euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 115
|
3
|
+
:name: Counting block combinations II
|
4
|
+
:url: http://projecteuler.net/problem=115
|
5
|
+
:content: "\r\n<p class=\"info\">NOTE: This is a more difficult version of problem
|
6
|
+
<a href=\"index.php?section=problems&id=114\">114</a>.</p>\r\n<p>A row measuring
|
7
|
+
<i>n</i> units in length has red blocks with a minimum length of <i>m</i> units
|
8
|
+
placed on it, such that any two red blocks (which are allowed to be different lengths)
|
9
|
+
are separated by at least one black square.</p>\r\n<p>Let the fill-count function,
|
10
|
+
F(<i>m</i>, <i>n</i>), represent the number of ways that a row can be filled.</p>\r\n<p>For
|
11
|
+
example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That is, for <i>m</i>
|
12
|
+
= 3, it can be seen that <i>n</i> = 30 is the smallest value for which the fill-count
|
13
|
+
function first exceeds one million.</p>\r\n<p>In the same way, for <i>m</i> = 10,
|
14
|
+
it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so <i>n</i>
|
15
|
+
= 57 is the least value for which the fill-count function first exceeds one million.</p>\r\n<p>For
|
16
|
+
<i>m</i> = 50, find the least value of <i>n</i> for which the fill-count function
|
17
|
+
first exceeds one million.</p>\r\n\r\n"
|
@@ -0,0 +1,76 @@
|
|
1
|
+
---
|
2
|
+
:id: 116
|
3
|
+
:name: Red, green or blue tiles
|
4
|
+
:url: http://projecteuler.net/problem=116
|
5
|
+
:content: "\r\n<p>A row of five black square tiles is to have a number of its tiles
|
6
|
+
replaced with coloured oblong tiles chosen from red (length two), green (length
|
7
|
+
three), or blue (length four).</p>\r\n<p>If red tiles are chosen there are exactly
|
8
|
+
seven ways this can be done.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
9
|
+
border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
10
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
11
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
12
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
13
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
14
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
15
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
16
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
17
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
18
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
19
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
20
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
21
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
22
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
23
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
24
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
25
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
26
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
27
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
28
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
29
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
30
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
31
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
32
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
|
33
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
34
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
35
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
36
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
37
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
38
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
39
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
40
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
41
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
42
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
43
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
44
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
45
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
46
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
47
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>If green
|
48
|
+
tiles are chosen there are three ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
49
|
+
border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
50
|
+
border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\"
|
51
|
+
width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
52
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
53
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
54
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
55
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
56
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
57
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
58
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
59
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
60
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
61
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
62
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
63
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr></table>\n<p>And if
|
64
|
+
blue tiles are chosen there are two ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
65
|
+
border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
66
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
67
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
|
68
|
+
src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
69
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
|
70
|
+
src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
71
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr></table>\n<p>Assuming
|
72
|
+
that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the black
|
73
|
+
tiles in a row measuring five units in length.</p>\r\n<p>How many different ways
|
74
|
+
can the black tiles in a row measuring fifty units in length be replaced if colours
|
75
|
+
cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"info\">NOTE:
|
76
|
+
This is related to problem <a href=\"index.php?section=problems&id=117\">117</a>.</p>\r\n"
|
@@ -0,0 +1,82 @@
|
|
1
|
+
---
|
2
|
+
:id: 117
|
3
|
+
:name: Red, green, and blue tiles
|
4
|
+
:url: http://projecteuler.net/problem=117
|
5
|
+
:content: "\r\n<p>Using a combination of black square tiles and oblong tiles chosen
|
6
|
+
from: red tiles measuring two units, green tiles measuring three units, and blue
|
7
|
+
tiles measuring four units, it is possible to tile a row measuring five units in
|
8
|
+
length in exactly fifteen different ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
9
|
+
border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
10
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
11
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
12
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
13
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
14
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
15
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
16
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
17
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
18
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
19
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
20
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
21
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
22
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
23
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
24
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
25
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
26
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
27
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
28
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
29
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
30
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
31
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
32
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
33
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
34
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
35
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
36
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
37
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
38
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
39
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
40
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
41
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
42
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
43
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
44
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
45
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
46
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
47
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
48
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
49
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
50
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
51
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
52
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
|
53
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
54
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
55
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
56
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
57
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
58
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
59
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
60
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
61
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
62
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
63
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
64
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
65
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
66
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
67
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
68
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
69
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
70
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
71
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
72
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
73
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
74
|
+
border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\"
|
75
|
+
width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
76
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
77
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
78
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
|
79
|
+
style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\" width=\"92\" height=\"20\"
|
80
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
|
81
|
+
many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"info\">NOTE:
|
82
|
+
This is related to problem <a href=\"index.php?section=problems&id=116\">116</a>.</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 118
|
3
|
+
:name: Pandigital prime sets
|
4
|
+
:url: http://projecteuler.net/problem=118
|
5
|
+
:content: "\r\n<p>Using all of the digits 1 through 9 and concatenating them freely
|
6
|
+
to form decimal integers, different sets can be formed. Interestingly with the set
|
7
|
+
{2,5,47,89,631}, all of the elements belonging to it are prime.</p>\r\n<p>How many
|
8
|
+
distinct sets containing each of the digits one through nine exactly once contain
|
9
|
+
only prime elements?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 119
|
3
|
+
:name: Digit power sum
|
4
|
+
:url: http://projecteuler.net/problem=119
|
5
|
+
:content: "\r\n<p>The number 512 is interesting because it is equal to the sum of
|
6
|
+
its digits raised to some power: 5 + 1 + 2 = 8, and 8<sup>3</sup> = 512. Another
|
7
|
+
example of a number with this property is 614656 = 28<sup>4</sup>.</p>\r\n<p>We
|
8
|
+
shall define <i>a</i><sub>n</sub> to be the <i>n</i>th term of this sequence and
|
9
|
+
insist that a number must contain at least two digits to have a sum.</p>\r\n<p>You
|
10
|
+
are given that <i>a</i><sub>2</sub> = 512 and <i>a</i><sub>10</sub> = 614656.</p>\r\n<p>Find
|
11
|
+
<i>a</i><sub>30</sub>.</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 12
|
3
|
+
:name: Highly divisible triangular number
|
4
|
+
:url: http://projecteuler.net/problem=12
|
5
|
+
:content: "\r\n<p>The sequence of triangle numbers is generated by adding the natural
|
6
|
+
numbers. So the 7<sup>th</sup> triangle number would be 1 + 2 + 3 + 4 + 5 + 6 +
|
7
|
+
7 = 28. The first ten terms would be:</p>\r\n<p style=\"text-align:center;\">1,
|
8
|
+
3, 6, 10, 15, 21, 28, 36, 45, 55, ...</p>\r\n<p>Let us list the factors of the first
|
9
|
+
seven triangle numbers:</p>\r\n<blockquote style=\"font-family:courier new;\">\n<b> 1</b>:
|
10
|
+
1<br><b> 3</b>: 1,3<br><b> 6</b>: 1,2,3,6<br><b>10</b>: 1,2,5,10<br><b>15</b>: 1,3,5,15<br><b>21</b>:
|
11
|
+
1,3,7,21<br><b>28</b>: 1,2,4,7,14,28</blockquote>\r\n<p>We can see that 28 is the
|
12
|
+
first triangle number to have over five divisors.</p>\r\n<p>What is the value of
|
13
|
+
the first triangle number to have over five hundred divisors?</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 120
|
3
|
+
:name: Square remainders
|
4
|
+
:url: http://projecteuler.net/problem=120
|
5
|
+
:content: "\r\n\n<p>Let <i>r</i> be the remainder when (<i>a</i><img src=\"images/symbol_minus.gif\"
|
6
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
|
7
|
+
+ (<i>a</i>+1)<sup><i>n</i></sup> is divided by <i>a</i><sup>2</sup>.</p>\n<p>For
|
8
|
+
example, if <i>a</i> = 7 and <i>n</i> = 3, then <i>r</i> = 42: 6<sup>3</sup> + 8<sup>3</sup>
|
9
|
+
= 728 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"> 42 mod 49. And as <i>n</i> varies, so too will
|
11
|
+
<i>r</i>, but for <i>a</i> = 7 it turns out that <i>r</i><sub>max</sub> = 42.</p>\n<p>For
|
12
|
+
3 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"><i>a</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
14
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 1000, find
|
15
|
+
<span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
|
16
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
|
17
|
+
<i>r</i><sub>max</sub>.</p>\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 121
|
3
|
+
:name: Disc game prize fund
|
4
|
+
:url: http://projecteuler.net/problem=121
|
5
|
+
:content: "\r\n<p>A bag contains one red disc and one blue disc. In a game of chance
|
6
|
+
a player takes a disc at random and its colour is noted. After each turn the disc
|
7
|
+
is returned to the bag, an extra red disc is added, and another disc is taken at
|
8
|
+
random.</p>\r\n<p>The player pays £1 to play and wins if they have taken more blue
|
9
|
+
discs than red discs at the end of the game.</p>\r\n<p>If the game is played for
|
10
|
+
four turns, the probability of a player winning is exactly 11/120, and so the maximum
|
11
|
+
prize fund the banker should allocate for winning in this game would be £10 before
|
12
|
+
they would expect to incur a loss. Note that any payout will be a whole number of
|
13
|
+
pounds and also includes the original £1 paid to play the game, so in the example
|
14
|
+
given the player actually wins £9.</p>\r\n<p>Find the maximum prize fund that should
|
15
|
+
be allocated to a single game in which fifteen turns are played.</p>\r\n\r\n"
|
@@ -0,0 +1,42 @@
|
|
1
|
+
---
|
2
|
+
:id: 122
|
3
|
+
:name: Efficient exponentiation
|
4
|
+
:url: http://projecteuler.net/problem=122
|
5
|
+
:content: "\r\n<p>The most naive way of computing <i>n</i><sup>15</sup> requires fourteen
|
6
|
+
multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
8
|
+
<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\" width=\"9\"
|
10
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i> =
|
11
|
+
<i>n</i><sup>15</sup></p>\r\n<p>But using a \"binary\" method you can compute it
|
12
|
+
in six multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
13
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
14
|
+
= <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
|
15
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
|
16
|
+
= <i>n</i><sup>4</sup><br><i>n</i><sup>4</sup><img src=\"images/symbol_times.gif\"
|
17
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
|
18
|
+
= <i>n</i><sup>8</sup><br><i>n</i><sup>8</sup><img src=\"images/symbol_times.gif\"
|
19
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
|
20
|
+
= <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
|
21
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
|
22
|
+
= <i>n</i><sup>14</sup><br><i>n</i><sup>14</sup><img src=\"images/symbol_times.gif\"
|
23
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
24
|
+
= <i>n</i><sup>15</sup></p>\r\n<p>However it is yet possible to compute it in only
|
25
|
+
five multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
26
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
27
|
+
= <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
|
28
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
29
|
+
= <i>n</i><sup>3</sup><br><i>n</i><sup>3</sup><img src=\"images/symbol_times.gif\"
|
30
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
|
31
|
+
= <i>n</i><sup>6</sup><br><i>n</i><sup>6</sup><img src=\"images/symbol_times.gif\"
|
32
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>6</sup>
|
33
|
+
= <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
|
34
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
|
35
|
+
= <i>n</i><sup>15</sup></p>\r\n<p>We shall define m(<i>k</i>) to be the minimum
|
36
|
+
number of multiplications to compute <i>n</i><sup><i>k</i></sup>; for example m(15)
|
37
|
+
= 5.</p>\r\n<p>For 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
38
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\"
|
39
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
40
|
+
200, find <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
|
41
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
|
42
|
+
m(<i>k</i>).</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 123
|
3
|
+
:name: Prime square remainders
|
4
|
+
:url: http://projecteuler.net/problem=123
|
5
|
+
:content: "\r\n\n<p>Let <i>p</i><sub>n</sub> be the <i>n</i>th prime: 2, 3, 5, 7,
|
6
|
+
11, ..., and let <i>r</i> be the remainder when (<i>p</i><sub>n</sub><img src=\"images/symbol_minus.gif\"
|
7
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
|
8
|
+
+ (<i>p</i><sub>n</sub>+1)<sup><i>n</i></sup> is divided by <i>p</i><sub>n</sub><sup>2</sup>.</p>\n<p>For
|
9
|
+
example, when <i>n</i> = 3, <i>p</i><sub>3</sub> = 5, and 4<sup>3</sup> + 6<sup>3</sup>
|
10
|
+
= 280 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 5 mod 25.</p>\n<p>The least value of <i>n</i>
|
12
|
+
for which the remainder first exceeds 10<sup>9</sup> is 7037.</p>\n<p>Find the least
|
13
|
+
value of <i>n</i> for which the remainder first exceeds 10<sup>10</sup>.</p>\n\r\n"
|
@@ -0,0 +1,58 @@
|
|
1
|
+
---
|
2
|
+
:id: 124
|
3
|
+
:name: Ordered radicals
|
4
|
+
:url: http://projecteuler.net/problem=124
|
5
|
+
:content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of the distinct
|
6
|
+
prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
8
|
+
3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
9
|
+
border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>If we calculate rad(<i>n</i>)
|
13
|
+
for <i>1</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
14
|
+
border=\"0\" style=\"vertical-align:middle;\"><i>n</i> <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
10, then sort them on rad(<i>n</i>), and sorting on <i>n</i> if the radical values
|
17
|
+
are equal, we get:</p>\r\n<table cellpadding=\"2\" cellspacing=\"0\" border=\"0\"
|
18
|
+
align=\"center\">\n<tr>\n<td colspan=\"2\"><div style=\"text-align:center;\"><b>Unsorted</b></div></td>\r\n<td> </td>\r\n<td
|
19
|
+
colspan=\"3\"><div style=\"text-align:center;\"><b>Sorted</b></div></td>\r\n</tr>\n<tr>\n<td><div
|
20
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
21
|
+
alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
|
22
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td>\n<img
|
23
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br>\n</td>\r\n<td><div
|
24
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
25
|
+
alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
|
26
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td><div
|
27
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
28
|
+
alt=\"\"><br><b>k</b>\n</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
|
29
|
+
style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
|
30
|
+
style=\"text-align:center;\">1</div></td>\n<td><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td><div
|
31
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
32
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
|
33
|
+
style=\"text-align:center;\">2</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
34
|
+
style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">4</div></td>\n<td><div
|
35
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\r\n</tr>\n<tr>\n<td><div
|
36
|
+
style=\"text-align:center;\">4</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
37
|
+
style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
|
38
|
+
style=\"text-align:center;\">4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
|
39
|
+
style=\"text-align:center;\">5</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
40
|
+
style=\"text-align:center;\">3</div></td>\n<td><div style=\"text-align:center;\">5</div></td>\r\n</tr>\n<tr>\n<td><div
|
41
|
+
style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\r\n<td> </td>\r\n<td><div
|
42
|
+
style=\"text-align:center;\">9</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
43
|
+
style=\"text-align:center;\">6</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
|
44
|
+
style=\"text-align:center;\">7</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
|
45
|
+
style=\"text-align:center;\">5</div></td>\n<td><div style=\"text-align:center;\">7</div></td>\r\n</tr>\n<tr>\n<td><div
|
46
|
+
style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
47
|
+
style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\n<td><div
|
48
|
+
style=\"text-align:center;\">8</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">9</div></td>\n<td><div
|
49
|
+
style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
|
50
|
+
style=\"text-align:center;\">7</div></td>\n<td><div style=\"text-align:center;\">9</div></td>\r\n</tr>\n<tr>\n<td><div
|
51
|
+
style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\r\n<td> </td>\r\n<td><div
|
52
|
+
style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\n<td><div
|
53
|
+
style=\"text-align:center;\">10</div></td>\r\n</tr>\n</table>\n<p>Let E(<i>k</i>)
|
54
|
+
be the <i>k</i>th element in the sorted <i>n</i> column; for example, E(4) = 8 and
|
55
|
+
E(6) = 9.</p>\r\n<p>If rad(<i>n</i>) is sorted for 1 <img src=\"images/symbol_le.gif\"
|
56
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
57
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
58
|
+
style=\"vertical-align:middle;\"> 100000, find E(10000).</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 125
|
3
|
+
:name: Palindromic sums
|
4
|
+
:url: http://projecteuler.net/problem=125
|
5
|
+
:content: "\r\n\n<p>The palindromic number 595 is interesting because it can be written
|
6
|
+
as the sum of consecutive squares: 6<sup>2</sup> + 7<sup>2</sup> + 8<sup>2</sup>
|
7
|
+
+ 9<sup>2</sup> + 10<sup>2</sup> + 11<sup>2</sup> + 12<sup>2</sup>.</p>\n<p>There
|
8
|
+
are exactly eleven palindromes below one-thousand that can be written as consecutive
|
9
|
+
square sums, and the sum of these palindromes is 4164. Note that 1 = 0<sup>2</sup>
|
10
|
+
+ 1<sup>2</sup> has not been included as this problem is concerned with the squares
|
11
|
+
of positive integers.</p>\n<p>Find the sum of all the numbers less than 10<sup>8</sup>
|
12
|
+
that are both palindromic and can be written as the sum of consecutive squares.</p>\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 126
|
3
|
+
:name: Cuboid layers
|
4
|
+
:url: http://projecteuler.net/problem=126
|
5
|
+
:content: "\r\n<p>The minimum number of cubes to cover every visible face on a cuboid
|
6
|
+
measuring 3 x 2 x 1 is twenty-two.</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
7
|
+
src=\"project/images/p_126.gif\" width=\"499\" height=\"247\" alt=\"\"><br>\n</div>\r\n<p>If
|
8
|
+
we then add a second layer to this solid it would require forty-six cubes to cover
|
9
|
+
every visible face, the third layer would require seventy-eight cubes, and the fourth
|
10
|
+
layer would require one-hundred and eighteen cubes to cover every visible face.</p>\r\n<p>However,
|
11
|
+
the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes;
|
12
|
+
similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1
|
13
|
+
all contain forty-six cubes.</p>\r\n<p>We shall define C(<i>n</i>) to represent
|
14
|
+
the number of cuboids that contain <i>n</i> cubes in one of its layers. So C(22)
|
15
|
+
= 2, C(46) = 4, C(78) = 5, and C(118) = 8.</p>\r\n<p>It turns out that 154 is the
|
16
|
+
least value of <i>n</i> for which C(<i>n</i>) = 10.</p>\r\n<p>Find the least value
|
17
|
+
of <i>n</i> for which C(<i>n</i>) = 1000.</p>\r\n\r\n"
|
@@ -0,0 +1,31 @@
|
|
1
|
+
---
|
2
|
+
:id: 127
|
3
|
+
:name: abc-hits
|
4
|
+
:url: http://projecteuler.net/problem=127
|
5
|
+
:content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of distinct
|
6
|
+
prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
8
|
+
3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
9
|
+
border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>We shall define the triplet
|
13
|
+
of positive integers (<i>a</i>, <i>b</i>, <i>c</i>) to be an abc-hit if:</p>\r\n<ol>\n<li>GCD(<i>a,</i>
|
14
|
+
<i>b</i>) = GCD(<i>a</i>, <i>c</i>) = GCD(<i>b</i>, <i>c</i>) = 1</li>\r\n<li>\n<i>a</i>
|
15
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"><i>b</i>\n</li>\r\n<li>\n<i>a</i> + <i>b</i> =
|
17
|
+
<i>c</i>\n</li>\r\n<li>rad(<i>abc</i>) <img src=\"images/symbol_lt.gif\" width=\"10\"
|
18
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>\n</li>\r\n</ol>\n<p>For
|
19
|
+
example, (5, 27, 32) is an abc-hit, because:</p>\r\n<ol>\n<li>GCD(5, 27) = GCD(5,
|
20
|
+
32) = GCD(27, 32) = 1</li>\r\n<li>5 <img src=\"images/symbol_lt.gif\" width=\"10\"
|
21
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 27</li>\r\n<li>5
|
22
|
+
+ 27 = 32</li>\r\n<li>rad(4320) = 30 <img src=\"images/symbol_lt.gif\" width=\"10\"
|
23
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 32</li>\r\n</ol>\n<p>It
|
24
|
+
turns out that abc-hits are quite rare and there are only thirty-one abc-hits for
|
25
|
+
<i>c</i> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
26
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1000, with <img src=\"images/symbol_sum.gif\"
|
27
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>
|
28
|
+
= 12523.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
29
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i> for <i>c</i> <img
|
30
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
31
|
+
style=\"vertical-align:middle;\"> 120000.</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 128
|
3
|
+
:name: Hexagonal tile differences
|
4
|
+
:url: http://projecteuler.net/problem=128
|
5
|
+
:content: "\r\n\n<p>A hexagonal tile with number 1 is surrounded by a ring of six
|
6
|
+
hexagonal tiles, starting at \"12 o'clock\" and numbering the tiles 2 to 7 in an
|
7
|
+
anti-clockwise direction.</p>\n<p>New rings are added in the same fashion, with
|
8
|
+
the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram
|
9
|
+
below shows the first three rings.</p>\n<div style=\"text-align:center;\">\n<img
|
10
|
+
src=\"project/images/p_128.gif\" width=\"400\" height=\"431\" alt=\"\">\n</div>\n<p>By
|
11
|
+
finding the difference between tile <i>n</i> and each its six neighbours we shall
|
12
|
+
define PD(<i>n</i>) to be the number of those differences which are prime.</p>\n<p>For
|
13
|
+
example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and
|
14
|
+
13. So PD(8) = 3.</p>\n<p>In the same way, the differences around tile 17 are 1,
|
15
|
+
17, 16, 1, 11, and 10, hence PD(17) = 2.</p>\n<p>It can be shown that the maximum
|
16
|
+
value of PD(<i>n</i>) is 3.</p>\n<p>If all of the tiles for which PD(<i>n</i>) =
|
17
|
+
3 are listed in ascending order to form a sequence, the 10th tile would be 271.</p>\n<p>Find
|
18
|
+
the 2000th tile in this sequence.</p>\n\r\n"
|