euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 439
3
+ :name: Sum of sum of divisors
4
+ :url: http://projecteuler.net/problem=439
5
+ :content: "\r\n<p>Let <var>d</var>(<var>k</var>) be the sum of all divisors of <var>k</var>.<br>\r\nWe
6
+ define the function S(<var>N</var>) = <img src=\"images/symbol_sum.gif\" width=\"11\"
7
+ height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><sub>1<img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var><img
9
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var></sub><img
10
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><sub>1<img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>j</var><img
13
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var></sub><var>d</var>(<var>i</var>·<var>j</var>).<br>\r\nFor
14
+ example, S(3) = <var>d</var>(1) + <var>d</var>(2) + <var>d</var>(3) + <var>d</var>(2)
15
+ + <var>d</var>(4) + <var>d</var>(6) + <var>d</var>(3) + <var>d</var>(6) + <var>d</var>(9)
16
+ = 59.</p>\r\n\r\n<p>You are given that S(10<sup>3</sup>) = 563576517282 and S(10<sup>5</sup>)
17
+ mod 10<sup>9</sup> = 215766508.<br>\r\nFind S(10<sup>11</sup>) mod 10<sup>9</sup>.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 44
3
+ :name: Pentagon numbers
4
+ :url: http://projecteuler.net/problem=44
5
+ :content: "\r\n<p>Pentagonal numbers are generated by the formula, P<sub><var>n</var></sub>=<var>n</var>(3<var>n</var><img
6
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
7
+ style=\"vertical-align:middle;\">1)/2. The first ten pentagonal numbers are:</p>\r\n<p
8
+ style=\"text-align:center;\">1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...</p>\r\n<p>It
9
+ can be seen that P<sub>4</sub> + P<sub>7</sub> = 22 + 70 = 92 = P<sub>8</sub>. However,
10
+ their difference, 70 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
11
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 22 = 48, is not pentagonal.</p>\r\n<p>Find
12
+ the pair of pentagonal numbers, P<sub><var>j</var></sub> and P<sub><var>k</var></sub>,
13
+ for which their sum and difference are pentagonal and D = |P<sub><var>k</var></sub><img
14
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> P<sub><var>j</var></sub>| is minimised; what is
16
+ the value of D?</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 440
3
+ :name: GCD and Tiling
4
+ :url: http://projecteuler.net/problem=440
5
+ :content: "\r\n<p>We want to tile a board of length <var>n</var> and height 1 completely,
6
+ with either 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
7
+ border=\"0\" style=\"vertical-align:middle;\"> 2 blocks or 1 <img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 1 blocks with a single decimal digit on top:</p>\r\n\r\n<img src=\"project/images/p440_tiles.png\"><p>For
10
+ example, here are some of the ways to tile a board of length <var>n</var> = 8:</p>\r\n\r\n<img
11
+ src=\"project/images/p440_some8.png\"><p>Let T(<var>n</var>) be the number of ways
12
+ to tile a board of length <var>n</var> as described above.</p>\r\n\r\n<p>For example,
13
+ T(1) = 10 and T(2) = 101.</p>\r\n\r\n<p>Let S(<var>L</var>) be the triple sum <img
14
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
15
+ style=\"vertical-align:middle;\"><sub><var>a</var>,<var>b</var>,<var>c</var></sub>
16
+ gcd(T(<var>c</var><sup><var>a</var></sup>), T(<var>c</var><sup><var>b</var></sup>))
17
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>a</var>, <var>b</var>, <var>c</var> <img src=\"images/symbol_le.gif\"
19
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>L</var>.<br>\r\nFor
20
+ example:<br>\r\nS(2) = 10444<br>\r\nS(3) = 1292115238446807016106539989<br>\r\nS(4)
21
+ mod 987 898 789 = 670616280.</p>\r\n\r\n<p>Find S(2000) mod 987 898 789.</p>\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 441
3
+ :name: The inverse summation of coprime couples
4
+ :url: http://projecteuler.net/problem=441
5
+ :content: "\r\n<p>\r\nFor an integer <var>M</var>, we define R(<var>M</var>) as the
6
+ sum of 1/(<var>p</var>·<var>q</var>) for all the integer pairs <var>p</var> and
7
+ <var>q</var> which satisfy all of these conditions:\r\n</p>\r\n<ul>\n<li> 1 <img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>p</var>
9
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><var>q</var> <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>M</var>\n</li>\r\n<li>
12
+ <var>p</var> + <var>q</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
13
+ alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"><var>M</var>\n</li>\r\n<li>
14
+ <var>p</var> and <var>q</var> are coprime.</li>\r\n</ul>\n<p>\r\nWe also define
15
+ S(<var>N</var>) as the sum of R(<var>i</var>) for 2 <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
17
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nWe can verify that S(2) =
19
+ R(2) = 1/2, S(10) <img src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\"
20
+ alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\"> 6.9147 and S(100) <img
21
+ src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\" alt=\"≈\" border=\"0\"
22
+ style=\"vertical-align:middle;\"> 58.2962.\r\n</p>\r\n<p>\r\nFind S(10<sup>7</sup>).
23
+ Give your answer rounded to four decimal places.\r\n</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 442
3
+ :name: Eleven-free integers
4
+ :url: http://projecteuler.net/problem=442
5
+ :content: "\r\n<p>An integer is called <i>eleven-free</i> if its decimal expansion
6
+ does not contain any substring representing a power of 11 except 1.</p>\r\n\r\n<p>For
7
+ example, 2404 and 13431 are eleven-free, while 911 and 4121331 are not.</p>\r\n\r\n<p>Let
8
+ E(<i>n</i>) be the <i>n</i>th positive eleven-free integer. For example, E(3) =
9
+ 3, E(200) = 213 and E(500 000) = 531563.</p>\r\n\r\n<p>Find E(10<sup>18</sup>).</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 443
3
+ :name: GCD sequence
4
+ :url: http://projecteuler.net/problem=443
5
+ :content: "\r\n<p>Let g(<var>n</var>) be a sequence defined as follows:<br>\r\ng(4)
6
+ = 13,<br>\r\ng(<var>n</var>) = g(<var>n</var>-1) + gcd(<var>n</var>, g(<var>n</var>-1))
7
+ for <var>n</var> <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\"
8
+ border=\"0\" style=\"vertical-align:middle;\"> 4.</p>\r\n\r\n<p>The first few values
9
+ are:</p>\r\n<div align=\"center\">\r\n <table cellspacing=\"1\" cellpadding=\"5\"
10
+ border=\"0\" align=\"center\">\n<tr>\n<td><var>n</var></td>\n<td>4</td>\n<td>5</td>\n<td>6</td>\n<td>7</td>\n<td>8</td>\n<td>9</td>\n<td>10</td>\n<td>11</td>\n<td>12</td>\n<td>13</td>\n<td>14</td>\n<td>15</td>\n<td>16</td>\n<td>17</td>\n<td>18</td>\n<td>19</td>\n<td>20</td>\n<td>...</td>\r\n
11
+ \ </tr>\n<tr>\n<td>g(<var>n</var>)</td>\n<td>13</td>\n<td>14</td>\n<td>16</td>\n<td>17</td>\n<td>18</td>\n<td>27</td>\n<td>28</td>\n<td>29</td>\n<td>30</td>\n<td>31</td>\n<td>32</td>\n<td>33</td>\n<td>34</td>\n<td>51</td>\n<td>54</td>\n<td>55</td>\n<td>60</td>\n<td>...</td>\r\n
12
+ \ </tr>\n</table>\n</div>\r\n\r\n<p>You are given that g(1 000) = 2524 and g(1 000 000)
13
+ = 2624152.</p>\r\n\r\n<p>Find g(10<sup>15</sup>).</p>\r\n"
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 444
3
+ :name: The Roundtable Lottery
4
+ :url: http://projecteuler.net/problem=444
5
+ :content: "\r\n<p>A group of <var>p</var> people decide to sit down at a round table
6
+ and play a lottery-ticket trading game. Each person starts off with a randomly-assigned,
7
+ unscratched lottery ticket. Each ticket, when scratched, reveals a whole-pound prize
8
+ ranging anywhere from £1 to £<var>p</var>, with no two tickets alike. The goal of
9
+ the game is for each person to maximize his ticket winnings upon leaving the game.</p>\r\n\r\n<p>An
10
+ arbitrary person is chosen to be the first player. Going around the table, each
11
+ player has only one of two options:</p>\r\n\r\n<p>1. The player can scratch his
12
+ ticket and reveal its worth to everyone at the table.<br>\r\n2. The player can trade
13
+ his unscratched ticket for a previous player's scratched ticket, and then leave
14
+ the game with that ticket. The previous player then scratches his newly-acquired
15
+ ticket and reveals its worth to everyone at the table.</p>\r\n\r\n<p>The game ends
16
+ once all tickets have been scratched. All players still remaining at the table must
17
+ leave with their currently-held tickets.</p>\r\n\r\n<p>Assume that each player uses
18
+ the optimal strategy for maximizing the expected value of his ticket winnings. </p>\r\n\r\n<p>Let
19
+ E(<var>p</var>) represent the expected number of players left at the table when
20
+ the game ends in a game consisting of <var>p</var> players (e.g. E(111) = 5.2912
21
+ when rounded to 5 significant digits).</p>\r\n\r\n<p>Let S<sub>1</sub>(<var>N</var>)
22
+ = <img style=\"vertical-align:middle\" src=\"project/images/p444_sum.png\"> E(<var>p</var>)<br>\r\nLet
23
+ S<sub><var>k</var></sub>(<var>N</var>) = <img style=\"vertical-align:middle\" src=\"project/images/p444_sum.png\">
24
+ S<sub><var>k</var>-1</sub>(<var>p</var>) for <var>k</var> <img src=\"images/symbol_gt.gif\"
25
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
26
+ 1</p>\r\n\r\n<p>Find S<sub>20</sub>(10<sup>14</sup>) and write the answer in scientific
27
+ notation rounded to 10 significant digits. Use a lowercase e to separate mantissa
28
+ and exponent (e.g. S<sub>3</sub>(100) = 5.983679014e5).</p>\r\n\r\n"
@@ -0,0 +1,37 @@
1
+ ---
2
+ :id: 445
3
+ :name: Retractions A
4
+ :url: http://projecteuler.net/problem=445
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nYou are given that<br><img
25
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
26
+ style=\"vertical-align:middle;\"> R(c) for c=C(100 000,k), and 1 <img src=\"images/symbol_le.gif\"
27
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
28
+ k <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
29
+ style=\"vertical-align:middle;\">99 999 <img src=\"images/symbol_cong.gif\" width=\"9\"
30
+ height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">628701600
31
+ (mod 1 000 000 007).<br>\r\n(C(n,k) is the binomial coefficient).<br></p>\r\n<p>
32
+ \r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\"
33
+ border=\"0\" style=\"vertical-align:middle;\"> R(c) for c=C(10 000 000,k), and 1
34
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
35
+ style=\"vertical-align:middle;\">k<img src=\"images/symbol_le.gif\" width=\"10\"
36
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 9 999 999.<br>\r\nGive
37
+ your answer modulo 1 000 000 007.\r\n</p>\r\n\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 446
3
+ :name: Retractions B
4
+ :url: http://projecteuler.net/problem=446
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nF(N)=<img src=\"images/symbol_sum.gif\"
25
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">R(n<sup>4</sup>+4)
26
+ for 1<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
28
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">N. <br> \r\nF(1024)=77532377300600.<br></p>\r\n<p>\r\nFind
29
+ F(10<sup>7</sup>) (mod 1 000 000 007)\r\n\r\n</p>"
@@ -0,0 +1,31 @@
1
+ ---
2
+ :id: 447
3
+ :name: Retractions C
4
+ :url: http://projecteuler.net/problem=447
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nF(N)=<img src=\"images/symbol_sum.gif\"
25
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">R(n)
26
+ for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
28
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">N.<br>\r\nF(10<sup>7</sup>)<img
29
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
30
+ style=\"vertical-align:middle;\">638042271 (mod 1 000 000 007).\r\n</p>\r\n<p> \r\nFind
31
+ F(10<sup>14</sup>) (mod 1 000 000 007).\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 448
3
+ :name: Average least common multiple
4
+ :url: http://projecteuler.net/problem=448
5
+ :content: "\r\n<p>\r\nThe function <b>lcm</b>(a,b) denotes the least common multiple
6
+ of a and b.<br>\r\nLet A(n) be the average of the values of lcm(n,i) for 1<img src=\"images/symbol_le.gif\"
7
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">i<img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nE.g:
9
+ A(2)=(2+2)/2=2 and A(10)=(10+10+30+20+10+30+70+40+90+10)/10=32. \r\n</p>\r\nLet
10
+ S(n)=<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
11
+ style=\"vertical-align:middle;\">A(k) for 1<img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">k<img src=\"images/symbol_le.gif\"
13
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nS(100)=122726.\r\n\r\n<p>\r\nFind
14
+ S(99999999019) mod 999999017.\r\n</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 449
3
+ :name: Chocolate covered candy
4
+ :url: http://projecteuler.net/problem=449
5
+ :content: "\r\n<p>Phil the confectioner is making a new batch of chocolate covered
6
+ candy. Each candy centre is shaped like an ellipsoid of revolution defined by the
7
+ equation: b<sup>2</sup><var>x</var><sup>2</sup> + b<sup>2</sup><var>y</var><sup>2</sup>
8
+ + a<sup>2</sup><var>z</var><sup>2</sup> = a<sup>2</sup>b<sup>2</sup>.\r\n</p>\r\n<p>\r\nPhil
9
+ wants to know how much chocolate is needed to cover one candy centre with a uniform
10
+ coat of chocolate one millimeter thick.\r\n</p>\n<table class=\"formula\"><tr>\n<td>If
11
+ a=1 mm and b=1 mm, the amount of chocolate required is \r\n </td>\r\n <td><table
12
+ class=\"frac\">\n<tr><td>28</td></tr>\n<tr><td class=\"overline\">3</td></tr>\n</table></td>\r\n
13
+ \ <td>π mm<sup>3</sup>\n</td>\r\n</tr></table>\r\nIf a=2 mm and b=1 mm, the amount
14
+ of chocolate required is approximately 60.35475635 mm<sup>3</sup>.\r\n\r\n<p>\r\nFind
15
+ the amount of chocolate in mm<sup>3</sup> required if a=3 mm and b=1 mm. Give your
16
+ answer as the number rounded to 8 decimal places behind the decimal point.</p>\r\n
17
+ \r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 45
3
+ :name: Triangular, pentagonal, and hexagonal
4
+ :url: http://projecteuler.net/problem=45
5
+ :content: "\r\n<p>Triangle, pentagonal, and hexagonal numbers are generated by the
6
+ following formulae:</p>\r\n<table>\n<tr>\n<td>Triangle</td>\r\n<td> </td>\r\n<td>T<sub><i>n</i></sub>=<i>n</i>(<i>n</i>+1)/2</td>\r\n<td> </td>\r\n<td>1,
7
+ 3, 6, 10, 15, ...</td>\r\n</tr>\n<tr>\n<td>Pentagonal</td>\r\n<td> </td>\r\n<td>P<sub><i>n</i></sub>=<i>n</i>(3<i>n</i><img
8
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
9
+ style=\"vertical-align:middle;\">1)/2</td>\r\n<td> </td>\r\n<td>1, 5, 12, 22, 35,
10
+ ...</td>\r\n</tr>\n<tr>\n<td>Hexagonal</td>\r\n<td> </td>\r\n<td>H<sub><i>n</i></sub>=<i>n</i>(2<i>n</i><img
11
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
12
+ style=\"vertical-align:middle;\">1)</td>\r\n<td> </td>\r\n<td>1, 6, 15, 28, 45,
13
+ ...</td>\r\n</tr>\n</table>\n<p>It can be verified that T<sub>285</sub> = P<sub>165</sub>
14
+ = H<sub>143</sub> = 40755.</p>\r\n<p>Find the next triangle number that is also
15
+ pentagonal and hexagonal.</p>\r\n\r\n"
@@ -0,0 +1,26 @@
1
+ ---
2
+ :id: 450
3
+ :name: Hypocycloid and Lattice points
4
+ :url: http://projecteuler.net/problem=450
5
+ :content: "\r\n<p>\r\nA hypocycloid is the curve drawn by a point on a small circle
6
+ rolling inside a larger circle. The parametric equations of a hypocycloid centered
7
+ at the origin, and starting at the right most point is given by:</p>\n<p style=\"text-align:center\">\r\n$x(t)
8
+ = (R - r) \\cos(t) + r \\cos(\\frac {R - r} r t)$<br>\r\n$y(t) = (R - r) \\sin(t)
9
+ - r \\sin(\\frac {R - r} r t)$</p>\n<p>\r\nWhere <var>R</var> is the radius of the
10
+ large circle and <var>r</var> the radius of the small circle.\r\n</p>\r\n<p>\r\nLet
11
+ $C(R, r)$ be the set of distinct points with integer coordinates on the hypocycloid
12
+ with radius <var>R</var> and <var>r</var> and for which there is a corresponding
13
+ value of <var>t</var> such that $\\sin(t)$ and $\\cos(t)$ are rational numbers.</p>\r\n<p>\r\nLet
14
+ $S(R, r) = \\sum_{(x,y) \\in C(R, r)} |x| + |y|$ be the sum of the absolute values
15
+ of the <var>x</var> and <var>y</var> coordinates of the points in $C(R, r)$.</p>\r\n<p>\r\n\r\nLet
16
+ $T(N) = \\sum_{R = 3}^N \\sum_{r=1}^{\\lfloor \\frac {R - 1} 2 \\rfloor} S(R, r)$
17
+ be the sum of $S(R, r)$ for <var>R</var> and <var>r</var> positive integers, $R\\leq
18
+ N$ and $2r \r\n</p>\n<p>\r\n\r\nYou are given:<br><var>C</var>(3, 1) = {(3, 0),
19
+ (-1, 2), (-1,0), (-1,-2)}<br><br><var>C</var>(2500, 1000) =<br></p>\n<ul>\r\n {(2500,
20
+ 0), (772, 2376), (772, -2376), (516, 1792),\r\n (516, -1792), (500, 0), (68, 504),
21
+ (68, -504),<br>(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)}</ul>\n<i>Note:
22
+ (-625, 0) is not an element of C(2500, 1000) because $\\sin(t)$ is not a rational
23
+ number for the corresponding values of <var>t</var>.</i>\r\n\r\n<p>\r\n<var>S</var>(3,
24
+ 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10</p>\r\n<p>\r\n<var>T</var>(3)
25
+ = 10; <var>T</var>(10) = 524 ;<var>T</var>(100) = 580442; <var>T</var>(10<sup>3</sup>)
26
+ = 583108600.\r\n</p>\r\n<p>\r\nFind <var>T</var>(10<sup>6</sup>).\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 451
3
+ :name: Modular inverses
4
+ :url: http://projecteuler.net/problem=451
5
+ :content: "\r\n<p>\r\nConsider the number 15.<br>\r\nThere are eight positive numbers
6
+ less than 15 which are coprime to 15: 1, 2, 4, 7, 8, 11, 13, 14.<br>\r\nThe modular
7
+ inverses of these numbers modulo 15 are: 1, 8, 4, 13, 2, 11, 7, 14<br> \r\nbecause<br>\r\n1*1
8
+ mod 15=1<br>\r\n2*8=16 mod 15=1<br>\r\n4*4=16 mod 15=1<br>\r\n7*13=91 mod 15=1<br>\r\n11*11=121
9
+ mod 15=1<br>\r\n14*14=196 mod 15=1<br></p>\r\n<p>\r\nLet I(n) be the largest positive
10
+ number m smaller than n-1 such that the modular inverse of m modulo n equals m itself.<br>\r\nSo
11
+ I(15)=11.<br>\r\nAlso I(100)=51 and I(7)=1.<br></p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\"
12
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">I(n)
13
+ for 3<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
15
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">2·10<sup>7</sup></p>"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 452
3
+ :name: Long Products
4
+ :url: http://projecteuler.net/problem=452
5
+ :content: "\r\n<p>Define F(<var>m</var>,<var>n</var>) as the number of <var>n</var>-tuples
6
+ of positive integers for which the product of the elements doesn't exceed <var>m</var>.</p>\r\n<p>F(10,
7
+ 10) = 571.</p>\r\n<p>F(10<sup>6</sup>, 10<sup>6</sup>) mod 1 234 567 891 = 252903833.</p>\r\n<p>Find
8
+ F(10<sup>9</sup>, 10<sup>9</sup>) mod 1 234 567 891.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 453
3
+ :name: Lattice Quadrilaterals
4
+ :url: http://projecteuler.net/problem=453
5
+ :content: "\r\n<p>A <b>simple quadrilateral</b> is a polygon that has four distinct
6
+ vertices, has no straight angles and does not self-intersect.</p>\r\n\r\n<p>Let
7
+ Q(m, n) be the number of simple quadrilaterals whose vertices are lattice points
8
+ with coordinates (x,y) satisfying 0 <img src=\"images/symbol_le.gif\" width=\"10\"
9
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> x <img src=\"images/symbol_le.gif\"
10
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
11
+ m and 0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> y <img src=\"images/symbol_le.gif\" width=\"10\"
13
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> n.</p>\r\n\r\n<p>For
14
+ example, Q(2, 2) = 94 as can be seen below:</p>\r\n<p align=\"center\"><img src=\"project/images/p453_quad.png\"></p>\r\n<p>It
15
+ can also be verified that Q(3, 7) = 39590, Q(12, 3) = 309000 and Q(123, 45) = 70542215894646.</p>\r\n\r\n<p>Find
16
+ Q(12345, 6789) mod 135707531.</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 454
3
+ :name: Diophantine reciprocals III
4
+ :url: http://projecteuler.net/problem=454
5
+ :content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
6
+ are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
7
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
8
+ height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
9
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
10
+ height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
11
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
12
+ height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>For
13
+ a limit <var>L</var> we define F(<var>L</var>) as the number of solutions which
14
+ satisfy <var>x</var> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
15
+ alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>y</var> <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>L</var>.</p>\r\n\r\n<p>We
17
+ can verify that F(15) = 4 and F(1000) = 1069.<br>\r\nFind F(10<sup>12</sup>).</p>\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 455
3
+ :name: Powers With Trailing Digits
4
+ :url: http://projecteuler.net/problem=455
5
+ :content: "\r\n<p>Let f(n) be the largest positive integer x less than 10<sup>9</sup>
6
+ such that the last 9 digits of n<sup>x</sup> form the number <i>x</i> (including
7
+ leading zeros), or zero if no such integer exists.</p>\r\n\r\n<p>For example:</p>\r\n\r\n<ul>\n<li>f(4)
8
+ = 411728896 (4<sup>411728896</sup> = ...490<u>411728896</u>) </li>\r\n<li>f(10)
9
+ = 0</li>\r\n<li>f(157) = 743757 (157<sup>743757</sup> = ...567<u>000743757</u>)</li>\r\n<li>Σf(n),
10
+ 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> n <img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>3</sup>
13
+ = 442530011399</li>\r\n</ul>\n<p>Find Σf(n), 2 <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
15
+ n <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 10<sup>6</sup>.</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 456
3
+ :name: Triangles containing the origin II
4
+ :url: http://projecteuler.net/problem=456
5
+ :content: "\r\n<p>Define:<br><var>x</var><sub><var>n</var></sub> = (1248<sup><var>n</var></sup>
6
+ mod 32323) - 16161<br><var>y</var><sub><var>n</var></sub> = (8421<sup><var>n</var></sup>
7
+ mod 30103) - 15051<br>\r\nP<sub><var>n</var></sub> = {(<var>x</var><sub>1</sub>,
8
+ <var>y</var><sub>1</sub>), (<var>x</var><sub>2</sub>, <var>y</var><sub>2</sub>),
9
+ ..., (<var>x</var><sub><var>n</var></sub>, <var>y</var><sub><var>n</var></sub>)}\r\n</p>\r\n\r\n<p>For
10
+ example, P<sub>8</sub> = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340,
11
+ -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}.</p>\r\n\r\n<p>Let
12
+ C(<var>n</var>) be the number of triangles whose vertices are in P<sub><var>n</var></sub>
13
+ which contain the origin in the interior.</p>\r\n\r\n<p>\r\nExamples:<br>\r\nC(8)
14
+ = 20<br>\r\nC(600) = 8950634<br>\r\nC(40 000) = 2666610948988\r\n</p>\r\n\r\n<p>Find
15
+ C(2 000 000).\r\n\r\n</p>"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 46
3
+ :name: Goldbach's other conjecture
4
+ :url: http://projecteuler.net/problem=46
5
+ :content: "\r\n<p>It was proposed by Christian Goldbach that every odd composite number
6
+ can be written as the sum of a prime and twice a square.</p>\r\n<p style=\"margin-left:10px;\">9
7
+ = 7 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
8
+ style=\"vertical-align:middle;\">1<sup>2</sup><br>\r\n15 = 7 + 2<img src=\"images/symbol_times.gif\"
9
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup><br>\r\n21
10
+ = 3 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
11
+ style=\"vertical-align:middle;\">3<sup>2</sup><br>\r\n25 = 7 + 2<img src=\"images/symbol_times.gif\"
12
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">3<sup>2</sup><br>\r\n27
13
+ = 19 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
14
+ border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup><br>\r\n33 = 31 + 2<img
15
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
16
+ style=\"vertical-align:middle;\">1<sup>2</sup></p>\r\n<p>It turns out that the conjecture
17
+ was false.</p>\r\n<p>What is the smallest odd composite that cannot be written as
18
+ the sum of a prime and twice a square?</p>\r\n\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 47
3
+ :name: Distinct primes factors
4
+ :url: http://projecteuler.net/problem=47
5
+ :content: "\r\n<p>The first two consecutive numbers to have two distinct prime factors
6
+ are:</p>\r\n<p style=\"margin-left:100px;\">14 = 2 <img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 7<br>15 = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 5</p>\r\n<p>The first three consecutive
10
+ numbers to have three distinct prime factors are:</p>\r\n<p style=\"margin-left:100px;\">644
11
+ = 2² <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 <img src=\"images/symbol_times.gif\" width=\"9\"
13
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 23<br>645
14
+ = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> 5 <img src=\"images/symbol_times.gif\" width=\"9\"
16
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 43<br>646
17
+ = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 17 <img src=\"images/symbol_times.gif\" width=\"9\"
19
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 19.</p>\r\n<p>Find
20
+ the first four consecutive integers to have four distinct prime factors. What is
21
+ the first of these numbers?</p>\r\n\r\n"