euler-manager 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 115
3
+ :name: Counting block combinations II
4
+ :url: http://projecteuler.net/problem=115
5
+ :content: "\r\n<p class=\"info\">NOTE: This is a more difficult version of problem
6
+ <a href=\"index.php?section=problems&amp;id=114\">114</a>.</p>\r\n<p>A row measuring
7
+ <i>n</i> units in length has red blocks with a minimum length of <i>m</i> units
8
+ placed on it, such that any two red blocks (which are allowed to be different lengths)
9
+ are separated by at least one black square.</p>\r\n<p>Let the fill-count function,
10
+ F(<i>m</i>, <i>n</i>), represent the number of ways that a row can be filled.</p>\r\n<p>For
11
+ example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That is, for <i>m</i>
12
+ = 3, it can be seen that <i>n</i> = 30 is the smallest value for which the fill-count
13
+ function first exceeds one million.</p>\r\n<p>In the same way, for <i>m</i> = 10,
14
+ it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so <i>n</i>
15
+ = 57 is the least value for which the fill-count function first exceeds one million.</p>\r\n<p>For
16
+ <i>m</i> = 50, find the least value of <i>n</i> for which the fill-count function
17
+ first exceeds one million.</p>\r\n\r\n"
@@ -0,0 +1,76 @@
1
+ ---
2
+ :id: 116
3
+ :name: Red, green or blue tiles
4
+ :url: http://projecteuler.net/problem=116
5
+ :content: "\r\n<p>A row of five black square tiles is to have a number of its tiles
6
+ replaced with coloured oblong tiles chosen from red (length two), green (length
7
+ three), or blue (length four).</p>\r\n<p>If red tiles are chosen there are exactly
8
+ seven ways this can be done.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
9
+ border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
10
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
11
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
12
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
13
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
14
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
15
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
16
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
17
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
18
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
19
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
20
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
21
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
22
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
23
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
24
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
25
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
26
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
27
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
28
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
29
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
30
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
31
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
32
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
33
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
34
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
35
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
36
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
37
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
38
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
39
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
40
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
41
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
42
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
43
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
44
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
45
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
46
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
47
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>If green
48
+ tiles are chosen there are three ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
49
+ border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
50
+ border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\"
51
+ width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
52
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
53
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
54
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
55
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
56
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
57
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
58
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
59
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
60
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
61
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
62
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
63
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr></table>\n<p>And if
64
+ blue tiles are chosen there are two ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
65
+ border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
66
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
67
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
68
+ src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
69
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
70
+ src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
71
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr></table>\n<p>Assuming
72
+ that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the black
73
+ tiles in a row measuring five units in length.</p>\r\n<p>How many different ways
74
+ can the black tiles in a row measuring fifty units in length be replaced if colours
75
+ cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"info\">NOTE:
76
+ This is related to problem <a href=\"index.php?section=problems&amp;id=117\">117</a>.</p>\r\n"
@@ -0,0 +1,82 @@
1
+ ---
2
+ :id: 117
3
+ :name: Red, green, and blue tiles
4
+ :url: http://projecteuler.net/problem=117
5
+ :content: "\r\n<p>Using a combination of black square tiles and oblong tiles chosen
6
+ from: red tiles measuring two units, green tiles measuring three units, and blue
7
+ tiles measuring four units, it is possible to tile a row measuring five units in
8
+ length in exactly fifteen different ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
9
+ border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
10
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
11
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
12
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
13
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
14
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
15
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
16
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
17
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
18
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
19
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
20
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
21
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
22
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
23
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
24
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
25
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
26
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
27
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
28
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
29
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
30
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
31
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
32
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
33
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
34
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
35
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
36
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
37
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
38
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
39
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
40
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
41
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
42
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
43
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
44
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
45
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
46
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
47
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
48
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
49
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
50
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
51
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
52
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
53
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
54
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
55
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
56
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
57
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
58
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
59
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
60
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
61
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
62
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
63
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
64
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
65
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
66
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
67
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
68
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
69
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
70
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
71
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
72
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
73
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
74
+ border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\"
75
+ width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
76
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
77
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
78
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
79
+ style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\" width=\"92\" height=\"20\"
80
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
81
+ many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"info\">NOTE:
82
+ This is related to problem <a href=\"index.php?section=problems&amp;id=116\">116</a>.</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 118
3
+ :name: Pandigital prime sets
4
+ :url: http://projecteuler.net/problem=118
5
+ :content: "\r\n<p>Using all of the digits 1 through 9 and concatenating them freely
6
+ to form decimal integers, different sets can be formed. Interestingly with the set
7
+ {2,5,47,89,631}, all of the elements belonging to it are prime.</p>\r\n<p>How many
8
+ distinct sets containing each of the digits one through nine exactly once contain
9
+ only prime elements?</p>\r\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 119
3
+ :name: Digit power sum
4
+ :url: http://projecteuler.net/problem=119
5
+ :content: "\r\n<p>The number 512 is interesting because it is equal to the sum of
6
+ its digits raised to some power: 5 + 1 + 2 = 8, and 8<sup>3</sup> = 512. Another
7
+ example of a number with this property is 614656 = 28<sup>4</sup>.</p>\r\n<p>We
8
+ shall define <i>a</i><sub>n</sub> to be the <i>n</i>th term of this sequence and
9
+ insist that a number must contain at least two digits to have a sum.</p>\r\n<p>You
10
+ are given that <i>a</i><sub>2</sub> = 512 and <i>a</i><sub>10</sub> = 614656.</p>\r\n<p>Find
11
+ <i>a</i><sub>30</sub>.</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 12
3
+ :name: Highly divisible triangular number
4
+ :url: http://projecteuler.net/problem=12
5
+ :content: "\r\n<p>The sequence of triangle numbers is generated by adding the natural
6
+ numbers. So the 7<sup>th</sup> triangle number would be 1 + 2 + 3 + 4 + 5 + 6 +
7
+ 7 = 28. The first ten terms would be:</p>\r\n<p style=\"text-align:center;\">1,
8
+ 3, 6, 10, 15, 21, 28, 36, 45, 55, ...</p>\r\n<p>Let us list the factors of the first
9
+ seven triangle numbers:</p>\r\n<blockquote style=\"font-family:courier new;\">\n<b> 1</b>:
10
+ 1<br><b> 3</b>: 1,3<br><b> 6</b>: 1,2,3,6<br><b>10</b>: 1,2,5,10<br><b>15</b>: 1,3,5,15<br><b>21</b>:
11
+ 1,3,7,21<br><b>28</b>: 1,2,4,7,14,28</blockquote>\r\n<p>We can see that 28 is the
12
+ first triangle number to have over five divisors.</p>\r\n<p>What is the value of
13
+ the first triangle number to have over five hundred divisors?</p>\r\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 120
3
+ :name: Square remainders
4
+ :url: http://projecteuler.net/problem=120
5
+ :content: "\r\n\n<p>Let <i>r</i> be the remainder when (<i>a</i><img src=\"images/symbol_minus.gif\"
6
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
7
+ + (<i>a</i>+1)<sup><i>n</i></sup> is divided by <i>a</i><sup>2</sup>.</p>\n<p>For
8
+ example, if <i>a</i> = 7 and <i>n</i> = 3, then <i>r</i> = 42: 6<sup>3</sup> + 8<sup>3</sup>
9
+ = 728 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
10
+ style=\"vertical-align:middle;\"> 42 mod 49. And as <i>n</i> varies, so too will
11
+ <i>r</i>, but for <i>a</i> = 7 it turns out that <i>r</i><sub>max</sub> = 42.</p>\n<p>For
12
+ 3 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
13
+ style=\"vertical-align:middle;\"><i>a</i> <img src=\"images/symbol_le.gif\" width=\"10\"
14
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 1000, find
15
+ <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
16
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
17
+ <i>r</i><sub>max</sub>.</p>\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 121
3
+ :name: Disc game prize fund
4
+ :url: http://projecteuler.net/problem=121
5
+ :content: "\r\n<p>A bag contains one red disc and one blue disc. In a game of chance
6
+ a player takes a disc at random and its colour is noted. After each turn the disc
7
+ is returned to the bag, an extra red disc is added, and another disc is taken at
8
+ random.</p>\r\n<p>The player pays £1 to play and wins if they have taken more blue
9
+ discs than red discs at the end of the game.</p>\r\n<p>If the game is played for
10
+ four turns, the probability of a player winning is exactly 11/120, and so the maximum
11
+ prize fund the banker should allocate for winning in this game would be £10 before
12
+ they would expect to incur a loss. Note that any payout will be a whole number of
13
+ pounds and also includes the original £1 paid to play the game, so in the example
14
+ given the player actually wins £9.</p>\r\n<p>Find the maximum prize fund that should
15
+ be allocated to a single game in which fifteen turns are played.</p>\r\n\r\n"
@@ -0,0 +1,42 @@
1
+ ---
2
+ :id: 122
3
+ :name: Efficient exponentiation
4
+ :url: http://projecteuler.net/problem=122
5
+ :content: "\r\n<p>The most naive way of computing <i>n</i><sup>15</sup> requires fourteen
6
+ multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
8
+ <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\" width=\"9\"
10
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i> =
11
+ <i>n</i><sup>15</sup></p>\r\n<p>But using a \"binary\" method you can compute it
12
+ in six multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
13
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
14
+ = <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
15
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
16
+ = <i>n</i><sup>4</sup><br><i>n</i><sup>4</sup><img src=\"images/symbol_times.gif\"
17
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
18
+ = <i>n</i><sup>8</sup><br><i>n</i><sup>8</sup><img src=\"images/symbol_times.gif\"
19
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
20
+ = <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
21
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
22
+ = <i>n</i><sup>14</sup><br><i>n</i><sup>14</sup><img src=\"images/symbol_times.gif\"
23
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
24
+ = <i>n</i><sup>15</sup></p>\r\n<p>However it is yet possible to compute it in only
25
+ five multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
26
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
27
+ = <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
28
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
29
+ = <i>n</i><sup>3</sup><br><i>n</i><sup>3</sup><img src=\"images/symbol_times.gif\"
30
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
31
+ = <i>n</i><sup>6</sup><br><i>n</i><sup>6</sup><img src=\"images/symbol_times.gif\"
32
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>6</sup>
33
+ = <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
34
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
35
+ = <i>n</i><sup>15</sup></p>\r\n<p>We shall define m(<i>k</i>) to be the minimum
36
+ number of multiplications to compute <i>n</i><sup><i>k</i></sup>; for example m(15)
37
+ = 5.</p>\r\n<p>For 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
38
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\"
39
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
40
+ 200, find <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
41
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
42
+ m(<i>k</i>).</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 123
3
+ :name: Prime square remainders
4
+ :url: http://projecteuler.net/problem=123
5
+ :content: "\r\n\n<p>Let <i>p</i><sub>n</sub> be the <i>n</i>th prime: 2, 3, 5, 7,
6
+ 11, ..., and let <i>r</i> be the remainder when (<i>p</i><sub>n</sub><img src=\"images/symbol_minus.gif\"
7
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
8
+ + (<i>p</i><sub>n</sub>+1)<sup><i>n</i></sup> is divided by <i>p</i><sub>n</sub><sup>2</sup>.</p>\n<p>For
9
+ example, when <i>n</i> = 3, <i>p</i><sub>3</sub> = 5, and 4<sup>3</sup> + 6<sup>3</sup>
10
+ = 280 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> 5 mod 25.</p>\n<p>The least value of <i>n</i>
12
+ for which the remainder first exceeds 10<sup>9</sup> is 7037.</p>\n<p>Find the least
13
+ value of <i>n</i> for which the remainder first exceeds 10<sup>10</sup>.</p>\n\r\n"
@@ -0,0 +1,58 @@
1
+ ---
2
+ :id: 124
3
+ :name: Ordered radicals
4
+ :url: http://projecteuler.net/problem=124
5
+ :content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of the distinct
6
+ prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>If we calculate rad(<i>n</i>)
13
+ for <i>1</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
14
+ border=\"0\" style=\"vertical-align:middle;\"><i>n</i> <img src=\"images/symbol_le.gif\"
15
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 10, then sort them on rad(<i>n</i>), and sorting on <i>n</i> if the radical values
17
+ are equal, we get:</p>\r\n<table cellpadding=\"2\" cellspacing=\"0\" border=\"0\"
18
+ align=\"center\">\n<tr>\n<td colspan=\"2\"><div style=\"text-align:center;\"><b>Unsorted</b></div></td>\r\n<td> </td>\r\n<td
19
+ colspan=\"3\"><div style=\"text-align:center;\"><b>Sorted</b></div></td>\r\n</tr>\n<tr>\n<td><div
20
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
21
+ alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
22
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td>\n<img
23
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br>\n</td>\r\n<td><div
24
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
25
+ alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
26
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td><div
27
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
28
+ alt=\"\"><br><b>k</b>\n</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
29
+ style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
30
+ style=\"text-align:center;\">1</div></td>\n<td><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td><div
31
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
32
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
33
+ style=\"text-align:center;\">2</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
34
+ style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">4</div></td>\n<td><div
35
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\r\n</tr>\n<tr>\n<td><div
36
+ style=\"text-align:center;\">4</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
37
+ style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
38
+ style=\"text-align:center;\">4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
39
+ style=\"text-align:center;\">5</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
40
+ style=\"text-align:center;\">3</div></td>\n<td><div style=\"text-align:center;\">5</div></td>\r\n</tr>\n<tr>\n<td><div
41
+ style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\r\n<td> </td>\r\n<td><div
42
+ style=\"text-align:center;\">9</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
43
+ style=\"text-align:center;\">6</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
44
+ style=\"text-align:center;\">7</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
45
+ style=\"text-align:center;\">5</div></td>\n<td><div style=\"text-align:center;\">7</div></td>\r\n</tr>\n<tr>\n<td><div
46
+ style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
47
+ style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\n<td><div
48
+ style=\"text-align:center;\">8</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">9</div></td>\n<td><div
49
+ style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
50
+ style=\"text-align:center;\">7</div></td>\n<td><div style=\"text-align:center;\">9</div></td>\r\n</tr>\n<tr>\n<td><div
51
+ style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\r\n<td> </td>\r\n<td><div
52
+ style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\n<td><div
53
+ style=\"text-align:center;\">10</div></td>\r\n</tr>\n</table>\n<p>Let E(<i>k</i>)
54
+ be the <i>k</i>th element in the sorted <i>n</i> column; for example, E(4) = 8 and
55
+ E(6) = 9.</p>\r\n<p>If rad(<i>n</i>) is sorted for 1 <img src=\"images/symbol_le.gif\"
56
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
57
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
58
+ style=\"vertical-align:middle;\"> 100000, find E(10000).</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 125
3
+ :name: Palindromic sums
4
+ :url: http://projecteuler.net/problem=125
5
+ :content: "\r\n\n<p>The palindromic number 595 is interesting because it can be written
6
+ as the sum of consecutive squares: 6<sup>2</sup> + 7<sup>2</sup> + 8<sup>2</sup>
7
+ + 9<sup>2</sup> + 10<sup>2</sup> + 11<sup>2</sup> + 12<sup>2</sup>.</p>\n<p>There
8
+ are exactly eleven palindromes below one-thousand that can be written as consecutive
9
+ square sums, and the sum of these palindromes is 4164. Note that 1 = 0<sup>2</sup>
10
+ + 1<sup>2</sup> has not been included as this problem is concerned with the squares
11
+ of positive integers.</p>\n<p>Find the sum of all the numbers less than 10<sup>8</sup>
12
+ that are both palindromic and can be written as the sum of consecutive squares.</p>\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 126
3
+ :name: Cuboid layers
4
+ :url: http://projecteuler.net/problem=126
5
+ :content: "\r\n<p>The minimum number of cubes to cover every visible face on a cuboid
6
+ measuring 3 x 2 x 1 is twenty-two.</p>\r\n<div style=\"text-align:center;\">\r\n<img
7
+ src=\"project/images/p_126.gif\" width=\"499\" height=\"247\" alt=\"\"><br>\n</div>\r\n<p>If
8
+ we then add a second layer to this solid it would require forty-six cubes to cover
9
+ every visible face, the third layer would require seventy-eight cubes, and the fourth
10
+ layer would require one-hundred and eighteen cubes to cover every visible face.</p>\r\n<p>However,
11
+ the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes;
12
+ similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1
13
+ all contain forty-six cubes.</p>\r\n<p>We shall define C(<i>n</i>) to represent
14
+ the number of cuboids that contain <i>n</i> cubes in one of its layers. So C(22)
15
+ = 2, C(46) = 4, C(78) = 5, and C(118) = 8.</p>\r\n<p>It turns out that 154 is the
16
+ least value of <i>n</i> for which C(<i>n</i>) = 10.</p>\r\n<p>Find the least value
17
+ of <i>n</i> for which C(<i>n</i>) = 1000.</p>\r\n\r\n"
@@ -0,0 +1,31 @@
1
+ ---
2
+ :id: 127
3
+ :name: abc-hits
4
+ :url: http://projecteuler.net/problem=127
5
+ :content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of distinct
6
+ prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>We shall define the triplet
13
+ of positive integers (<i>a</i>, <i>b</i>, <i>c</i>) to be an abc-hit if:</p>\r\n<ol>\n<li>GCD(<i>a,</i>
14
+ <i>b</i>) = GCD(<i>a</i>, <i>c</i>) = GCD(<i>b</i>, <i>c</i>) = 1</li>\r\n<li>\n<i>a</i>
15
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
16
+ style=\"vertical-align:middle;\"><i>b</i>\n</li>\r\n<li>\n<i>a</i> + <i>b</i> =
17
+ <i>c</i>\n</li>\r\n<li>rad(<i>abc</i>) <img src=\"images/symbol_lt.gif\" width=\"10\"
18
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>\n</li>\r\n</ol>\n<p>For
19
+ example, (5, 27, 32) is an abc-hit, because:</p>\r\n<ol>\n<li>GCD(5, 27) = GCD(5,
20
+ 32) = GCD(27, 32) = 1</li>\r\n<li>5 <img src=\"images/symbol_lt.gif\" width=\"10\"
21
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"> 27</li>\r\n<li>5
22
+ + 27 = 32</li>\r\n<li>rad(4320) = 30 <img src=\"images/symbol_lt.gif\" width=\"10\"
23
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"> 32</li>\r\n</ol>\n<p>It
24
+ turns out that abc-hits are quite rare and there are only thirty-one abc-hits for
25
+ <i>c</i> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
26
+ border=\"0\" style=\"vertical-align:middle;\"> 1000, with <img src=\"images/symbol_sum.gif\"
27
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>
28
+ = 12523.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
29
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i> for <i>c</i> <img
30
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
31
+ style=\"vertical-align:middle;\"> 120000.</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 128
3
+ :name: Hexagonal tile differences
4
+ :url: http://projecteuler.net/problem=128
5
+ :content: "\r\n\n<p>A hexagonal tile with number 1 is surrounded by a ring of six
6
+ hexagonal tiles, starting at \"12 o'clock\" and numbering the tiles 2 to 7 in an
7
+ anti-clockwise direction.</p>\n<p>New rings are added in the same fashion, with
8
+ the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram
9
+ below shows the first three rings.</p>\n<div style=\"text-align:center;\">\n<img
10
+ src=\"project/images/p_128.gif\" width=\"400\" height=\"431\" alt=\"\">\n</div>\n<p>By
11
+ finding the difference between tile <i>n</i> and each its six neighbours we shall
12
+ define PD(<i>n</i>) to be the number of those differences which are prime.</p>\n<p>For
13
+ example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and
14
+ 13. So PD(8) = 3.</p>\n<p>In the same way, the differences around tile 17 are 1,
15
+ 17, 16, 1, 11, and 10, hence PD(17) = 2.</p>\n<p>It can be shown that the maximum
16
+ value of PD(<i>n</i>) is 3.</p>\n<p>If all of the tiles for which PD(<i>n</i>) =
17
+ 3 are listed in ascending order to form a sequence, the 10th tile would be 271.</p>\n<p>Find
18
+ the 2000th tile in this sequence.</p>\n\r\n"