euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 168
|
3
|
+
:name: Number Rotations
|
4
|
+
:url: http://projecteuler.net/problem=168
|
5
|
+
:content: "\r\n<p>Consider the number 142857. We can right-rotate this number by moving
|
6
|
+
the last digit (7) to the front of it, giving us 714285.<br>\r\nIt can be verified
|
7
|
+
that 714285=5<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\">142857.<br>\r\nThis demonstrates an
|
9
|
+
unusual property of 142857: it is a divisor of its right-rotation.</p>\r\n<p>Find
|
10
|
+
the last 5 digits of the sum of all integers <var>n</var>, 10 <img src=\"images/symbol_lt.gif\"
|
11
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
12
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 10<sup>100</sup>, that have this property.</p>\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 169
|
3
|
+
:name: Exploring the number of different ways a number can be expressed as a sum of
|
4
|
+
powers of 2
|
5
|
+
:url: http://projecteuler.net/problem=169
|
6
|
+
:content: "\r\n<p>Define f(0)=1 and f(<var>n</var>) to be the number of different
|
7
|
+
ways <var>n</var> can be expressed as a sum of integer powers of 2 using each power
|
8
|
+
no more than twice.</p>\r\n<p>For example, f(10)=5 since there are five different
|
9
|
+
ways to express 10:</p>\r\n<p style=\"margin-left:50px;\">1 + 1 + 8<br>\r\n1 + 1
|
10
|
+
+ 4 + 4<br>1 + 1 + 2 + 2 + 4<br>\r\n2 + 4 + 4<br>\r\n2 + 8</p>\r\n<p>What is f(10<sup>25</sup>)?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 17
|
3
|
+
:name: Number letter counts
|
4
|
+
:url: http://projecteuler.net/problem=17
|
5
|
+
:content: "\r\n<p>If the numbers 1 to 5 are written out in words: one, two, three,
|
6
|
+
four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.</p>\r\n<p>If
|
7
|
+
all the numbers from 1 to 1000 (one thousand) inclusive were written out in words,
|
8
|
+
how many letters would be used? </p>\r\n<br><p class=\"info\"><b>NOTE:</b> Do not
|
9
|
+
count spaces or hyphens. For example, 342 (three hundred and forty-two) contains
|
10
|
+
23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of \"and\"
|
11
|
+
when writing out numbers is in compliance with British usage.</p>\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 170
|
3
|
+
:name: Find the largest 0 to 9 pandigital that can be formed by concatenating products
|
4
|
+
:url: http://projecteuler.net/problem=170
|
5
|
+
:content: "\r\n<p>Take the number 6 and multiply it by each of 1273 and 9854:</p>\r\n\r\n<p
|
6
|
+
style=\"margin-left:50px;\">6 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
7
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1273 = 7638<br>\r\n6 <img
|
8
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> 9854 = 59124</p>\r\n\r\n<p>By concatenating these
|
10
|
+
products we get the 1 to 9 pandigital 763859124. We will call 763859124 the \"concatenated
|
11
|
+
product of 6 and (1273,9854)\". Notice too, that the concatenation of the input
|
12
|
+
numbers, 612739854, is also 1 to 9 pandigital.</p>\r\n\r\n<p>The same can be done
|
13
|
+
for 0 to 9 pandigital numbers.</p>\r\n\r\n<p>What is the largest 0 to 9 pandigital
|
14
|
+
10-digit concatenated product of an integer with two or more other integers, such
|
15
|
+
that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit
|
16
|
+
number?</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 171
|
3
|
+
:name: Finding numbers for which the sum of the squares of the digits is a square
|
4
|
+
:url: http://projecteuler.net/problem=171
|
5
|
+
:content: "\r\n<p>For a positive integer <var>n</var>, let f(<var>n</var>) be the
|
6
|
+
sum of the squares of the digits (in base 10) of <var>n</var>, e.g.</p>\r\n<p style=\"margin-left:50px;\">f(3)
|
7
|
+
= 3<sup>2</sup> = 9,<br>\r\nf(25) = 2<sup>2</sup> + 5<sup>2</sup> = 4 + 25 = 29,<br>\r\nf(442)
|
8
|
+
= 4<sup>2</sup> + 4<sup>2</sup> + 2<sup>2</sup> = 16 + 16 + 4 = 36</p>\r\n<p>Find
|
9
|
+
the last nine digits of the sum of all <var>n</var>, 0 <img src=\"images/symbol_lt.gif\"
|
10
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
11
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 10<sup>20</sup>, such that f(<var>n</var>) is
|
13
|
+
a perfect square.</p>\r\n"
|
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 172
|
3
|
+
:name: Investigating numbers with few repeated digits
|
4
|
+
:url: http://projecteuler.net/problem=172
|
5
|
+
:content: "\r\n<p>How many 18-digit numbers <var>n</var> (without leading zeros) are
|
6
|
+
there such that no digit occurs more than three times in <var>n</var>?</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 173
|
3
|
+
:name: Using up to one million tiles how many different "hollow" square laminae can
|
4
|
+
be formed?
|
5
|
+
:url: http://projecteuler.net/problem=173
|
6
|
+
:content: "\r\n<p>We shall define a square lamina to be a square outline with a square
|
7
|
+
\"hole\" so that the shape possesses vertical and horizontal symmetry. For example,
|
8
|
+
using exactly thirty-two square tiles we can form two different square laminae:</p>\r\n<div
|
9
|
+
style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
|
10
|
+
alt=\"\">\n</div>\r\n<p>With one-hundred tiles, and not necessarily using all of
|
11
|
+
the tiles at one time, it is possible to form forty-one different square laminae.</p>\r\n<p>Using
|
12
|
+
up to one million tiles how many different square laminae can be formed?</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 174
|
3
|
+
:name: Counting the number of "hollow" square laminae that can form one, two, three,
|
4
|
+
... distinct arrangements
|
5
|
+
:url: http://projecteuler.net/problem=174
|
6
|
+
:content: "\r\n<p>We shall define a square lamina to be a square outline with a square
|
7
|
+
\"hole\" so that the shape possesses vertical and horizontal symmetry.</p>\r\n<p>Given
|
8
|
+
eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1
|
9
|
+
hole in the middle. However, using thirty-two tiles it is possible to form two distinct
|
10
|
+
laminae.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
|
11
|
+
alt=\"\">\n</div>\r\n<p>If <var>t</var> represents the number of tiles used, we
|
12
|
+
shall say that <var>t</var> = 8 is type L(1) and <var>t</var> = 32 is type L(2).</p>\r\n<p>Let
|
13
|
+
N(<var>n</var>) be the number of <var>t</var> <img src=\"images/symbol_le.gif\"
|
14
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
1000000 such that <var>t</var> is type L(<var>n</var>); for example, N(15) = 832.</p>\r\n<p>What
|
16
|
+
is <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"> N(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\"
|
18
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
19
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 10?</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 175
|
3
|
+
:name: Fractions involving the number of different ways a number can be expressed
|
4
|
+
as a sum of powers of 2
|
5
|
+
:url: http://projecteuler.net/problem=175
|
6
|
+
:content: "\r\nDefine f(0)=1 and f(<var>n</var>) to be the number of ways to write
|
7
|
+
<var>n</var> as a sum of powers of 2 where no power occurs more than twice. <br><br>\r\n\r\nFor
|
8
|
+
example, f(10)=5 since there are five different ways to express 10:<br>10 = 8+2
|
9
|
+
= 8+1+1 = 4+4+2 = 4+2+2+1+1 = 4+4+1+1<br><br>\r\n\r\nIt can be shown that for every
|
10
|
+
fraction <var>p/q</var> (<var>p</var><img src=\"images/symbol_gt.gif\" width=\"10\"
|
11
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">0, <var>q</var><img
|
12
|
+
src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\">0) there exists at least one integer <var>n</var>
|
14
|
+
such that<br> f(<var>n</var>)/f(<var>n</var>-1)=<var>p/q</var>.<br><br>\r\nFor instance,
|
15
|
+
the smallest <var>n</var> for which f(<var>n</var>)/f(<var>n</var>-1)=13/17 is 241.<br>\r\nThe
|
16
|
+
binary expansion of 241 is 11110001.<br>\r\nReading this binary number from the
|
17
|
+
most significant bit to the least significant bit there are 4 one's, 3 zeroes and
|
18
|
+
1 one. We shall call the string 4,3,1 the <span style=\"font-style: italic\">Shortened
|
19
|
+
Binary Expansion</span> of 241.<br><br>\r\nFind the Shortened Binary Expansion of
|
20
|
+
the smallest <var>n</var> for which<br> f(<var>n</var>)/f(<var>n</var>-1)=123456789/987654321.<br><br>\r\nGive
|
21
|
+
your answer as comma separated integers, without any whitespaces.\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 176
|
3
|
+
:name: Right-angled triangles that share a cathetus
|
4
|
+
:url: http://projecteuler.net/problem=176
|
5
|
+
:content: "\r\n<p>The four right-angled triangles with sides (9,12,15), (12,16,20),
|
6
|
+
(5,12,13) and (12,35,37) all have one of the shorter sides (catheti) equal to 12.
|
7
|
+
It can be shown that no other integer sided right-angled triangle exists with one
|
8
|
+
of the catheti equal to 12.</p>\r\n<p>Find the smallest integer that can be the
|
9
|
+
length of a cathetus of exactly 47547 different integer sided right-angled triangles.</p>\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 177
|
3
|
+
:name: Integer angled Quadrilaterals
|
4
|
+
:url: http://projecteuler.net/problem=177
|
5
|
+
:content: "\r\n<p>Let ABCD be a convex quadrilateral, with diagonals AC and BD. At
|
6
|
+
each vertex the diagonal makes an angle with each of the two sides, creating eight
|
7
|
+
corner angles.</p>\r\n<p style=\"margin-left:180px;\"><img src=\"project/images/p_177_quad.gif\"
|
8
|
+
alt=\"\"></p>\r\n<p>For example, at vertex A, the two angles are CAD, CAB.</p>\r\n<p>We
|
9
|
+
call such a quadrilateral for which all eight corner angles have integer values
|
10
|
+
when measured in degrees an \"integer angled quadrilateral\". An example of an integer
|
11
|
+
angled quadrilateral is a square, where all eight corner angles are 45°. Another
|
12
|
+
example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA =
|
13
|
+
30°, CDB = 80°, ADB = 50°.</p>\r\n<p>What is the total number of non-similar integer
|
14
|
+
angled quadrilaterals?</p>\r\n<p>Note: In your calculations you may assume that
|
15
|
+
a calculated angle is integral if it is within a tolerance of 10<sup>-9</sup> of
|
16
|
+
an integer value.</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 178
|
3
|
+
:name: Step Numbers
|
4
|
+
:url: http://projecteuler.net/problem=178
|
5
|
+
:content: "\r\nConsider the number 45656. <br>\r\nIt can be seen that each pair of
|
6
|
+
consecutive digits of 45656 has a difference of one.<br>\r\nA number for which every
|
7
|
+
pair of consecutive digits has a difference of one is called a step number.<br>\r\nA
|
8
|
+
pandigital number contains every decimal digit from 0 to 9 at least once.<br>\r\n\r\nHow
|
9
|
+
many pandigital step numbers less than 10<sup>40</sup> are there?\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 179
|
3
|
+
:name: "Consecutive positive divisors\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=179
|
5
|
+
:content: "\r\n<p>Find the number of integers 1 <img src=\"images/symbol_lt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
n <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> 10<sup>7</sup>, for which <var>n</var> and <var>n</var>
|
9
|
+
+ 1 have the same number of positive divisors. For example, 14 has the positive
|
10
|
+
divisors 1, 2, 7, 14 while 15 has 1, 3, 5, 15.</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 18
|
3
|
+
:name: Maximum path sum I
|
4
|
+
:url: http://projecteuler.net/problem=18
|
5
|
+
:content: "\r\n<p>By starting at the top of the triangle below and moving to adjacent
|
6
|
+
numbers on the row below, the maximum total from top to bottom is 23.</p>\r\n<p
|
7
|
+
style=\"text-align:center;font-family:courier new;font-size:12pt;\"><span style=\"color:#ff0000;\"><b>3</b></span><br><span
|
8
|
+
style=\"color:#ff0000;\"><b>7</b></span> 4<br>\r\n2 <span style=\"color:#ff0000;\"><b>4</b></span>
|
9
|
+
6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
|
10
|
+
3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom of the triangle
|
11
|
+
below:</p>\r\n<p style=\"text-align:center;font-family:courier new;\">75<br>\r\n95
|
12
|
+
64<br>\r\n17 47 82<br>\r\n18 35 87 10<br>\r\n20 04 82 47 65<br>\r\n19 01 23 75 03
|
13
|
+
34<br>\r\n88 02 77 73 07 63 67<br>\r\n99 65 04 28 06 16 70 92<br>\r\n41 41 26 56
|
14
|
+
83 40 80 70 33<br>\r\n41 48 72 33 47 32 37 16 94 29<br>\r\n53 71 44 65 25 43 91
|
15
|
+
52 97 51 14<br>\r\n70 11 33 28 77 73 17 78 39 68 17 57<br>\r\n91 71 52 38 17 14
|
16
|
+
91 43 58 50 27 29 48<br>\r\n63 66 04 68 89 53 67 30 73 16 69 87 40 31<br>\r\n04
|
17
|
+
62 98 27 23 09 70 98 73 93 38 53 60 04 23</p>\r\n<p class=\"info\"><b>NOTE:</b>
|
18
|
+
As there are only 16384 routes, it is possible to solve this problem by trying every
|
19
|
+
route. However, <a href=\"index.php?section=problems&id=67\">Problem 67</a>,
|
20
|
+
is the same challenge with a triangle containing one-hundred rows; it cannot be
|
21
|
+
solved by brute force, and requires a clever method! ;o)</p>\r\n"
|
@@ -0,0 +1,34 @@
|
|
1
|
+
---
|
2
|
+
:id: 180
|
3
|
+
:name: Rational zeros of a function of three variables
|
4
|
+
:url: http://projecteuler.net/problem=180
|
5
|
+
:content: "\r\n<p>For any integer <var>n</var>, consider the three functions</p>\r\n<p
|
6
|
+
style=\"margin-left:50px;\"><var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
7
|
+
= <var>x</var><sup><var>n</var>+1</sup> + <var>y</var><sup><var>n</var>+1</sup><img
|
8
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>+1</sup><br><var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
10
|
+
= (<var>xy</var> + <var>yz</var> + <var>zx</var>)*(<var>x</var><sup><var>n</var>-1</sup>
|
11
|
+
+ <var>y</var><sup><var>n</var>-1</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
|
12
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-1</sup>)<br><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
13
|
+
= <var>xyz</var>*(<var>x</var><sup><var>n</var>-2</sup> + <var>y</var><sup><var>n</var>-2</sup><img
|
14
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-2</sup>)</p>\r\n<p>and
|
16
|
+
their combination</p>\r\n<p style=\"margin-left:50px;\"><var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
17
|
+
= <var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
18
|
+
+ <var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
19
|
+
<img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)</p>\r\n<p>We
|
21
|
+
call (<var>x</var>,<var>y</var>,<var>z</var>) a golden triple of order <var>k</var>
|
22
|
+
if <var>x</var>, <var>y</var>, and <var>z</var> are all rational numbers of the
|
23
|
+
form <var>a</var> / <var>b</var> with<br>\r\n0 <img src=\"images/symbol_lt.gif\"
|
24
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
25
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
26
|
+
style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_le.gif\"
|
27
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
|
28
|
+
and there is (at least) one integer <var>n</var>, so that <var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
|
29
|
+
= 0.</p>\r\n<p>Let <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) = <var>x</var>
|
30
|
+
+ <var>y</var> + <var>z</var>.<br>\r\nLet <var>t</var> = <var>u</var> / <var>v</var>
|
31
|
+
be the sum of all distinct <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>)
|
32
|
+
for all golden triples (<var>x</var>,<var>y</var>,<var>z</var>) of order 35.<br>
|
33
|
+
All the <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) and <var>t</var> must
|
34
|
+
be in reduced form.</p>\r\n<p>Find <var>u</var> + <var>v</var>.</p>\r\n"
|
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 181
|
3
|
+
:name: Investigating in how many ways objects of two different colours can be grouped
|
4
|
+
:url: http://projecteuler.net/problem=181
|
5
|
+
:content: "\r\n<p>Having three black objects B and one white object W they can be
|
6
|
+
grouped in 7 ways like this:</p>\r\n<table cellpadding=\"10\" align=\"center\"><tr>\n<td>(BBBW)</td>\n<td>(B,BBW)</td>\n<td>(B,B,BW)</td>\n<td>(B,B,B,W)</td>\r\n<td>(B,BB,W)</td>\n<td>(BBB,W)</td>\n<td>(BB,BW)</td>\r\n</tr></table>\n<p>In
|
7
|
+
how many ways can sixty black objects B and forty white objects W be thus grouped?</p>\r\n"
|
@@ -0,0 +1,35 @@
|
|
1
|
+
---
|
2
|
+
:id: 182
|
3
|
+
:name: RSA encryption
|
4
|
+
:url: http://projecteuler.net/problem=182
|
5
|
+
:content: "\r\n<p>The RSA encryption is based on the following procedure:</p>\r\n<p>Generate
|
6
|
+
two distinct primes <var>p</var> and <var>q</var>.<br>Compute <var>n=pq</var> and
|
7
|
+
φ=(<var>p</var>-1)(<var>q</var>-1).<br>\r\nFind an integer <var>e</var>, 1<img src=\"images/symbol_lt.gif\"
|
8
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>e</var><img
|
9
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\">φ, such that gcd(<var>e</var>,φ)=1.</p>\r\n<p>A
|
11
|
+
message in this system is a number in the interval [0,<var>n</var>-1].<br>\r\nA
|
12
|
+
text to be encrypted is then somehow converted to messages (numbers in the interval
|
13
|
+
[0,<var>n</var>-1]).<br>\r\nTo encrypt the text, for each message, <var>m</var>,
|
14
|
+
<var>c</var>=<var>m</var><sup><var>e</var></sup> mod <var>n</var> is calculated.</p>\r\n<p>To
|
15
|
+
decrypt the text, the following procedure is needed: calculate <var>d</var> such
|
16
|
+
that <var>ed</var>=1 mod φ, then for each encrypted message, <var>c</var>, calculate
|
17
|
+
<var>m=c<sup>d</sup></var> mod <var>n</var>.</p>\r\n<p>There exist values of <var>e</var>
|
18
|
+
and <var>m</var> such that <var>m<sup>e</sup></var> mod <var>n=m</var>.<br>We call
|
19
|
+
messages <var>m</var> for which <var>m<sup>e</sup></var> mod <var>n=m</var> unconcealed
|
20
|
+
messages.</p>\r\n<p>An issue when choosing <var>e</var> is that there should not
|
21
|
+
be too many unconcealed messages. <br>For instance, let <var>p</var>=19 and <var>q</var>=37.<br>\r\nThen
|
22
|
+
<var>n</var>=19*37=703 and φ=18*36=648.<br>\r\nIf we choose <var>e</var>=181, then,
|
23
|
+
although gcd(181,648)=1 it turns out that all possible messages<br><var>m</var>
|
24
|
+
(0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\"><var>m</var><img src=\"images/symbol_le.gif\" width=\"10\"
|
26
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>-1)
|
27
|
+
are unconcealed when calculating <var>m<sup>e</sup></var> mod <var>n</var>.<br>\r\nFor
|
28
|
+
any valid choice of <var>e</var> there exist some unconcealed messages.<br>\r\nIt's
|
29
|
+
important that the number of unconcealed messages is at a minimum.</p>\r\n<p>Choose
|
30
|
+
<var>p</var>=1009 and <var>q</var>=3643.<br>\r\nFind the sum of all values of <var>e</var>,
|
31
|
+
1<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\"><var>e</var><img src=\"images/symbol_lt.gif\" width=\"10\"
|
33
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">φ(1009,3643)
|
34
|
+
and gcd(<var>e</var>,φ)=1, so that the number of unconcealed messages for this value
|
35
|
+
of <var>e</var> is at a minimum.</p>\r\n"
|
@@ -0,0 +1,27 @@
|
|
1
|
+
---
|
2
|
+
:id: 183
|
3
|
+
:name: Maximum product of parts
|
4
|
+
:url: http://projecteuler.net/problem=183
|
5
|
+
:content: "\r\n<p>Let N be a positive integer and let N be split into <var>k</var>
|
6
|
+
equal parts, <var>r</var> = N/<var>k</var>, so that N = <var>r</var> + <var>r</var>
|
7
|
+
+ ... + <var>r</var>.<br>\r\nLet P be the product of these parts, P = <var>r</var>
|
8
|
+
<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>r</var> <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"><var>r</var> = <var>r</var><sup><var>k</var></sup>.</p>\r\n\r\n<p>For
|
13
|
+
example, if 11 is split into five equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2,
|
14
|
+
then P = 2.2<sup>5</sup> = 51.53632.</p>\r\n\r\n<p>Let M(N) = P<sub>max</sub> for
|
15
|
+
a given value of N.</p>\r\n\r\n<p>It turns out that the maximum for N = 11 is found
|
16
|
+
by splitting eleven into four equal parts which leads to P<sub>max</sub> = (11/4)<sup>4</sup>;
|
17
|
+
that is, M(11) = 14641/256 = 57.19140625, which is a terminating decimal.</p>\r\n\r\n<p>However,
|
18
|
+
for N = 8 the maximum is achieved by splitting it into three equal parts, so M(8)
|
19
|
+
= 512/27, which is a non-terminating decimal.</p>\r\n\r\n<p>Let D(N) = N if M(N)
|
20
|
+
is a non-terminating decimal and D(N) = -N if M(N) is a terminating decimal.</p>\r\n\r\n<p>For
|
21
|
+
example, ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
22
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
|
23
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
24
|
+
100 is 2438.</p>\r\n\r\n<p>Find ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\"
|
25
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
|
26
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
27
|
+
10000.</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 184
|
3
|
+
:name: Triangles containing the origin
|
4
|
+
:url: http://projecteuler.net/problem=184
|
5
|
+
:content: "\r\n<p>Consider the set <var>I<sub>r</sub></var> of points (<var>x</var>,<var>y</var>)
|
6
|
+
with integer co-ordinates in the interior of the circle with radius <var>r</var>,
|
7
|
+
centered at the origin, i.e. <var>x</var><sup>2</sup> + <var>y</var><sup>2</sup><img
|
8
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>r</var><sup>2</sup>.</p>\r\n<p>For a radius
|
10
|
+
of 2, <var>I</var><sub>2</sub> contains the nine points (0,0), (1,0), (1,1), (0,1),
|
11
|
+
(-1,1), (-1,0), (-1,-1), (0,-1) and (1,-1). There are eight triangles having all
|
12
|
+
three vertices in <var>I</var><sub>2</sub> which contain the origin in the interior.
|
13
|
+
Two of them are shown below, the others are obtained from these by rotation.</p>\r\n<p
|
14
|
+
style=\"margin-left:240px;\"><img src=\"project/images/p_184.gif\" alt=\"\"></p>\r\n\r\n<p>For
|
15
|
+
a radius of 3, there are 360 triangles containing the origin in the interior and
|
16
|
+
having all vertices in <var>I</var><sub>3</sub> and for <var>I</var><sub>5</sub>
|
17
|
+
the number is 10600.</p>\r\n\r\n<p>How many triangles are there containing the origin
|
18
|
+
in the interior and having all three vertices in <var>I</var><sub>105</sub>?</p>\r\n\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 185
|
3
|
+
:name: Number Mind
|
4
|
+
:url: http://projecteuler.net/problem=185
|
5
|
+
:content: "\r\n<p>The game Number Mind is a variant of the well known game Master
|
6
|
+
Mind.</p>\r\n<p>Instead of coloured pegs, you have to guess a secret sequence of
|
7
|
+
digits. After each guess you're only told in how many places you've guessed the
|
8
|
+
correct digit. So, if the sequence was 1234 and you guessed 2036, you'd be told
|
9
|
+
that you have one correct digit; however, you would NOT be told that you also have
|
10
|
+
another digit in the wrong place.</p>\r\n\r\n<p>For instance, given the following
|
11
|
+
guesses for a 5-digit secret sequence,</p>\r\n<p style=\"margin-left:50px;\">90342
|
12
|
+
;2 correct<br>\r\n70794 ;0 correct<br>\r\n39458 ;2 correct<br>\r\n34109 ;1 correct<br>\r\n51545
|
13
|
+
;2 correct<br>\r\n12531 ;1 correct</p>\r\n<p>The correct sequence 39542 is unique.</p>\r\n\r\n<p>Based
|
14
|
+
on the following guesses,</p>\r\n\r\n<p style=\"margin-left:50px;\">5616185650518293
|
15
|
+
;2 correct<br>\r\n3847439647293047 ;1 correct<br>\r\n5855462940810587 ;3 correct<br>\r\n9742855507068353
|
16
|
+
;3 correct<br>\r\n4296849643607543 ;3 correct<br>\r\n3174248439465858 ;1 correct<br>\r\n4513559094146117
|
17
|
+
;2 correct<br>\r\n7890971548908067 ;3 correct<br>\r\n8157356344118483 ;1 correct<br>\r\n2615250744386899
|
18
|
+
;2 correct<br>\r\n8690095851526254 ;3 correct<br>\r\n6375711915077050 ;1 correct<br>\r\n6913859173121360
|
19
|
+
;1 correct<br>\r\n6442889055042768 ;2 correct<br>\r\n2321386104303845 ;0 correct<br>\r\n2326509471271448
|
20
|
+
;2 correct<br>\r\n5251583379644322 ;2 correct<br>\r\n1748270476758276 ;3 correct<br>\r\n4895722652190306
|
21
|
+
;1 correct<br>\r\n3041631117224635 ;3 correct<br>\r\n1841236454324589 ;3 correct<br>\r\n2659862637316867
|
22
|
+
;2 correct</p>\r\n\r\n<p>Find the unique 16-digit secret sequence.</p>\r\n"
|
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 186
|
3
|
+
:name: Connectedness of a network
|
4
|
+
:url: http://projecteuler.net/problem=186
|
5
|
+
:content: "\r\n<p>Here are the records from a busy telephone system with one million
|
6
|
+
users:</p>\r\n<div style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\"
|
7
|
+
border=\"1\" align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td>RecNr</td>\n<td
|
8
|
+
width=\"60\" align=\"center\">Caller</td>\n<td width=\"60\" align=\"center\">Called</td>\n</tr>\n<tr>\n<td
|
9
|
+
align=\"center\">1</td>\n<td align=\"center\">200007</td>\n<td align=\"center\">100053</td>\n</tr>\n<tr>\n<td
|
10
|
+
align=\"center\">2</td>\n<td align=\"center\">600183</td>\n<td align=\"center\">500439</td>\n</tr>\n<tr>\n<td
|
11
|
+
align=\"center\">3</td>\n<td align=\"center\">600863</td>\n<td align=\"center\">701497</td>\n</tr>\n<tr>\n<td
|
12
|
+
align=\"center\">...</td>\n<td align=\"center\">...</td>\n<td align=\"center\">...</td>\n</tr>\n</table>\n</div>\r\n<p>The
|
13
|
+
telephone number of the caller and the called number in record n are Caller(n) =
|
14
|
+
S<sub>2n-1</sub> and Called(n) = S<sub>2n</sub> where S<sub>1,2,3,...</sub> come
|
15
|
+
from the \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For 1 <img src=\"images/symbol_le.gif\"
|
16
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
17
|
+
k <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 55, S<sub>k</sub> = [100003 - 200003k + 300007k<sup>3</sup>]
|
19
|
+
(modulo 1000000)<br>\r\nFor 56 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
20
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> k, S<sub>k</sub> = [S<sub>k-24</sub>
|
21
|
+
+ S<sub>k-55</sub>] (modulo 1000000)</p>\r\n\r\n<p>If Caller(n) = Called(n) then
|
22
|
+
the user is assumed to have misdialled and the call fails; otherwise the call is
|
23
|
+
successful.</p>\r\n\r\n<p>From the start of the records, we say that any pair of
|
24
|
+
users X and Y are friends if X calls Y or vice-versa. Similarly, X is a friend of
|
25
|
+
a friend of Z if X is a friend of Y and Y is a friend of Z; and so on for longer
|
26
|
+
chains.</p>\r\n\r\n<p>The Prime Minister's phone number is 524287. After how many
|
27
|
+
successful calls, not counting misdials, will 99% of the users (including the PM)
|
28
|
+
be a friend, or a friend of a friend etc., of the Prime Minister?</p>\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 187
|
3
|
+
:name: Semiprimes
|
4
|
+
:url: http://projecteuler.net/problem=187
|
5
|
+
:content: "\r\n<p>A composite is a number containing at least two prime factors. For
|
6
|
+
example, 15 = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\"> 5; 9 = 3 <img src=\"images/symbol_times.gif\"
|
8
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
9
|
+
3; 12 = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
10
|
+
border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
|
11
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
12
|
+
3.</p>\r\n\r\n<p>There are ten composites below thirty containing precisely two,
|
13
|
+
not necessarily distinct, prime factors:\r\n4, 6, 9, 10, 14, 15, 21, 22, 25, 26.</p>\r\n\r\n<p>How
|
14
|
+
many composite integers, <var>n</var> <img src=\"images/symbol_lt.gif\" width=\"10\"
|
15
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>8</sup>,
|
16
|
+
have precisely two, not necessarily distinct, prime factors?</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 188
|
3
|
+
:name: The hyperexponentiation of a number
|
4
|
+
:url: http://projecteuler.net/problem=188
|
5
|
+
:content: "\r\n<p>The <span style=\"font-style: italic\">hyperexponentiation</span>
|
6
|
+
or <span style=\"font-style: italic\">tetration</span> of a number a by a positive
|
7
|
+
integer b, denoted by a↑↑b or <sup>b</sup>a, is recursively defined by:<br><br>\r\na↑↑1
|
8
|
+
= a,<br>\r\na↑↑(k+1) = a<sup>(a↑↑k)</sup>.</p>\r\n<p>\r\nThus we have e.g. 3↑↑2
|
9
|
+
= 3<sup>3</sup> = 27, hence 3↑↑3 = 3<sup>27</sup> = 7625597484987 and 3↑↑4 is roughly
|
10
|
+
10<sup>3.6383346400240996*10^12</sup>.</p>\r\n<p>Find the last 8 digits of 1777↑↑1855.</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 189
|
3
|
+
:name: Tri-colouring a triangular grid
|
4
|
+
:url: http://projecteuler.net/problem=189
|
5
|
+
:content: "\r\n<p>Consider the following configuration of 64 triangles:</p>\r\n\r\n<div
|
6
|
+
style=\"text-align:center;\"><img src=\"project/images/p_189_grid.gif\" alt=\"\"></div>\r\n\r\n<p>We
|
7
|
+
wish to colour the interior of each triangle with one of three colours: red, green
|
8
|
+
or blue, so that no two neighbouring triangles have the same colour. Such a colouring
|
9
|
+
shall be called valid. Here, two triangles are said to be neighbouring if they share
|
10
|
+
an edge.<br>\r\nNote: if they only share a vertex, then they are not neighbours.</p>
|
11
|
+
\r\n\r\n<p>For example, here is a valid colouring of the above grid:</p>\r\n<div
|
12
|
+
style=\"text-align:center;\"><img src=\"project/images/p_189_colours.gif\" alt=\"\"></div>\r\n\r\n<p>A
|
13
|
+
colouring C' which is obtained from a colouring C by rotation or reflection is considered
|
14
|
+
<i>distinct</i> from C unless the two are identical.</p>\r\n\r\n<p>How many distinct
|
15
|
+
valid colourings are there for the above configuration?</p>\r\n\r\n"
|