euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 384
|
3
|
+
:name: Rudin-Shapiro sequence
|
4
|
+
:url: http://projecteuler.net/problem=384
|
5
|
+
:content: "\r\n<p>Define the sequence a(n) as the number of adjacent pairs of ones
|
6
|
+
in the binary expansion of n (possibly overlapping).\r\n<br>E.g.: a(5) = a(101<sub>2</sub>)
|
7
|
+
= 0, a(6) = a(110<sub>2</sub>) = 1, a(7) = a(111<sub>2</sub>) = 2</p>\r\n\r\n<p>Define
|
8
|
+
the sequence b(n) = (-1)<sup>a(n)</sup>.\r\n<br>This sequence is called the <b>Rudin-Shapiro</b>
|
9
|
+
sequence.</p>\r\n<p>Also consider the summatory sequence of b(n): <img src=\"project/images/p_384_formula.gif\"
|
10
|
+
style=\"margin-top:-9px;\">.</p>\r\n\r\n<p>The first couple of values of these sequences
|
11
|
+
are:\r\n<br><tt>n &nbsp 0 &nbsp 1 &nbsp 2 &nbsp 3 &nbsp
|
12
|
+
4 &nbsp 5 &nbsp 6 &nbsp 7\r\n<br>a(n) &nbsp 0 &nbsp
|
13
|
+
0 &nbsp 0 &nbsp 1 &nbsp 0 &nbsp 0 &nbsp 1 &nbsp
|
14
|
+
2\r\n<br>b(n) &nbsp 1 &nbsp 1 &nbsp 1 &nbsp -1 &nbsp
|
15
|
+
1 &nbsp 1 &nbsp -1 &nbsp 1\r\n<br>s(n) &nbsp 1 &nbsp
|
16
|
+
2 &nbsp 3 &nbsp 2 &nbsp 3 &nbsp 4 &nbsp 3 &nbsp
|
17
|
+
4</tt></p>\r\n\r\n<p>The sequence s(n) has the remarkable property that all elements
|
18
|
+
are positive and every positive integer k occurs exactly k times.</p>\r\n\r\n<p>Define
|
19
|
+
g(t,c), with 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
20
|
+
border=\"0\" style=\"vertical-align:middle;\"> c <img src=\"images/symbol_le.gif\"
|
21
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
22
|
+
t, as the index in s(n) for which t occurs for the c'th time in s(n).\r\n<br>E.g.:
|
23
|
+
g(3,3) = 6, g(4,2) = 7 and g(54321,12345) = 1220847710.</p>\r\n\r\n<p>Let F(n) be
|
24
|
+
the fibonacci sequence defined by:\r\n<br>F(0)=F(1)=1 and\r\n<br>F(n)=F(n-1)+F(n-2)
|
25
|
+
for n>1.</p>\r\n\r\n<p>Define GF(t)=g(F(t),F(t-1)).</p>\r\n\r\n<p>Find ΣGF(t)
|
26
|
+
for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
27
|
+
style=\"vertical-align:middle;\">t<img src=\"images/symbol_le.gif\" width=\"10\"
|
28
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">45.</p>\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 385
|
3
|
+
:name: Ellipses inside triangles
|
4
|
+
:url: http://projecteuler.net/problem=385
|
5
|
+
:content: "\r\n<p>\r\nFor any triangle <var>T</var> in the plane, it can be shown
|
6
|
+
that there is a unique ellipse with largest area that is completely inside <var>T</var>.\r\n</p>\n<p
|
7
|
+
align=\"center\">\r\n<img src=\"project/images/p_385_ellipsetriangle.png\"></p>\r\n<p>\r\nFor
|
8
|
+
a given <var>n</var>, consider triangles <var>T</var> such that:<br>\r\n- the vertices
|
9
|
+
of <var>T</var> have integer coordinates with absolute value <img src=\"images/symbol_le.gif\"
|
10
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
n, and <br>\r\n- the <b>foci</b><sup>1</sup> of the largest-area ellipse inside
|
12
|
+
<var>T</var> are (<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
|
13
|
+
alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13,0) and (-<img src=\"images/symbol_radic.gif\"
|
14
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13,0).<br>\r\nLet
|
15
|
+
A(<var>n</var>) be the sum of the areas of all such triangles.\r\n</p>\r\n<p>\r\nFor
|
16
|
+
example, if <var>n</var> = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0)
|
17
|
+
and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36
|
18
|
+
= 72.\r\n</p>\r\n<p>\r\nIt can be verified that A(10) = 252, A(100) = 34632 and
|
19
|
+
A(1000) = 3529008.\r\n</p>\r\n<p>\r\nFind A(1 000 000 000).\r\n</p>\r\n<p>\r\n\r\n<sup>1</sup>The
|
20
|
+
<b>foci</b> (plural of <b>focus</b>) of an ellipse are two points A and B such that
|
21
|
+
for every point P on the boundary of the ellipse, <var>AP</var> + <var>PB</var>
|
22
|
+
is constant.\r\n\r\n\r\n</p>\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 386
|
3
|
+
:name: Maximum length of an antichain
|
4
|
+
:url: http://projecteuler.net/problem=386
|
5
|
+
:content: "\r\n<p>Let <var>n</var> be an integer and <var>S</var>(<var>n</var>) be
|
6
|
+
the set of factors of <var>n</var>.</p>\r\n\r\n<p>A subset <var>A</var> of <var>S</var>(<var>n</var>)
|
7
|
+
is called an <b>antichain</b> of <var>S</var>(<var>n</var>) if <var>A</var> contains
|
8
|
+
only one element or if none of the elements of <var>A</var> divides any of the other
|
9
|
+
elements of <var>A</var>.</p>\r\n\r\n<p>For example: <var>S</var>(30) = {1, 2, 3,
|
10
|
+
5, 6, 10, 15, 30}\r\n<br>{2, 5, 6} is not an antichain of <var>S</var>(30).\r\n<br>{2,
|
11
|
+
3, 5} is an antichain of <var>S</var>(30).</p>\r\n\r\n<p>Let <var>N</var>(<var>n</var>)
|
12
|
+
be the maximum length of an antichain of <var>S</var>(<var>n</var>).</p>\r\n\r\n<p>Find
|
13
|
+
Σ<var>N</var>(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
|
14
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
15
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"> 10<sup>8</sup></p>\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 387
|
3
|
+
:name: Harshad Numbers
|
4
|
+
:url: http://projecteuler.net/problem=387
|
5
|
+
:content: "\r\n<p>A <b>Harshad or Niven number</b> is a number that is divisible by
|
6
|
+
the sum of its digits.\r\n<br>201 is a Harshad number because it is divisible by
|
7
|
+
3 (the sum of its digits.)\r\n<br>When we truncate the last digit from 201, we get
|
8
|
+
20, which is a Harshad number.\r\n<br>When we truncate the last digit from 20, we
|
9
|
+
get 2, which is also a Harshad number.\r\n<br>Let's call a Harshad number that,
|
10
|
+
while recursively truncating the last digit, always results in a Harshad number
|
11
|
+
a <i>right truncatable Harshad number.</i></p> \r\n\r\n<p>Also:\r\n<br>201/3=67
|
12
|
+
which is prime.\r\n<br>Let's call a Harshad number that, when divided by the sum
|
13
|
+
of its digits, results in a prime a <i>strong Harshad number</i>.</p>\r\n\r\n<p>Now
|
14
|
+
take the number 2011 which is prime.\r\n<br>When we truncate the last digit from
|
15
|
+
it we get 201, a strong Harshad number that is also right truncatable.\r\n<br>Let's
|
16
|
+
call such primes <i>strong, right truncatable Harshad primes</i>.</p>\r\n\r\n<p>You
|
17
|
+
are given that the sum of the strong, right truncatable Harshad primes less than
|
18
|
+
10000 is 90619.</p>\r\n\r\n<p>Find the sum of the strong, right truncatable Harshad
|
19
|
+
primes less than 10<sup>14</sup>.</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 388
|
3
|
+
:name: Distinct Lines
|
4
|
+
:url: http://projecteuler.net/problem=388
|
5
|
+
:content: "\r\n<p>\r\nConsider all lattice points (a,b,c) with 0 <img src=\"images/symbol_le.gif\"
|
6
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
a,b,c <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> N.\r\n</p>\r\n<p>\r\nFrom the origin O(0,0,0)
|
9
|
+
all lines are drawn to the other lattice points.<br>\r\nLet D(N) be the number of
|
10
|
+
<i>distinct</i> such lines.\r\n</p>\r\n<p>\r\nYou are given that D(1 000 000) =
|
11
|
+
831909254469114121.\r\n</p>\n<p>\r\nFind D(10<sup>10</sup>). Give as your answer
|
12
|
+
the first nine digits followed by the last nine digits.\r\n</p>\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 389
|
3
|
+
:name: Platonic Dice
|
4
|
+
:url: http://projecteuler.net/problem=389
|
5
|
+
:content: "\r\n<p>\r\nAn unbiased single 4-sided die is thrown and its value, <var>T</var>,
|
6
|
+
is noted.<br><var>T</var> unbiased 6-sided dice are thrown and their scores are
|
7
|
+
added together. The sum, <var>C</var>, is noted.<br><var>C</var> unbiased 8-sided
|
8
|
+
dice are thrown and their scores are added together. The sum, <var>O</var>, is noted.<br><var>O</var>
|
9
|
+
unbiased 12-sided dice are thrown and their scores are added together. The sum,
|
10
|
+
<var>D</var>, is noted.<br><var>D</var> unbiased 20-sided dice are thrown and their
|
11
|
+
scores are added together. The sum, <var>I</var>, is noted.<br>\r\nFind the variance
|
12
|
+
of <var>I</var>, and give your answer rounded to 4 decimal places.\r\n</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 39
|
3
|
+
:name: Integer right triangles
|
4
|
+
:url: http://projecteuler.net/problem=39
|
5
|
+
:content: "\r\n<p>If <i>p</i> is the perimeter of a right angle triangle with integral
|
6
|
+
length sides, {<i>a</i>,<i>b</i>,<i>c</i>}, there are exactly three solutions for
|
7
|
+
<i>p</i> = 120.</p>\r\n<p style=\"\\'text-align:center;\\'\">{20,48,52}, {24,45,51},
|
8
|
+
{30,40,50}</p>\r\n<p>For which value of <i>p</i> <img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
10
|
+
1000, is the number of solutions maximised?</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 390
|
3
|
+
:name: Triangles with non rational sides and integral area
|
4
|
+
:url: http://projecteuler.net/problem=390
|
5
|
+
:content: "\r\n<p>Consider the triangle with sides <img src=\"images/symbol_radic.gif\"
|
6
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5,
|
7
|
+
<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\">65 and <img src=\"images/symbol_radic.gif\" width=\"14\"
|
9
|
+
height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">68.\r\nIt
|
10
|
+
can be shown that this triangle has area 9.</p>\r\n\r\n<p>S(n) is the sum of the
|
11
|
+
areas of all triangles with sides <img src=\"images/symbol_radic.gif\" width=\"14\"
|
12
|
+
height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(1+b<sup>2</sup>),
|
13
|
+
<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\">(1+c<sup>2</sup>) and <img src=\"images/symbol_radic.gif\"
|
15
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(b<sup>2</sup>+c<sup>2</sup>)
|
16
|
+
(for positive integers b and c ) that have an integral area not exceeding n.</p>\r\n\r\n<p>The
|
17
|
+
example triangle has b=2 and c=8.</p>\r\n\r\n<p>S(10<sup>6</sup>)=18018206.</p>\r\n\r\n<p>Find
|
18
|
+
S(10<sup>10</sup>).</p>\r\n"
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
:id: 391
|
3
|
+
:name: Hopping Game
|
4
|
+
:url: http://projecteuler.net/problem=391
|
5
|
+
:content: "\r\n<p>\r\nLet <var>s<sub>k</sub></var> be the number of 1’s when writing
|
6
|
+
the numbers from 0 to <var>k</var> in binary.<br>\r\nFor example, writing 0 to 5
|
7
|
+
in binary, we have 0, 1, 10, 11, 100, 101. There are seven 1’s, so <var>s</var><sub>5</sub>
|
8
|
+
= 7.<br>\r\nThe sequence S = {<var>s<sub>k</sub></var> : <var>k</var> <img src=\"images/symbol_ge.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
|
10
|
+
0} starts {0, 1, 2, 4, 5, 7, 9, 12, ...}.<br></p>\r\n\r\n<p>\r\nA game is played
|
11
|
+
by two players. Before the game starts, a number <var>n</var> is chosen. A counter
|
12
|
+
<var>c</var> starts at 0. At each turn, the player chooses a number from 1 to <var>n</var>
|
13
|
+
(inclusive) and increases <var>c</var> by that number. The resulting value of <var>c</var>
|
14
|
+
must be a member of S. If there are no more valid moves, the player loses.\r\n</p>\r\n\r\n<p>\r\nFor
|
15
|
+
example:<br>\r\nLet <var>n</var> = 5. <var>c</var> starts at 0.<br>\r\nPlayer 1
|
16
|
+
chooses 4, so <var>c</var> becomes 0 + 4 = 4.<br>\r\nPlayer 2 chooses 5, so <var>c</var>
|
17
|
+
becomes 4 + 5 = 9.<br>\r\nPlayer 1 chooses 3, so <var>c</var> becomes 9 + 3 = 12.<br>\r\netc.<br>\r\nNote
|
18
|
+
that <var>c</var> must always belong to S, and each player can increase <var>c</var>
|
19
|
+
by at most <var>n</var>.\r\n</p>\r\n\r\n<p>\r\nLet M(<var>n</var>) be the highest
|
20
|
+
number the first player can choose at her first turn to force a win, and M(<var>n</var>)
|
21
|
+
= 0 if there is no such move. For example, M(2) = 2, M(7) = 1 and M(20) = 4.\r\n</p>\r\n\r\n<p>\r\nGiven
|
22
|
+
Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
|
23
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
24
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\"> 20.\r\n</p>\r\n\r\n<p>\r\nFind Σ(M(<var>n</var>))<sup>3</sup>
|
26
|
+
for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
27
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
28
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
29
|
+
1000.\r\n</p>\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 392
|
3
|
+
:name: Enmeshed unit circle
|
4
|
+
:url: http://projecteuler.net/problem=392
|
5
|
+
:content: "\r\n<p>\r\nA rectilinear grid is an orthogonal grid where the spacing between
|
6
|
+
the gridlines does not have to be equidistant.<br>\r\nAn example of such grid is
|
7
|
+
logarithmic graph paper.\r\n</p>\r\n<p>\r\nConsider rectilinear grids in the Cartesian
|
8
|
+
coordinate system with the following properties:<br></p>\n<ul>\n<li>The gridlines
|
9
|
+
are parallel to the axes of the Cartesian coordinate system.</li>\n<li>There are
|
10
|
+
N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular
|
11
|
+
cells.</li>\n<li>The equations of the two outer vertical gridlines are x = -1 and
|
12
|
+
x = 1.</li>\n<li>The equations of the two outer horizontal gridlines are y = -1
|
13
|
+
and y = 1.</li>\n<li>The grid cells are colored red if they overlap with the <dfn
|
14
|
+
title=\"The unit circle is the circle that has radius 1 and is centered at the origin\">unit
|
15
|
+
circle</dfn>, black otherwise.</li>\n</ul>For this problem we would like you to
|
16
|
+
find the postions of the remaining N inner horizontal and N inner vertical gridlines
|
17
|
+
so that the area occupied by the red cells is minimized.\r\n\r\n<p>\r\nE.g. here
|
18
|
+
is a picture of the solution for N = 10:\r\n</p>\n<p align=\"center\">\r\n<img src=\"project/images/p392_gridlines.png\"></p>\r\n\r\n\r\nThe
|
19
|
+
area occupied by the red cells for N = 10 rounded to 10 digits behind the decimal
|
20
|
+
point is 3.3469640797.\r\n\r\n<p>\r\nFind the positions for N = 400.<br> \r\nGive
|
21
|
+
as your answer the area occupied by the red cells rounded to 10 digits behind the
|
22
|
+
decimal point.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 393
|
3
|
+
:name: Migrating ants
|
4
|
+
:url: http://projecteuler.net/problem=393
|
5
|
+
:content: "\r\n<p>\r\nAn <var>n</var><img src=\"images/symbol_times.gif\" width=\"9\"
|
6
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
7
|
+
grid of squares contains <var>n</var><sup>2</sup> ants, one ant per square.<br>\r\nAll
|
8
|
+
ants decide to move simultaneously to an adjacent square (usually 4 possibilities,
|
9
|
+
except for ants on the edge of the grid or at the corners).<br>\r\nWe define <var>f</var>(<var>n</var>)
|
10
|
+
to be the number of ways this can happen without any ants ending on the same square
|
11
|
+
and without any two ants crossing the same edge between two squares.\r\n</p>\r\n<p>\r\nYou
|
12
|
+
are given that <var>f</var>(4) = 88.<br>\r\nFind <var>f</var>(10).\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 394
|
3
|
+
:name: Eating pie
|
4
|
+
:url: http://projecteuler.net/problem=394
|
5
|
+
:content: "\r\n<p>\r\nJeff eats a pie in an unusual way.<br>\r\nThe pie is circular.
|
6
|
+
He starts with slicing an initial cut in the pie along a radius.<br>\r\nWhile there
|
7
|
+
is at least a given fraction <var>F</var> of pie left, he performs the following
|
8
|
+
procedure:<br>\r\n- He makes two slices from the pie centre to any point of what
|
9
|
+
is remaining of the pie border, any point on the remaining pie border equally likely.
|
10
|
+
This will divide the remaining pie into three pieces.<br> \r\n- Going counterclockwise
|
11
|
+
from the initial cut, he takes the first two pie pieces and eats them.<br>\r\nWhen
|
12
|
+
less than a fraction <var>F</var> of pie remains, he does not repeat this procedure.
|
13
|
+
Instead, he eats all of the remaining pie.\r\n</p>\r\n<p align=\"center\">\r\n<img
|
14
|
+
src=\"project/images/p_394_eatpie.gif\"></p>\r\n\r\n\r\n<p>\r\nFor <var>x</var>
|
15
|
+
<img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"> 1, let E(<var>x</var>) be the expected number
|
17
|
+
of times Jeff repeats the procedure above with <var>F</var> = <sup>1</sup>/<sub><var>x</var></sub>.<br>\r\nIt
|
18
|
+
can be verified that E(1) = 1, E(2) <img src=\"images/symbol_asymp.gif\" width=\"11\"
|
19
|
+
height=\"9\" alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\"> 1.2676536759,
|
20
|
+
and E(7.5) <img src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\" alt=\"≈\"
|
21
|
+
border=\"0\" style=\"vertical-align:middle;\"> 2.1215732071.\r\n</p>\r\n<p>\r\nFind
|
22
|
+
E(40) rounded to 10 decimal places behind the decimal point.\r\n</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 395
|
3
|
+
:name: Pythagorean tree
|
4
|
+
:url: http://projecteuler.net/problem=395
|
5
|
+
:content: "\r\n<p>\r\nThe <b>Pythagorean tree</b> is a fractal generated by the following
|
6
|
+
procedure:\r\n</p>\r\n\r\n<p>\r\nStart with a unit square. Then, calling one of
|
7
|
+
the sides its base (in the animation, the bottom side is the base):\r\n</p>\n<ol>\n<li>
|
8
|
+
Attach a right triangle to the side opposite the base, with the hypotenuse coinciding
|
9
|
+
with that side and with the sides in a 3-4-5 ratio. Note that the smaller side of
|
10
|
+
the triangle must be on the 'right' side with respect to the base (see animation).</li>\r\n<li>
|
11
|
+
Attach a square to each leg of the right triangle, with one of its sides coinciding
|
12
|
+
with that leg.</li>\r\n<li> Repeat this procedure for both squares, considering
|
13
|
+
as their bases the sides touching the triangle.</li>\r\n</ol>\r\nThe resulting figure,
|
14
|
+
after an infinite number of iterations, is the Pythagorean tree.\r\n\r\n\r\n<div
|
15
|
+
align=\"center\"><img src=\"project/images/p_395_pythagorean.gif\"></div>\r\n\r\n<p>\r\nIt
|
16
|
+
can be shown that there exists at least one rectangle, whose sides are parallel
|
17
|
+
to the largest square of the Pythagorean tree, which encloses the Pythagorean tree
|
18
|
+
completely.\r\n</p>\r\n<p>\r\nFind the smallest area possible for such a bounding
|
19
|
+
rectangle, and give your answer rounded to 10 decimal places.\r\n</p>\r\n"
|
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 396
|
3
|
+
:name: Weak Goodstein sequence
|
4
|
+
:url: http://projecteuler.net/problem=396
|
5
|
+
:content: "\r\n<p>\r\nFor any positive integer n, the <b>nth weak Goodstein sequence</b>
|
6
|
+
{g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>, ...} is defined as:\r\n</p>\n<ul>\n<li>
|
7
|
+
g<sub>1</sub> = <var>n</var>\r\n</li>\n<li> for <var>k</var> <img src=\"images/symbol_gt.gif\"
|
8
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
9
|
+
1, g<sub><var>k</var></sub> is obtained by writing g<sub><var>k</var>-1</sub> in
|
10
|
+
base <var>k</var>, interpreting it as a base <var>k</var> + 1 number, and subtracting
|
11
|
+
1.\r\n</li>\n</ul>\r\nThe sequence terminates when g<sub><var>k</var></sub> becomes
|
12
|
+
0.\r\n\r\n<p>\r\nFor example, the 6th weak Goodstein sequence is {6, 11, 17, 25,
|
13
|
+
...}:\r\n</p>\n<ul>\n<li> g<sub>1</sub> = 6.\r\n</li>\n<li> g<sub>2</sub> = 11 since
|
14
|
+
6 = 110<sub>2</sub>, 110<sub>3</sub> = 12, and 12 - 1 = 11.\r\n</li>\n<li> g<sub>3</sub>
|
15
|
+
= 17 since 11 = 102<sub>3</sub>, 102<sub>4</sub> = 18, and 18 - 1 = 17.\r\n</li>\n<li>
|
16
|
+
g<sub>4</sub> = 25 since 17 = 101<sub>4</sub>, 101<sub>5</sub> = 26, and 26 - 1
|
17
|
+
= 25.\r\n</li>\n</ul>\r\nand so on.\r\n\r\n<p>\r\nIt can be shown that every weak
|
18
|
+
Goodstein sequence terminates.\r\n</p>\r\n<p>\r\nLet G(<var>n</var>) be the number
|
19
|
+
of nonzero elements in the <var>n</var>th weak Goodstein sequence.<br>\r\nIt can
|
20
|
+
be verified that G(2) = 3, G(4) = 21 and G(6) = 381.<br>\r\nIt can also be verified
|
21
|
+
that ΣG(<var>n</var>) = 2517 for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
|
22
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
23
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\"> 8.\r\n</p>\r\n<p>\r\nFind the last 9 digits of
|
25
|
+
ΣG(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
26
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_lt.gif\"
|
27
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
28
|
+
16.\r\n</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 397
|
3
|
+
:name: Triangle on parabola
|
4
|
+
:url: http://projecteuler.net/problem=397
|
5
|
+
:content: "\r\n<p>\r\nOn the parabola <var>y</var> = <var>x</var><sup>2</sup>/<var>k</var>,
|
6
|
+
three points A(<var>a</var>, <var>a</var><sup>2</sup>/<var>k</var>), B(<var>b</var>,
|
7
|
+
<var>b</var><sup>2</sup>/<var>k</var>) and C(<var>c</var>, <var>c</var><sup>2</sup>/<var>k</var>)
|
8
|
+
are chosen.\r\n</p>\r\n<p>\r\nLet F(<var>K</var>, <var>X</var>) be the number of
|
9
|
+
the integer quadruplets (<var>k</var>, <var>a</var>, <var>b</var>, <var>c</var>)
|
10
|
+
such that at least one angle of the triangle ABC is 45-degree, with 1 <img src=\"images/symbol_le.gif\"
|
11
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
|
12
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"><var>K</var> and -<var>X</var> <img src=\"images/symbol_le.gif\"
|
14
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
|
15
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_lt.gif\"
|
17
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>c</var>
|
18
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
19
|
+
style=\"vertical-align:middle;\"><var>X</var>.\r\n</p>\r\n<p>\r\nFor example, F(1,
|
20
|
+
10) = 41 and F(10, 100) = 12492.<br>\r\nFind F(10<sup>6</sup>, 10<sup>9</sup>).\r\n</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 398
|
3
|
+
:name: Cutting rope
|
4
|
+
:url: http://projecteuler.net/problem=398
|
5
|
+
:content: "\r\n<p>\r\nInside a rope of length <var>n</var>, <var>n</var>-1 points
|
6
|
+
are placed with distance 1 from each other and from the endpoints. Among these points,
|
7
|
+
we choose <var>m</var>-1 points at random and cut the rope at these points to create
|
8
|
+
<var>m</var> segments.\r\n</p>\r\n<p>\r\nLet E(<var>n</var>, <var>m</var>) be the
|
9
|
+
expected length of the second-shortest segment.\r\nFor example, E(3, 2) = 2 and
|
10
|
+
E(8, 3) = 16/7.\r\nNote that if multiple segments have the same shortest length
|
11
|
+
the length of the second-shortest segment is defined as the same as the shortest
|
12
|
+
length.\r\n</p>\r\n<p>\r\nFind E(10<sup>7</sup>, 100).\r\nGive your answer rounded
|
13
|
+
to 5 decimal places behind the decimal point.\r\n</p>\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 399
|
3
|
+
:name: Squarefree Fibonacci Numbers
|
4
|
+
:url: http://projecteuler.net/problem=399
|
5
|
+
:content: "\r\n<p>\r\nThe first 15 fibonacci numbers are:<br>\r\n1,1,2,3,5,8,13,21,34,55,89,144,233,377,610.<br>\r\nIt
|
6
|
+
can be seen that 8 and 144 are not squarefree: 8 is divisible by 4 and 144 is divisible
|
7
|
+
by 4 and by 9.<br> \r\nSo the first 13 squarefree fibonacci numbers are:<br>\r\n1,1,2,3,5,13,21,34,55,89,233,377
|
8
|
+
and 610.\r\n</p>\r\n<p>\r\nThe 200th squarefree fibonacci number is:\r\n971183874599339129547649988289594072811608739584170445.<br>\r\nThe
|
9
|
+
last sixteen digits of this number are: 1608739584170445 and in scientific notation
|
10
|
+
this number can be written as 9.7e53.\r\n</p>\r\n<p>\r\nFind the 100 000 000th squarefree
|
11
|
+
fibonacci number.<br>\r\nGive as your answer its last sixteen digits followed by
|
12
|
+
a comma followed by the number in scientific notation (rounded to one digit after
|
13
|
+
the decimal point).<br>\r\nFor the 200th squarefree number the answer would have
|
14
|
+
been: 1608739584170445,9.7e53\r\n</p>\r\n<p>\r\n<font size=\"-1\">\r\nNote:<br>
|
15
|
+
\r\nFor this problem, assume that for every prime p, the first fibonacci number
|
16
|
+
divisible by p is not divisible by p<sup>2</sup> (this is part of <b>Wall's conjecture</b>).
|
17
|
+
This has been verified for primes <img src=\"images/symbol_le.gif\" width=\"10\"
|
18
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 3·10<sup>15</sup>,
|
19
|
+
but has not been proven in general.<br>\r\n\r\nIf it happens that the conjecture
|
20
|
+
is false, then the accepted answer to this problem isn't guaranteed to be the 100
|
21
|
+
000 000th squarefree fibonacci number, rather it represents only a lower bound for
|
22
|
+
that number.\r\n</font>\r\n</p>\r\n\r\n\r\n\r\n"
|
data/data/problems/4.yml
ADDED
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 4
|
3
|
+
:name: Largest palindrome product
|
4
|
+
:url: http://projecteuler.net/problem=4
|
5
|
+
:content: "\r\n\n<p>A palindromic number reads the same both ways. The largest palindrome
|
6
|
+
made from the product of two 2-digit numbers is 9009 = 91 <img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
8
|
+
99.</p>\n<p>Find the largest palindrome made from the product of two 3-digit numbers.</p>\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 40
|
3
|
+
:name: Champernowne's constant
|
4
|
+
:url: http://projecteuler.net/problem=40
|
5
|
+
:content: "\r\n<p>An irrational decimal fraction is created by concatenating the positive
|
6
|
+
integers:</p>\r\n<p style=\"text-align:center;\">0.12345678910<span style=\"color:#dd0000;font-size:14pt;\">1</span>112131415161718192021...</p>\r\n<p>It
|
7
|
+
can be seen that the 12<sup>th</sup> digit of the fractional part is 1.</p>\r\n<p>If
|
8
|
+
<i>d</i><sub><i>n</i></sub> represents the <i>n</i><sup>th</sup> digit of the fractional
|
9
|
+
part, find the value of the following expression.</p>\r\n<p style=\"text-align:center;\"><i>d</i><sub>1</sub><img
|
10
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><i>d</i><sub>10</sub><img src=\"images/symbol_times.gif\"
|
12
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>100</sub><img
|
13
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"><i>d</i><sub>1000</sub><img src=\"images/symbol_times.gif\"
|
15
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>10000</sub><img
|
16
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"><i>d</i><sub>100000</sub><img src=\"images/symbol_times.gif\"
|
18
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>1000000</sub></p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 400
|
3
|
+
:name: Fibonacci tree game
|
4
|
+
:url: http://projecteuler.net/problem=400
|
5
|
+
:content: "\r\n<p>\r\nA <b>Fibonacci tree</b> is a binary tree recursively defined
|
6
|
+
as:</p>\n<ul>\n<li>T(0) is the empty tree.\r\n</li>\n<li>T(1) is the binary tree
|
7
|
+
with only one node.\r\n</li>\n<li>T(<var>k</var>) consists of a root node that has
|
8
|
+
T(<var>k</var>-1) and T(<var>k</var>-2) as children.\r\n</li>\n</ul>\n<p>\r\nOn
|
9
|
+
such a tree two players play a take-away game. On each turn a player selects a node
|
10
|
+
and removes that node along with the subtree rooted at that node.<br>\r\nThe player
|
11
|
+
who is forced to take the root node of the entire tree loses.</p>\n<p>\r\n\r\n</p>\n<p>\r\nHere
|
12
|
+
are the winning moves of the first player on the first turn for T(<var>k</var>)
|
13
|
+
from <var>k</var>=1 to <var>k</var>=6.\r\n</p>\n<p align=\"center\"><img src=\"project/images/p400_winning.png\"></p>\r\n\r\n\r\n\r\nLet
|
14
|
+
<var>f</var>(<var>k</var>) be the number of winning moves of the first player (i.e.
|
15
|
+
the moves for which the second player has no winning strategy) on the first turn
|
16
|
+
of the game when this game is played on T(<var>k</var>).\r\n\r\n\r\n<p>\r\nFor example,
|
17
|
+
<var>f</var>(5) = 1 and <var>f</var>(10) = 17.\r\n</p>\r\n\r\n<p>\r\nFind <var>f</var>(10000).
|
18
|
+
Give the last 18 digits of your answer.\r\n</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 401
|
3
|
+
:name: Sum of squares of divisors
|
4
|
+
:url: http://projecteuler.net/problem=401
|
5
|
+
:content: "\r\n<p>\r\nThe divisors of 6 are 1,2,3 and 6.<br>\r\nThe sum of the squares
|
6
|
+
of these numbers is 1+4+9+36=50.\r\n</p>\r\n<p>\r\nLet sigma2(n) represent the sum
|
7
|
+
of the squares of the divisors of n.\r\nThus sigma2(6)=50.\r\n</p>\r\nLet SIGMA2
|
8
|
+
represent the summatory function of sigma2, that is SIGMA2(n)=<img src=\"images/symbol_sum.gif\"
|
9
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">sigma2(i)
|
10
|
+
for i=1 to n.<br>\r\nThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\r\n\r\n<p>\r\nFind
|
11
|
+
SIGMA2(10<sup>15</sup>) modulo 10<sup>9</sup>. \r\n</p>\r\n"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
---
|
2
|
+
:id: 402
|
3
|
+
:name: Integer-valued polynomials
|
4
|
+
:url: http://projecteuler.net/problem=402
|
5
|
+
:content: "\r\n<p>\r\nIt can be shown that the polynomial <var>n</var><sup>4</sup>
|
6
|
+
+ 4<var>n</var><sup>3</sup> + 2<var>n</var><sup>2</sup> + 5<var>n</var> is a multiple
|
7
|
+
of 6 for every integer <var>n</var>. It can also be shown that 6 is the largest
|
8
|
+
integer satisfying this property.\r\n</p>\r\n<p>\r\nDefine M(<var>a</var>, <var>b</var>,
|
9
|
+
<var>c</var>) as the maximum <var>m</var> such that <var>n</var><sup>4</sup> + <var>a</var><var>n</var><sup>3</sup>
|
10
|
+
+ <var>b</var><var>n</var><sup>2</sup> + <var>c</var><var>n</var> is a multiple
|
11
|
+
of <var>m</var> for all integers <var>n</var>. For example, M(4, 2, 5) = 6.\r\n</p>\r\n<p>\r\nAlso,
|
12
|
+
define S(<var>N</var>) as the sum of M(<var>a</var>, <var>b</var>, <var>c</var>)
|
13
|
+
for all 0 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
14
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>a</var>, <var>b</var>, <var>c</var>
|
15
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"><var>N</var>.\r\n</p>\r\n<p>\r\nWe can verify that
|
17
|
+
S(10) = 1972 and S(10000) = 2024258331114.\r\n</p>\r\n<p>\r\nLet F<sub><var>k</var></sub>
|
18
|
+
be the Fibonacci sequence:<br>\r\nF<sub>0</sub> = 0, F<sub>1</sub> = 1 and<br>\r\nF<sub><var>k</var></sub>
|
19
|
+
= F<sub><var>k</var>-1</sub> + F<sub><var>k</var>-2</sub> for <var>k</var> <img
|
20
|
+
src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
|
21
|
+
2.\r\n</p>\r\n<p>\r\nFind the last 9 digits of Σ S(F<sub><var>k</var></sub>) for
|
22
|
+
2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
23
|
+
style=\"vertical-align:middle;\"><var>k</var> <img src=\"images/symbol_le.gif\"
|
24
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
25
|
+
1234567890123.\r\n</p>\r\n"
|