euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 384
3
+ :name: Rudin-Shapiro sequence
4
+ :url: http://projecteuler.net/problem=384
5
+ :content: "\r\n<p>Define the sequence a(n) as the number of adjacent pairs of ones
6
+ in the binary expansion of n (possibly overlapping).\r\n<br>E.g.: a(5) = a(101<sub>2</sub>)
7
+ = 0, a(6) = a(110<sub>2</sub>) = 1, a(7) = a(111<sub>2</sub>) = 2</p>\r\n\r\n<p>Define
8
+ the sequence b(n) = (-1)<sup>a(n)</sup>.\r\n<br>This sequence is called the <b>Rudin-Shapiro</b>
9
+ sequence.</p>\r\n<p>Also consider the summatory sequence of b(n): <img src=\"project/images/p_384_formula.gif\"
10
+ style=\"margin-top:-9px;\">.</p>\r\n\r\n<p>The first couple of values of these sequences
11
+ are:\r\n<br><tt>n    &amp;nbsp   0 &amp;nbsp   1 &amp;nbsp   2 &amp;nbsp   3 &amp;nbsp
12
+   4 &amp;nbsp   5 &amp;nbsp   6 &amp;nbsp   7\r\n<br>a(n) &amp;nbsp   0 &amp;nbsp
13
+   0 &amp;nbsp   0 &amp;nbsp   1 &amp;nbsp   0 &amp;nbsp   0 &amp;nbsp   1 &amp;nbsp
14
+   2\r\n<br>b(n) &amp;nbsp   1 &amp;nbsp   1 &amp;nbsp   1 &amp;nbsp  -1 &amp;nbsp
15
+   1 &amp;nbsp   1 &amp;nbsp  -1 &amp;nbsp   1\r\n<br>s(n) &amp;nbsp   1 &amp;nbsp
16
+   2 &amp;nbsp   3 &amp;nbsp   2 &amp;nbsp   3 &amp;nbsp   4 &amp;nbsp   3 &amp;nbsp
17
+   4</tt></p>\r\n\r\n<p>The sequence s(n) has the remarkable property that all elements
18
+ are positive and every positive integer k occurs exactly k times.</p>\r\n\r\n<p>Define
19
+ g(t,c), with 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
20
+ border=\"0\" style=\"vertical-align:middle;\"> c <img src=\"images/symbol_le.gif\"
21
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
22
+ t, as the index in s(n) for which t occurs for the c'th time in s(n).\r\n<br>E.g.:
23
+ g(3,3) = 6, g(4,2) = 7 and g(54321,12345) = 1220847710.</p>\r\n\r\n<p>Let F(n) be
24
+ the fibonacci sequence defined by:\r\n<br>F(0)=F(1)=1 and\r\n<br>F(n)=F(n-1)+F(n-2)
25
+ for n&gt;1.</p>\r\n\r\n<p>Define GF(t)=g(F(t),F(t-1)).</p>\r\n\r\n<p>Find ΣGF(t)
26
+ for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\">t<img src=\"images/symbol_le.gif\" width=\"10\"
28
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">45.</p>\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 385
3
+ :name: Ellipses inside triangles
4
+ :url: http://projecteuler.net/problem=385
5
+ :content: "\r\n<p>\r\nFor any triangle <var>T</var> in the plane, it can be shown
6
+ that there is a unique ellipse with largest area that is completely inside <var>T</var>.\r\n</p>\n<p
7
+ align=\"center\">\r\n<img src=\"project/images/p_385_ellipsetriangle.png\"></p>\r\n<p>\r\nFor
8
+ a given <var>n</var>, consider triangles <var>T</var> such that:<br>\r\n- the vertices
9
+ of <var>T</var> have integer coordinates with absolute value <img src=\"images/symbol_le.gif\"
10
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
11
+ n, and <br>\r\n- the <b>foci</b><sup>1</sup> of the largest-area ellipse inside
12
+ <var>T</var> are (<img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
13
+ alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13,0) and (-<img src=\"images/symbol_radic.gif\"
14
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13,0).<br>\r\nLet
15
+ A(<var>n</var>) be the sum of the areas of all such triangles.\r\n</p>\r\n<p>\r\nFor
16
+ example, if <var>n</var> = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0)
17
+ and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36
18
+ = 72.\r\n</p>\r\n<p>\r\nIt can be verified that A(10) = 252, A(100) = 34632 and
19
+ A(1000) = 3529008.\r\n</p>\r\n<p>\r\nFind A(1 000 000 000).\r\n</p>\r\n<p>\r\n\r\n<sup>1</sup>The
20
+ <b>foci</b> (plural of <b>focus</b>) of an ellipse are two points A and B such that
21
+ for every point P on the boundary of the ellipse, <var>AP</var> + <var>PB</var>
22
+ is constant.\r\n\r\n\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 386
3
+ :name: Maximum length of an antichain
4
+ :url: http://projecteuler.net/problem=386
5
+ :content: "\r\n<p>Let <var>n</var> be an integer and <var>S</var>(<var>n</var>) be
6
+ the set of factors of <var>n</var>.</p>\r\n\r\n<p>A subset <var>A</var> of <var>S</var>(<var>n</var>)
7
+ is called an <b>antichain</b> of <var>S</var>(<var>n</var>) if <var>A</var> contains
8
+ only one element or if none of the elements of <var>A</var> divides any of the other
9
+ elements of <var>A</var>.</p>\r\n\r\n<p>For example: <var>S</var>(30) = {1, 2, 3,
10
+ 5, 6, 10, 15, 30}\r\n<br>{2, 5, 6} is not an antichain of <var>S</var>(30).\r\n<br>{2,
11
+ 3, 5} is an antichain of <var>S</var>(30).</p>\r\n\r\n<p>Let <var>N</var>(<var>n</var>)
12
+ be the maximum length of an antichain of <var>S</var>(<var>n</var>).</p>\r\n\r\n<p>Find
13
+ Σ<var>N</var>(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
14
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
15
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 10<sup>8</sup></p>\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 387
3
+ :name: Harshad Numbers
4
+ :url: http://projecteuler.net/problem=387
5
+ :content: "\r\n<p>A <b>Harshad or Niven number</b> is a number that is divisible by
6
+ the sum of its digits.\r\n<br>201 is a Harshad number because it is divisible by
7
+ 3 (the sum of its digits.)\r\n<br>When we truncate the last digit from 201, we get
8
+ 20, which is a Harshad number.\r\n<br>When we truncate the last digit from 20, we
9
+ get 2, which is also a Harshad number.\r\n<br>Let's call a Harshad number that,
10
+ while recursively truncating the last digit, always results in a Harshad number
11
+ a <i>right truncatable Harshad number.</i></p> \r\n\r\n<p>Also:\r\n<br>201/3=67
12
+ which is prime.\r\n<br>Let's call a Harshad number that, when divided by the sum
13
+ of its digits, results in a prime a <i>strong Harshad number</i>.</p>\r\n\r\n<p>Now
14
+ take the number 2011 which is prime.\r\n<br>When we truncate the last digit from
15
+ it we get 201, a strong Harshad number that is also right truncatable.\r\n<br>Let's
16
+ call such primes <i>strong, right truncatable Harshad primes</i>.</p>\r\n\r\n<p>You
17
+ are given that the sum of the strong, right truncatable Harshad primes less than
18
+ 10000 is 90619.</p>\r\n\r\n<p>Find the sum of the strong, right truncatable Harshad
19
+ primes less than 10<sup>14</sup>.</p>\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 388
3
+ :name: Distinct Lines
4
+ :url: http://projecteuler.net/problem=388
5
+ :content: "\r\n<p>\r\nConsider all lattice points (a,b,c) with 0 <img src=\"images/symbol_le.gif\"
6
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
7
+ a,b,c <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
8
+ style=\"vertical-align:middle;\"> N.\r\n</p>\r\n<p>\r\nFrom the origin O(0,0,0)
9
+ all lines are drawn to the other lattice points.<br>\r\nLet D(N) be the number of
10
+ <i>distinct</i> such lines.\r\n</p>\r\n<p>\r\nYou are given that D(1 000 000) =
11
+ 831909254469114121.\r\n</p>\n<p>\r\nFind D(10<sup>10</sup>). Give as your answer
12
+ the first nine digits followed by the last nine digits.\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 389
3
+ :name: Platonic Dice
4
+ :url: http://projecteuler.net/problem=389
5
+ :content: "\r\n<p>\r\nAn unbiased single 4-sided die is thrown and its value, <var>T</var>,
6
+ is noted.<br><var>T</var> unbiased 6-sided dice are thrown and their scores are
7
+ added together. The sum, <var>C</var>, is noted.<br><var>C</var> unbiased 8-sided
8
+ dice are thrown and their scores are added together. The sum, <var>O</var>, is noted.<br><var>O</var>
9
+ unbiased 12-sided dice are thrown and their scores are added together. The sum,
10
+ <var>D</var>, is noted.<br><var>D</var> unbiased 20-sided dice are thrown and their
11
+ scores are added together. The sum, <var>I</var>, is noted.<br>\r\nFind the variance
12
+ of <var>I</var>, and give your answer rounded to 4 decimal places.\r\n</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 39
3
+ :name: Integer right triangles
4
+ :url: http://projecteuler.net/problem=39
5
+ :content: "\r\n<p>If <i>p</i> is the perimeter of a right angle triangle with integral
6
+ length sides, {<i>a</i>,<i>b</i>,<i>c</i>}, there are exactly three solutions for
7
+ <i>p</i> = 120.</p>\r\n<p style=\"\\'text-align:center;\\'\">{20,48,52}, {24,45,51},
8
+ {30,40,50}</p>\r\n<p>For which value of <i>p</i> <img src=\"images/symbol_le.gif\"
9
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
10
+ 1000, is the number of solutions maximised?</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 390
3
+ :name: Triangles with non rational sides and integral area
4
+ :url: http://projecteuler.net/problem=390
5
+ :content: "\r\n<p>Consider the triangle with sides <img src=\"images/symbol_radic.gif\"
6
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5,
7
+ <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
8
+ style=\"vertical-align:middle;\">65 and <img src=\"images/symbol_radic.gif\" width=\"14\"
9
+ height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">68.\r\nIt
10
+ can be shown that this triangle has area 9.</p>\r\n\r\n<p>S(n) is the sum of the
11
+ areas of all triangles with sides <img src=\"images/symbol_radic.gif\" width=\"14\"
12
+ height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(1+b<sup>2</sup>),
13
+ <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
14
+ style=\"vertical-align:middle;\">(1+c<sup>2</sup>) and <img src=\"images/symbol_radic.gif\"
15
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(b<sup>2</sup>+c<sup>2</sup>)
16
+ (for positive integers b and c ) that have an integral area not exceeding n.</p>\r\n\r\n<p>The
17
+ example triangle has b=2 and c=8.</p>\r\n\r\n<p>S(10<sup>6</sup>)=18018206.</p>\r\n\r\n<p>Find
18
+ S(10<sup>10</sup>).</p>\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 391
3
+ :name: Hopping Game
4
+ :url: http://projecteuler.net/problem=391
5
+ :content: "\r\n<p>\r\nLet <var>s<sub>k</sub></var> be the number of 1’s when writing
6
+ the numbers from 0 to <var>k</var> in binary.<br>\r\nFor example, writing 0 to 5
7
+ in binary, we have 0, 1, 10, 11, 100, 101. There are seven 1’s, so <var>s</var><sub>5</sub>
8
+ = 7.<br>\r\nThe sequence S = {<var>s<sub>k</sub></var> : <var>k</var> <img src=\"images/symbol_ge.gif\"
9
+ width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
10
+ 0} starts {0, 1, 2, 4, 5, 7, 9, 12, ...}.<br></p>\r\n\r\n<p>\r\nA game is played
11
+ by two players. Before the game starts, a number <var>n</var> is chosen. A counter
12
+ <var>c</var> starts at 0. At each turn, the player chooses a number from 1 to <var>n</var>
13
+ (inclusive) and increases <var>c</var> by that number. The resulting value of <var>c</var>
14
+ must be a member of S. If there are no more valid moves, the player loses.\r\n</p>\r\n\r\n<p>\r\nFor
15
+ example:<br>\r\nLet <var>n</var> = 5. <var>c</var> starts at 0.<br>\r\nPlayer 1
16
+ chooses 4, so <var>c</var> becomes 0 + 4 = 4.<br>\r\nPlayer 2 chooses 5, so <var>c</var>
17
+ becomes 4 + 5 = 9.<br>\r\nPlayer 1 chooses 3, so <var>c</var> becomes 9 + 3 = 12.<br>\r\netc.<br>\r\nNote
18
+ that <var>c</var> must always belong to S, and each player can increase <var>c</var>
19
+ by at most <var>n</var>.\r\n</p>\r\n\r\n<p>\r\nLet M(<var>n</var>) be the highest
20
+ number the first player can choose at her first turn to force a win, and M(<var>n</var>)
21
+ = 0 if there is no such move. For example, M(2) = 2, M(7) = 1 and M(20) = 4.\r\n</p>\r\n\r\n<p>\r\nGiven
22
+ Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
23
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
24
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
25
+ style=\"vertical-align:middle;\"> 20.\r\n</p>\r\n\r\n<p>\r\nFind Σ(M(<var>n</var>))<sup>3</sup>
26
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
27
+ style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
28
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
29
+ 1000.\r\n</p>\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 392
3
+ :name: Enmeshed unit circle
4
+ :url: http://projecteuler.net/problem=392
5
+ :content: "\r\n<p>\r\nA rectilinear grid is an orthogonal grid where the spacing between
6
+ the gridlines does not have to be equidistant.<br>\r\nAn example of such grid is
7
+ logarithmic graph paper.\r\n</p>\r\n<p>\r\nConsider rectilinear grids in the Cartesian
8
+ coordinate system with the following properties:<br></p>\n<ul>\n<li>The gridlines
9
+ are parallel to the axes of the Cartesian coordinate system.</li>\n<li>There are
10
+ N+2 vertical and N+2 horizontal gridlines. Hence there are (N+1) x (N+1) rectangular
11
+ cells.</li>\n<li>The equations of the two outer vertical gridlines are x = -1 and
12
+ x = 1.</li>\n<li>The equations of the two outer horizontal gridlines are y = -1
13
+ and y = 1.</li>\n<li>The grid cells are colored red if they overlap with the <dfn
14
+ title=\"The unit circle is the circle that has radius 1 and is centered at the origin\">unit
15
+ circle</dfn>, black otherwise.</li>\n</ul>For this problem we would like you to
16
+ find the postions of the remaining N inner horizontal and N inner vertical gridlines
17
+ so that the area occupied by the red cells is minimized.\r\n\r\n<p>\r\nE.g. here
18
+ is a picture of the solution for N = 10:\r\n</p>\n<p align=\"center\">\r\n<img src=\"project/images/p392_gridlines.png\"></p>\r\n\r\n\r\nThe
19
+ area occupied by the red cells for N = 10 rounded to 10 digits behind the decimal
20
+ point is 3.3469640797.\r\n\r\n<p>\r\nFind the positions for N = 400.<br> \r\nGive
21
+ as your answer the area occupied by the red cells rounded to 10 digits behind the
22
+ decimal point.\r\n</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 393
3
+ :name: Migrating ants
4
+ :url: http://projecteuler.net/problem=393
5
+ :content: "\r\n<p>\r\nAn <var>n</var><img src=\"images/symbol_times.gif\" width=\"9\"
6
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
7
+ grid of squares contains <var>n</var><sup>2</sup> ants, one ant per square.<br>\r\nAll
8
+ ants decide to move simultaneously to an adjacent square (usually 4 possibilities,
9
+ except for ants on the edge of the grid or at the corners).<br>\r\nWe define <var>f</var>(<var>n</var>)
10
+ to be the number of ways this can happen without any ants ending on the same square
11
+ and without any two ants crossing the same edge between two squares.\r\n</p>\r\n<p>\r\nYou
12
+ are given that <var>f</var>(4) = 88.<br>\r\nFind <var>f</var>(10).\r\n</p>\r\n\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 394
3
+ :name: Eating pie
4
+ :url: http://projecteuler.net/problem=394
5
+ :content: "\r\n<p>\r\nJeff eats a pie in an unusual way.<br>\r\nThe pie is circular.
6
+ He starts with slicing an initial cut in the pie along a radius.<br>\r\nWhile there
7
+ is at least a given fraction <var>F</var> of pie left, he performs the following
8
+ procedure:<br>\r\n- He makes two slices from the pie centre to any point of what
9
+ is remaining of the pie border, any point on the remaining pie border equally likely.
10
+ This will divide the remaining pie into three pieces.<br> \r\n- Going counterclockwise
11
+ from the initial cut, he takes the first two pie pieces and eats them.<br>\r\nWhen
12
+ less than a fraction <var>F</var> of pie remains, he does not repeat this procedure.
13
+ Instead, he eats all of the remaining pie.\r\n</p>\r\n<p align=\"center\">\r\n<img
14
+ src=\"project/images/p_394_eatpie.gif\"></p>\r\n\r\n\r\n<p>\r\nFor <var>x</var>
15
+ <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 1, let E(<var>x</var>) be the expected number
17
+ of times Jeff repeats the procedure above with <var>F</var> = <sup>1</sup>/<sub><var>x</var></sub>.<br>\r\nIt
18
+ can be verified that E(1) = 1, E(2) <img src=\"images/symbol_asymp.gif\" width=\"11\"
19
+ height=\"9\" alt=\"≈\" border=\"0\" style=\"vertical-align:middle;\"> 1.2676536759,
20
+ and E(7.5) <img src=\"images/symbol_asymp.gif\" width=\"11\" height=\"9\" alt=\"≈\"
21
+ border=\"0\" style=\"vertical-align:middle;\"> 2.1215732071.\r\n</p>\r\n<p>\r\nFind
22
+ E(40) rounded to 10 decimal places behind the decimal point.\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 395
3
+ :name: Pythagorean tree
4
+ :url: http://projecteuler.net/problem=395
5
+ :content: "\r\n<p>\r\nThe <b>Pythagorean tree</b> is a fractal generated by the following
6
+ procedure:\r\n</p>\r\n\r\n<p>\r\nStart with a unit square. Then, calling one of
7
+ the sides its base (in the animation, the bottom side is the base):\r\n</p>\n<ol>\n<li>
8
+ Attach a right triangle to the side opposite the base, with the hypotenuse coinciding
9
+ with that side and with the sides in a 3-4-5 ratio. Note that the smaller side of
10
+ the triangle must be on the 'right' side with respect to the base (see animation).</li>\r\n<li>
11
+ Attach a square to each leg of the right triangle, with one of its sides coinciding
12
+ with that leg.</li>\r\n<li> Repeat this procedure for both squares, considering
13
+ as their bases the sides touching the triangle.</li>\r\n</ol>\r\nThe resulting figure,
14
+ after an infinite number of iterations, is the Pythagorean tree.\r\n\r\n\r\n<div
15
+ align=\"center\"><img src=\"project/images/p_395_pythagorean.gif\"></div>\r\n\r\n<p>\r\nIt
16
+ can be shown that there exists at least one rectangle, whose sides are parallel
17
+ to the largest square of the Pythagorean tree, which encloses the Pythagorean tree
18
+ completely.\r\n</p>\r\n<p>\r\nFind the smallest area possible for such a bounding
19
+ rectangle, and give your answer rounded to 10 decimal places.\r\n</p>\r\n"
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 396
3
+ :name: Weak Goodstein sequence
4
+ :url: http://projecteuler.net/problem=396
5
+ :content: "\r\n<p>\r\nFor any positive integer n, the <b>nth weak Goodstein sequence</b>
6
+ {g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub>, ...} is defined as:\r\n</p>\n<ul>\n<li>
7
+ g<sub>1</sub> = <var>n</var>\r\n</li>\n<li> for <var>k</var> <img src=\"images/symbol_gt.gif\"
8
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 1, g<sub><var>k</var></sub> is obtained by writing g<sub><var>k</var>-1</sub> in
10
+ base <var>k</var>, interpreting it as a base <var>k</var> + 1 number, and subtracting
11
+ 1.\r\n</li>\n</ul>\r\nThe sequence terminates when g<sub><var>k</var></sub> becomes
12
+ 0.\r\n\r\n<p>\r\nFor example, the 6th weak Goodstein sequence is {6, 11, 17, 25,
13
+ ...}:\r\n</p>\n<ul>\n<li> g<sub>1</sub> = 6.\r\n</li>\n<li> g<sub>2</sub> = 11 since
14
+ 6 = 110<sub>2</sub>, 110<sub>3</sub> = 12, and 12 - 1 = 11.\r\n</li>\n<li> g<sub>3</sub>
15
+ = 17 since 11 = 102<sub>3</sub>, 102<sub>4</sub> = 18, and 18 - 1 = 17.\r\n</li>\n<li>
16
+ g<sub>4</sub> = 25 since 17 = 101<sub>4</sub>, 101<sub>5</sub> = 26, and 26 - 1
17
+ = 25.\r\n</li>\n</ul>\r\nand so on.\r\n\r\n<p>\r\nIt can be shown that every weak
18
+ Goodstein sequence terminates.\r\n</p>\r\n<p>\r\nLet G(<var>n</var>) be the number
19
+ of nonzero elements in the <var>n</var>th weak Goodstein sequence.<br>\r\nIt can
20
+ be verified that G(2) = 3, G(4) = 21 and G(6) = 381.<br>\r\nIt can also be verified
21
+ that ΣG(<var>n</var>) = 2517 for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
22
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
23
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
24
+ style=\"vertical-align:middle;\"> 8.\r\n</p>\r\n<p>\r\nFind the last 9 digits of
25
+ ΣG(<var>n</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
26
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_lt.gif\"
27
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">
28
+ 16.\r\n</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 397
3
+ :name: Triangle on parabola
4
+ :url: http://projecteuler.net/problem=397
5
+ :content: "\r\n<p>\r\nOn the parabola <var>y</var> = <var>x</var><sup>2</sup>/<var>k</var>,
6
+ three points A(<var>a</var>, <var>a</var><sup>2</sup>/<var>k</var>), B(<var>b</var>,
7
+ <var>b</var><sup>2</sup>/<var>k</var>) and C(<var>c</var>, <var>c</var><sup>2</sup>/<var>k</var>)
8
+ are chosen.\r\n</p>\r\n<p>\r\nLet F(<var>K</var>, <var>X</var>) be the number of
9
+ the integer quadruplets (<var>k</var>, <var>a</var>, <var>b</var>, <var>c</var>)
10
+ such that at least one angle of the triangle ABC is 45-degree, with 1 <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>
12
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
13
+ style=\"vertical-align:middle;\"><var>K</var> and -<var>X</var> <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var>
15
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
16
+ style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_lt.gif\"
17
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>c</var>
18
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
19
+ style=\"vertical-align:middle;\"><var>X</var>.\r\n</p>\r\n<p>\r\nFor example, F(1,
20
+ 10) = 41 and F(10, 100) = 12492.<br>\r\nFind F(10<sup>6</sup>, 10<sup>9</sup>).\r\n</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 398
3
+ :name: Cutting rope
4
+ :url: http://projecteuler.net/problem=398
5
+ :content: "\r\n<p>\r\nInside a rope of length <var>n</var>, <var>n</var>-1 points
6
+ are placed with distance 1 from each other and from the endpoints. Among these points,
7
+ we choose <var>m</var>-1 points at random and cut the rope at these points to create
8
+ <var>m</var> segments.\r\n</p>\r\n<p>\r\nLet E(<var>n</var>, <var>m</var>) be the
9
+ expected length of the second-shortest segment.\r\nFor example, E(3, 2) = 2 and
10
+ E(8, 3) = 16/7.\r\nNote that if multiple segments have the same shortest length
11
+ the length of the second-shortest segment is defined as the same as the shortest
12
+ length.\r\n</p>\r\n<p>\r\nFind E(10<sup>7</sup>, 100).\r\nGive your answer rounded
13
+ to 5 decimal places behind the decimal point.\r\n</p>\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 399
3
+ :name: Squarefree Fibonacci Numbers
4
+ :url: http://projecteuler.net/problem=399
5
+ :content: "\r\n<p>\r\nThe first 15 fibonacci numbers are:<br>\r\n1,1,2,3,5,8,13,21,34,55,89,144,233,377,610.<br>\r\nIt
6
+ can be seen that 8 and 144 are not squarefree: 8 is divisible by 4 and 144 is divisible
7
+ by 4 and by 9.<br> \r\nSo the first 13 squarefree fibonacci numbers are:<br>\r\n1,1,2,3,5,13,21,34,55,89,233,377
8
+ and 610.\r\n</p>\r\n<p>\r\nThe 200th squarefree fibonacci number is:\r\n971183874599339129547649988289594072811608739584170445.<br>\r\nThe
9
+ last sixteen digits of this number are: 1608739584170445 and in scientific notation
10
+ this number can be written as 9.7e53.\r\n</p>\r\n<p>\r\nFind the 100 000 000th squarefree
11
+ fibonacci number.<br>\r\nGive as your answer its last sixteen digits followed by
12
+ a comma followed by the number in scientific notation (rounded to one digit after
13
+ the decimal point).<br>\r\nFor the 200th squarefree number the answer would have
14
+ been: 1608739584170445,9.7e53\r\n</p>\r\n<p>\r\n<font size=\"-1\">\r\nNote:<br>
15
+ \r\nFor this problem, assume that for every prime p, the first fibonacci number
16
+ divisible by p is not divisible by p<sup>2</sup> (this is part of <b>Wall's conjecture</b>).
17
+ This has been verified for primes <img src=\"images/symbol_le.gif\" width=\"10\"
18
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 3·10<sup>15</sup>,
19
+ but has not been proven in general.<br>\r\n\r\nIf it happens that the conjecture
20
+ is false, then the accepted answer to this problem isn't guaranteed to be the 100
21
+ 000 000th squarefree fibonacci number, rather it represents only a lower bound for
22
+ that number.\r\n</font>\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 4
3
+ :name: Largest palindrome product
4
+ :url: http://projecteuler.net/problem=4
5
+ :content: "\r\n\n<p>A palindromic number reads the same both ways. The largest palindrome
6
+ made from the product of two 2-digit numbers is 9009 = 91 <img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
8
+ 99.</p>\n<p>Find the largest palindrome made from the product of two 3-digit numbers.</p>\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 40
3
+ :name: Champernowne's constant
4
+ :url: http://projecteuler.net/problem=40
5
+ :content: "\r\n<p>An irrational decimal fraction is created by concatenating the positive
6
+ integers:</p>\r\n<p style=\"text-align:center;\">0.12345678910<span style=\"color:#dd0000;font-size:14pt;\">1</span>112131415161718192021...</p>\r\n<p>It
7
+ can be seen that the 12<sup>th</sup> digit of the fractional part is 1.</p>\r\n<p>If
8
+ <i>d</i><sub><i>n</i></sub> represents the <i>n</i><sup>th</sup> digit of the fractional
9
+ part, find the value of the following expression.</p>\r\n<p style=\"text-align:center;\"><i>d</i><sub>1</sub><img
10
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><i>d</i><sub>10</sub><img src=\"images/symbol_times.gif\"
12
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>100</sub><img
13
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
14
+ style=\"vertical-align:middle;\"><i>d</i><sub>1000</sub><img src=\"images/symbol_times.gif\"
15
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>10000</sub><img
16
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
17
+ style=\"vertical-align:middle;\"><i>d</i><sub>100000</sub><img src=\"images/symbol_times.gif\"
18
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i><sub>1000000</sub></p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 400
3
+ :name: Fibonacci tree game
4
+ :url: http://projecteuler.net/problem=400
5
+ :content: "\r\n<p>\r\nA <b>Fibonacci tree</b> is a binary tree recursively defined
6
+ as:</p>\n<ul>\n<li>T(0) is the empty tree.\r\n</li>\n<li>T(1) is the binary tree
7
+ with only one node.\r\n</li>\n<li>T(<var>k</var>) consists of a root node that has
8
+ T(<var>k</var>-1) and T(<var>k</var>-2) as children.\r\n</li>\n</ul>\n<p>\r\nOn
9
+ such a tree two players play a take-away game. On each turn a player selects a node
10
+ and removes that node along with the subtree rooted at that node.<br>\r\nThe player
11
+ who is forced to take the root node of the entire tree loses.</p>\n<p>\r\n\r\n</p>\n<p>\r\nHere
12
+ are the winning moves of the first player on the first turn for T(<var>k</var>)
13
+ from <var>k</var>=1 to <var>k</var>=6.\r\n</p>\n<p align=\"center\"><img src=\"project/images/p400_winning.png\"></p>\r\n\r\n\r\n\r\nLet
14
+ <var>f</var>(<var>k</var>) be the number of winning moves of the first player (i.e.
15
+ the moves for which the second player has no winning strategy) on the first turn
16
+ of the game when this game is played on T(<var>k</var>).\r\n\r\n\r\n<p>\r\nFor example,
17
+ <var>f</var>(5) = 1 and <var>f</var>(10) = 17.\r\n</p>\r\n\r\n<p>\r\nFind <var>f</var>(10000).
18
+ Give the last 18 digits of your answer.\r\n</p>\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 401
3
+ :name: Sum of squares of divisors
4
+ :url: http://projecteuler.net/problem=401
5
+ :content: "\r\n<p>\r\nThe divisors of 6 are 1,2,3 and 6.<br>\r\nThe sum of the squares
6
+ of these numbers is 1+4+9+36=50.\r\n</p>\r\n<p>\r\nLet sigma2(n) represent the sum
7
+ of the squares of the divisors of n.\r\nThus sigma2(6)=50.\r\n</p>\r\nLet SIGMA2
8
+ represent the summatory function of sigma2, that is SIGMA2(n)=<img src=\"images/symbol_sum.gif\"
9
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">sigma2(i)
10
+ for i=1 to n.<br>\r\nThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\r\n\r\n<p>\r\nFind
11
+ SIGMA2(10<sup>15</sup>) modulo 10<sup>9</sup>. \r\n</p>\r\n"
@@ -0,0 +1,25 @@
1
+ ---
2
+ :id: 402
3
+ :name: Integer-valued polynomials
4
+ :url: http://projecteuler.net/problem=402
5
+ :content: "\r\n<p>\r\nIt can be shown that the polynomial <var>n</var><sup>4</sup>
6
+ + 4<var>n</var><sup>3</sup> + 2<var>n</var><sup>2</sup> + 5<var>n</var> is a multiple
7
+ of 6 for every integer <var>n</var>. It can also be shown that 6 is the largest
8
+ integer satisfying this property.\r\n</p>\r\n<p>\r\nDefine M(<var>a</var>, <var>b</var>,
9
+ <var>c</var>) as the maximum <var>m</var> such that <var>n</var><sup>4</sup> + <var>a</var><var>n</var><sup>3</sup>
10
+ + <var>b</var><var>n</var><sup>2</sup> + <var>c</var><var>n</var> is a multiple
11
+ of <var>m</var> for all integers <var>n</var>. For example, M(4, 2, 5) = 6.\r\n</p>\r\n<p>\r\nAlso,
12
+ define S(<var>N</var>) as the sum of M(<var>a</var>, <var>b</var>, <var>c</var>)
13
+ for all 0 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
14
+ border=\"0\" style=\"vertical-align:middle;\"><var>a</var>, <var>b</var>, <var>c</var>
15
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"><var>N</var>.\r\n</p>\r\n<p>\r\nWe can verify that
17
+ S(10) = 1972 and S(10000) = 2024258331114.\r\n</p>\r\n<p>\r\nLet F<sub><var>k</var></sub>
18
+ be the Fibonacci sequence:<br>\r\nF<sub>0</sub> = 0, F<sub>1</sub> = 1 and<br>\r\nF<sub><var>k</var></sub>
19
+ = F<sub><var>k</var>-1</sub> + F<sub><var>k</var>-2</sub> for <var>k</var> <img
20
+ src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
21
+ 2.\r\n</p>\r\n<p>\r\nFind the last 9 digits of Σ S(F<sub><var>k</var></sub>) for
22
+ 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
23
+ style=\"vertical-align:middle;\"><var>k</var> <img src=\"images/symbol_le.gif\"
24
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
25
+ 1234567890123.\r\n</p>\r\n"