euler-manager 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 168
3
+ :name: Number Rotations
4
+ :url: http://projecteuler.net/problem=168
5
+ :content: "\r\n<p>Consider the number 142857. We can right-rotate this number by moving
6
+ the last digit (7) to the front of it, giving us 714285.<br>\r\nIt can be verified
7
+ that 714285=5<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
8
+ border=\"0\" style=\"vertical-align:middle;\">142857.<br>\r\nThis demonstrates an
9
+ unusual property of 142857: it is a divisor of its right-rotation.</p>\r\n<p>Find
10
+ the last 5 digits of the sum of all integers <var>n</var>, 10 <img src=\"images/symbol_lt.gif\"
11
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
12
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> 10<sup>100</sup>, that have this property.</p>\r\n\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 169
3
+ :name: Exploring the number of different ways a number can be expressed as a sum of
4
+ powers of 2
5
+ :url: http://projecteuler.net/problem=169
6
+ :content: "\r\n<p>Define f(0)=1 and f(<var>n</var>) to be the number of different
7
+ ways <var>n</var> can be expressed as a sum of integer powers of 2 using each power
8
+ no more than twice.</p>\r\n<p>For example, f(10)=5 since there are five different
9
+ ways to express 10:</p>\r\n<p style=\"margin-left:50px;\">1 + 1 + 8<br>\r\n1 + 1
10
+ + 4 + 4<br>1 + 1 + 2 + 2 + 4<br>\r\n2 + 4 + 4<br>\r\n2 + 8</p>\r\n<p>What is f(10<sup>25</sup>)?</p>\r\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 17
3
+ :name: Number letter counts
4
+ :url: http://projecteuler.net/problem=17
5
+ :content: "\r\n<p>If the numbers 1 to 5 are written out in words: one, two, three,
6
+ four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.</p>\r\n<p>If
7
+ all the numbers from 1 to 1000 (one thousand) inclusive were written out in words,
8
+ how many letters would be used? </p>\r\n<br><p class=\"info\"><b>NOTE:</b> Do not
9
+ count spaces or hyphens. For example, 342 (three hundred and forty-two) contains
10
+ 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of \"and\"
11
+ when writing out numbers is in compliance with British usage.</p>\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 170
3
+ :name: Find the largest 0 to 9 pandigital that can be formed by concatenating products
4
+ :url: http://projecteuler.net/problem=170
5
+ :content: "\r\n<p>Take the number 6 and multiply it by each of 1273 and 9854:</p>\r\n\r\n<p
6
+ style=\"margin-left:50px;\">6 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
7
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1273 = 7638<br>\r\n6 <img
8
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> 9854 = 59124</p>\r\n\r\n<p>By concatenating these
10
+ products we get the 1 to 9 pandigital 763859124. We will call 763859124 the \"concatenated
11
+ product of 6 and (1273,9854)\". Notice too, that the concatenation of the input
12
+ numbers, 612739854, is also 1 to 9 pandigital.</p>\r\n\r\n<p>The same can be done
13
+ for 0 to 9 pandigital numbers.</p>\r\n\r\n<p>What is the largest 0 to 9 pandigital
14
+ 10-digit concatenated product of an integer with two or more other integers, such
15
+ that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit
16
+ number?</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 171
3
+ :name: Finding numbers for which the sum of the squares of the digits is a square
4
+ :url: http://projecteuler.net/problem=171
5
+ :content: "\r\n<p>For a positive integer <var>n</var>, let f(<var>n</var>) be the
6
+ sum of the squares of the digits (in base 10) of <var>n</var>, e.g.</p>\r\n<p style=\"margin-left:50px;\">f(3)
7
+ = 3<sup>2</sup> = 9,<br>\r\nf(25) = 2<sup>2</sup> + 5<sup>2</sup> = 4 + 25 = 29,<br>\r\nf(442)
8
+ = 4<sup>2</sup> + 4<sup>2</sup> + 2<sup>2</sup> = 16 + 16 + 4 = 36</p>\r\n<p>Find
9
+ the last nine digits of the sum of all <var>n</var>, 0 <img src=\"images/symbol_lt.gif\"
10
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
11
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 10<sup>20</sup>, such that f(<var>n</var>) is
13
+ a perfect square.</p>\r\n"
@@ -0,0 +1,6 @@
1
+ ---
2
+ :id: 172
3
+ :name: Investigating numbers with few repeated digits
4
+ :url: http://projecteuler.net/problem=172
5
+ :content: "\r\n<p>How many 18-digit numbers <var>n</var> (without leading zeros) are
6
+ there such that no digit occurs more than three times in <var>n</var>?</p>\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 173
3
+ :name: Using up to one million tiles how many different "hollow" square laminae can
4
+ be formed?
5
+ :url: http://projecteuler.net/problem=173
6
+ :content: "\r\n<p>We shall define a square lamina to be a square outline with a square
7
+ \"hole\" so that the shape possesses vertical and horizontal symmetry. For example,
8
+ using exactly thirty-two square tiles we can form two different square laminae:</p>\r\n<div
9
+ style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
10
+ alt=\"\">\n</div>\r\n<p>With one-hundred tiles, and not necessarily using all of
11
+ the tiles at one time, it is possible to form forty-one different square laminae.</p>\r\n<p>Using
12
+ up to one million tiles how many different square laminae can be formed?</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 174
3
+ :name: Counting the number of "hollow" square laminae that can form one, two, three,
4
+ ... distinct arrangements
5
+ :url: http://projecteuler.net/problem=174
6
+ :content: "\r\n<p>We shall define a square lamina to be a square outline with a square
7
+ \"hole\" so that the shape possesses vertical and horizontal symmetry.</p>\r\n<p>Given
8
+ eight tiles it is possible to form a lamina in only one way: 3x3 square with a 1x1
9
+ hole in the middle. However, using thirty-two tiles it is possible to form two distinct
10
+ laminae.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_173_square_laminas.gif\"
11
+ alt=\"\">\n</div>\r\n<p>If <var>t</var> represents the number of tiles used, we
12
+ shall say that <var>t</var> = 8 is type L(1) and <var>t</var> = 32 is type L(2).</p>\r\n<p>Let
13
+ N(<var>n</var>) be the number of <var>t</var> <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
15
+ 1000000 such that <var>t</var> is type L(<var>n</var>); for example, N(15) = 832.</p>\r\n<p>What
16
+ is <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
17
+ style=\"vertical-align:middle;\"> N(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\"
18
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
19
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
20
+ style=\"vertical-align:middle;\"> 10?</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 175
3
+ :name: Fractions involving the number of different ways a number can be expressed
4
+ as a sum of powers of 2
5
+ :url: http://projecteuler.net/problem=175
6
+ :content: "\r\nDefine f(0)=1 and f(<var>n</var>) to be the number of ways to write
7
+ <var>n</var> as a sum of powers of 2 where no power occurs more than twice. <br><br>\r\n\r\nFor
8
+ example, f(10)=5 since there are five different ways to express 10:<br>10 = 8+2
9
+ = 8+1+1 = 4+4+2 = 4+2+2+1+1 = 4+4+1+1<br><br>\r\n\r\nIt can be shown that for every
10
+ fraction <var>p/q</var> (<var>p</var><img src=\"images/symbol_gt.gif\" width=\"10\"
11
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">0, <var>q</var><img
12
+ src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\"
13
+ style=\"vertical-align:middle;\">0) there exists at least one integer <var>n</var>
14
+ such that<br> f(<var>n</var>)/f(<var>n</var>-1)=<var>p/q</var>.<br><br>\r\nFor instance,
15
+ the smallest <var>n</var> for which f(<var>n</var>)/f(<var>n</var>-1)=13/17 is 241.<br>\r\nThe
16
+ binary expansion of 241 is 11110001.<br>\r\nReading this binary number from the
17
+ most significant bit to the least significant bit there are 4 one's, 3 zeroes and
18
+ 1 one. We shall call the string 4,3,1 the <span style=\"font-style: italic\">Shortened
19
+ Binary Expansion</span> of 241.<br><br>\r\nFind the Shortened Binary Expansion of
20
+ the smallest <var>n</var> for which<br> f(<var>n</var>)/f(<var>n</var>-1)=123456789/987654321.<br><br>\r\nGive
21
+ your answer as comma separated integers, without any whitespaces.\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 176
3
+ :name: Right-angled triangles that share a cathetus
4
+ :url: http://projecteuler.net/problem=176
5
+ :content: "\r\n<p>The four right-angled triangles with sides (9,12,15), (12,16,20),
6
+ (5,12,13) and (12,35,37) all have one of the shorter sides (catheti) equal to 12.
7
+ It can be shown that no other integer sided right-angled triangle exists with one
8
+ of the catheti equal to 12.</p>\r\n<p>Find the smallest integer that can be the
9
+ length of a cathetus of exactly 47547 different integer sided right-angled triangles.</p>\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 177
3
+ :name: Integer angled Quadrilaterals
4
+ :url: http://projecteuler.net/problem=177
5
+ :content: "\r\n<p>Let ABCD be a convex quadrilateral, with diagonals AC and BD. At
6
+ each vertex the diagonal makes an angle with each of the two sides, creating eight
7
+ corner angles.</p>\r\n<p style=\"margin-left:180px;\"><img src=\"project/images/p_177_quad.gif\"
8
+ alt=\"\"></p>\r\n<p>For example, at vertex A, the two angles are CAD, CAB.</p>\r\n<p>We
9
+ call such a quadrilateral for which all eight corner angles have integer values
10
+ when measured in degrees an \"integer angled quadrilateral\". An example of an integer
11
+ angled quadrilateral is a square, where all eight corner angles are 45°. Another
12
+ example is given by DAC = 20°, BAC = 60°, ABD = 50°, CBD = 30°, BCA = 40°, DCA =
13
+ 30°, CDB = 80°, ADB = 50°.</p>\r\n<p>What is the total number of non-similar integer
14
+ angled quadrilaterals?</p>\r\n<p>Note: In your calculations you may assume that
15
+ a calculated angle is integral if it is within a tolerance of 10<sup>-9</sup> of
16
+ an integer value.</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 178
3
+ :name: Step Numbers
4
+ :url: http://projecteuler.net/problem=178
5
+ :content: "\r\nConsider the number 45656. <br>\r\nIt can be seen that each pair of
6
+ consecutive digits of 45656 has a difference of one.<br>\r\nA number for which every
7
+ pair of consecutive digits has a difference of one is called a step number.<br>\r\nA
8
+ pandigital number contains every decimal digit from 0 to 9 at least once.<br>\r\n\r\nHow
9
+ many pandigital step numbers less than 10<sup>40</sup> are there?\r\n\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 179
3
+ :name: "Consecutive positive divisors\r\n"
4
+ :url: http://projecteuler.net/problem=179
5
+ :content: "\r\n<p>Find the number of integers 1 <img src=\"images/symbol_lt.gif\"
6
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">
7
+ n <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
8
+ style=\"vertical-align:middle;\"> 10<sup>7</sup>, for which <var>n</var> and <var>n</var>
9
+ + 1 have the same number of positive divisors. For example, 14 has the positive
10
+ divisors 1, 2, 7, 14 while 15 has 1, 3, 5, 15.</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 18
3
+ :name: Maximum path sum I
4
+ :url: http://projecteuler.net/problem=18
5
+ :content: "\r\n<p>By starting at the top of the triangle below and moving to adjacent
6
+ numbers on the row below, the maximum total from top to bottom is 23.</p>\r\n<p
7
+ style=\"text-align:center;font-family:courier new;font-size:12pt;\"><span style=\"color:#ff0000;\"><b>3</b></span><br><span
8
+ style=\"color:#ff0000;\"><b>7</b></span> 4<br>\r\n2 <span style=\"color:#ff0000;\"><b>4</b></span>
9
+ 6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
10
+ 3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom of the triangle
11
+ below:</p>\r\n<p style=\"text-align:center;font-family:courier new;\">75<br>\r\n95
12
+ 64<br>\r\n17 47 82<br>\r\n18 35 87 10<br>\r\n20 04 82 47 65<br>\r\n19 01 23 75 03
13
+ 34<br>\r\n88 02 77 73 07 63 67<br>\r\n99 65 04 28 06 16 70 92<br>\r\n41 41 26 56
14
+ 83 40 80 70 33<br>\r\n41 48 72 33 47 32 37 16 94 29<br>\r\n53 71 44 65 25 43 91
15
+ 52 97 51 14<br>\r\n70 11 33 28 77 73 17 78 39 68 17 57<br>\r\n91 71 52 38 17 14
16
+ 91 43 58 50 27 29 48<br>\r\n63 66 04 68 89 53 67 30 73 16 69 87 40 31<br>\r\n04
17
+ 62 98 27 23 09 70 98 73 93 38 53 60 04 23</p>\r\n<p class=\"info\"><b>NOTE:</b>
18
+ As there are only 16384 routes, it is possible to solve this problem by trying every
19
+ route. However, <a href=\"index.php?section=problems&amp;id=67\">Problem 67</a>,
20
+ is the same challenge with a triangle containing one-hundred rows; it cannot be
21
+ solved by brute force, and requires a clever method! ;o)</p>\r\n"
@@ -0,0 +1,34 @@
1
+ ---
2
+ :id: 180
3
+ :name: Rational zeros of a function of three variables
4
+ :url: http://projecteuler.net/problem=180
5
+ :content: "\r\n<p>For any integer <var>n</var>, consider the three functions</p>\r\n<p
6
+ style=\"margin-left:50px;\"><var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
7
+ = <var>x</var><sup><var>n</var>+1</sup> + <var>y</var><sup><var>n</var>+1</sup><img
8
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
9
+ style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>+1</sup><br><var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
10
+ = (<var>xy</var> + <var>yz</var> + <var>zx</var>)*(<var>x</var><sup><var>n</var>-1</sup>
11
+ + <var>y</var><sup><var>n</var>-1</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
12
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-1</sup>)<br><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
13
+ = <var>xyz</var>*(<var>x</var><sup><var>n</var>-2</sup> + <var>y</var><sup><var>n</var>-2</sup><img
14
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
15
+ style=\"vertical-align:middle;\"><var>z</var><sup><var>n</var>-2</sup>)</p>\r\n<p>and
16
+ their combination</p>\r\n<p style=\"margin-left:50px;\"><var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
17
+ = <var>f</var><sub>1,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
18
+ + <var>f</var><sub>2,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
19
+ <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
20
+ style=\"vertical-align:middle;\"><var>f</var><sub>3,<var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)</p>\r\n<p>We
21
+ call (<var>x</var>,<var>y</var>,<var>z</var>) a golden triple of order <var>k</var>
22
+ if <var>x</var>, <var>y</var>, and <var>z</var> are all rational numbers of the
23
+ form <var>a</var> / <var>b</var> with<br>\r\n0 <img src=\"images/symbol_lt.gif\"
24
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
25
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
26
+ style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_le.gif\"
27
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
28
+ and there is (at least) one integer <var>n</var>, so that <var>f</var><sub><var>n</var></sub>(<var>x</var>,<var>y</var>,<var>z</var>)
29
+ = 0.</p>\r\n<p>Let <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) = <var>x</var>
30
+ + <var>y</var> + <var>z</var>.<br>\r\nLet <var>t</var> = <var>u</var> / <var>v</var>
31
+ be the sum of all distinct <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>)
32
+ for all golden triples (<var>x</var>,<var>y</var>,<var>z</var>) of order 35.<br>
33
+ All the <var>s</var>(<var>x</var>,<var>y</var>,<var>z</var>) and <var>t</var> must
34
+ be in reduced form.</p>\r\n<p>Find <var>u</var> + <var>v</var>.</p>\r\n"
@@ -0,0 +1,7 @@
1
+ ---
2
+ :id: 181
3
+ :name: Investigating in how many ways objects of two different colours can be grouped
4
+ :url: http://projecteuler.net/problem=181
5
+ :content: "\r\n<p>Having three black objects B and one white object W they can be
6
+ grouped in 7 ways like this:</p>\r\n<table cellpadding=\"10\" align=\"center\"><tr>\n<td>(BBBW)</td>\n<td>(B,BBW)</td>\n<td>(B,B,BW)</td>\n<td>(B,B,B,W)</td>\r\n<td>(B,BB,W)</td>\n<td>(BBB,W)</td>\n<td>(BB,BW)</td>\r\n</tr></table>\n<p>In
7
+ how many ways can sixty black objects B and forty white objects W be thus grouped?</p>\r\n"
@@ -0,0 +1,35 @@
1
+ ---
2
+ :id: 182
3
+ :name: RSA encryption
4
+ :url: http://projecteuler.net/problem=182
5
+ :content: "\r\n<p>The RSA encryption is based on the following procedure:</p>\r\n<p>Generate
6
+ two distinct primes <var>p</var> and <var>q</var>.<br>Compute <var>n=pq</var> and
7
+ φ=(<var>p</var>-1)(<var>q</var>-1).<br>\r\nFind an integer <var>e</var>, 1<img src=\"images/symbol_lt.gif\"
8
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>e</var><img
9
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
10
+ style=\"vertical-align:middle;\">φ, such that gcd(<var>e</var>,φ)=1.</p>\r\n<p>A
11
+ message in this system is a number in the interval [0,<var>n</var>-1].<br>\r\nA
12
+ text to be encrypted is then somehow converted to messages (numbers in the interval
13
+ [0,<var>n</var>-1]).<br>\r\nTo encrypt the text, for each message, <var>m</var>,
14
+ <var>c</var>=<var>m</var><sup><var>e</var></sup> mod <var>n</var> is calculated.</p>\r\n<p>To
15
+ decrypt the text, the following procedure is needed: calculate <var>d</var> such
16
+ that <var>ed</var>=1 mod φ, then for each encrypted message, <var>c</var>, calculate
17
+ <var>m=c<sup>d</sup></var> mod <var>n</var>.</p>\r\n<p>There exist values of <var>e</var>
18
+ and <var>m</var> such that <var>m<sup>e</sup></var> mod <var>n=m</var>.<br>We call
19
+ messages <var>m</var> for which <var>m<sup>e</sup></var> mod <var>n=m</var> unconcealed
20
+ messages.</p>\r\n<p>An issue when choosing <var>e</var> is that there should not
21
+ be too many unconcealed messages. <br>For instance, let <var>p</var>=19 and <var>q</var>=37.<br>\r\nThen
22
+ <var>n</var>=19*37=703 and φ=18*36=648.<br>\r\nIf we choose <var>e</var>=181, then,
23
+ although gcd(181,648)=1 it turns out that all possible messages<br><var>m</var>
24
+ (0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
25
+ style=\"vertical-align:middle;\"><var>m</var><img src=\"images/symbol_le.gif\" width=\"10\"
26
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>-1)
27
+ are unconcealed when calculating <var>m<sup>e</sup></var> mod <var>n</var>.<br>\r\nFor
28
+ any valid choice of <var>e</var> there exist some unconcealed messages.<br>\r\nIt's
29
+ important that the number of unconcealed messages is at a minimum.</p>\r\n<p>Choose
30
+ <var>p</var>=1009 and <var>q</var>=3643.<br>\r\nFind the sum of all values of <var>e</var>,
31
+ 1<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
32
+ style=\"vertical-align:middle;\"><var>e</var><img src=\"images/symbol_lt.gif\" width=\"10\"
33
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">φ(1009,3643)
34
+ and gcd(<var>e</var>,φ)=1, so that the number of unconcealed messages for this value
35
+ of <var>e</var> is at a minimum.</p>\r\n"
@@ -0,0 +1,27 @@
1
+ ---
2
+ :id: 183
3
+ :name: Maximum product of parts
4
+ :url: http://projecteuler.net/problem=183
5
+ :content: "\r\n<p>Let N be a positive integer and let N be split into <var>k</var>
6
+ equal parts, <var>r</var> = N/<var>k</var>, so that N = <var>r</var> + <var>r</var>
7
+ + ... + <var>r</var>.<br>\r\nLet P be the product of these parts, P = <var>r</var>
8
+ <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\"><var>r</var> <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ ... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"><var>r</var> = <var>r</var><sup><var>k</var></sup>.</p>\r\n\r\n<p>For
13
+ example, if 11 is split into five equal parts, 11 = 2.2 + 2.2 + 2.2 + 2.2 + 2.2,
14
+ then P = 2.2<sup>5</sup> = 51.53632.</p>\r\n\r\n<p>Let M(N) = P<sub>max</sub> for
15
+ a given value of N.</p>\r\n\r\n<p>It turns out that the maximum for N = 11 is found
16
+ by splitting eleven into four equal parts which leads to P<sub>max</sub> = (11/4)<sup>4</sup>;
17
+ that is, M(11) = 14641/256 = 57.19140625, which is a terminating decimal.</p>\r\n\r\n<p>However,
18
+ for N = 8 the maximum is achieved by splitting it into three equal parts, so M(8)
19
+ = 512/27, which is a non-terminating decimal.</p>\r\n\r\n<p>Let D(N) = N if M(N)
20
+ is a non-terminating decimal and D(N) = -N if M(N) is a terminating decimal.</p>\r\n\r\n<p>For
21
+ example, ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
22
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
23
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
24
+ 100 is 2438.</p>\r\n\r\n<p>Find ΣD(N) for 5 <img src=\"images/symbol_le.gif\" width=\"10\"
25
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> N <img src=\"images/symbol_le.gif\"
26
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
27
+ 10000.</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 184
3
+ :name: Triangles containing the origin
4
+ :url: http://projecteuler.net/problem=184
5
+ :content: "\r\n<p>Consider the set <var>I<sub>r</sub></var> of points (<var>x</var>,<var>y</var>)
6
+ with integer co-ordinates in the interior of the circle with radius <var>r</var>,
7
+ centered at the origin, i.e. <var>x</var><sup>2</sup> + <var>y</var><sup>2</sup><img
8
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
9
+ style=\"vertical-align:middle;\"><var>r</var><sup>2</sup>.</p>\r\n<p>For a radius
10
+ of 2, <var>I</var><sub>2</sub> contains the nine points (0,0), (1,0), (1,1), (0,1),
11
+ (-1,1), (-1,0), (-1,-1), (0,-1) and (1,-1). There are eight triangles having all
12
+ three vertices in <var>I</var><sub>2</sub> which contain the origin in the interior.
13
+ Two of them are shown below, the others are obtained from these by rotation.</p>\r\n<p
14
+ style=\"margin-left:240px;\"><img src=\"project/images/p_184.gif\" alt=\"\"></p>\r\n\r\n<p>For
15
+ a radius of 3, there are 360 triangles containing the origin in the interior and
16
+ having all vertices in <var>I</var><sub>3</sub> and for <var>I</var><sub>5</sub>
17
+ the number is 10600.</p>\r\n\r\n<p>How many triangles are there containing the origin
18
+ in the interior and having all three vertices in <var>I</var><sub>105</sub>?</p>\r\n\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 185
3
+ :name: Number Mind
4
+ :url: http://projecteuler.net/problem=185
5
+ :content: "\r\n<p>The game Number Mind is a variant of the well known game Master
6
+ Mind.</p>\r\n<p>Instead of coloured pegs, you have to guess a secret sequence of
7
+ digits. After each guess you're only told in how many places you've guessed the
8
+ correct digit. So, if the sequence was 1234 and you guessed 2036, you'd be told
9
+ that you have one correct digit; however, you would NOT be told that you also have
10
+ another digit in the wrong place.</p>\r\n\r\n<p>For instance, given the following
11
+ guesses for a 5-digit secret sequence,</p>\r\n<p style=\"margin-left:50px;\">90342
12
+ ;2 correct<br>\r\n70794 ;0 correct<br>\r\n39458 ;2 correct<br>\r\n34109 ;1 correct<br>\r\n51545
13
+ ;2 correct<br>\r\n12531 ;1 correct</p>\r\n<p>The correct sequence 39542 is unique.</p>\r\n\r\n<p>Based
14
+ on the following guesses,</p>\r\n\r\n<p style=\"margin-left:50px;\">5616185650518293
15
+ ;2 correct<br>\r\n3847439647293047 ;1 correct<br>\r\n5855462940810587 ;3 correct<br>\r\n9742855507068353
16
+ ;3 correct<br>\r\n4296849643607543 ;3 correct<br>\r\n3174248439465858 ;1 correct<br>\r\n4513559094146117
17
+ ;2 correct<br>\r\n7890971548908067 ;3 correct<br>\r\n8157356344118483 ;1 correct<br>\r\n2615250744386899
18
+ ;2 correct<br>\r\n8690095851526254 ;3 correct<br>\r\n6375711915077050 ;1 correct<br>\r\n6913859173121360
19
+ ;1 correct<br>\r\n6442889055042768 ;2 correct<br>\r\n2321386104303845 ;0 correct<br>\r\n2326509471271448
20
+ ;2 correct<br>\r\n5251583379644322 ;2 correct<br>\r\n1748270476758276 ;3 correct<br>\r\n4895722652190306
21
+ ;1 correct<br>\r\n3041631117224635 ;3 correct<br>\r\n1841236454324589 ;3 correct<br>\r\n2659862637316867
22
+ ;2 correct</p>\r\n\r\n<p>Find the unique 16-digit secret sequence.</p>\r\n"
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 186
3
+ :name: Connectedness of a network
4
+ :url: http://projecteuler.net/problem=186
5
+ :content: "\r\n<p>Here are the records from a busy telephone system with one million
6
+ users:</p>\r\n<div style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\"
7
+ border=\"1\" align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td>RecNr</td>\n<td
8
+ width=\"60\" align=\"center\">Caller</td>\n<td width=\"60\" align=\"center\">Called</td>\n</tr>\n<tr>\n<td
9
+ align=\"center\">1</td>\n<td align=\"center\">200007</td>\n<td align=\"center\">100053</td>\n</tr>\n<tr>\n<td
10
+ align=\"center\">2</td>\n<td align=\"center\">600183</td>\n<td align=\"center\">500439</td>\n</tr>\n<tr>\n<td
11
+ align=\"center\">3</td>\n<td align=\"center\">600863</td>\n<td align=\"center\">701497</td>\n</tr>\n<tr>\n<td
12
+ align=\"center\">...</td>\n<td align=\"center\">...</td>\n<td align=\"center\">...</td>\n</tr>\n</table>\n</div>\r\n<p>The
13
+ telephone number of the caller and the called number in record n are Caller(n) =
14
+ S<sub>2n-1</sub> and Called(n) = S<sub>2n</sub> where S<sub>1,2,3,...</sub> come
15
+ from the \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For 1 <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
17
+ k <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 55, S<sub>k</sub> = [100003 - 200003k + 300007k<sup>3</sup>]
19
+ (modulo 1000000)<br>\r\nFor 56 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
20
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> k, S<sub>k</sub> = [S<sub>k-24</sub>
21
+ + S<sub>k-55</sub>] (modulo 1000000)</p>\r\n\r\n<p>If Caller(n) = Called(n) then
22
+ the user is assumed to have misdialled and the call fails; otherwise the call is
23
+ successful.</p>\r\n\r\n<p>From the start of the records, we say that any pair of
24
+ users X and Y are friends if X calls Y or vice-versa. Similarly, X is a friend of
25
+ a friend of Z if X is a friend of Y and Y is a friend of Z; and so on for longer
26
+ chains.</p>\r\n\r\n<p>The Prime Minister's phone number is 524287. After how many
27
+ successful calls, not counting misdials, will 99% of the users (including the PM)
28
+ be a friend, or a friend of a friend etc., of the Prime Minister?</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 187
3
+ :name: Semiprimes
4
+ :url: http://projecteuler.net/problem=187
5
+ :content: "\r\n<p>A composite is a number containing at least two prime factors. For
6
+ example, 15 = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
7
+ border=\"0\" style=\"vertical-align:middle;\"> 5; 9 = 3 <img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 3; 12 = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
10
+ border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
11
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
12
+ 3.</p>\r\n\r\n<p>There are ten composites below thirty containing precisely two,
13
+ not necessarily distinct, prime factors:\r\n4, 6, 9, 10, 14, 15, 21, 22, 25, 26.</p>\r\n\r\n<p>How
14
+ many composite integers, <var>n</var> <img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>8</sup>,
16
+ have precisely two, not necessarily distinct, prime factors?</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 188
3
+ :name: The hyperexponentiation of a number
4
+ :url: http://projecteuler.net/problem=188
5
+ :content: "\r\n<p>The <span style=\"font-style: italic\">hyperexponentiation</span>
6
+ or <span style=\"font-style: italic\">tetration</span> of a number a by a positive
7
+ integer b, denoted by a↑↑b or <sup>b</sup>a, is recursively defined by:<br><br>\r\na↑↑1
8
+ = a,<br>\r\na↑↑(k+1) = a<sup>(a↑↑k)</sup>.</p>\r\n<p>\r\nThus we have e.g. 3↑↑2
9
+ = 3<sup>3</sup> = 27, hence 3↑↑3 = 3<sup>27</sup> = 7625597484987 and 3↑↑4 is roughly
10
+ 10<sup>3.6383346400240996*10^12</sup>.</p>\r\n<p>Find the last 8 digits of 1777↑↑1855.</p>\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 189
3
+ :name: Tri-colouring a triangular grid
4
+ :url: http://projecteuler.net/problem=189
5
+ :content: "\r\n<p>Consider the following configuration of 64 triangles:</p>\r\n\r\n<div
6
+ style=\"text-align:center;\"><img src=\"project/images/p_189_grid.gif\" alt=\"\"></div>\r\n\r\n<p>We
7
+ wish to colour the interior of each triangle with one of three colours: red, green
8
+ or blue, so that no two neighbouring triangles have the same colour. Such a colouring
9
+ shall be called valid. Here, two triangles are said to be neighbouring if they share
10
+ an edge.<br>\r\nNote: if they only share a vertex, then they are not neighbours.</p>
11
+ \r\n\r\n<p>For example, here is a valid colouring of the above grid:</p>\r\n<div
12
+ style=\"text-align:center;\"><img src=\"project/images/p_189_colours.gif\" alt=\"\"></div>\r\n\r\n<p>A
13
+ colouring C' which is obtained from a colouring C by rotation or reflection is considered
14
+ <i>distinct</i> from C unless the two are identical.</p>\r\n\r\n<p>How many distinct
15
+ valid colourings are there for the above configuration?</p>\r\n\r\n"