euler-manager 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 439
3
+ :name: Sum of sum of divisors
4
+ :url: http://projecteuler.net/problem=439
5
+ :content: "\r\n<p>Let <var>d</var>(<var>k</var>) be the sum of all divisors of <var>k</var>.<br>\r\nWe
6
+ define the function S(<var>N</var>) = <img src=\"images/symbol_sum.gif\" width=\"11\"
7
+ height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><sub>1<img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var><img
9
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var></sub><img
10
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><sub>1<img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>j</var><img
13
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var></sub><var>d</var>(<var>i</var>·<var>j</var>).<br>\r\nFor
14
+ example, S(3) = <var>d</var>(1) + <var>d</var>(2) + <var>d</var>(3) + <var>d</var>(2)
15
+ + <var>d</var>(4) + <var>d</var>(6) + <var>d</var>(3) + <var>d</var>(6) + <var>d</var>(9)
16
+ = 59.</p>\r\n\r\n<p>You are given that S(10<sup>3</sup>) = 563576517282 and S(10<sup>5</sup>)
17
+ mod 10<sup>9</sup> = 215766508.<br>\r\nFind S(10<sup>11</sup>) mod 10<sup>9</sup>.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 44
3
+ :name: Pentagon numbers
4
+ :url: http://projecteuler.net/problem=44
5
+ :content: "\r\n<p>Pentagonal numbers are generated by the formula, P<sub><var>n</var></sub>=<var>n</var>(3<var>n</var><img
6
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
7
+ style=\"vertical-align:middle;\">1)/2. The first ten pentagonal numbers are:</p>\r\n<p
8
+ style=\"text-align:center;\">1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...</p>\r\n<p>It
9
+ can be seen that P<sub>4</sub> + P<sub>7</sub> = 22 + 70 = 92 = P<sub>8</sub>. However,
10
+ their difference, 70 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
11
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 22 = 48, is not pentagonal.</p>\r\n<p>Find
12
+ the pair of pentagonal numbers, P<sub><var>j</var></sub> and P<sub><var>k</var></sub>,
13
+ for which their sum and difference are pentagonal and D = |P<sub><var>k</var></sub><img
14
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> P<sub><var>j</var></sub>| is minimised; what is
16
+ the value of D?</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 440
3
+ :name: GCD and Tiling
4
+ :url: http://projecteuler.net/problem=440
5
+ :content: "\r\n<p>We want to tile a board of length <var>n</var> and height 1 completely,
6
+ with either 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
7
+ border=\"0\" style=\"vertical-align:middle;\"> 2 blocks or 1 <img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 1 blocks with a single decimal digit on top:</p>\r\n\r\n<img src=\"project/images/p440_tiles.png\"><p>For
10
+ example, here are some of the ways to tile a board of length <var>n</var> = 8:</p>\r\n\r\n<img
11
+ src=\"project/images/p440_some8.png\"><p>Let T(<var>n</var>) be the number of ways
12
+ to tile a board of length <var>n</var> as described above.</p>\r\n\r\n<p>For example,
13
+ T(1) = 10 and T(2) = 101.</p>\r\n\r\n<p>Let S(<var>L</var>) be the triple sum <img
14
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
15
+ style=\"vertical-align:middle;\"><sub><var>a</var>,<var>b</var>,<var>c</var></sub>
16
+ gcd(T(<var>c</var><sup><var>a</var></sup>), T(<var>c</var><sup><var>b</var></sup>))
17
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>a</var>, <var>b</var>, <var>c</var> <img src=\"images/symbol_le.gif\"
19
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>L</var>.<br>\r\nFor
20
+ example:<br>\r\nS(2) = 10444<br>\r\nS(3) = 1292115238446807016106539989<br>\r\nS(4)
21
+ mod 987 898 789 = 670616280.</p>\r\n\r\n<p>Find S(2000) mod 987 898 789.</p>\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 441
3
+ :name: The inverse summation of coprime couples
4
+ :url: http://projecteuler.net/problem=441
5
+ :content: "\r\n<p>\r\nFor an integer <var>M</var>, we define R(<var>M</var>) as the
6
+ sum of 1/(<var>p</var>·<var>q</var>) for all the integer pairs <var>p</var> and
7
+ <var>q</var> which satisfy all of these conditions:\r\n</p>\r\n<ul>\n<li> 1 <img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>p</var>
9
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><var>q</var> <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>M</var>\n</li>\r\n<li>
12
+ <var>p</var> + <var>q</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
13
+ alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"><var>M</var>\n</li>\r\n<li>
14
+ <var>p</var> and <var>q</var> are coprime.</li>\r\n</ul>\n<p>\r\nWe also define
15
+ S(<var>N</var>) as the sum of R(<var>i</var>) for 2 <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
17
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nWe can verify that S(2) =
19
+ R(2) = 1/2, S(10) <img src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\"
20
+ alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\"> 6.9147 and S(100) <img
21
+ src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\" alt=\"≈\" border=\"0\"
22
+ style=\"vertical-align:middle;\"> 58.2962.\r\n</p>\r\n<p>\r\nFind S(10<sup>7</sup>).
23
+ Give your answer rounded to four decimal places.\r\n</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 442
3
+ :name: Eleven-free integers
4
+ :url: http://projecteuler.net/problem=442
5
+ :content: "\r\n<p>An integer is called <i>eleven-free</i> if its decimal expansion
6
+ does not contain any substring representing a power of 11 except 1.</p>\r\n\r\n<p>For
7
+ example, 2404 and 13431 are eleven-free, while 911 and 4121331 are not.</p>\r\n\r\n<p>Let
8
+ E(<i>n</i>) be the <i>n</i>th positive eleven-free integer. For example, E(3) =
9
+ 3, E(200) = 213 and E(500 000) = 531563.</p>\r\n\r\n<p>Find E(10<sup>18</sup>).</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 443
3
+ :name: GCD sequence
4
+ :url: http://projecteuler.net/problem=443
5
+ :content: "\r\n<p>Let g(<var>n</var>) be a sequence defined as follows:<br>\r\ng(4)
6
+ = 13,<br>\r\ng(<var>n</var>) = g(<var>n</var>-1) + gcd(<var>n</var>, g(<var>n</var>-1))
7
+ for <var>n</var> <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\"
8
+ border=\"0\" style=\"vertical-align:middle;\"> 4.</p>\r\n\r\n<p>The first few values
9
+ are:</p>\r\n<div align=\"center\">\r\n <table cellspacing=\"1\" cellpadding=\"5\"
10
+ border=\"0\" align=\"center\">\n<tr>\n<td><var>n</var></td>\n<td>4</td>\n<td>5</td>\n<td>6</td>\n<td>7</td>\n<td>8</td>\n<td>9</td>\n<td>10</td>\n<td>11</td>\n<td>12</td>\n<td>13</td>\n<td>14</td>\n<td>15</td>\n<td>16</td>\n<td>17</td>\n<td>18</td>\n<td>19</td>\n<td>20</td>\n<td>...</td>\r\n
11
+ \ </tr>\n<tr>\n<td>g(<var>n</var>)</td>\n<td>13</td>\n<td>14</td>\n<td>16</td>\n<td>17</td>\n<td>18</td>\n<td>27</td>\n<td>28</td>\n<td>29</td>\n<td>30</td>\n<td>31</td>\n<td>32</td>\n<td>33</td>\n<td>34</td>\n<td>51</td>\n<td>54</td>\n<td>55</td>\n<td>60</td>\n<td>...</td>\r\n
12
+ \ </tr>\n</table>\n</div>\r\n\r\n<p>You are given that g(1 000) = 2524 and g(1 000 000)
13
+ = 2624152.</p>\r\n\r\n<p>Find g(10<sup>15</sup>).</p>\r\n"
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 444
3
+ :name: The Roundtable Lottery
4
+ :url: http://projecteuler.net/problem=444
5
+ :content: "\r\n<p>A group of <var>p</var> people decide to sit down at a round table
6
+ and play a lottery-ticket trading game. Each person starts off with a randomly-assigned,
7
+ unscratched lottery ticket. Each ticket, when scratched, reveals a whole-pound prize
8
+ ranging anywhere from £1 to £<var>p</var>, with no two tickets alike. The goal of
9
+ the game is for each person to maximize his ticket winnings upon leaving the game.</p>\r\n\r\n<p>An
10
+ arbitrary person is chosen to be the first player. Going around the table, each
11
+ player has only one of two options:</p>\r\n\r\n<p>1. The player can scratch his
12
+ ticket and reveal its worth to everyone at the table.<br>\r\n2. The player can trade
13
+ his unscratched ticket for a previous player's scratched ticket, and then leave
14
+ the game with that ticket. The previous player then scratches his newly-acquired
15
+ ticket and reveals its worth to everyone at the table.</p>\r\n\r\n<p>The game ends
16
+ once all tickets have been scratched. All players still remaining at the table must
17
+ leave with their currently-held tickets.</p>\r\n\r\n<p>Assume that each player uses
18
+ the optimal strategy for maximizing the expected value of his ticket winnings. </p>\r\n\r\n<p>Let
19
+ E(<var>p</var>) represent the expected number of players left at the table when
20
+ the game ends in a game consisting of <var>p</var> players (e.g. E(111) = 5.2912
21
+ when rounded to 5 significant digits).</p>\r\n\r\n<p>Let S<sub>1</sub>(<var>N</var>)
22
+ = <img style=\"vertical-align:middle\" src=\"project/images/p444_sum.png\"> E(<var>p</var>)<br>\r\nLet
23
+ S<sub><var>k</var></sub>(<var>N</var>) = <img style=\"vertical-align:middle\" src=\"project/images/p444_sum.png\">
24
+ S<sub><var>k</var>-1</sub>(<var>p</var>) for <var>k</var> <img src=\"images/symbol_gt.gif\"
25
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
26
+ 1</p>\r\n\r\n<p>Find S<sub>20</sub>(10<sup>14</sup>) and write the answer in scientific
27
+ notation rounded to 10 significant digits. Use a lowercase e to separate mantissa
28
+ and exponent (e.g. S<sub>3</sub>(100) = 5.983679014e5).</p>\r\n\r\n"
@@ -0,0 +1,37 @@
1
+ ---
2
+ :id: 445
3
+ :name: Retractions A
4
+ :url: http://projecteuler.net/problem=445
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nYou are given that<br><img
25
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
26
+ style=\"vertical-align:middle;\"> R(c) for c=C(100 000,k), and 1 <img src=\"images/symbol_le.gif\"
27
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
28
+ k <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
29
+ style=\"vertical-align:middle;\">99 999 <img src=\"images/symbol_cong.gif\" width=\"9\"
30
+ height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">628701600
31
+ (mod 1 000 000 007).<br>\r\n(C(n,k) is the binomial coefficient).<br></p>\r\n<p>
32
+ \r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\"
33
+ border=\"0\" style=\"vertical-align:middle;\"> R(c) for c=C(10 000 000,k), and 1
34
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
35
+ style=\"vertical-align:middle;\">k<img src=\"images/symbol_le.gif\" width=\"10\"
36
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 9 999 999.<br>\r\nGive
37
+ your answer modulo 1 000 000 007.\r\n</p>\r\n\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 446
3
+ :name: Retractions B
4
+ :url: http://projecteuler.net/problem=446
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nF(N)=<img src=\"images/symbol_sum.gif\"
25
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">R(n<sup>4</sup>+4)
26
+ for 1<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
28
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">N. <br> \r\nF(1024)=77532377300600.<br></p>\r\n<p>\r\nFind
29
+ F(10<sup>7</sup>) (mod 1 000 000 007)\r\n\r\n</p>"
@@ -0,0 +1,31 @@
1
+ ---
2
+ :id: 447
3
+ :name: Retractions C
4
+ :url: http://projecteuler.net/problem=447
5
+ :content: "\r\n<p>\r\nFor every integer n<img src=\"images/symbol_gt.gif\" width=\"10\"
6
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">1, the
7
+ family of functions f<sub>n,a,b</sub> is defined \r\nby f<sub>n,a,b</sub>(<var>x</var>)<img
8
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
9
+ style=\"vertical-align:middle;\">a<var>x</var>+b mod n for a,b,<var>x</var> integer
10
+ and 0<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\">a<img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n,
13
+ 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">b<img src=\"images/symbol_lt.gif\" width=\"10\"
15
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n, 0<img
16
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
17
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\">n.<br>\r\nWe will call f<sub>n,a,b</sub> a <i>retraction</i>
19
+ if f<sub>n,a,b</sub>(f<sub>n,a,b</sub>(<var>x</var>))<img src=\"images/symbol_cong.gif\"
20
+ width=\"9\" height=\"11\" alt=\"≡\" border=\"0\" style=\"vertical-align:middle;\">f<sub>n,a,b</sub>(<var>x</var>)
21
+ mod n for every 0<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
22
+ border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img src=\"images/symbol_lt.gif\"
23
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nLet
24
+ R(n) be the number of retractions for n.\r\n</p>\r\n<p>\r\nF(N)=<img src=\"images/symbol_sum.gif\"
25
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">R(n)
26
+ for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
28
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">N.<br>\r\nF(10<sup>7</sup>)<img
29
+ src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
30
+ style=\"vertical-align:middle;\">638042271 (mod 1 000 000 007).\r\n</p>\r\n<p> \r\nFind
31
+ F(10<sup>14</sup>) (mod 1 000 000 007).\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 448
3
+ :name: Average least common multiple
4
+ :url: http://projecteuler.net/problem=448
5
+ :content: "\r\n<p>\r\nThe function <b>lcm</b>(a,b) denotes the least common multiple
6
+ of a and b.<br>\r\nLet A(n) be the average of the values of lcm(n,i) for 1<img src=\"images/symbol_le.gif\"
7
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">i<img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nE.g:
9
+ A(2)=(2+2)/2=2 and A(10)=(10+10+30+20+10+30+70+40+90+10)/10=32. \r\n</p>\r\nLet
10
+ S(n)=<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
11
+ style=\"vertical-align:middle;\">A(k) for 1<img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">k<img src=\"images/symbol_le.gif\"
13
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">n.<br>\r\nS(100)=122726.\r\n\r\n<p>\r\nFind
14
+ S(99999999019) mod 999999017.\r\n</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 449
3
+ :name: Chocolate covered candy
4
+ :url: http://projecteuler.net/problem=449
5
+ :content: "\r\n<p>Phil the confectioner is making a new batch of chocolate covered
6
+ candy. Each candy centre is shaped like an ellipsoid of revolution defined by the
7
+ equation: b<sup>2</sup><var>x</var><sup>2</sup> + b<sup>2</sup><var>y</var><sup>2</sup>
8
+ + a<sup>2</sup><var>z</var><sup>2</sup> = a<sup>2</sup>b<sup>2</sup>.\r\n</p>\r\n<p>\r\nPhil
9
+ wants to know how much chocolate is needed to cover one candy centre with a uniform
10
+ coat of chocolate one millimeter thick.\r\n</p>\n<table class=\"formula\"><tr>\n<td>If
11
+ a=1 mm and b=1 mm, the amount of chocolate required is \r\n </td>\r\n <td><table
12
+ class=\"frac\">\n<tr><td>28</td></tr>\n<tr><td class=\"overline\">3</td></tr>\n</table></td>\r\n
13
+ \ <td>π mm<sup>3</sup>\n</td>\r\n</tr></table>\r\nIf a=2 mm and b=1 mm, the amount
14
+ of chocolate required is approximately 60.35475635 mm<sup>3</sup>.\r\n\r\n<p>\r\nFind
15
+ the amount of chocolate in mm<sup>3</sup> required if a=3 mm and b=1 mm. Give your
16
+ answer as the number rounded to 8 decimal places behind the decimal point.</p>\r\n
17
+ \r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 45
3
+ :name: Triangular, pentagonal, and hexagonal
4
+ :url: http://projecteuler.net/problem=45
5
+ :content: "\r\n<p>Triangle, pentagonal, and hexagonal numbers are generated by the
6
+ following formulae:</p>\r\n<table>\n<tr>\n<td>Triangle</td>\r\n<td> </td>\r\n<td>T<sub><i>n</i></sub>=<i>n</i>(<i>n</i>+1)/2</td>\r\n<td> </td>\r\n<td>1,
7
+ 3, 6, 10, 15, ...</td>\r\n</tr>\n<tr>\n<td>Pentagonal</td>\r\n<td> </td>\r\n<td>P<sub><i>n</i></sub>=<i>n</i>(3<i>n</i><img
8
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
9
+ style=\"vertical-align:middle;\">1)/2</td>\r\n<td> </td>\r\n<td>1, 5, 12, 22, 35,
10
+ ...</td>\r\n</tr>\n<tr>\n<td>Hexagonal</td>\r\n<td> </td>\r\n<td>H<sub><i>n</i></sub>=<i>n</i>(2<i>n</i><img
11
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
12
+ style=\"vertical-align:middle;\">1)</td>\r\n<td> </td>\r\n<td>1, 6, 15, 28, 45,
13
+ ...</td>\r\n</tr>\n</table>\n<p>It can be verified that T<sub>285</sub> = P<sub>165</sub>
14
+ = H<sub>143</sub> = 40755.</p>\r\n<p>Find the next triangle number that is also
15
+ pentagonal and hexagonal.</p>\r\n\r\n"
@@ -0,0 +1,26 @@
1
+ ---
2
+ :id: 450
3
+ :name: Hypocycloid and Lattice points
4
+ :url: http://projecteuler.net/problem=450
5
+ :content: "\r\n<p>\r\nA hypocycloid is the curve drawn by a point on a small circle
6
+ rolling inside a larger circle. The parametric equations of a hypocycloid centered
7
+ at the origin, and starting at the right most point is given by:</p>\n<p style=\"text-align:center\">\r\n$x(t)
8
+ = (R - r) \\cos(t) + r \\cos(\\frac {R - r} r t)$<br>\r\n$y(t) = (R - r) \\sin(t)
9
+ - r \\sin(\\frac {R - r} r t)$</p>\n<p>\r\nWhere <var>R</var> is the radius of the
10
+ large circle and <var>r</var> the radius of the small circle.\r\n</p>\r\n<p>\r\nLet
11
+ $C(R, r)$ be the set of distinct points with integer coordinates on the hypocycloid
12
+ with radius <var>R</var> and <var>r</var> and for which there is a corresponding
13
+ value of <var>t</var> such that $\\sin(t)$ and $\\cos(t)$ are rational numbers.</p>\r\n<p>\r\nLet
14
+ $S(R, r) = \\sum_{(x,y) \\in C(R, r)} |x| + |y|$ be the sum of the absolute values
15
+ of the <var>x</var> and <var>y</var> coordinates of the points in $C(R, r)$.</p>\r\n<p>\r\n\r\nLet
16
+ $T(N) = \\sum_{R = 3}^N \\sum_{r=1}^{\\lfloor \\frac {R - 1} 2 \\rfloor} S(R, r)$
17
+ be the sum of $S(R, r)$ for <var>R</var> and <var>r</var> positive integers, $R\\leq
18
+ N$ and $2r \r\n</p>\n<p>\r\n\r\nYou are given:<br><var>C</var>(3, 1) = {(3, 0),
19
+ (-1, 2), (-1,0), (-1,-2)}<br><br><var>C</var>(2500, 1000) =<br></p>\n<ul>\r\n {(2500,
20
+ 0), (772, 2376), (772, -2376), (516, 1792),\r\n (516, -1792), (500, 0), (68, 504),
21
+ (68, -504),<br>(-1356, 1088), (-1356, -1088), (-1500, 1000), (-1500, -1000)}</ul>\n<i>Note:
22
+ (-625, 0) is not an element of C(2500, 1000) because $\\sin(t)$ is not a rational
23
+ number for the corresponding values of <var>t</var>.</i>\r\n\r\n<p>\r\n<var>S</var>(3,
24
+ 1) = (|3| + |0|) + (|-1| + |2|) + (|-1| + |0|) + (|-1| + |-2|) = 10</p>\r\n<p>\r\n<var>T</var>(3)
25
+ = 10; <var>T</var>(10) = 524 ;<var>T</var>(100) = 580442; <var>T</var>(10<sup>3</sup>)
26
+ = 583108600.\r\n</p>\r\n<p>\r\nFind <var>T</var>(10<sup>6</sup>).\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 451
3
+ :name: Modular inverses
4
+ :url: http://projecteuler.net/problem=451
5
+ :content: "\r\n<p>\r\nConsider the number 15.<br>\r\nThere are eight positive numbers
6
+ less than 15 which are coprime to 15: 1, 2, 4, 7, 8, 11, 13, 14.<br>\r\nThe modular
7
+ inverses of these numbers modulo 15 are: 1, 8, 4, 13, 2, 11, 7, 14<br> \r\nbecause<br>\r\n1*1
8
+ mod 15=1<br>\r\n2*8=16 mod 15=1<br>\r\n4*4=16 mod 15=1<br>\r\n7*13=91 mod 15=1<br>\r\n11*11=121
9
+ mod 15=1<br>\r\n14*14=196 mod 15=1<br></p>\r\n<p>\r\nLet I(n) be the largest positive
10
+ number m smaller than n-1 such that the modular inverse of m modulo n equals m itself.<br>\r\nSo
11
+ I(15)=11.<br>\r\nAlso I(100)=51 and I(7)=1.<br></p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\"
12
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">I(n)
13
+ for 3<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\">n<img src=\"images/symbol_le.gif\" width=\"10\"
15
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">2·10<sup>7</sup></p>"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 452
3
+ :name: Long Products
4
+ :url: http://projecteuler.net/problem=452
5
+ :content: "\r\n<p>Define F(<var>m</var>,<var>n</var>) as the number of <var>n</var>-tuples
6
+ of positive integers for which the product of the elements doesn't exceed <var>m</var>.</p>\r\n<p>F(10,
7
+ 10) = 571.</p>\r\n<p>F(10<sup>6</sup>, 10<sup>6</sup>) mod 1 234 567 891 = 252903833.</p>\r\n<p>Find
8
+ F(10<sup>9</sup>, 10<sup>9</sup>) mod 1 234 567 891.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 453
3
+ :name: Lattice Quadrilaterals
4
+ :url: http://projecteuler.net/problem=453
5
+ :content: "\r\n<p>A <b>simple quadrilateral</b> is a polygon that has four distinct
6
+ vertices, has no straight angles and does not self-intersect.</p>\r\n\r\n<p>Let
7
+ Q(m, n) be the number of simple quadrilaterals whose vertices are lattice points
8
+ with coordinates (x,y) satisfying 0 <img src=\"images/symbol_le.gif\" width=\"10\"
9
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> x <img src=\"images/symbol_le.gif\"
10
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
11
+ m and 0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> y <img src=\"images/symbol_le.gif\" width=\"10\"
13
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> n.</p>\r\n\r\n<p>For
14
+ example, Q(2, 2) = 94 as can be seen below:</p>\r\n<p align=\"center\"><img src=\"project/images/p453_quad.png\"></p>\r\n<p>It
15
+ can also be verified that Q(3, 7) = 39590, Q(12, 3) = 309000 and Q(123, 45) = 70542215894646.</p>\r\n\r\n<p>Find
16
+ Q(12345, 6789) mod 135707531.</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 454
3
+ :name: Diophantine reciprocals III
4
+ :url: http://projecteuler.net/problem=454
5
+ :content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
6
+ are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
7
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
8
+ height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
9
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
10
+ height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
11
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
12
+ height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>For
13
+ a limit <var>L</var> we define F(<var>L</var>) as the number of solutions which
14
+ satisfy <var>x</var> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
15
+ alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>y</var> <img src=\"images/symbol_le.gif\"
16
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>L</var>.</p>\r\n\r\n<p>We
17
+ can verify that F(15) = 4 and F(1000) = 1069.<br>\r\nFind F(10<sup>12</sup>).</p>\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 455
3
+ :name: Powers With Trailing Digits
4
+ :url: http://projecteuler.net/problem=455
5
+ :content: "\r\n<p>Let f(n) be the largest positive integer x less than 10<sup>9</sup>
6
+ such that the last 9 digits of n<sup>x</sup> form the number <i>x</i> (including
7
+ leading zeros), or zero if no such integer exists.</p>\r\n\r\n<p>For example:</p>\r\n\r\n<ul>\n<li>f(4)
8
+ = 411728896 (4<sup>411728896</sup> = ...490<u>411728896</u>) </li>\r\n<li>f(10)
9
+ = 0</li>\r\n<li>f(157) = 743757 (157<sup>743757</sup> = ...567<u>000743757</u>)</li>\r\n<li>Σf(n),
10
+ 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> n <img src=\"images/symbol_le.gif\" width=\"10\"
12
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>3</sup>
13
+ = 442530011399</li>\r\n</ul>\n<p>Find Σf(n), 2 <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
15
+ n <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 10<sup>6</sup>.</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 456
3
+ :name: Triangles containing the origin II
4
+ :url: http://projecteuler.net/problem=456
5
+ :content: "\r\n<p>Define:<br><var>x</var><sub><var>n</var></sub> = (1248<sup><var>n</var></sup>
6
+ mod 32323) - 16161<br><var>y</var><sub><var>n</var></sub> = (8421<sup><var>n</var></sup>
7
+ mod 30103) - 15051<br>\r\nP<sub><var>n</var></sub> = {(<var>x</var><sub>1</sub>,
8
+ <var>y</var><sub>1</sub>), (<var>x</var><sub>2</sub>, <var>y</var><sub>2</sub>),
9
+ ..., (<var>x</var><sub><var>n</var></sub>, <var>y</var><sub><var>n</var></sub>)}\r\n</p>\r\n\r\n<p>For
10
+ example, P<sub>8</sub> = {(-14913, -6630), (-10161, 5625), (5226, 11896), (8340,
11
+ -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)}.</p>\r\n\r\n<p>Let
12
+ C(<var>n</var>) be the number of triangles whose vertices are in P<sub><var>n</var></sub>
13
+ which contain the origin in the interior.</p>\r\n\r\n<p>\r\nExamples:<br>\r\nC(8)
14
+ = 20<br>\r\nC(600) = 8950634<br>\r\nC(40 000) = 2666610948988\r\n</p>\r\n\r\n<p>Find
15
+ C(2 000 000).\r\n\r\n</p>"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 46
3
+ :name: Goldbach's other conjecture
4
+ :url: http://projecteuler.net/problem=46
5
+ :content: "\r\n<p>It was proposed by Christian Goldbach that every odd composite number
6
+ can be written as the sum of a prime and twice a square.</p>\r\n<p style=\"margin-left:10px;\">9
7
+ = 7 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
8
+ style=\"vertical-align:middle;\">1<sup>2</sup><br>\r\n15 = 7 + 2<img src=\"images/symbol_times.gif\"
9
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup><br>\r\n21
10
+ = 3 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
11
+ style=\"vertical-align:middle;\">3<sup>2</sup><br>\r\n25 = 7 + 2<img src=\"images/symbol_times.gif\"
12
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">3<sup>2</sup><br>\r\n27
13
+ = 19 + 2<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
14
+ border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup><br>\r\n33 = 31 + 2<img
15
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
16
+ style=\"vertical-align:middle;\">1<sup>2</sup></p>\r\n<p>It turns out that the conjecture
17
+ was false.</p>\r\n<p>What is the smallest odd composite that cannot be written as
18
+ the sum of a prime and twice a square?</p>\r\n\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 47
3
+ :name: Distinct primes factors
4
+ :url: http://projecteuler.net/problem=47
5
+ :content: "\r\n<p>The first two consecutive numbers to have two distinct prime factors
6
+ are:</p>\r\n<p style=\"margin-left:100px;\">14 = 2 <img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 7<br>15 = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
9
+ border=\"0\" style=\"vertical-align:middle;\"> 5</p>\r\n<p>The first three consecutive
10
+ numbers to have three distinct prime factors are:</p>\r\n<p style=\"margin-left:100px;\">644
11
+ = 2² <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 7 <img src=\"images/symbol_times.gif\" width=\"9\"
13
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 23<br>645
14
+ = 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> 5 <img src=\"images/symbol_times.gif\" width=\"9\"
16
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 43<br>646
17
+ = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 17 <img src=\"images/symbol_times.gif\" width=\"9\"
19
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 19.</p>\r\n<p>Find
20
+ the first four consecutive integers to have four distinct prime factors. What is
21
+ the first of these numbers?</p>\r\n\r\n"