euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 115
3
+ :name: Counting block combinations II
4
+ :url: http://projecteuler.net/problem=115
5
+ :content: "\r\n<p class=\"info\">NOTE: This is a more difficult version of problem
6
+ <a href=\"index.php?section=problems&amp;id=114\">114</a>.</p>\r\n<p>A row measuring
7
+ <i>n</i> units in length has red blocks with a minimum length of <i>m</i> units
8
+ placed on it, such that any two red blocks (which are allowed to be different lengths)
9
+ are separated by at least one black square.</p>\r\n<p>Let the fill-count function,
10
+ F(<i>m</i>, <i>n</i>), represent the number of ways that a row can be filled.</p>\r\n<p>For
11
+ example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That is, for <i>m</i>
12
+ = 3, it can be seen that <i>n</i> = 30 is the smallest value for which the fill-count
13
+ function first exceeds one million.</p>\r\n<p>In the same way, for <i>m</i> = 10,
14
+ it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so <i>n</i>
15
+ = 57 is the least value for which the fill-count function first exceeds one million.</p>\r\n<p>For
16
+ <i>m</i> = 50, find the least value of <i>n</i> for which the fill-count function
17
+ first exceeds one million.</p>\r\n\r\n"
@@ -0,0 +1,76 @@
1
+ ---
2
+ :id: 116
3
+ :name: Red, green or blue tiles
4
+ :url: http://projecteuler.net/problem=116
5
+ :content: "\r\n<p>A row of five black square tiles is to have a number of its tiles
6
+ replaced with coloured oblong tiles chosen from red (length two), green (length
7
+ three), or blue (length four).</p>\r\n<p>If red tiles are chosen there are exactly
8
+ seven ways this can be done.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
9
+ border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
10
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
11
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
12
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
13
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
14
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
15
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
16
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
17
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
18
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
19
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
20
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
21
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
22
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
23
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
24
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
25
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
26
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
27
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
28
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
29
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
30
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
31
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
32
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
33
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
34
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
35
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
36
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
37
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
38
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
39
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
40
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
41
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
42
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
43
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
44
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
45
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
46
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
47
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>If green
48
+ tiles are chosen there are three ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
49
+ border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
50
+ border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\"
51
+ width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
52
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
53
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
54
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
55
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
56
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
57
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
58
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
59
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
60
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
61
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
62
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
63
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr></table>\n<p>And if
64
+ blue tiles are chosen there are two ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
65
+ border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
66
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
67
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
68
+ src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
69
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
70
+ src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
71
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr></table>\n<p>Assuming
72
+ that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the black
73
+ tiles in a row measuring five units in length.</p>\r\n<p>How many different ways
74
+ can the black tiles in a row measuring fifty units in length be replaced if colours
75
+ cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"info\">NOTE:
76
+ This is related to problem <a href=\"index.php?section=problems&amp;id=117\">117</a>.</p>\r\n"
@@ -0,0 +1,82 @@
1
+ ---
2
+ :id: 117
3
+ :name: Red, green, and blue tiles
4
+ :url: http://projecteuler.net/problem=117
5
+ :content: "\r\n<p>Using a combination of black square tiles and oblong tiles chosen
6
+ from: red tiles measuring two units, green tiles measuring three units, and blue
7
+ tiles measuring four units, it is possible to tile a row measuring five units in
8
+ length in exactly fifteen different ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
9
+ border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
10
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
11
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
12
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
13
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
14
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
15
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
16
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
17
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
18
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
19
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
20
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
21
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
22
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
23
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
24
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
25
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
26
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
27
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
28
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
29
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
30
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
31
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
32
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
33
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
34
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
35
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
36
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
37
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
38
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
39
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
40
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
41
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
42
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
43
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
44
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
45
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
46
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
47
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
48
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
49
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
50
+ src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
51
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
52
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
53
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
54
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
55
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
56
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
57
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
58
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
59
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
60
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
61
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
62
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
63
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
64
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
65
+ style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
66
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
67
+ border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
68
+ width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
69
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
70
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
71
+ src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
72
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
73
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
74
+ border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\"
75
+ width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
76
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
77
+ cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
78
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
79
+ style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\" width=\"92\" height=\"20\"
80
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
81
+ many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"info\">NOTE:
82
+ This is related to problem <a href=\"index.php?section=problems&amp;id=116\">116</a>.</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 118
3
+ :name: Pandigital prime sets
4
+ :url: http://projecteuler.net/problem=118
5
+ :content: "\r\n<p>Using all of the digits 1 through 9 and concatenating them freely
6
+ to form decimal integers, different sets can be formed. Interestingly with the set
7
+ {2,5,47,89,631}, all of the elements belonging to it are prime.</p>\r\n<p>How many
8
+ distinct sets containing each of the digits one through nine exactly once contain
9
+ only prime elements?</p>\r\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 119
3
+ :name: Digit power sum
4
+ :url: http://projecteuler.net/problem=119
5
+ :content: "\r\n<p>The number 512 is interesting because it is equal to the sum of
6
+ its digits raised to some power: 5 + 1 + 2 = 8, and 8<sup>3</sup> = 512. Another
7
+ example of a number with this property is 614656 = 28<sup>4</sup>.</p>\r\n<p>We
8
+ shall define <i>a</i><sub>n</sub> to be the <i>n</i>th term of this sequence and
9
+ insist that a number must contain at least two digits to have a sum.</p>\r\n<p>You
10
+ are given that <i>a</i><sub>2</sub> = 512 and <i>a</i><sub>10</sub> = 614656.</p>\r\n<p>Find
11
+ <i>a</i><sub>30</sub>.</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 12
3
+ :name: Highly divisible triangular number
4
+ :url: http://projecteuler.net/problem=12
5
+ :content: "\r\n<p>The sequence of triangle numbers is generated by adding the natural
6
+ numbers. So the 7<sup>th</sup> triangle number would be 1 + 2 + 3 + 4 + 5 + 6 +
7
+ 7 = 28. The first ten terms would be:</p>\r\n<p style=\"text-align:center;\">1,
8
+ 3, 6, 10, 15, 21, 28, 36, 45, 55, ...</p>\r\n<p>Let us list the factors of the first
9
+ seven triangle numbers:</p>\r\n<blockquote style=\"font-family:courier new;\">\n<b> 1</b>:
10
+ 1<br><b> 3</b>: 1,3<br><b> 6</b>: 1,2,3,6<br><b>10</b>: 1,2,5,10<br><b>15</b>: 1,3,5,15<br><b>21</b>:
11
+ 1,3,7,21<br><b>28</b>: 1,2,4,7,14,28</blockquote>\r\n<p>We can see that 28 is the
12
+ first triangle number to have over five divisors.</p>\r\n<p>What is the value of
13
+ the first triangle number to have over five hundred divisors?</p>\r\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 120
3
+ :name: Square remainders
4
+ :url: http://projecteuler.net/problem=120
5
+ :content: "\r\n\n<p>Let <i>r</i> be the remainder when (<i>a</i><img src=\"images/symbol_minus.gif\"
6
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
7
+ + (<i>a</i>+1)<sup><i>n</i></sup> is divided by <i>a</i><sup>2</sup>.</p>\n<p>For
8
+ example, if <i>a</i> = 7 and <i>n</i> = 3, then <i>r</i> = 42: 6<sup>3</sup> + 8<sup>3</sup>
9
+ = 728 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
10
+ style=\"vertical-align:middle;\"> 42 mod 49. And as <i>n</i> varies, so too will
11
+ <i>r</i>, but for <i>a</i> = 7 it turns out that <i>r</i><sub>max</sub> = 42.</p>\n<p>For
12
+ 3 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
13
+ style=\"vertical-align:middle;\"><i>a</i> <img src=\"images/symbol_le.gif\" width=\"10\"
14
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 1000, find
15
+ <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
16
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
17
+ <i>r</i><sub>max</sub>.</p>\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 121
3
+ :name: Disc game prize fund
4
+ :url: http://projecteuler.net/problem=121
5
+ :content: "\r\n<p>A bag contains one red disc and one blue disc. In a game of chance
6
+ a player takes a disc at random and its colour is noted. After each turn the disc
7
+ is returned to the bag, an extra red disc is added, and another disc is taken at
8
+ random.</p>\r\n<p>The player pays £1 to play and wins if they have taken more blue
9
+ discs than red discs at the end of the game.</p>\r\n<p>If the game is played for
10
+ four turns, the probability of a player winning is exactly 11/120, and so the maximum
11
+ prize fund the banker should allocate for winning in this game would be £10 before
12
+ they would expect to incur a loss. Note that any payout will be a whole number of
13
+ pounds and also includes the original £1 paid to play the game, so in the example
14
+ given the player actually wins £9.</p>\r\n<p>Find the maximum prize fund that should
15
+ be allocated to a single game in which fifteen turns are played.</p>\r\n\r\n"
@@ -0,0 +1,42 @@
1
+ ---
2
+ :id: 122
3
+ :name: Efficient exponentiation
4
+ :url: http://projecteuler.net/problem=122
5
+ :content: "\r\n<p>The most naive way of computing <i>n</i><sup>15</sup> requires fourteen
6
+ multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
8
+ <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\" width=\"9\"
10
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i> =
11
+ <i>n</i><sup>15</sup></p>\r\n<p>But using a \"binary\" method you can compute it
12
+ in six multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
13
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
14
+ = <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
15
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
16
+ = <i>n</i><sup>4</sup><br><i>n</i><sup>4</sup><img src=\"images/symbol_times.gif\"
17
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
18
+ = <i>n</i><sup>8</sup><br><i>n</i><sup>8</sup><img src=\"images/symbol_times.gif\"
19
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
20
+ = <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
21
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
22
+ = <i>n</i><sup>14</sup><br><i>n</i><sup>14</sup><img src=\"images/symbol_times.gif\"
23
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
24
+ = <i>n</i><sup>15</sup></p>\r\n<p>However it is yet possible to compute it in only
25
+ five multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
26
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
27
+ = <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
28
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
29
+ = <i>n</i><sup>3</sup><br><i>n</i><sup>3</sup><img src=\"images/symbol_times.gif\"
30
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
31
+ = <i>n</i><sup>6</sup><br><i>n</i><sup>6</sup><img src=\"images/symbol_times.gif\"
32
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>6</sup>
33
+ = <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
34
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
35
+ = <i>n</i><sup>15</sup></p>\r\n<p>We shall define m(<i>k</i>) to be the minimum
36
+ number of multiplications to compute <i>n</i><sup><i>k</i></sup>; for example m(15)
37
+ = 5.</p>\r\n<p>For 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
38
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\"
39
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
40
+ 200, find <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
41
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
42
+ m(<i>k</i>).</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 123
3
+ :name: Prime square remainders
4
+ :url: http://projecteuler.net/problem=123
5
+ :content: "\r\n\n<p>Let <i>p</i><sub>n</sub> be the <i>n</i>th prime: 2, 3, 5, 7,
6
+ 11, ..., and let <i>r</i> be the remainder when (<i>p</i><sub>n</sub><img src=\"images/symbol_minus.gif\"
7
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
8
+ + (<i>p</i><sub>n</sub>+1)<sup><i>n</i></sup> is divided by <i>p</i><sub>n</sub><sup>2</sup>.</p>\n<p>For
9
+ example, when <i>n</i> = 3, <i>p</i><sub>3</sub> = 5, and 4<sup>3</sup> + 6<sup>3</sup>
10
+ = 280 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> 5 mod 25.</p>\n<p>The least value of <i>n</i>
12
+ for which the remainder first exceeds 10<sup>9</sup> is 7037.</p>\n<p>Find the least
13
+ value of <i>n</i> for which the remainder first exceeds 10<sup>10</sup>.</p>\n\r\n"
@@ -0,0 +1,58 @@
1
+ ---
2
+ :id: 124
3
+ :name: Ordered radicals
4
+ :url: http://projecteuler.net/problem=124
5
+ :content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of the distinct
6
+ prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>If we calculate rad(<i>n</i>)
13
+ for <i>1</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
14
+ border=\"0\" style=\"vertical-align:middle;\"><i>n</i> <img src=\"images/symbol_le.gif\"
15
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 10, then sort them on rad(<i>n</i>), and sorting on <i>n</i> if the radical values
17
+ are equal, we get:</p>\r\n<table cellpadding=\"2\" cellspacing=\"0\" border=\"0\"
18
+ align=\"center\">\n<tr>\n<td colspan=\"2\"><div style=\"text-align:center;\"><b>Unsorted</b></div></td>\r\n<td> </td>\r\n<td
19
+ colspan=\"3\"><div style=\"text-align:center;\"><b>Sorted</b></div></td>\r\n</tr>\n<tr>\n<td><div
20
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
21
+ alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
22
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td>\n<img
23
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br>\n</td>\r\n<td><div
24
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
25
+ alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
26
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td><div
27
+ style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
28
+ alt=\"\"><br><b>k</b>\n</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
29
+ style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
30
+ style=\"text-align:center;\">1</div></td>\n<td><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td><div
31
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
32
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
33
+ style=\"text-align:center;\">2</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
34
+ style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">4</div></td>\n<td><div
35
+ style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\r\n</tr>\n<tr>\n<td><div
36
+ style=\"text-align:center;\">4</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
37
+ style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
38
+ style=\"text-align:center;\">4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
39
+ style=\"text-align:center;\">5</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
40
+ style=\"text-align:center;\">3</div></td>\n<td><div style=\"text-align:center;\">5</div></td>\r\n</tr>\n<tr>\n<td><div
41
+ style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\r\n<td> </td>\r\n<td><div
42
+ style=\"text-align:center;\">9</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
43
+ style=\"text-align:center;\">6</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
44
+ style=\"text-align:center;\">7</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
45
+ style=\"text-align:center;\">5</div></td>\n<td><div style=\"text-align:center;\">7</div></td>\r\n</tr>\n<tr>\n<td><div
46
+ style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
47
+ style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\n<td><div
48
+ style=\"text-align:center;\">8</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">9</div></td>\n<td><div
49
+ style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
50
+ style=\"text-align:center;\">7</div></td>\n<td><div style=\"text-align:center;\">9</div></td>\r\n</tr>\n<tr>\n<td><div
51
+ style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\r\n<td> </td>\r\n<td><div
52
+ style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\n<td><div
53
+ style=\"text-align:center;\">10</div></td>\r\n</tr>\n</table>\n<p>Let E(<i>k</i>)
54
+ be the <i>k</i>th element in the sorted <i>n</i> column; for example, E(4) = 8 and
55
+ E(6) = 9.</p>\r\n<p>If rad(<i>n</i>) is sorted for 1 <img src=\"images/symbol_le.gif\"
56
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
57
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
58
+ style=\"vertical-align:middle;\"> 100000, find E(10000).</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 125
3
+ :name: Palindromic sums
4
+ :url: http://projecteuler.net/problem=125
5
+ :content: "\r\n\n<p>The palindromic number 595 is interesting because it can be written
6
+ as the sum of consecutive squares: 6<sup>2</sup> + 7<sup>2</sup> + 8<sup>2</sup>
7
+ + 9<sup>2</sup> + 10<sup>2</sup> + 11<sup>2</sup> + 12<sup>2</sup>.</p>\n<p>There
8
+ are exactly eleven palindromes below one-thousand that can be written as consecutive
9
+ square sums, and the sum of these palindromes is 4164. Note that 1 = 0<sup>2</sup>
10
+ + 1<sup>2</sup> has not been included as this problem is concerned with the squares
11
+ of positive integers.</p>\n<p>Find the sum of all the numbers less than 10<sup>8</sup>
12
+ that are both palindromic and can be written as the sum of consecutive squares.</p>\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 126
3
+ :name: Cuboid layers
4
+ :url: http://projecteuler.net/problem=126
5
+ :content: "\r\n<p>The minimum number of cubes to cover every visible face on a cuboid
6
+ measuring 3 x 2 x 1 is twenty-two.</p>\r\n<div style=\"text-align:center;\">\r\n<img
7
+ src=\"project/images/p_126.gif\" width=\"499\" height=\"247\" alt=\"\"><br>\n</div>\r\n<p>If
8
+ we then add a second layer to this solid it would require forty-six cubes to cover
9
+ every visible face, the third layer would require seventy-eight cubes, and the fourth
10
+ layer would require one-hundred and eighteen cubes to cover every visible face.</p>\r\n<p>However,
11
+ the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes;
12
+ similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1
13
+ all contain forty-six cubes.</p>\r\n<p>We shall define C(<i>n</i>) to represent
14
+ the number of cuboids that contain <i>n</i> cubes in one of its layers. So C(22)
15
+ = 2, C(46) = 4, C(78) = 5, and C(118) = 8.</p>\r\n<p>It turns out that 154 is the
16
+ least value of <i>n</i> for which C(<i>n</i>) = 10.</p>\r\n<p>Find the least value
17
+ of <i>n</i> for which C(<i>n</i>) = 1000.</p>\r\n\r\n"
@@ -0,0 +1,31 @@
1
+ ---
2
+ :id: 127
3
+ :name: abc-hits
4
+ :url: http://projecteuler.net/problem=127
5
+ :content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of distinct
6
+ prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>We shall define the triplet
13
+ of positive integers (<i>a</i>, <i>b</i>, <i>c</i>) to be an abc-hit if:</p>\r\n<ol>\n<li>GCD(<i>a,</i>
14
+ <i>b</i>) = GCD(<i>a</i>, <i>c</i>) = GCD(<i>b</i>, <i>c</i>) = 1</li>\r\n<li>\n<i>a</i>
15
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
16
+ style=\"vertical-align:middle;\"><i>b</i>\n</li>\r\n<li>\n<i>a</i> + <i>b</i> =
17
+ <i>c</i>\n</li>\r\n<li>rad(<i>abc</i>) <img src=\"images/symbol_lt.gif\" width=\"10\"
18
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>\n</li>\r\n</ol>\n<p>For
19
+ example, (5, 27, 32) is an abc-hit, because:</p>\r\n<ol>\n<li>GCD(5, 27) = GCD(5,
20
+ 32) = GCD(27, 32) = 1</li>\r\n<li>5 <img src=\"images/symbol_lt.gif\" width=\"10\"
21
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"> 27</li>\r\n<li>5
22
+ + 27 = 32</li>\r\n<li>rad(4320) = 30 <img src=\"images/symbol_lt.gif\" width=\"10\"
23
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"> 32</li>\r\n</ol>\n<p>It
24
+ turns out that abc-hits are quite rare and there are only thirty-one abc-hits for
25
+ <i>c</i> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
26
+ border=\"0\" style=\"vertical-align:middle;\"> 1000, with <img src=\"images/symbol_sum.gif\"
27
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>
28
+ = 12523.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
29
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i> for <i>c</i> <img
30
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
31
+ style=\"vertical-align:middle;\"> 120000.</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 128
3
+ :name: Hexagonal tile differences
4
+ :url: http://projecteuler.net/problem=128
5
+ :content: "\r\n\n<p>A hexagonal tile with number 1 is surrounded by a ring of six
6
+ hexagonal tiles, starting at \"12 o'clock\" and numbering the tiles 2 to 7 in an
7
+ anti-clockwise direction.</p>\n<p>New rings are added in the same fashion, with
8
+ the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram
9
+ below shows the first three rings.</p>\n<div style=\"text-align:center;\">\n<img
10
+ src=\"project/images/p_128.gif\" width=\"400\" height=\"431\" alt=\"\">\n</div>\n<p>By
11
+ finding the difference between tile <i>n</i> and each its six neighbours we shall
12
+ define PD(<i>n</i>) to be the number of those differences which are prime.</p>\n<p>For
13
+ example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and
14
+ 13. So PD(8) = 3.</p>\n<p>In the same way, the differences around tile 17 are 1,
15
+ 17, 16, 1, 11, and 10, hence PD(17) = 2.</p>\n<p>It can be shown that the maximum
16
+ value of PD(<i>n</i>) is 3.</p>\n<p>If all of the tiles for which PD(<i>n</i>) =
17
+ 3 are listed in ascending order to form a sequence, the 10th tile would be 271.</p>\n<p>Find
18
+ the 2000th tile in this sequence.</p>\n\r\n"