euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 168
|
3
|
+
:name: Number Rotations
|
4
|
+
:url: http://projecteuler.net/problem=168
|
5
|
+
:content: "\r\n<p>Consider the number 142857. We can right-rotate this number by moving
|
6
|
+
the last digit (7) to the front of it, giving us 714285.<br>\r\nIt can be verified
|
7
|
+
that 714285=5<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\">142857.<br>\r\nThis demonstrates an
|
9
|
+
unusual property of 142857: it is a divisor of its right-rotation.</p>\r\n<p>Find
|
10
|
+
the last 5 digits of the sum of all integers <var>n</var>, 10 <img src=\"images/symbol_lt.gif\"
|
11
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
12
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 10<sup>100</sup>, that have this property.</p>\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 169
|
3
|
+
:name: Exploring the number of different ways a number can be expressed as a sum of
|
4
|
+
powers of 2
|
5
|
+
:url: http://projecteuler.net/problem=169
|
6
|
+
:content: "\r\n<p>Define f(0)=1 and f(<var>n</var>) to be the number of different
|
7
|
+
ways <var>n</var> can be expressed as a sum of integer powers of 2 using each power
|
8
|
+
no more than twice.</p>\r\n<p>For example, f(10)=5 since there are five different
|
9
|
+
ways to express 10:</p>\r\n<p style=\"margin-left:50px;\">1 + 1 + 8<br>\r\n1 + 1
|
10
|
+
+ 4 + 4<br>1 + 1 + 2 + 2 + 4<br>\r\n2 + 4 + 4<br>\r\n2 + 8</p>\r\n<p>What is f(10<sup>25</sup>)?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 17
|
3
|
+
:name: Number letter counts
|
4
|
+
:url: http://projecteuler.net/problem=17
|
5
|
+
:content: "\r\n<p>If the numbers 1 to 5 are written out in words: one, two, three,
|
6
|
+
four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.</p>\r\n<p>If
|
7
|
+
all the numbers from 1 to 1000 (one thousand) inclusive were written out in words,
|
8
|
+
how many letters would be used? </p>\r\n<br><p class=\"info\"><b>NOTE:</b> Do not
|
9
|
+
count spaces or hyphens. For example, 342 (three hundred and forty-two) contains
|
10
|
+
23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of \"and\"
|
11
|
+
when writing out numbers is in compliance with British usage.</p>\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 170
|
3
|
+
:name: Find the largest 0 to 9 pandigital that can be formed by concatenating products
|
4
|
+
:url: http://projecteuler.net/problem=170
|
5
|
+
:content: "\r\n<p>Take the number 6 and multiply it by each of 1273 and 9854:</p>\r\n\r\n<p
|
6
|
+
style=\"margin-left:50px;\">6 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
7
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1273 = 7638<br>\r\n6 <img
|
8
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> 9854 = 59124</p>\r\n\r\n<p>By concatenating these
|
10
|
+
products we get the 1 to 9 pandigital 763859124. We will call 763859124 the \"concatenated
|
11
|
+
product of 6 and (1273,9854)\". Notice too, that the concatenation of the input
|
12
|
+
numbers, 612739854, is also 1 to 9 pandigital.</p>\r\n\r\n<p>The same can be done
|
13
|
+
for 0 to 9 pandigital numbers.</p>\r\n\r\n<p>What is the largest 0 to 9 pandigital
|
14
|
+
10-digit concatenated product of an integer with two or more other integers, such
|
15
|
+
that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit
|
16
|
+
number?</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 171
|
3
|
+
:name: Finding numbers for which the sum of the squares of the digits is a square
|
4
|
+
:url: http://projecteuler.net/problem=171
|
5
|
+
:content: "\r\n<p>For a positive integer <var>n</var>, let f(<var>n</var>) be the
|
6
|
+
sum of the squares of the digits (in base 10) of <var>n</var>, e.g.</p>\r\n<p style=\"margin-left:50px;\">f(3)
|
7
|
+
= 3<sup>2</sup> = 9,<br>\r\nf(25) = 2<sup>2</sup> + 5<sup>2</sup> = 4 + 25 = 29,<br>\r\nf(442)
|
8
|
+
= 4<sup>2</sup> + 4<sup>2</sup> + 2<sup>2</sup> = 16 + 16 + 4 = 36</p>\r\n<p>Find
|
9
|
+
the last nine digits of the sum of all <var>n</var>, 0 <img src=\"images/symbol_lt.gif\"
|
10
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
11
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 10<sup>20</sup>, such that f(<var>n</var>) is
|
13
|
+
a perfect square.</p>\r\n"
|
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 172
|
3
|
+
:name: Investigating numbers with few repeated digits
|
4
|
+
:url: http://projecteuler.net/problem=172
|
5
|
+
:content: "\r\n<p>How many 18-digit numbers <var>n</var> (without leading zeros) are
|
6
|
+
there such that no digit occurs more than three times in <var>n</var>?</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 173
|
3
|
+
:name: Using up to one million tiles how many different "hollow" square laminae can
|
4
|
+
be formed?
|
5
|
+
:url: http://projecteuler.net/problem=173
|
6
|
+
:content: "\r\n<p>We shall define a square lamina to be a square outline with a square
|
7
|
+
\"hole\" so that the shape possesses vertical and horizontal symmetry. For example,
|
8
|
+
using exactly thirty-two square tiles we can form two different square laminae:</p>\r\n<div
|
9
|
+
style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
|
10
|
+
alt=\"\">\n</div>\r\n<p>With one-hundred tiles, and not necessarily using all of
|
11
|
+
the tiles at one time, it is possible to form forty-one different square laminae.</p>\r\n<p>Using
|
12
|
+
up to one million tiles how many different square laminae can be formed?</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 174
|
3
|
+
:name: Counting the number of "hollow" square laminae that can form one, two, three,
|
4
|
+
... distinct arrangements
|
5
|
+
:url: http://projecteuler.net/problem=174
|
6
|
+
:content: "\r\n<p>We shall define a square lamina to be a square outline with a square
|
7
|
+
\"hole\" so that the shape possesses vertical and horizontal symmetry.</p>\r\n<p>Given
|
8
|
+
eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1
|
9
|
+
hole in the middle. However, using thirty-two tiles it is possible to form two distinct
|
10
|
+
laminae.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
|
11
|
+
alt=\"\">\n</div>\r\n<p>If <var>t</var> represents the number of tiles used, we
|
12
|
+
shall say that <var>t</var> = 8 is type L(1) and <var>t</var> = 32 is type L(2).</p>\r\n<p>Let
|
13
|
+
N(<var>n</var>) be the number of <var>t</var> <img src=\"images/symbol_le.gif\"
|
14
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
1000000 such that <var>t</var> is type L(<var>n</var>); for example, N(15) = 832.</p>\r\n<p>What
|
16
|
+
is <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"> N(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\"
|
18
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
19
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 10?</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 175
|
3
|
+
:name: Fractions involving the number of different ways a number can be expressed
|
4
|
+
as a sum of powers of 2
|
5
|
+
:url: http://projecteuler.net/problem=175
|
6
|
+
:content: "\r\nDefine f(0)=1 and f(<var>n</var>) to be the number of ways to write
|
7
|
+
<var>n</var> as a sum of powers of 2 where no power occurs more than twice. <br><br>\r\n\r\nFor
|
8
|
+
example, f(10)=5 since there are five different ways to express 10:<br>10 = 8+2
|
9
|
+
= 8+1+1 = 4+4+2 = 4+2+2+1+1 = 4+4+1+1<br><br>\r\n\r\nIt can be shown that for every
|
10
|
+
fraction <var>p/q</var> (<var>p</var><img src=\"images/symbol_gt.gif\" width=\"10\"
|
11
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">0, <var>q</var><img
|
12
|
+
src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\">0) there exists at least one integer <var>n</var>
|
14
|
+
such that<br> f(<var>n</var>)/f(<var>n</var>-1)=<var>p/q</var>.<br><br>\r\nFor instance,
|
15
|
+
the smallest <var>n</var> for which f(<var>n</var>)/f(<var>n</var>-1)=13/17 is 241.<br>\r\nThe
|
16
|
+
binary expansion of 241 is 11110001.<br>\r\nReading this binary number from the
|
17
|
+
most significant bit to the least significant bit there are 4 one's, 3 zeroes and
|
18
|
+
1 one. We shall call the string 4,3,1 the <span style=\"font-style: italic\">Shortened
|
19
|
+
Binary Expansion</span> of 241.<br><br>\r\nFind the Shortened Binary Expansion of
|
20
|
+
the smallest <var>n</var> for which<br> f(<var>n</var>)/f(<var>n</var>-1)=123456789/987654321.<br><br>\r\nGive
|
21
|
+
your answer as comma separated integers, without any whitespaces.\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 176
|
3
|
+
:name: Right-angled triangles that share a cathetus
|
4
|
+
:url: http://projecteuler.net/problem=176
|
5
|
+
:content: "\r\n<p>The four right-angled triangles with sides (9,12,15), (12,16,20),
|
6
|
+
(5,12,13) and (12,35,37) all have one of the shorter sides (catheti) equal to 12.
|
7
|
+
It can be shown that no other integer sided right-angled triangle exists with one
|
8
|
+
of the catheti equal to 12.</p>\r\n<p>Find the smallest integer that can be the
|
9
|
+
length of a cathetus of exactly 47547 different integer sided right-angled triangles.</p>\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 177
|
3
|
+
:name: Integer angled Quadrilaterals
|
4
|
+
:url: http://projecteuler.net/problem=177
|
5
|
+
:content: "\r\n<p>Let ABCD be a convex quadrilateral, with diagonals AC and BD. At
|
6
|
+
each vertex the diagonal makes an angle with each of the two sides, creating eight
|
7
|
+
corner angles.</p>\r\n<p style=\"margin-left:180px;\"><img src=\"project/images/p_177_quad.gif\"
|
8
|
+
alt=\"\"></p>\r\n<p>For example, at vertex A, the two angles are CAD, CAB.</p>\r\n<p>We
|
9
|
+
call such a quadrilateral for which all eight corner angles have integer values
|
10
|
+
when measured in degrees an \"integer angled quadrilateral\". An example of an integer
|
11
|
+
angled quadrilateral is a square, where all eight corner angles are 45°. Another
|
12
|
+
example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA =
|
13
|
+
30°, CDB = 80°, ADB = 50°.</p>\r\n<p>What is the total number of non-similar integer
|
14
|
+
angled quadrilaterals?</p>\r\n<p>Note: In your calculations you may assume that
|
15
|
+
a calculated angle is integral if it is within a tolerance of 10<sup>-9</sup> of
|
16
|
+
an integer value.</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 178
|
3
|
+
:name: Step Numbers
|
4
|
+
:url: http://projecteuler.net/problem=178
|
5
|
+
:content: "\r\nConsider the number 45656. <br>\r\nIt can be seen that each pair of
|
6
|
+
consecutive digits of 45656 has a difference of one.<br>\r\nA number for which every
|
7
|
+
pair of consecutive digits has a difference of one is called a step number.<br>\r\nA
|
8
|
+
pandigital number contains every decimal digit from 0 to 9 at least once.<br>\r\n\r\nHow
|
9
|
+
many pandigital step numbers less than 10<sup>40</sup> are there?\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 179
|
3
|
+
:name: "Consecutive positive divisors\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=179
|
5
|
+
:content: "\r\n<p>Find the number of integers 1 <img src=\"images/symbol_lt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
n <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> 10<sup>7</sup>, for which <var>n</var> and <var>n</var>
|
9
|
+
+ 1 have the same number of positive divisors. For example, 14 has the positive
|
10
|
+
divisors 1, 2, 7, 14 while 15 has 1, 3, 5, 15.</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 18
|
3
|
+
:name: Maximum path sum I
|
4
|
+
:url: http://projecteuler.net/problem=18
|
5
|
+
:content: "\r\n<p>By starting at the top of the triangle below and moving to adjacent
|
6
|
+
numbers on the row below, the maximum total from top to bottom is 23.</p>\r\n<p
|
7
|
+
style=\"text-align:center;font-family:courier new;font-size:12pt;\"><span style=\"color:#ff0000;\"><b>3</b></span><br><span
|
8
|
+
style=\"color:#ff0000;\"><b>7</b></span> 4<br>\r\n2 <span style=\"color:#ff0000;\"><b>4</b></span>
|
9
|
+
6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
|
10
|
+
3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom of the triangle
|
11
|
+
below:</p>\r\n<p style=\"text-align:center;font-family:courier new;\">75<br>\r\n95
|
12
|
+
64<br>\r\n17 47 82<br>\r\n18 35 87 10<br>\r\n20 04 82 47 65<br>\r\n19 01 23 75 03
|
13
|
+
34<br>\r\n88 02 77 73 07 63 67<br>\r\n99 65 04 28 06 16 70 92<br>\r\n41 41 26 56
|
14
|
+
83 40 80 70 33<br>\r\n41 48 72 33 47 32 37 16 94 29<br>\r\n53 71 44 65 25 43 91
|
15
|
+
52 97 51 14<br>\r\n70 11 33 28 77 73 17 78 39 68 17 57<br>\r\n91 71 52 38 17 14
|
16
|
+
91 43 58 50 27 29 48<br>\r\n63 66 04 68 89 53 67 30 73 16 69 87 40 31<br>\r\n04
|
17
|
+
62 98 27 23 09 70 98 73 93 38 53 60 04 23</p>\r\n<p class=\"info\"><b>NOTE:</b>
|
18
|
+
As there are only 16384 routes, it is possible to solve this problem by trying every
|
19
|
+
route. However, <a href=\"index.php?section=problems&id=67\">Problem 67</a>,
|
20
|
+
is the same challenge with a triangle containing one-hundred rows; it cannot be
|
21
|
+
solved by brute force, and requires a clever method! ;o)</p>\r\n"
|
@@ -0,0 +1,34 @@
|
|
1
|
+
---
|
2
|
+
:id: 180
|
3
|
+
:name: Rational zeros of a function of three variables
|
4
|
+
:url: http://projecteuler.net/problem=180
|
5
|
+
:content: "\r\n<p>For any integer <var>n</var>, consider the three functions</p>\r\n<p
|
6
|
+
style=\"margin-left:50px;\"><var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
7
|
+
= <var>x</var><sup><var>n</var>+1</sup> + <var>y</var><sup><var>n</var>+1</sup><img
|
8
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>+1</sup><br><var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
10
|
+
= (<var>xy</var> + <var>yz</var> + <var>zx</var>)*(<var>x</var><sup><var>n</var>-1</sup>
|
11
|
+
+ <var>y</var><sup><var>n</var>-1</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
|
12
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-1</sup>)<br><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
13
|
+
= <var>xyz</var>*(<var>x</var><sup><var>n</var>-2</sup> + <var>y</var><sup><var>n</var>-2</sup><img
|
14
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-2</sup>)</p>\r\n<p>and
|
16
|
+
their combination</p>\r\n<p style=\"margin-left:50px;\"><var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
17
|
+
= <var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
18
|
+
+ <var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
19
|
+
<img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)</p>\r\n<p>We
|
21
|
+
call (<var>x</var>,<var>y</var>,<var>z</var>) a golden triple of order <var>k</var>
|
22
|
+
if <var>x</var>, <var>y</var>, and <var>z</var> are all rational numbers of the
|
23
|
+
form <var>a</var> / <var>b</var> with<br>\r\n0 <img src=\"images/symbol_lt.gif\"
|
24
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
25
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
26
|
+
style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_le.gif\"
|
27
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
|
28
|
+
and there is (at least) one integer <var>n</var>, so that <var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
29
|
+
= 0.</p>\r\n<p>Let <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) = <var>x</var>
|
30
|
+
+ <var>y</var> + <var>z</var>.<br>\r\nLet <var>t</var> = <var>u</var> / <var>v</var>
|
31
|
+
be the sum of all distinct <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>)
|
32
|
+
for all golden triples (<var>x</var>,<var>y</var>,<var>z</var>) of order 35.<br>
|
33
|
+
All the <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) and <var>t</var> must
|
34
|
+
be in reduced form.</p>\r\n<p>Find <var>u</var> + <var>v</var>.</p>\r\n"
|
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 181
|
3
|
+
:name: Investigating in how many ways objects of two different colours can be grouped
|
4
|
+
:url: http://projecteuler.net/problem=181
|
5
|
+
:content: "\r\n<p>Having three black objects B and one white object W they can be
|
6
|
+
grouped in 7 ways like this:</p>\r\n<table cellpadding=\"10\" align=\"center\"><tr>\n<td>(BBBW)</td>\n<td>(B,BBW)</td>\n<td>(B,B,BW)</td>\n<td>(B,B,B,W)</td>\r\n<td>(B,BB,W)</td>\n<td>(BBB,W)</td>\n<td>(BB,BW)</td>\r\n</tr></table>\n<p>In
|
7
|
+
how many ways can sixty black objects B and forty white objects W be thus grouped?</p>\r\n"
|
@@ -0,0 +1,35 @@
|
|
1
|
+
---
|
2
|
+
:id: 182
|
3
|
+
:name: RSA encryption
|
4
|
+
:url: http://projecteuler.net/problem=182
|
5
|
+
:content: "\r\n<p>The RSA encryption is based on the following procedure:</p>\r\n<p>Generate
|
6
|
+
two distinct primes <var>p</var> and <var>q</var>.<br>Compute <var>n=pq</var> and
|
7
|
+
φ=(<var>p</var>-1)(<var>q</var>-1).<br>\r\nFind an integer <var>e</var>, 1<img src=\"images/symbol_lt.gif\"
|
8
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>e</var><img
|
9
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\">φ, such that gcd(<var>e</var>,φ)=1.</p>\r\n<p>A
|
11
|
+
message in this system is a number in the interval [0,<var>n</var>-1].<br>\r\nA
|
12
|
+
text to be encrypted is then somehow converted to messages (numbers in the interval
|
13
|
+
[0,<var>n</var>-1]).<br>\r\nTo encrypt the text, for each message, <var>m</var>,
|
14
|
+
<var>c</var>=<var>m</var><sup><var>e</var></sup> mod <var>n</var> is calculated.</p>\r\n<p>To
|
15
|
+
decrypt the text, the following procedure is needed: calculate <var>d</var> such
|
16
|
+
that <var>ed</var>=1 mod φ, then for each encrypted message, <var>c</var>, calculate
|
17
|
+
<var>m=c<sup>d</sup></var> mod <var>n</var>.</p>\r\n<p>There exist values of <var>e</var>
|
18
|
+
and <var>m</var> such that <var>m<sup>e</sup></var> mod <var>n=m</var>.<br>We call
|
19
|
+
messages <var>m</var> for which <var>m<sup>e</sup></var> mod <var>n=m</var> unconcealed
|
20
|
+
messages.</p>\r\n<p>An issue when choosing <var>e</var> is that there should not
|
21
|
+
be too many unconcealed messages. <br>For instance, let <var>p</var>=19 and <var>q</var>=37.<br>\r\nThen
|
22
|
+
<var>n</var>=19*37=703 and φ=18*36=648.<br>\r\nIf we choose <var>e</var>=181, then,
|
23
|
+
although gcd(181,648)=1 it turns out that all possible messages<br><var>m</var>
|
24
|
+
(0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\"><var>m</var><img src=\"images/symbol_le.gif\" width=\"10\"
|
26
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>-1)
|
27
|
+
are unconcealed when calculating <var>m<sup>e</sup></var> mod <var>n</var>.<br>\r\nFor
|
28
|
+
any valid choice of <var>e</var> there exist some unconcealed messages.<br>\r\nIt's
|
29
|
+
important that the number of unconcealed messages is at a minimum.</p>\r\n<p>Choose
|
30
|
+
<var>p</var>=1009 and <var>q</var>=3643.<br>\r\nFind the sum of all values of <var>e</var>,
|
31
|
+
1<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\"><var>e</var><img src=\"images/symbol_lt.gif\" width=\"10\"
|
33
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">φ(1009,3643)
|
34
|
+
and gcd(<var>e</var>,φ)=1, so that the number of unconcealed messages for this value
|
35
|
+
of <var>e</var> is at a minimum.</p>\r\n"
|
@@ -0,0 +1,27 @@
|
|
1
|
+
---
|
2
|
+
:id: 183
|
3
|
+
:name: Maximum product of parts
|
4
|
+
:url: http://projecteuler.net/problem=183
|
5
|
+
:content: "\r\n<p>Let N be a positive integer and let N be split into <var>k</var>
|
6
|
+
equal parts, <var>r</var> = N/<var>k</var>, so that N = <var>r</var> + <var>r</var>
|
7
|
+
+ ... + <var>r</var>.<br>\r\nLet P be the product of these parts, P = <var>r</var>
|
8
|
+
<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>r</var> <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"><var>r</var> = <var>r</var><sup><var>k</var></sup>.</p>\r\n\r\n<p>For
|
13
|
+
example, if 11 is split into five equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2,
|
14
|
+
then P = 2.2<sup>5</sup> = 51.53632.</p>\r\n\r\n<p>Let M(N) = P<sub>max</sub> for
|
15
|
+
a given value of N.</p>\r\n\r\n<p>It turns out that the maximum for N = 11 is found
|
16
|
+
by splitting eleven into four equal parts which leads to P<sub>max</sub> = (11/4)<sup>4</sup>;
|
17
|
+
that is, M(11) = 14641/256 = 57.19140625, which is a terminating decimal.</p>\r\n\r\n<p>However,
|
18
|
+
for N = 8 the maximum is achieved by splitting it into three equal parts, so M(8)
|
19
|
+
= 512/27, which is a non-terminating decimal.</p>\r\n\r\n<p>Let D(N) = N if M(N)
|
20
|
+
is a non-terminating decimal and D(N) = -N if M(N) is a terminating decimal.</p>\r\n\r\n<p>For
|
21
|
+
example, ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
22
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
|
23
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
24
|
+
100 is 2438.</p>\r\n\r\n<p>Find ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\"
|
25
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
|
26
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
27
|
+
10000.</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 184
|
3
|
+
:name: Triangles containing the origin
|
4
|
+
:url: http://projecteuler.net/problem=184
|
5
|
+
:content: "\r\n<p>Consider the set <var>I<sub>r</sub></var> of points (<var>x</var>,<var>y</var>)
|
6
|
+
with integer co-ordinates in the interior of the circle with radius <var>r</var>,
|
7
|
+
centered at the origin, i.e. <var>x</var><sup>2</sup> + <var>y</var><sup>2</sup><img
|
8
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>r</var><sup>2</sup>.</p>\r\n<p>For a radius
|
10
|
+
of 2, <var>I</var><sub>2</sub> contains the nine points (0,0), (1,0), (1,1), (0,1),
|
11
|
+
(-1,1), (-1,0), (-1,-1), (0,-1) and (1,-1). There are eight triangles having all
|
12
|
+
three vertices in <var>I</var><sub>2</sub> which contain the origin in the interior.
|
13
|
+
Two of them are shown below, the others are obtained from these by rotation.</p>\r\n<p
|
14
|
+
style=\"margin-left:240px;\"><img src=\"project/images/p_184.gif\" alt=\"\"></p>\r\n\r\n<p>For
|
15
|
+
a radius of 3, there are 360 triangles containing the origin in the interior and
|
16
|
+
having all vertices in <var>I</var><sub>3</sub> and for <var>I</var><sub>5</sub>
|
17
|
+
the number is 10600.</p>\r\n\r\n<p>How many triangles are there containing the origin
|
18
|
+
in the interior and having all three vertices in <var>I</var><sub>105</sub>?</p>\r\n\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 185
|
3
|
+
:name: Number Mind
|
4
|
+
:url: http://projecteuler.net/problem=185
|
5
|
+
:content: "\r\n<p>The game Number Mind is a variant of the well known game Master
|
6
|
+
Mind.</p>\r\n<p>Instead of coloured pegs, you have to guess a secret sequence of
|
7
|
+
digits. After each guess you're only told in how many places you've guessed the
|
8
|
+
correct digit. So, if the sequence was 1234 and you guessed 2036, you'd be told
|
9
|
+
that you have one correct digit; however, you would NOT be told that you also have
|
10
|
+
another digit in the wrong place.</p>\r\n\r\n<p>For instance, given the following
|
11
|
+
guesses for a 5-digit secret sequence,</p>\r\n<p style=\"margin-left:50px;\">90342
|
12
|
+
;2 correct<br>\r\n70794 ;0 correct<br>\r\n39458 ;2 correct<br>\r\n34109 ;1 correct<br>\r\n51545
|
13
|
+
;2 correct<br>\r\n12531 ;1 correct</p>\r\n<p>The correct sequence 39542 is unique.</p>\r\n\r\n<p>Based
|
14
|
+
on the following guesses,</p>\r\n\r\n<p style=\"margin-left:50px;\">5616185650518293
|
15
|
+
;2 correct<br>\r\n3847439647293047 ;1 correct<br>\r\n5855462940810587 ;3 correct<br>\r\n9742855507068353
|
16
|
+
;3 correct<br>\r\n4296849643607543 ;3 correct<br>\r\n3174248439465858 ;1 correct<br>\r\n4513559094146117
|
17
|
+
;2 correct<br>\r\n7890971548908067 ;3 correct<br>\r\n8157356344118483 ;1 correct<br>\r\n2615250744386899
|
18
|
+
;2 correct<br>\r\n8690095851526254 ;3 correct<br>\r\n6375711915077050 ;1 correct<br>\r\n6913859173121360
|
19
|
+
;1 correct<br>\r\n6442889055042768 ;2 correct<br>\r\n2321386104303845 ;0 correct<br>\r\n2326509471271448
|
20
|
+
;2 correct<br>\r\n5251583379644322 ;2 correct<br>\r\n1748270476758276 ;3 correct<br>\r\n4895722652190306
|
21
|
+
;1 correct<br>\r\n3041631117224635 ;3 correct<br>\r\n1841236454324589 ;3 correct<br>\r\n2659862637316867
|
22
|
+
;2 correct</p>\r\n\r\n<p>Find the unique 16-digit secret sequence.</p>\r\n"
|
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 186
|
3
|
+
:name: Connectedness of a network
|
4
|
+
:url: http://projecteuler.net/problem=186
|
5
|
+
:content: "\r\n<p>Here are the records from a busy telephone system with one million
|
6
|
+
users:</p>\r\n<div style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\"
|
7
|
+
border=\"1\" align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td>RecNr</td>\n<td
|
8
|
+
width=\"60\" align=\"center\">Caller</td>\n<td width=\"60\" align=\"center\">Called</td>\n</tr>\n<tr>\n<td
|
9
|
+
align=\"center\">1</td>\n<td align=\"center\">200007</td>\n<td align=\"center\">100053</td>\n</tr>\n<tr>\n<td
|
10
|
+
align=\"center\">2</td>\n<td align=\"center\">600183</td>\n<td align=\"center\">500439</td>\n</tr>\n<tr>\n<td
|
11
|
+
align=\"center\">3</td>\n<td align=\"center\">600863</td>\n<td align=\"center\">701497</td>\n</tr>\n<tr>\n<td
|
12
|
+
align=\"center\">...</td>\n<td align=\"center\">...</td>\n<td align=\"center\">...</td>\n</tr>\n</table>\n</div>\r\n<p>The
|
13
|
+
telephone number of the caller and the called number in record n are Caller(n) =
|
14
|
+
S<sub>2n-1</sub> and Called(n) = S<sub>2n</sub> where S<sub>1,2,3,...</sub> come
|
15
|
+
from the \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For 1 <img src=\"images/symbol_le.gif\"
|
16
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
17
|
+
k <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 55, S<sub>k</sub> = [100003 - 200003k + 300007k<sup>3</sup>]
|
19
|
+
(modulo 1000000)<br>\r\nFor 56 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
20
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> k, S<sub>k</sub> = [S<sub>k-24</sub>
|
21
|
+
+ S<sub>k-55</sub>] (modulo 1000000)</p>\r\n\r\n<p>If Caller(n) = Called(n) then
|
22
|
+
the user is assumed to have misdialled and the call fails; otherwise the call is
|
23
|
+
successful.</p>\r\n\r\n<p>From the start of the records, we say that any pair of
|
24
|
+
users X and Y are friends if X calls Y or vice-versa. Similarly, X is a friend of
|
25
|
+
a friend of Z if X is a friend of Y and Y is a friend of Z; and so on for longer
|
26
|
+
chains.</p>\r\n\r\n<p>The Prime Minister's phone number is 524287. After how many
|
27
|
+
successful calls, not counting misdials, will 99% of the users (including the PM)
|
28
|
+
be a friend, or a friend of a friend etc., of the Prime Minister?</p>\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 187
|
3
|
+
:name: Semiprimes
|
4
|
+
:url: http://projecteuler.net/problem=187
|
5
|
+
:content: "\r\n<p>A composite is a number containing at least two prime factors. For
|
6
|
+
example, 15 = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\"> 5; 9 = 3 <img src=\"images/symbol_times.gif\"
|
8
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
9
|
+
3; 12 = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
10
|
+
border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
|
11
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
12
|
+
3.</p>\r\n\r\n<p>There are ten composites below thirty containing precisely two,
|
13
|
+
not necessarily distinct, prime factors:\r\n4, 6, 9, 10, 14, 15, 21, 22, 25, 26.</p>\r\n\r\n<p>How
|
14
|
+
many composite integers, <var>n</var> <img src=\"images/symbol_lt.gif\" width=\"10\"
|
15
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>8</sup>,
|
16
|
+
have precisely two, not necessarily distinct, prime factors?</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 188
|
3
|
+
:name: The hyperexponentiation of a number
|
4
|
+
:url: http://projecteuler.net/problem=188
|
5
|
+
:content: "\r\n<p>The <span style=\"font-style: italic\">hyperexponentiation</span>
|
6
|
+
or <span style=\"font-style: italic\">tetration</span> of a number a by a positive
|
7
|
+
integer b, denoted by a↑↑b or <sup>b</sup>a, is recursively defined by:<br><br>\r\na↑↑1
|
8
|
+
= a,<br>\r\na↑↑(k+1) = a<sup>(a↑↑k)</sup>.</p>\r\n<p>\r\nThus we have e.g. 3↑↑2
|
9
|
+
= 3<sup>3</sup> = 27, hence 3↑↑3 = 3<sup>27</sup> = 7625597484987 and 3↑↑4 is roughly
|
10
|
+
10<sup>3.6383346400240996*10^12</sup>.</p>\r\n<p>Find the last 8 digits of 1777↑↑1855.</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 189
|
3
|
+
:name: Tri-colouring a triangular grid
|
4
|
+
:url: http://projecteuler.net/problem=189
|
5
|
+
:content: "\r\n<p>Consider the following configuration of 64 triangles:</p>\r\n\r\n<div
|
6
|
+
style=\"text-align:center;\"><img src=\"project/images/p_189_grid.gif\" alt=\"\"></div>\r\n\r\n<p>We
|
7
|
+
wish to colour the interior of each triangle with one of three colours: red, green
|
8
|
+
or blue, so that no two neighbouring triangles have the same colour. Such a colouring
|
9
|
+
shall be called valid. Here, two triangles are said to be neighbouring if they share
|
10
|
+
an edge.<br>\r\nNote: if they only share a vertex, then they are not neighbours.</p>
|
11
|
+
\r\n\r\n<p>For example, here is a valid colouring of the above grid:</p>\r\n<div
|
12
|
+
style=\"text-align:center;\"><img src=\"project/images/p_189_colours.gif\" alt=\"\"></div>\r\n\r\n<p>A
|
13
|
+
colouring C' which is obtained from a colouring C by rotation or reflection is considered
|
14
|
+
<i>distinct</i> from C unless the two are identical.</p>\r\n\r\n<p>How many distinct
|
15
|
+
valid colourings are there for the above configuration?</p>\r\n\r\n"
|