euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 19
|
3
|
+
:name: Counting Sundays
|
4
|
+
:url: http://projecteuler.net/problem=19
|
5
|
+
:content: "\r\n\n<p>You are given the following information, but you may prefer to
|
6
|
+
do some research for yourself.</p>\n<ul>\n<li>1 Jan 1900 was a Monday.</li>\n<li>Thirty
|
7
|
+
days has September,<br>\nApril, June and November.<br>\nAll the rest have thirty-one,<br>\nSaving
|
8
|
+
February alone,<br>\nWhich has twenty-eight, rain or shine.<br>\nAnd on leap years,
|
9
|
+
twenty-nine.</li>\n<li>A leap year occurs on any year evenly divisible by 4, but
|
10
|
+
not on a century unless it is divisible by 400.</li>\n</ul>\n<p>How many Sundays
|
11
|
+
fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec
|
12
|
+
2000)?</p>\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 190
|
3
|
+
:name: "Maximising a weighted product\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=190
|
5
|
+
:content: "\r\n<p>Let S<sub>m</sub> = (x<sub>1</sub>, x<sub>2</sub>, ... , x<sub>m</sub>)
|
6
|
+
be the m-tuple of positive real numbers with x<sub>1</sub> + x<sub>2</sub> + ...
|
7
|
+
+ x<sub>m</sub> = m for which P<sub>m</sub> = x<sub>1</sub> * x<sub>2</sub><sup>2</sup>
|
8
|
+
* ... * x<sub>m</sub><sup>m</sup> is maximised.</p>\r\n\r\n<p>For example, it can
|
9
|
+
be verified that [P<sub>10</sub>] = 4112 ([ ] is the integer part function).</p>\r\n\r\n<p>Find
|
10
|
+
Σ[P<sub>m</sub>] for 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
11
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> m <img src=\"images/symbol_le.gif\"
|
12
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
13
|
+
15.</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 191
|
3
|
+
:name: Prize Strings
|
4
|
+
:url: http://projecteuler.net/problem=191
|
5
|
+
:content: "\r\n<p>A particular school offers cash rewards to children with good attendance
|
6
|
+
and punctuality. If they are absent for three consecutive days or late on more than
|
7
|
+
one occasion then they forfeit their prize.</p>\r\n\r\n<p>During an n-day period
|
8
|
+
a trinary string is formed for each child consisting of L's (late), O's (on time),
|
9
|
+
and A's (absent).</p>\r\n\r\n<p>Although there are eighty-one trinary strings for
|
10
|
+
a 4-day period that can be formed, exactly forty-three strings would lead to a prize:</p>\r\n\r\n<p
|
11
|
+
style=\"margin-left:50px;font-family:'Courier New',monospace;\">OOOO OOOA OOOL OOAO
|
12
|
+
OOAA OOAL OOLO OOLA OAOO OAOA<br>\r\nOAOL OAAO OAAL OALO OALA OLOO OLOA OLAO OLAA
|
13
|
+
AOOO<br>\r\nAOOA AOOL AOAO AOAA AOAL AOLO AOLA AAOO AAOA AAOL<br>\r\nAALO AALA ALOO
|
14
|
+
ALOA ALAO ALAA LOOO LOOA LOAO LOAA<br>\r\nLAOO LAOA LAAO</p>\r\n\r\n<p>How many
|
15
|
+
\"prize\" strings exist over a 30-day period?</p>\r\n"
|
@@ -0,0 +1,27 @@
|
|
1
|
+
---
|
2
|
+
:id: 192
|
3
|
+
:name: Best Approximations
|
4
|
+
:url: http://projecteuler.net/problem=192
|
5
|
+
:content: "\r\n<p>Let <var>x</var> be a real number.<br>\r\nA <i>best approximation</i>
|
6
|
+
to <var>x</var> for the <i>denominator bound</i> <var>d</var> is a rational number
|
7
|
+
<var>r</var>/<var>s</var> <i>in reduced form</i>, with <var>s</var> <img src=\"images/symbol_le.gif\"
|
8
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>d</var>,
|
9
|
+
such that any rational number which is closer to <var>x</var> than <var>r</var>/<var>s</var>
|
10
|
+
has a denominator larger than <var>d</var>:</p>\r\n\r\n<div style=\"text-align:center;\">|<var>p</var>/<var>q</var>-<var>x</var>|
|
11
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> |<var>r</var>/<var>s</var>-<var>x</var>| <img
|
13
|
+
src=\"images/symbol_implies.gif\" width=\"15\" height=\"11\" alt=\"⇒\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"><var>q</var> <img src=\"images/symbol_gt.gif\"
|
15
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"><var>d</var>\n</div>\r\n\r\n<p>For
|
16
|
+
example, the best approximation to <img src=\"images/symbol_radic.gif\" width=\"14\"
|
17
|
+
height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13 for the
|
18
|
+
denominator bound 20 is 18/5 and the best approximation to <img src=\"images/symbol_radic.gif\"
|
19
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13
|
20
|
+
for the denominator bound 30 is 101/28.</p>\r\n\r\n<p>Find the sum of all denominators
|
21
|
+
of the best approximations to <img src=\"images/symbol_radic.gif\" width=\"14\"
|
22
|
+
height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
23
|
+
for the denominator bound 10<sup>12</sup>, where <var>n</var> is not a perfect square
|
24
|
+
and 1 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
25
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
26
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
27
|
+
100000.</p>\r\n"
|
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 193
|
3
|
+
:name: Squarefree Numbers
|
4
|
+
:url: http://projecteuler.net/problem=193
|
5
|
+
:content: "\r\n<p>A positive integer <var>n</var> is called squarefree, if no square
|
6
|
+
of a prime divides <var>n</var>, thus 1, 2, 3, 5, 6, 7, 10, 11 are squarefree, but
|
7
|
+
not 4, 8, 9, 12.</p>\r\n\r\n<p>How many squarefree numbers are there below 2<sup>50</sup>?</p>\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 194
|
3
|
+
:name: Coloured Configurations
|
4
|
+
:url: http://projecteuler.net/problem=194
|
5
|
+
:content: "\r\n<p>Consider graphs built with the units A: <img src=\"project/images/p_194_GraphA.png\"
|
6
|
+
style=\"vertical-align:middle;\" alt=\"\">\r\nand B: <img src=\"project/images/p_194_GraphB.png\"
|
7
|
+
style=\"vertical-align:middle;\" alt=\"\">, where the units are glued along\r\nthe
|
8
|
+
vertical edges as in the graph <img src=\"project/images/p_194_Fig.png\" style=\"vertical-align:middle;\"
|
9
|
+
alt=\"\">.</p>\r\n\r\n<p>A configuration of type (<var>a</var>,<var>b</var>,<var>c</var>)
|
10
|
+
is a graph thus built of <var>a</var> units A and <var>b</var> units B, where the
|
11
|
+
graph's vertices are coloured using up to <var>c</var> colours, so that no two adjacent
|
12
|
+
vertices have the same colour.<br>\r\nThe compound graph above is an example of
|
13
|
+
a configuration of type (2,2,6), in fact of type (2,2,<var>c</var>) for all <var>c</var>
|
14
|
+
<img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"> 4.</p>\r\n\r\n<p>Let N(<var>a</var>,<var>b</var>,<var>c</var>)
|
16
|
+
be the number of configurations of type (<var>a</var>,<var>b</var>,<var>c</var>).<br>\r\nFor
|
17
|
+
example, N(1,0,3) = 24, N(0,2,4) = 92928 and N(2,2,3) = 20736.</p>\r\n\r\n<p>Find
|
18
|
+
the last 8 digits of N(25,75,1984).</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 195
|
3
|
+
:name: Inscribed circles of triangles with one angle of 60 degrees
|
4
|
+
:url: http://projecteuler.net/problem=195
|
5
|
+
:content: "\r\n<p>Let's call an integer sided triangle with exactly one angle of 60
|
6
|
+
degrees a 60-degree triangle.<br>\r\nLet <var>r</var> be the radius of the inscribed
|
7
|
+
circle of such a 60-degree triangle.</p>\r\n<p>There are 1234 60-degree triangles
|
8
|
+
for which <var>r</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
9
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 100.\r\n<br>Let T(<var>n</var>)
|
10
|
+
be the number of 60-degree triangles for which <var>r</var> <img src=\"images/symbol_le.gif\"
|
11
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>,
|
12
|
+
so<br>\r\n T(100) = 1234, T(1000) = 22767, and T(10000) = 359912.</p>\r\n\r\n<p>Find
|
13
|
+
T(1053779).</p>\r\n\r\n"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
---
|
2
|
+
:id: 196
|
3
|
+
:name: Prime triplets
|
4
|
+
:url: http://projecteuler.net/problem=196
|
5
|
+
:content: "\r\n<p>Build a triangle from all positive integers in the following way:</p>\r\n\r\n<p
|
6
|
+
style=\"font-family:courier new,monospace;font-weight:bold;margin-left:50px;\"> 1<br>\r\n <span
|
7
|
+
style=\"color:red;\">2</span> <span style=\"color:red;\">3</span><br>\r\n 4 <span
|
8
|
+
style=\"color:red;\">5</span> 6<br>\r\n <span style=\"color:red;\">7</span> 8 9
|
9
|
+
10<br><span style=\"color:red;\">11</span> 12 <span style=\"color:red;\">13</span>
|
10
|
+
14 15<br>\r\n16 <span style=\"color:red;\">17</span> 18 <span style=\"color:red;\">19</span>
|
11
|
+
20 21<br>\r\n22 <span style=\"color:red;\">23</span> 24 25 26 27 28<br><span style=\"color:red;\">29</span>
|
12
|
+
30 <span style=\"color:red;\">31</span> 32 33 34 35 36<br><span style=\"color:red;\">37</span>
|
13
|
+
38 39 40 <span style=\"color:red;\">41</span> 42 <span style=\"color:red;\">43</span>
|
14
|
+
44 45<br>\r\n46 <span style=\"color:red;\">47</span> 48 49 50 51 52 <span style=\"color:red;\">53</span>
|
15
|
+
54 55<br>\r\n56 57 58 <span style=\"color:red;\">59</span> 60 <span style=\"color:red;\">61</span>
|
16
|
+
62 63 64 65 66<br>\r\n. . .</p>\r\n\r\n<p>Each positive integer has up to eight
|
17
|
+
neighbours in the triangle.</p>\r\n\r\n<p>A set of three primes is called a <i>prime
|
18
|
+
triplet</i> if one of the three primes has the other two as neighbours in the triangle.</p>\r\n\r\n<p>For
|
19
|
+
example, in the second row, the prime numbers 2 and 3 are elements of some prime
|
20
|
+
triplet.</p>\r\n\r\n<p>If row 8 is considered, it contains two primes which are
|
21
|
+
elements of some prime triplet, i.e. 29 and 31.<br>\r\nIf row 9 is considered, it
|
22
|
+
contains only one prime which is an element of some prime triplet: 37.</p>\r\n\r\n<p>Define
|
23
|
+
S(<var>n</var>) as the sum of the primes in row <var>n</var> which are elements
|
24
|
+
of any prime triplet.<br>\r\nThen S(8)=60 and S(9)=37.</p>\r\n\r\n<p>You are given
|
25
|
+
that S(10000)=950007619.</p>\r\n\r\n<p>Find S(5678027) + S(7208785).</p>\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 197
|
3
|
+
:name: Investigating the behaviour of a recursively defined sequence
|
4
|
+
:url: http://projecteuler.net/problem=197
|
5
|
+
:content: "\r\n<p>Given is the function <var>f</var>(<var>x</var>) = <img src=\"images/symbol_lfloor.gif\"
|
6
|
+
width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\" style=\"vertical-align:middle;\">2<sup>30.403243784-<var>x</var><sup>2</sup></sup><img
|
7
|
+
src=\"images/symbol_rfloor.gif\" width=\"6\" height=\"16\" alt=\"⌋\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"><img src=\"images/symbol_times.gif\" width=\"9\"
|
9
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>-9</sup>
|
10
|
+
( <img src=\"images/symbol_lfloor.gif\" width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><img src=\"images/symbol_rfloor.gif\" width=\"6\"
|
12
|
+
height=\"16\" alt=\"⌋\" border=\"0\" style=\"vertical-align:middle;\"> is the floor-function),<br>\r\nthe
|
13
|
+
sequence <var>u<sub>n</sub></var> is defined by <var>u</var><sub>0</sub> = -1 and
|
14
|
+
<var>u</var><sub><var>n</var>+1</sub> = <var>f</var>(<var>u<sub>n</sub></var>).</p>\r\n\r\n<p>Find
|
15
|
+
<var>u<sub>n</sub></var> + <var>u</var><sub><var>n</var>+1</sub> for <var>n</var>
|
16
|
+
= 10<sup>12</sup>.<br>\r\nGive your answer with 9 digits after the decimal point.</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 198
|
3
|
+
:name: Ambiguous Numbers
|
4
|
+
:url: http://projecteuler.net/problem=198
|
5
|
+
:content: "\r\n<p>A best approximation to a real number <var>x</var> for the denominator
|
6
|
+
bound <var>d</var> is a rational number <var>r</var>/<var>s</var> (in reduced form)
|
7
|
+
with <var>s</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>d</var>, so that any rational
|
9
|
+
number <var>p</var>/<var>q</var> which is closer to <var>x</var> than <var>r</var>/<var>s</var>
|
10
|
+
has <var>q</var> <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>d</var>.</p>\r\n\r\n<p>Usually
|
12
|
+
the best approximation to a real number is uniquely determined for all denominator
|
13
|
+
bounds. However, there are some exceptions, e.g. 9/40 has the two best approximations
|
14
|
+
1/4 and 1/5 for the denominator bound 6.\r\nWe shall call a real number <var>x</var>
|
15
|
+
<i>ambiguous</i>, if there is at least one denominator bound for which <var>x</var>
|
16
|
+
possesses two best approximations. Clearly, an ambiguous number is necessarily rational.</p>\r\n\r\n<p>How
|
17
|
+
many ambiguous numbers <var>x</var> = <var>p</var>/<var>q</var>,\r\n0 <img src=\"images/symbol_lt.gif\"
|
18
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var>
|
19
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 1/100, are there whose denominator <var>q</var>
|
21
|
+
does not exceed 10<sup>8</sup>?</p>\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 199
|
3
|
+
:name: Iterative Circle Packing
|
4
|
+
:url: http://projecteuler.net/problem=199
|
5
|
+
:content: "\r\n<p>Three circles of equal radius are placed inside a larger circle
|
6
|
+
such that each pair of circles is tangent to one another and the inner circles do
|
7
|
+
not overlap. There are four uncovered \"gaps\" which are to be filled iteratively
|
8
|
+
with more tangent circles.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_199_circles_in_circles.gif\"
|
9
|
+
alt=\"\">\n</div>\r\n<p>\r\nAt each iteration, a maximally sized circle is placed
|
10
|
+
in each gap, which creates more gaps for the next iteration. After 3 iterations
|
11
|
+
(pictured), there are 108 gaps and the fraction of the area which is not covered
|
12
|
+
by circles is 0.06790342, rounded to eight decimal places.\r\n</p>\r\n<p>\r\nWhat
|
13
|
+
fraction of the area is not covered by circles after 10 iterations?<br>\r\nGive
|
14
|
+
your answer rounded to eight decimal places using the format x.xxxxxxxx .\r\n</p>\r\n"
|
data/data/problems/2.yml
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 2
|
3
|
+
:name: Even Fibonacci numbers
|
4
|
+
:url: http://projecteuler.net/problem=2
|
5
|
+
:content: "\r\n<p>Each new term in the Fibonacci sequence is generated by adding the
|
6
|
+
previous two terms. By starting with 1 and 2, the first 10 terms will be:</p>\r\n<p
|
7
|
+
style=\"text-align:center;\">1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...</p>\r\n<p>By
|
8
|
+
considering the terms in the Fibonacci sequence whose values do not exceed four
|
9
|
+
million, find the sum of the even-valued terms.</p>\r\n<!--\r\nNote: This problem
|
10
|
+
has been changed recently, please check that you are using the right parameters.\r\n-->\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 20
|
3
|
+
:name: Factorial digit sum
|
4
|
+
:url: http://projecteuler.net/problem=20
|
5
|
+
:content: "\r\n<p><i>n</i>! means <i>n</i> <img src=\"images/symbol_times.gif\" width=\"9\"
|
6
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> (<i>n</i>
|
7
|
+
<img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> 1) <img src=\"images/symbol_times.gif\" width=\"9\"
|
9
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\"
|
10
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\" width=\"9\"
|
13
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1</p>\r\n<p>For
|
14
|
+
example, 10! = 10 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
15
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 9 <img src=\"images/symbol_times.gif\"
|
16
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
17
|
+
... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 3 <img src=\"images/symbol_times.gif\" width=\"9\"
|
19
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
|
20
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
21
|
+
1 = 3628800,<br>and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8
|
22
|
+
+ 0 + 0 = 27.</p>\r\n<p>Find the sum of the digits in the number 100!</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 200
|
3
|
+
:name: Find the 200th prime-proof sqube containing the contiguous sub-string "200"
|
4
|
+
:url: http://projecteuler.net/problem=200
|
5
|
+
:content: "\r\n<p>We shall define a sqube to be a number of the form, <var>p</var><sup>2</sup><var>q</var><sup>3</sup>,
|
6
|
+
where <var>p</var> and <var>q</var> are distinct primes.<br>\r\nFor example, 200
|
7
|
+
= 5<sup>2</sup>2<sup>3</sup> or 120072949 = 23<sup>2</sup>61<sup>3</sup>.</p>\r\n\r\n<p>The
|
8
|
+
first five squbes are 72, 108, 200, 392, and 500.</p>\r\n\r\n<p>Interestingly, 200
|
9
|
+
is also the first number for which you cannot change any single digit to make a
|
10
|
+
prime; we shall call such numbers, prime-proof. The next prime-proof sqube which
|
11
|
+
contains the contiguous sub-string \"200\" is 1992008.</p>\r\n\r\n<p>Find the 200th
|
12
|
+
prime-proof sqube containing the contiguous sub-string \"200\".</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 201
|
3
|
+
:name: Subsets with a unique sum
|
4
|
+
:url: http://projecteuler.net/problem=201
|
5
|
+
:content: "\r\n<p>For any set A of numbers, let sum(A) be the sum of the elements
|
6
|
+
of A.<br>\r\nConsider the set B = {1,3,6,8,10,11}.<br> There are 20 subsets of B
|
7
|
+
containing three elements, and their sums are:</p>\r\n\r\n<p style=\"margin-left:100px\">\r\nsum({1,3,6})
|
8
|
+
= 10,<br>\r\nsum({1,3,8}) = 12,<br>\r\nsum({1,3,10}) = 14,<br>\r\nsum({1,3,11})
|
9
|
+
= 15,<br>\r\nsum({1,6,8}) = 15,<br>\r\nsum({1,6,10}) = 17,<br>\r\nsum({1,6,11})
|
10
|
+
= 18,<br>\r\nsum({1,8,10}) = 19,<br>\r\nsum({1,8,11}) = 20,<br>\r\nsum({1,10,11})
|
11
|
+
= 22,<br>\r\nsum({3,6,8}) = 17,<br>\r\nsum({3,6,10}) = 19,<br>\r\nsum({3,6,11})
|
12
|
+
= 20,<br>\r\nsum({3,8,10}) = 21,<br>\r\nsum({3,8,11}) = 22,<br>\r\nsum({3,10,11})
|
13
|
+
= 24,<br>\r\nsum({6,8,10}) = 24,<br>\r\nsum({6,8,11}) = 25,<br>\r\nsum({6,10,11})
|
14
|
+
= 27,<br>\r\nsum({8,10,11}) = 29.</p>\r\n\r\n<p>Some of these sums occur more than
|
15
|
+
once, others are unique.<br>\r\nFor a set A, let U(A,k) be the set of unique sums
|
16
|
+
of k-element subsets of A, in our example we find U(B,3) = {10,12,14,18,21,25,27,29}
|
17
|
+
and sum(U(B,3)) = 156.</p>\r\n\r\n<p>Now consider the 100-element set S = {1<sup>2</sup>,
|
18
|
+
2<sup>2</sup>, ... , 100<sup>2</sup>}.<br>\r\nS has 100891344545564193334812497256
|
19
|
+
50-element subsets.</p>\r\n\r\n<p>Determine the sum of all integers which are the
|
20
|
+
sum of exactly one of the 50-element subsets of S, i.e. find sum(U(S,50)).</p>\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 202
|
3
|
+
:name: Laserbeam
|
4
|
+
:url: http://projecteuler.net/problem=202
|
5
|
+
:content: "\r\n<p>Three mirrors are arranged in the shape of an equilateral triangle,
|
6
|
+
with their reflective surfaces pointing inwards. There is an infinitesimal gap at
|
7
|
+
each vertex of the triangle through which a laser beam may pass.</p>\r\n\r\n<p>Label
|
8
|
+
the vertices A, B and C. There are 2 ways in which a laser beam may enter vertex
|
9
|
+
C, bounce off 11 surfaces, then exit through the same vertex: one way is shown below;
|
10
|
+
the other is the reverse of that.</p>\r\n\r\n<div style=\"text-align:center;\">\r\n
|
11
|
+
\ <img src=\"project/images/p_201_laserbeam.gif\" alt=\"\">\n</div>\r\n\r\n<p>There
|
12
|
+
are 80840 ways in which a laser beam may enter vertex C, bounce off 1000001 surfaces,
|
13
|
+
then exit through the same vertex.</p>\r\n\r\n<p>In how many ways can a laser beam
|
14
|
+
enter at vertex C, bounce off 12017639147 surfaces, then exit through the same vertex?</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 203
|
3
|
+
:name: Squarefree Binomial Coefficients
|
4
|
+
:url: http://projecteuler.net/problem=203
|
5
|
+
:content: "\r\n<p>The binomial coefficients <sup>n</sup>C<sub>k</sub> can be arranged
|
6
|
+
in triangular form, Pascal's triangle, like this:</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<table
|
7
|
+
align=\"center\">\n<tr>\n<td colspan=\"7\"></td>\n<td>1</td>\n<td colspan=\"7\"></td>\n</tr>\n<tr>\n<td
|
8
|
+
colspan=\"6\"></td>\n<td>1</td>\n<td></td>\n<td>1</td>\n<td colspan=\"6\"></td>\n</tr>\n<tr>\n<td
|
9
|
+
colspan=\"5\"></td>\n<td>1</td>\n<td></td>\n<td>2</td>\n<td></td>\n<td>1</td>\n<td
|
10
|
+
colspan=\"5\"></td>\n</tr>\n<tr>\n<td colspan=\"4\"></td>\n<td>1</td>\n<td></td>\n<td>3</td>\n<td></td>\n<td>3</td>\n<td></td>\n<td>1</td>\n<td
|
11
|
+
colspan=\"4\"></td>\n</tr>\n<tr>\n<td colspan=\"3\"></td>\n<td>1</td>\n<td></td>\n<td>4</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>4</td>\n<td></td>\n<td>1</td>\n<td
|
12
|
+
colspan=\"3\"></td>\n</tr>\n<tr>\n<td colspan=\"2\"></td>\n<td>1</td>\n<td></td>\n<td>5</td>\n<td></td>\n<td>10</td>\n<td></td>\n<td>10</td>\n<td></td>\n<td>5</td>\n<td></td>\n<td>1</td>\n<td
|
13
|
+
colspan=\"2\"></td>\n</tr>\n<tr>\n<td colspan=\"1\"></td>\n<td>1</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>15</td>\n<td></td>\n<td>20</td>\n<td></td>\n<td>15</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>1</td>\n<td
|
14
|
+
colspan=\"1\"></td>\n</tr>\n<tr>\n<td>1</td>\n<td></td>\n<td>7</td>\n<td></td>\n<td>21</td>\n<td></td>\n<td>35</td>\n<td></td>\n<td>35</td>\n<td></td>\n<td>21</td>\n<td></td>\n<td>7</td>\n<td></td>\n<td>1</td>\n</tr>\n</table>\r\n.........\r\n</div>\r\n\r\n<p>It
|
15
|
+
can be seen that the first eight rows of Pascal's triangle contain twelve distinct
|
16
|
+
numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35.</p>\r\n\r\n<p>A positive integer
|
17
|
+
<var>n</var> is called squarefree if no square of a prime divides <var>n</var>.\r\nOf
|
18
|
+
the twelve distinct numbers in the first eight rows of Pascal's triangle, all except
|
19
|
+
4 and 20 are squarefree.\r\nThe sum of the distinct squarefree numbers in the first
|
20
|
+
eight rows is 105.</p>\r\n\r\n<p>Find the sum of the distinct squarefree numbers
|
21
|
+
in the first 51 rows of Pascal's triangle.</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 204
|
3
|
+
:name: Generalised Hamming Numbers
|
4
|
+
:url: http://projecteuler.net/problem=204
|
5
|
+
:content: "\r\n<p>A Hamming number is a positive number which has no prime factor
|
6
|
+
larger than 5.<br>\r\nSo the first few Hamming numbers are 1, 2, 3, 4, 5, 6, 8,
|
7
|
+
9, 10, 12, 15.<br>\r\nThere are 1105 Hamming numbers not exceeding 10<sup>8</sup>.</p>\r\n\r\n<p>We
|
8
|
+
will call a positive number a generalised Hamming number of type <var>n</var>, if
|
9
|
+
it has no prime factor larger than <var>n</var>.<br>\r\nHence the Hamming numbers
|
10
|
+
are the generalised Hamming numbers of type 5.</p>\r\n\r\n<p>How many generalised
|
11
|
+
Hamming numbers of type 100 are there which don't exceed 10<sup>9</sup>?</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 205
|
3
|
+
:name: Dice Game
|
4
|
+
:url: http://projecteuler.net/problem=205
|
5
|
+
:content: "\r\n<p>Peter has nine four-sided (pyramidal) dice, each with faces numbered
|
6
|
+
1, 2, 3, 4.<br>\r\nColin has six six-sided (cubic) dice, each with faces numbered
|
7
|
+
1, 2, 3, 4, 5, 6.</p>\r\n\r\n<p>Peter and Colin roll their dice and compare totals:
|
8
|
+
the highest total wins. The result is a draw if the totals are equal.</p>\r\n\r\n<p>What
|
9
|
+
is the probability that Pyramidal Pete beats Cubic Colin? Give your answer rounded
|
10
|
+
to seven decimal places in the form 0.abcdefg</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 207
|
3
|
+
:name: Integer partition equations
|
4
|
+
:url: http://projecteuler.net/problem=207
|
5
|
+
:content: "\r\n<p>For some positive integers <var>k</var>, there exists an integer
|
6
|
+
partition of the form 4<sup>t</sup> = 2<sup>t</sup> + <var>k</var>,<br>\r\nwhere
|
7
|
+
4<sup>t</sup>, 2<sup>t</sup>, and <var>k</var> are all positive integers and <var>t</var>
|
8
|
+
is a real number.</p>\r\n\r\n<p>The first two such partitions are 4<sup>1</sup>
|
9
|
+
= 2<sup>1</sup> + 2 and 4<sup>1.5849625...</sup> = 2<sup>1.5849625...</sup> + 6.</p>\r\n\r\n<p>Partitions
|
10
|
+
where <var>t</var> is also an integer are called <i>perfect</i>.<br> \r\nFor any
|
11
|
+
<var>m</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\"
|
12
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1 let P(<var>m</var>) be the proportion
|
13
|
+
of such partitions that are perfect with <var>k</var> <img src=\"images/symbol_le.gif\"
|
14
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>m</var>.<br>\r\nThus
|
15
|
+
P(6) = 1/2.</p>\r\n\r\n<p>In the following table are listed some values of P(<var>m</var>)</p>\r\n<p> P(5)
|
16
|
+
= 1/1<br>\r\n P(10) = 1/2<br>\r\n P(15) = 2/3<br>\r\n P(20) = 1/2<br>\r\n P(25)
|
17
|
+
= 1/2<br>\r\n P(30) = 2/5<br>\r\n ...<br>\r\n P(180) = 1/4<br>\r\n P(185)
|
18
|
+
= 3/13</p>\r\n\r\n\r\n<p>Find the smallest <var>m</var> for which P(<var>m</var>)
|
19
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 1/12345</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 208
|
3
|
+
:name: Robot Walks
|
4
|
+
:url: http://projecteuler.net/problem=208
|
5
|
+
:content: "\r\n<p>A robot moves in a series of one-fifth circular arcs (72°), with
|
6
|
+
a free choice of a clockwise or an anticlockwise arc for each step, but no turning
|
7
|
+
on the spot.</p>\r\n\r\n<p>One of 70932 possible closed paths of 25 arcs starting
|
8
|
+
northward is</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"http://projecteuler.net/project/images/p_208_robotwalk.gif\"
|
9
|
+
alt=\"\">\n</div>\r\n\r\n<p>Given that the robot starts facing North, how many journeys
|
10
|
+
of 70 arcs in length can it take that return it, after the final arc, to its starting
|
11
|
+
position?<br><!--(Journeys are allowed to return multiple times to the start.)-->\r\n(Any
|
12
|
+
arc may be traversed multiple times.) \r\n</p>\r\n\r\n"
|
@@ -0,0 +1,27 @@
|
|
1
|
+
---
|
2
|
+
:id: 209
|
3
|
+
:name: Circular Logic
|
4
|
+
:url: http://projecteuler.net/problem=209
|
5
|
+
:content: "\r\n<p>A <var>k</var>-input <i>binary truth table</i> is a map from <var>k</var>
|
6
|
+
input bits\r\n(binary digits, 0 [false] or 1 [true]) to 1 output bit. For example,
|
7
|
+
the 2-input binary truth tables for the logical AND and XOR functions are:</p>\r\n<div
|
8
|
+
style=\"text-align:center; margin-left:150px; margin-right:150px;\">\r\n<table cellspacing=\"0\"
|
9
|
+
cellpadding=\"2\" border=\"1\" align=\"left\">\n<tr style=\"background-color:#c1daf9;\">\n<td
|
10
|
+
width=\"30\" align=\"center\"><var>x</var></td>\r\n<td width=\"30\" align=\"center\"><var>y</var></td>\r\n<td>\n<var>x</var>
|
11
|
+
AND <var>y</var>\n</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">0</td>\n<td
|
12
|
+
align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">1</td>\n<td
|
13
|
+
align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">0</td>\n<td
|
14
|
+
align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">1</td>\n<td
|
15
|
+
align=\"center\">1</td>\n</tr>\n</table>\n<table cellspacing=\"0\" cellpadding=\"2\"
|
16
|
+
border=\"1\" align=\"right\">\n<tr style=\"background-color:#c1daf9;\">\n<td width=\"30\"
|
17
|
+
align=\"center\"><var>x</var></td>\r\n<td width=\"30\" align=\"center\"><var>y</var></td>\r\n<td>\n<var>x</var>
|
18
|
+
XOR <var>y</var>\n</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">0</td>\n<td
|
19
|
+
align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">1</td>\n<td
|
20
|
+
align=\"center\">1</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">0</td>\n<td
|
21
|
+
align=\"center\">1</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">1</td>\n<td
|
22
|
+
align=\"center\">0</td>\n</tr>\n</table>\n</div>\n<br clear=\"all\"><p>How many
|
23
|
+
6-input binary truth tables, τ, satisfy the formula</p>\r\n<div style=\"text-align:center;\">\r\nτ(<var>a</var>,
|
24
|
+
<var>b</var>, <var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>) AND τ(<var>b</var>,
|
25
|
+
<var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>, <var>a</var> XOR (<var>b</var>
|
26
|
+
AND <var>c</var>)) = 0\r\n</div>\n<br><p>for all 6-bit inputs (<var>a</var>, <var>b</var>,
|
27
|
+
<var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>)?\r\n</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 21
|
3
|
+
:name: Amicable numbers
|
4
|
+
:url: http://projecteuler.net/problem=21
|
5
|
+
:content: "\r\n<p>Let d(<i>n</i>) be defined as the sum of proper divisors of <i>n</i>
|
6
|
+
(numbers less than <i>n</i> which divide evenly into <i>n</i>).<br>\r\nIf d(<i>a</i>)
|
7
|
+
= <i>b</i> and d(<i>b</i>) = <i>a</i>, where <i>a</i> <img src=\"images/symbol_ne.gif\"
|
8
|
+
width=\"11\" height=\"10\" alt=\"≠\" border=\"0\" style=\"vertical-align:middle;\"><i>b</i>,
|
9
|
+
then <i>a</i> and <i>b</i> are an amicable pair and each of <i>a</i> and <i>b</i>
|
10
|
+
are called amicable numbers.</p>\r\n<p>For example, the proper divisors of 220 are
|
11
|
+
1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors
|
12
|
+
of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.</p>\r\n<p>Evaluate the sum of all
|
13
|
+
the amicable numbers under 10000.</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 210
|
3
|
+
:name: Obtuse Angled Triangles
|
4
|
+
:url: http://projecteuler.net/problem=210
|
5
|
+
:content: "\r\nConsider the set S(r) of points (x,y) with integer coordinates satisfying
|
6
|
+
|x| + |y| <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\"> r. <br>\r\nLet O be the point (0,0)
|
8
|
+
and C the point (r/4,r/4). <br>\r\nLet N(r) be the number of points B in S(r), so
|
9
|
+
that the triangle OBC has an obtuse angle, i.e. the largest angle α satisfies 90°\r\nSo,
|
10
|
+
for example, N(4)=24 and N(8)=100.\r\n<p>\r\nWhat is N(1,000,000,000)?\r\n</p>\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 211
|
3
|
+
:name: Divisor Square Sum
|
4
|
+
:url: http://projecteuler.net/problem=211
|
5
|
+
:content: "\r\n<p>For a positive integer <var>n</var>, let σ<sub>2</sub>(<var>n</var>)
|
6
|
+
be the sum of the squares of its divisors. For example,</p>\r\n<div style=\"text-align:center;\">σ<sub>2</sub>(10)
|
7
|
+
= 1 + 4 + 25 + 100 = 130.</div>\r\n<p>Find the sum of all <var>n</var>, 0 <img src=\"images/symbol_lt.gif\"
|
8
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
9
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"> 64,000,000 such that σ<sub>2</sub>(<var>n</var>)
|
11
|
+
is a perfect square.</p>\r\n"
|