euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 115
|
3
|
+
:name: Counting block combinations II
|
4
|
+
:url: http://projecteuler.net/problem=115
|
5
|
+
:content: "\r\n<p class=\"info\">NOTE: This is a more difficult version of problem
|
6
|
+
<a href=\"index.php?section=problems&id=114\">114</a>.</p>\r\n<p>A row measuring
|
7
|
+
<i>n</i> units in length has red blocks with a minimum length of <i>m</i> units
|
8
|
+
placed on it, such that any two red blocks (which are allowed to be different lengths)
|
9
|
+
are separated by at least one black square.</p>\r\n<p>Let the fill-count function,
|
10
|
+
F(<i>m</i>, <i>n</i>), represent the number of ways that a row can be filled.</p>\r\n<p>For
|
11
|
+
example, F(3, 29) = 673135 and F(3, 30) = 1089155.</p>\r\n<p>That is, for <i>m</i>
|
12
|
+
= 3, it can be seen that <i>n</i> = 30 is the smallest value for which the fill-count
|
13
|
+
function first exceeds one million.</p>\r\n<p>In the same way, for <i>m</i> = 10,
|
14
|
+
it can be verified that F(10, 56) = 880711 and F(10, 57) = 1148904, so <i>n</i>
|
15
|
+
= 57 is the least value for which the fill-count function first exceeds one million.</p>\r\n<p>For
|
16
|
+
<i>m</i> = 50, find the least value of <i>n</i> for which the fill-count function
|
17
|
+
first exceeds one million.</p>\r\n\r\n"
|
@@ -0,0 +1,76 @@
|
|
1
|
+
---
|
2
|
+
:id: 116
|
3
|
+
:name: Red, green or blue tiles
|
4
|
+
:url: http://projecteuler.net/problem=116
|
5
|
+
:content: "\r\n<p>A row of five black square tiles is to have a number of its tiles
|
6
|
+
replaced with coloured oblong tiles chosen from red (length two), green (length
|
7
|
+
three), or blue (length four).</p>\r\n<p>If red tiles are chosen there are exactly
|
8
|
+
seven ways this can be done.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
9
|
+
border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
10
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
11
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
12
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
13
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
14
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
15
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
16
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
17
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
18
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
19
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
20
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
21
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
22
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
23
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
24
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
25
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
26
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
27
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
28
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
29
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
30
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
31
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
32
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
|
33
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
34
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
35
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
36
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
37
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
38
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
39
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
40
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
41
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
42
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
43
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
44
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
45
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
46
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
47
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>If green
|
48
|
+
tiles are chosen there are three ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
49
|
+
border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
50
|
+
border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\"
|
51
|
+
width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
52
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
53
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
54
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
55
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
56
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
57
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
58
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
59
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
60
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
61
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
62
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
63
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr></table>\n<p>And if
|
64
|
+
blue tiles are chosen there are two ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
65
|
+
border=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
66
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
67
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
|
68
|
+
src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
69
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img
|
70
|
+
src=\"images/spacer.gif\" width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
71
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr></table>\n<p>Assuming
|
72
|
+
that colours cannot be mixed there are 7 + 3 + 2 = 12 ways of replacing the black
|
73
|
+
tiles in a row measuring five units in length.</p>\r\n<p>How many different ways
|
74
|
+
can the black tiles in a row measuring fifty units in length be replaced if colours
|
75
|
+
cannot be mixed and at least one coloured tile must be used?</p>\r\n<p class=\"info\">NOTE:
|
76
|
+
This is related to problem <a href=\"index.php?section=problems&id=117\">117</a>.</p>\r\n"
|
@@ -0,0 +1,82 @@
|
|
1
|
+
---
|
2
|
+
:id: 117
|
3
|
+
:name: Red, green, and blue tiles
|
4
|
+
:url: http://projecteuler.net/problem=117
|
5
|
+
:content: "\r\n<p>Using a combination of black square tiles and oblong tiles chosen
|
6
|
+
from: red tiles measuring two units, green tiles measuring three units, and blue
|
7
|
+
tiles measuring four units, it is possible to tile a row measuring five units in
|
8
|
+
length in exactly fifteen different ways.</p>\r\n\r\n<table cellpadding=\"10\" cellspacing=\"0\"
|
9
|
+
border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
10
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
11
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
12
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
13
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
14
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
15
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
16
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
17
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
18
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
19
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
20
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
21
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
22
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
23
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
24
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
25
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
26
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
27
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
28
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
29
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
30
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
31
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
32
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
33
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
34
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
35
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
36
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
37
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
38
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
39
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
40
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
41
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
42
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
43
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
44
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
45
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
46
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
47
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
48
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
49
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img
|
50
|
+
src=\"images/spacer.gif\" width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
51
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
52
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"2\"
|
53
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
54
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
55
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
56
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
57
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
58
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
59
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
60
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
61
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
62
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
63
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
64
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
65
|
+
style=\"background-color:#00cc00\"><img src=\"images/spacer.gif\" width=\"68\" height=\"20\"
|
66
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
67
|
+
border=\"1\"><tr>\n<td colspan=\"2\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
68
|
+
width=\"44\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
69
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
70
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#00cc00\"><img
|
71
|
+
src=\"images/spacer.gif\" width=\"68\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"2\"
|
72
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"44\" height=\"20\"
|
73
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"2\" cellpadding=\"0\"
|
74
|
+
border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\"
|
75
|
+
width=\"92\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
76
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
77
|
+
cellspacing=\"2\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
78
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
|
79
|
+
style=\"background-color:#0000cc\"><img src=\"images/spacer.gif\" width=\"92\" height=\"20\"
|
80
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
|
81
|
+
many ways can a row measuring fifty units in length be tiled?</p>\r\n<p class=\"info\">NOTE:
|
82
|
+
This is related to problem <a href=\"index.php?section=problems&id=116\">116</a>.</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 118
|
3
|
+
:name: Pandigital prime sets
|
4
|
+
:url: http://projecteuler.net/problem=118
|
5
|
+
:content: "\r\n<p>Using all of the digits 1 through 9 and concatenating them freely
|
6
|
+
to form decimal integers, different sets can be formed. Interestingly with the set
|
7
|
+
{2,5,47,89,631}, all of the elements belonging to it are prime.</p>\r\n<p>How many
|
8
|
+
distinct sets containing each of the digits one through nine exactly once contain
|
9
|
+
only prime elements?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 119
|
3
|
+
:name: Digit power sum
|
4
|
+
:url: http://projecteuler.net/problem=119
|
5
|
+
:content: "\r\n<p>The number 512 is interesting because it is equal to the sum of
|
6
|
+
its digits raised to some power: 5 + 1 + 2 = 8, and 8<sup>3</sup> = 512. Another
|
7
|
+
example of a number with this property is 614656 = 28<sup>4</sup>.</p>\r\n<p>We
|
8
|
+
shall define <i>a</i><sub>n</sub> to be the <i>n</i>th term of this sequence and
|
9
|
+
insist that a number must contain at least two digits to have a sum.</p>\r\n<p>You
|
10
|
+
are given that <i>a</i><sub>2</sub> = 512 and <i>a</i><sub>10</sub> = 614656.</p>\r\n<p>Find
|
11
|
+
<i>a</i><sub>30</sub>.</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 12
|
3
|
+
:name: Highly divisible triangular number
|
4
|
+
:url: http://projecteuler.net/problem=12
|
5
|
+
:content: "\r\n<p>The sequence of triangle numbers is generated by adding the natural
|
6
|
+
numbers. So the 7<sup>th</sup> triangle number would be 1 + 2 + 3 + 4 + 5 + 6 +
|
7
|
+
7 = 28. The first ten terms would be:</p>\r\n<p style=\"text-align:center;\">1,
|
8
|
+
3, 6, 10, 15, 21, 28, 36, 45, 55, ...</p>\r\n<p>Let us list the factors of the first
|
9
|
+
seven triangle numbers:</p>\r\n<blockquote style=\"font-family:courier new;\">\n<b> 1</b>:
|
10
|
+
1<br><b> 3</b>: 1,3<br><b> 6</b>: 1,2,3,6<br><b>10</b>: 1,2,5,10<br><b>15</b>: 1,3,5,15<br><b>21</b>:
|
11
|
+
1,3,7,21<br><b>28</b>: 1,2,4,7,14,28</blockquote>\r\n<p>We can see that 28 is the
|
12
|
+
first triangle number to have over five divisors.</p>\r\n<p>What is the value of
|
13
|
+
the first triangle number to have over five hundred divisors?</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 120
|
3
|
+
:name: Square remainders
|
4
|
+
:url: http://projecteuler.net/problem=120
|
5
|
+
:content: "\r\n\n<p>Let <i>r</i> be the remainder when (<i>a</i><img src=\"images/symbol_minus.gif\"
|
6
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
|
7
|
+
+ (<i>a</i>+1)<sup><i>n</i></sup> is divided by <i>a</i><sup>2</sup>.</p>\n<p>For
|
8
|
+
example, if <i>a</i> = 7 and <i>n</i> = 3, then <i>r</i> = 42: 6<sup>3</sup> + 8<sup>3</sup>
|
9
|
+
= 728 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"> 42 mod 49. And as <i>n</i> varies, so too will
|
11
|
+
<i>r</i>, but for <i>a</i> = 7 it turns out that <i>r</i><sub>max</sub> = 42.</p>\n<p>For
|
12
|
+
3 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"><i>a</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
14
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 1000, find
|
15
|
+
<span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
|
16
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
|
17
|
+
<i>r</i><sub>max</sub>.</p>\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 121
|
3
|
+
:name: Disc game prize fund
|
4
|
+
:url: http://projecteuler.net/problem=121
|
5
|
+
:content: "\r\n<p>A bag contains one red disc and one blue disc. In a game of chance
|
6
|
+
a player takes a disc at random and its colour is noted. After each turn the disc
|
7
|
+
is returned to the bag, an extra red disc is added, and another disc is taken at
|
8
|
+
random.</p>\r\n<p>The player pays £1 to play and wins if they have taken more blue
|
9
|
+
discs than red discs at the end of the game.</p>\r\n<p>If the game is played for
|
10
|
+
four turns, the probability of a player winning is exactly 11/120, and so the maximum
|
11
|
+
prize fund the banker should allocate for winning in this game would be £10 before
|
12
|
+
they would expect to incur a loss. Note that any payout will be a whole number of
|
13
|
+
pounds and also includes the original £1 paid to play the game, so in the example
|
14
|
+
given the player actually wins £9.</p>\r\n<p>Find the maximum prize fund that should
|
15
|
+
be allocated to a single game in which fifteen turns are played.</p>\r\n\r\n"
|
@@ -0,0 +1,42 @@
|
|
1
|
+
---
|
2
|
+
:id: 122
|
3
|
+
:name: Efficient exponentiation
|
4
|
+
:url: http://projecteuler.net/problem=122
|
5
|
+
:content: "\r\n<p>The most naive way of computing <i>n</i><sup>15</sup> requires fourteen
|
6
|
+
multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
8
|
+
<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\" width=\"9\"
|
10
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i> =
|
11
|
+
<i>n</i><sup>15</sup></p>\r\n<p>But using a \"binary\" method you can compute it
|
12
|
+
in six multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
13
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
14
|
+
= <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
|
15
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
|
16
|
+
= <i>n</i><sup>4</sup><br><i>n</i><sup>4</sup><img src=\"images/symbol_times.gif\"
|
17
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
|
18
|
+
= <i>n</i><sup>8</sup><br><i>n</i><sup>8</sup><img src=\"images/symbol_times.gif\"
|
19
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>4</sup>
|
20
|
+
= <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
|
21
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>2</sup>
|
22
|
+
= <i>n</i><sup>14</sup><br><i>n</i><sup>14</sup><img src=\"images/symbol_times.gif\"
|
23
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
24
|
+
= <i>n</i><sup>15</sup></p>\r\n<p>However it is yet possible to compute it in only
|
25
|
+
five multiplications:</p>\r\n<p style=\"margin-left:100px;\"><i>n</i> <img src=\"images/symbol_times.gif\"
|
26
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
27
|
+
= <i>n</i><sup>2</sup><br><i>n</i><sup>2</sup><img src=\"images/symbol_times.gif\"
|
28
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
29
|
+
= <i>n</i><sup>3</sup><br><i>n</i><sup>3</sup><img src=\"images/symbol_times.gif\"
|
30
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
|
31
|
+
= <i>n</i><sup>6</sup><br><i>n</i><sup>6</sup><img src=\"images/symbol_times.gif\"
|
32
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>6</sup>
|
33
|
+
= <i>n</i><sup>12</sup><br><i>n</i><sup>12</sup><img src=\"images/symbol_times.gif\"
|
34
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i><sup>3</sup>
|
35
|
+
= <i>n</i><sup>15</sup></p>\r\n<p>We shall define m(<i>k</i>) to be the minimum
|
36
|
+
number of multiplications to compute <i>n</i><sup><i>k</i></sup>; for example m(15)
|
37
|
+
= 5.</p>\r\n<p>For 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
38
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\"
|
39
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
40
|
+
200, find <span style=\"font-family:times new roman;font-size:13pt;\"><img src=\"images/symbol_sum.gif\"
|
41
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"></span>
|
42
|
+
m(<i>k</i>).</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 123
|
3
|
+
:name: Prime square remainders
|
4
|
+
:url: http://projecteuler.net/problem=123
|
5
|
+
:content: "\r\n\n<p>Let <i>p</i><sub>n</sub> be the <i>n</i>th prime: 2, 3, 5, 7,
|
6
|
+
11, ..., and let <i>r</i> be the remainder when (<i>p</i><sub>n</sub><img src=\"images/symbol_minus.gif\"
|
7
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1)<sup><i>n</i></sup>
|
8
|
+
+ (<i>p</i><sub>n</sub>+1)<sup><i>n</i></sup> is divided by <i>p</i><sub>n</sub><sup>2</sup>.</p>\n<p>For
|
9
|
+
example, when <i>n</i> = 3, <i>p</i><sub>3</sub> = 5, and 4<sup>3</sup> + 6<sup>3</sup>
|
10
|
+
= 280 <img src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 5 mod 25.</p>\n<p>The least value of <i>n</i>
|
12
|
+
for which the remainder first exceeds 10<sup>9</sup> is 7037.</p>\n<p>Find the least
|
13
|
+
value of <i>n</i> for which the remainder first exceeds 10<sup>10</sup>.</p>\n\r\n"
|
@@ -0,0 +1,58 @@
|
|
1
|
+
---
|
2
|
+
:id: 124
|
3
|
+
:name: Ordered radicals
|
4
|
+
:url: http://projecteuler.net/problem=124
|
5
|
+
:content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of the distinct
|
6
|
+
prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
8
|
+
3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
9
|
+
border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>If we calculate rad(<i>n</i>)
|
13
|
+
for <i>1</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
14
|
+
border=\"0\" style=\"vertical-align:middle;\"><i>n</i> <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
10, then sort them on rad(<i>n</i>), and sorting on <i>n</i> if the radical values
|
17
|
+
are equal, we get:</p>\r\n<table cellpadding=\"2\" cellspacing=\"0\" border=\"0\"
|
18
|
+
align=\"center\">\n<tr>\n<td colspan=\"2\"><div style=\"text-align:center;\"><b>Unsorted</b></div></td>\r\n<td> </td>\r\n<td
|
19
|
+
colspan=\"3\"><div style=\"text-align:center;\"><b>Sorted</b></div></td>\r\n</tr>\n<tr>\n<td><div
|
20
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
21
|
+
alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
|
22
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td>\n<img
|
23
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br>\n</td>\r\n<td><div
|
24
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
25
|
+
alt=\"\"><br><b><i>n</i></b>\n</div></td>\r\n<td><div style=\"text-align:center;\">\n<img
|
26
|
+
src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br><b>rad(<i>n</i>)</b>\n</div></td>\r\n<td><div
|
27
|
+
style=\"text-align:center;\">\n<img src=\"images/spacer.gif\" width=\"50\" height=\"1\"
|
28
|
+
alt=\"\"><br><b>k</b>\n</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
|
29
|
+
style=\"text-align:center;\">1</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">1</div></td>\n<td><div
|
30
|
+
style=\"text-align:center;\">1</div></td>\n<td><div style=\"text-align:center;\">1</div></td>\r\n</tr>\n<tr>\n<td><div
|
31
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
32
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
|
33
|
+
style=\"text-align:center;\">2</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
34
|
+
style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">4</div></td>\n<td><div
|
35
|
+
style=\"text-align:center;\">2</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\r\n</tr>\n<tr>\n<td><div
|
36
|
+
style=\"text-align:center;\">4</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
37
|
+
style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\n<td><div
|
38
|
+
style=\"text-align:center;\">4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
|
39
|
+
style=\"text-align:center;\">5</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
40
|
+
style=\"text-align:center;\">3</div></td>\n<td><div style=\"text-align:center;\">5</div></td>\r\n</tr>\n<tr>\n<td><div
|
41
|
+
style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\r\n<td> </td>\r\n<td><div
|
42
|
+
style=\"text-align:center;\">9</div></td>\n<td><div style=\"text-align:center;\">3</div></td>\n<td><div
|
43
|
+
style=\"text-align:center;\">6</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
|
44
|
+
style=\"text-align:center;\">7</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">5</div></td>\n<td><div
|
45
|
+
style=\"text-align:center;\">5</div></td>\n<td><div style=\"text-align:center;\">7</div></td>\r\n</tr>\n<tr>\n<td><div
|
46
|
+
style=\"text-align:center;\">8</div></td>\n<td><div style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n<td><div
|
47
|
+
style=\"text-align:center;\">6</div></td>\n<td><div style=\"text-align:center;\">6</div></td>\n<td><div
|
48
|
+
style=\"text-align:center;\">8</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">9</div></td>\n<td><div
|
49
|
+
style=\"text-align:center;\">3</div></td>\r\n<td> </td>\r\n<td><div style=\"text-align:center;\">7</div></td>\n<td><div
|
50
|
+
style=\"text-align:center;\">7</div></td>\n<td><div style=\"text-align:center;\">9</div></td>\r\n</tr>\n<tr>\n<td><div
|
51
|
+
style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\r\n<td> </td>\r\n<td><div
|
52
|
+
style=\"text-align:center;\">10</div></td>\n<td><div style=\"text-align:center;\">10</div></td>\n<td><div
|
53
|
+
style=\"text-align:center;\">10</div></td>\r\n</tr>\n</table>\n<p>Let E(<i>k</i>)
|
54
|
+
be the <i>k</i>th element in the sorted <i>n</i> column; for example, E(4) = 8 and
|
55
|
+
E(6) = 9.</p>\r\n<p>If rad(<i>n</i>) is sorted for 1 <img src=\"images/symbol_le.gif\"
|
56
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>n</i>
|
57
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
58
|
+
style=\"vertical-align:middle;\"> 100000, find E(10000).</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 125
|
3
|
+
:name: Palindromic sums
|
4
|
+
:url: http://projecteuler.net/problem=125
|
5
|
+
:content: "\r\n\n<p>The palindromic number 595 is interesting because it can be written
|
6
|
+
as the sum of consecutive squares: 6<sup>2</sup> + 7<sup>2</sup> + 8<sup>2</sup>
|
7
|
+
+ 9<sup>2</sup> + 10<sup>2</sup> + 11<sup>2</sup> + 12<sup>2</sup>.</p>\n<p>There
|
8
|
+
are exactly eleven palindromes below one-thousand that can be written as consecutive
|
9
|
+
square sums, and the sum of these palindromes is 4164. Note that 1 = 0<sup>2</sup>
|
10
|
+
+ 1<sup>2</sup> has not been included as this problem is concerned with the squares
|
11
|
+
of positive integers.</p>\n<p>Find the sum of all the numbers less than 10<sup>8</sup>
|
12
|
+
that are both palindromic and can be written as the sum of consecutive squares.</p>\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 126
|
3
|
+
:name: Cuboid layers
|
4
|
+
:url: http://projecteuler.net/problem=126
|
5
|
+
:content: "\r\n<p>The minimum number of cubes to cover every visible face on a cuboid
|
6
|
+
measuring 3 x 2 x 1 is twenty-two.</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
7
|
+
src=\"project/images/p_126.gif\" width=\"499\" height=\"247\" alt=\"\"><br>\n</div>\r\n<p>If
|
8
|
+
we then add a second layer to this solid it would require forty-six cubes to cover
|
9
|
+
every visible face, the third layer would require seventy-eight cubes, and the fourth
|
10
|
+
layer would require one-hundred and eighteen cubes to cover every visible face.</p>\r\n<p>However,
|
11
|
+
the first layer on a cuboid measuring 5 x 1 x 1 also requires twenty-two cubes;
|
12
|
+
similarly the first layer on cuboids measuring 5 x 3 x 1, 7 x 2 x 1, and 11 x 1 x 1
|
13
|
+
all contain forty-six cubes.</p>\r\n<p>We shall define C(<i>n</i>) to represent
|
14
|
+
the number of cuboids that contain <i>n</i> cubes in one of its layers. So C(22)
|
15
|
+
= 2, C(46) = 4, C(78) = 5, and C(118) = 8.</p>\r\n<p>It turns out that 154 is the
|
16
|
+
least value of <i>n</i> for which C(<i>n</i>) = 10.</p>\r\n<p>Find the least value
|
17
|
+
of <i>n</i> for which C(<i>n</i>) = 1000.</p>\r\n\r\n"
|
@@ -0,0 +1,31 @@
|
|
1
|
+
---
|
2
|
+
:id: 127
|
3
|
+
:name: abc-hits
|
4
|
+
:url: http://projecteuler.net/problem=127
|
5
|
+
:content: "\r\n<p>The radical of <i>n</i>, rad(<i>n</i>), is the product of distinct
|
6
|
+
prime factors of <i>n</i>. For example, 504 = 2<sup>3</sup><img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
8
|
+
3<sup>2</sup><img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
9
|
+
border=\"0\" style=\"vertical-align:middle;\"> 7, so rad(504) = 2 <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 7 = 42.</p>\r\n<p>We shall define the triplet
|
13
|
+
of positive integers (<i>a</i>, <i>b</i>, <i>c</i>) to be an abc-hit if:</p>\r\n<ol>\n<li>GCD(<i>a,</i>
|
14
|
+
<i>b</i>) = GCD(<i>a</i>, <i>c</i>) = GCD(<i>b</i>, <i>c</i>) = 1</li>\r\n<li>\n<i>a</i>
|
15
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"><i>b</i>\n</li>\r\n<li>\n<i>a</i> + <i>b</i> =
|
17
|
+
<i>c</i>\n</li>\r\n<li>rad(<i>abc</i>) <img src=\"images/symbol_lt.gif\" width=\"10\"
|
18
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>\n</li>\r\n</ol>\n<p>For
|
19
|
+
example, (5, 27, 32) is an abc-hit, because:</p>\r\n<ol>\n<li>GCD(5, 27) = GCD(5,
|
20
|
+
32) = GCD(27, 32) = 1</li>\r\n<li>5 <img src=\"images/symbol_lt.gif\" width=\"10\"
|
21
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 27</li>\r\n<li>5
|
22
|
+
+ 27 = 32</li>\r\n<li>rad(4320) = 30 <img src=\"images/symbol_lt.gif\" width=\"10\"
|
23
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 32</li>\r\n</ol>\n<p>It
|
24
|
+
turns out that abc-hits are quite rare and there are only thirty-one abc-hits for
|
25
|
+
<i>c</i> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
26
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1000, with <img src=\"images/symbol_sum.gif\"
|
27
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i>
|
28
|
+
= 12523.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
29
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><i>c</i> for <i>c</i> <img
|
30
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
31
|
+
style=\"vertical-align:middle;\"> 120000.</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 128
|
3
|
+
:name: Hexagonal tile differences
|
4
|
+
:url: http://projecteuler.net/problem=128
|
5
|
+
:content: "\r\n\n<p>A hexagonal tile with number 1 is surrounded by a ring of six
|
6
|
+
hexagonal tiles, starting at \"12 o'clock\" and numbering the tiles 2 to 7 in an
|
7
|
+
anti-clockwise direction.</p>\n<p>New rings are added in the same fashion, with
|
8
|
+
the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram
|
9
|
+
below shows the first three rings.</p>\n<div style=\"text-align:center;\">\n<img
|
10
|
+
src=\"project/images/p_128.gif\" width=\"400\" height=\"431\" alt=\"\">\n</div>\n<p>By
|
11
|
+
finding the difference between tile <i>n</i> and each its six neighbours we shall
|
12
|
+
define PD(<i>n</i>) to be the number of those differences which are prime.</p>\n<p>For
|
13
|
+
example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and
|
14
|
+
13. So PD(8) = 3.</p>\n<p>In the same way, the differences around tile 17 are 1,
|
15
|
+
17, 16, 1, 11, and 10, hence PD(17) = 2.</p>\n<p>It can be shown that the maximum
|
16
|
+
value of PD(<i>n</i>) is 3.</p>\n<p>If all of the tiles for which PD(<i>n</i>) =
|
17
|
+
3 are listed in ascending order to form a sequence, the 10th tile would be 271.</p>\n<p>Find
|
18
|
+
the 2000th tile in this sequence.</p>\n\r\n"
|