center\">2</td>\n</tr>\n<tr>\n<td align=\"center\">29</td>\n<td align=\"center\">3</td>\n</tr>\n<tr>\n<td
|
19
|
+
align=\"center\">6</td>\n<td align=\"center\">4</td>\n</tr>\n<tr>\n<td align=\"center\">34</td>\n<td
|
20
|
+
align=\"center\">5</td>\n</tr>\n<tr>\n<td align=\"center\">5</td>\n<td align=\"center\">4</td>\n</tr>\n<tr>\n<td
|
21
|
+
align=\"center\">35</td>\n<td align=\"center\">4</td>\n</tr>\n<tr>\n<td align=\"center\">…</td>\n<td
|
22
|
+
align=\"center\">…</td>\n</tr>\n</table>\n</div>\r\n\r\n<p>Let <var>M</var> be the
|
23
|
+
maximum number of segments encountered during a random tidy-up of the caterpillar.<br>\r\nFor
|
24
|
+
a caterpillar of ten pieces, the number of possibilities for each <var>M</var> is</p>\r\n<div
|
25
|
+
align=\"center\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\" align=\"center\">\n<tr
|
26
|
+
style=\"background-color:#c1daf9;\">\n<td width=\"50\" align=\"center\"><b><var>M</var></b></td>\r\n<td
|
27
|
+
width=\"90\" align=\"center\"><b>Possibilities</b></td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td
|
28
|
+
align=\"right\">512 </td>\n</tr>\n<tr>\n<td align=\"center\">2</td>\n<td align=\"right\">250912
|
29
|
+
</td>\n</tr>\n<tr>\n<td align=\"center\">3</td>\n<td align=\"right\">1815264
|
30
|
+
</td>\n</tr>\n<tr>\n<td align=\"center\">4</td>\n<td align=\"right\">1418112
|
31
|
+
</td>\n</tr>\n<tr>\n<td align=\"center\">5</td>\n<td align=\"right\">144000
|
32
|
+
</td>\n</tr>\n</table>\n</div>\r\n\r\n<p>so the most likely value of <var>M</var>
|
33
|
+
is 3 and the average value is <sup>385643</sup>⁄<sub>113400</sub> = 3.400732, rounded
|
34
|
+
to six decimal places.</p>\r\n\r\n<p>The most likely value of <var>M</var> for a
|
35
|
+
forty-piece caterpillar is 11; but what is the average value of <var>M</var>?</p>\r\n<p>Give
|
36
|
+
your answer rounded to six decimal places.</p>\r\n\r\n"
|