euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 19
3
+ :name: Counting Sundays
4
+ :url: http://projecteuler.net/problem=19
5
+ :content: "\r\n\n<p>You are given the following information, but you may prefer to
6
+ do some research for yourself.</p>\n<ul>\n<li>1 Jan 1900 was a Monday.</li>\n<li>Thirty
7
+ days has September,<br>\nApril, June and November.<br>\nAll the rest have thirty-one,<br>\nSaving
8
+ February alone,<br>\nWhich has twenty-eight, rain or shine.<br>\nAnd on leap years,
9
+ twenty-nine.</li>\n<li>A leap year occurs on any year evenly divisible by 4, but
10
+ not on a century unless it is divisible by 400.</li>\n</ul>\n<p>How many Sundays
11
+ fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec
12
+ 2000)?</p>\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 190
3
+ :name: "Maximising a weighted product\r\n"
4
+ :url: http://projecteuler.net/problem=190
5
+ :content: "\r\n<p>Let S<sub>m</sub> = (x<sub>1</sub>, x<sub>2</sub>, ... , x<sub>m</sub>)
6
+ be the m-tuple of positive real numbers with x<sub>1</sub> + x<sub>2</sub> + ...
7
+ + x<sub>m</sub> = m for which P<sub>m</sub> = x<sub>1</sub> * x<sub>2</sub><sup>2</sup>
8
+ * ... * x<sub>m</sub><sup>m</sup> is maximised.</p>\r\n\r\n<p>For example, it can
9
+ be verified that [P<sub>10</sub>] = 4112 ([ ] is the integer part function).</p>\r\n\r\n<p>Find
10
+ Σ[P<sub>m</sub>] for 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
11
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> m <img src=\"images/symbol_le.gif\"
12
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
13
+ 15.</p>\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 191
3
+ :name: Prize Strings
4
+ :url: http://projecteuler.net/problem=191
5
+ :content: "\r\n<p>A particular school offers cash rewards to children with good attendance
6
+ and punctuality. If they are absent for three consecutive days or late on more than
7
+ one occasion then they forfeit their prize.</p>\r\n\r\n<p>During an n-day period
8
+ a trinary string is formed for each child consisting of L's (late), O's (on time),
9
+ and A's (absent).</p>\r\n\r\n<p>Although there are eighty-one trinary strings for
10
+ a 4-day period that can be formed, exactly forty-three strings would lead to a prize:</p>\r\n\r\n<p
11
+ style=\"margin-left:50px;font-family:'Courier New',monospace;\">OOOO OOOA OOOL OOAO
12
+ OOAA OOAL OOLO OOLA OAOO OAOA<br>\r\nOAOL OAAO OAAL OALO OALA OLOO OLOA OLAO OLAA
13
+ AOOO<br>\r\nAOOA AOOL AOAO AOAA AOAL AOLO AOLA AAOO AAOA AAOL<br>\r\nAALO AALA ALOO
14
+ ALOA ALAO ALAA LOOO LOOA LOAO LOAA<br>\r\nLAOO LAOA LAAO</p>\r\n\r\n<p>How many
15
+ \"prize\" strings exist over a 30-day period?</p>\r\n"
@@ -0,0 +1,27 @@
1
+ ---
2
+ :id: 192
3
+ :name: Best Approximations
4
+ :url: http://projecteuler.net/problem=192
5
+ :content: "\r\n<p>Let <var>x</var> be a real number.<br>\r\nA <i>best approximation</i>
6
+ to <var>x</var> for the <i>denominator bound</i> <var>d</var> is a rational number
7
+ <var>r</var>/<var>s</var> <i>in reduced form</i>, with <var>s</var> <img src=\"images/symbol_le.gif\"
8
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>d</var>,
9
+ such that any rational number which is closer to <var>x</var> than <var>r</var>/<var>s</var>
10
+ has a denominator larger than <var>d</var>:</p>\r\n\r\n<div style=\"text-align:center;\">|<var>p</var>/<var>q</var>-<var>x</var>|
11
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> |<var>r</var>/<var>s</var>-<var>x</var>| <img
13
+ src=\"images/symbol_implies.gif\" width=\"15\" height=\"11\" alt=\"⇒\" border=\"0\"
14
+ style=\"vertical-align:middle;\"><var>q</var> <img src=\"images/symbol_gt.gif\"
15
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"><var>d</var>\n</div>\r\n\r\n<p>For
16
+ example, the best approximation to <img src=\"images/symbol_radic.gif\" width=\"14\"
17
+ height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13 for the
18
+ denominator bound 20 is 18/5 and the best approximation to <img src=\"images/symbol_radic.gif\"
19
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">13
20
+ for the denominator bound 30 is 101/28.</p>\r\n\r\n<p>Find the sum of all denominators
21
+ of the best approximations to <img src=\"images/symbol_radic.gif\" width=\"14\"
22
+ height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
23
+ for the denominator bound 10<sup>12</sup>, where <var>n</var> is not a perfect square
24
+ and 1 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
25
+ border=\"0\" style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
26
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
27
+ 100000.</p>\r\n"
@@ -0,0 +1,7 @@
1
+ ---
2
+ :id: 193
3
+ :name: Squarefree Numbers
4
+ :url: http://projecteuler.net/problem=193
5
+ :content: "\r\n<p>A positive integer <var>n</var> is called squarefree, if no square
6
+ of a prime divides <var>n</var>, thus 1, 2, 3, 5, 6, 7, 10, 11 are squarefree, but
7
+ not 4, 8, 9, 12.</p>\r\n\r\n<p>How many squarefree numbers are there below 2<sup>50</sup>?</p>\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 194
3
+ :name: Coloured Configurations
4
+ :url: http://projecteuler.net/problem=194
5
+ :content: "\r\n<p>Consider graphs built with the units A: <img src=\"project/images/p_194_GraphA.png\"
6
+ style=\"vertical-align:middle;\" alt=\"\">\r\nand B: <img src=\"project/images/p_194_GraphB.png\"
7
+ style=\"vertical-align:middle;\" alt=\"\">, where the units are glued along\r\nthe
8
+ vertical edges as in the graph <img src=\"project/images/p_194_Fig.png\" style=\"vertical-align:middle;\"
9
+ alt=\"\">.</p>\r\n\r\n<p>A configuration of type (<var>a</var>,<var>b</var>,<var>c</var>)
10
+ is a graph thus built of <var>a</var> units A and <var>b</var> units B, where the
11
+ graph's vertices are coloured using up to <var>c</var> colours, so that no two adjacent
12
+ vertices have the same colour.<br>\r\nThe compound graph above is an example of
13
+ a configuration of type (2,2,6), in fact of type (2,2,<var>c</var>) for all <var>c</var>
14
+ <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\"
15
+ style=\"vertical-align:middle;\"> 4.</p>\r\n\r\n<p>Let N(<var>a</var>,<var>b</var>,<var>c</var>)
16
+ be the number of configurations of type (<var>a</var>,<var>b</var>,<var>c</var>).<br>\r\nFor
17
+ example, N(1,0,3) = 24, N(0,2,4) = 92928 and N(2,2,3) = 20736.</p>\r\n\r\n<p>Find
18
+ the last 8 digits of N(25,75,1984).</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 195
3
+ :name: Inscribed circles of triangles with one angle of 60 degrees
4
+ :url: http://projecteuler.net/problem=195
5
+ :content: "\r\n<p>Let's call an integer sided triangle with exactly one angle of 60
6
+ degrees a 60-degree triangle.<br>\r\nLet <var>r</var> be the radius of the inscribed
7
+ circle of such a 60-degree triangle.</p>\r\n<p>There are 1234 60-degree triangles
8
+ for which <var>r</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
9
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 100.\r\n<br>Let T(<var>n</var>)
10
+ be the number of 60-degree triangles for which <var>r</var> <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>,
12
+ so<br>\r\n T(100) = 1234,  T(1000) = 22767, and  T(10000) = 359912.</p>\r\n\r\n<p>Find
13
+ T(1053779).</p>\r\n\r\n"
@@ -0,0 +1,25 @@
1
+ ---
2
+ :id: 196
3
+ :name: Prime triplets
4
+ :url: http://projecteuler.net/problem=196
5
+ :content: "\r\n<p>Build a triangle from all positive integers in the following way:</p>\r\n\r\n<p
6
+ style=\"font-family:courier new,monospace;font-weight:bold;margin-left:50px;\"> 1<br>\r\n <span
7
+ style=\"color:red;\">2</span>  <span style=\"color:red;\">3</span><br>\r\n 4  <span
8
+ style=\"color:red;\">5</span>  6<br>\r\n <span style=\"color:red;\">7</span>  8  9
9
+ 10<br><span style=\"color:red;\">11</span> 12 <span style=\"color:red;\">13</span>
10
+ 14 15<br>\r\n16 <span style=\"color:red;\">17</span> 18 <span style=\"color:red;\">19</span>
11
+ 20 21<br>\r\n22 <span style=\"color:red;\">23</span> 24 25 26 27 28<br><span style=\"color:red;\">29</span>
12
+ 30 <span style=\"color:red;\">31</span> 32 33 34 35 36<br><span style=\"color:red;\">37</span>
13
+ 38 39 40 <span style=\"color:red;\">41</span> 42 <span style=\"color:red;\">43</span>
14
+ 44 45<br>\r\n46 <span style=\"color:red;\">47</span> 48 49 50 51 52 <span style=\"color:red;\">53</span>
15
+ 54 55<br>\r\n56 57 58 <span style=\"color:red;\">59</span> 60 <span style=\"color:red;\">61</span>
16
+ 62 63 64 65 66<br>\r\n. . .</p>\r\n\r\n<p>Each positive integer has up to eight
17
+ neighbours in the triangle.</p>\r\n\r\n<p>A set of three primes is called a <i>prime
18
+ triplet</i> if one of the three primes has the other two as neighbours in the triangle.</p>\r\n\r\n<p>For
19
+ example, in the second row, the prime numbers 2 and 3 are elements of some prime
20
+ triplet.</p>\r\n\r\n<p>If row 8 is considered, it contains two primes which are
21
+ elements of some prime triplet, i.e. 29 and 31.<br>\r\nIf row 9 is considered, it
22
+ contains only one prime which is an element of some prime triplet: 37.</p>\r\n\r\n<p>Define
23
+ S(<var>n</var>) as the sum of the primes in row <var>n</var> which are elements
24
+ of any prime triplet.<br>\r\nThen S(8)=60 and S(9)=37.</p>\r\n\r\n<p>You are given
25
+ that S(10000)=950007619.</p>\r\n\r\n<p>Find  S(5678027) + S(7208785).</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 197
3
+ :name: Investigating the behaviour of a recursively defined sequence
4
+ :url: http://projecteuler.net/problem=197
5
+ :content: "\r\n<p>Given is the function <var>f</var>(<var>x</var>) = <img src=\"images/symbol_lfloor.gif\"
6
+ width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\" style=\"vertical-align:middle;\">2<sup>30.403243784-<var>x</var><sup>2</sup></sup><img
7
+ src=\"images/symbol_rfloor.gif\" width=\"6\" height=\"16\" alt=\"⌋\" border=\"0\"
8
+ style=\"vertical-align:middle;\"><img src=\"images/symbol_times.gif\" width=\"9\"
9
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>-9</sup>
10
+ ( <img src=\"images/symbol_lfloor.gif\" width=\"6\" height=\"16\" alt=\"⌊\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><img src=\"images/symbol_rfloor.gif\" width=\"6\"
12
+ height=\"16\" alt=\"⌋\" border=\"0\" style=\"vertical-align:middle;\"> is the floor-function),<br>\r\nthe
13
+ sequence <var>u<sub>n</sub></var> is defined by <var>u</var><sub>0</sub> = -1 and
14
+ <var>u</var><sub><var>n</var>+1</sub> = <var>f</var>(<var>u<sub>n</sub></var>).</p>\r\n\r\n<p>Find
15
+ <var>u<sub>n</sub></var> + <var>u</var><sub><var>n</var>+1</sub> for <var>n</var>
16
+ = 10<sup>12</sup>.<br>\r\nGive your answer with 9 digits after the decimal point.</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 198
3
+ :name: Ambiguous Numbers
4
+ :url: http://projecteuler.net/problem=198
5
+ :content: "\r\n<p>A best approximation to a real number <var>x</var> for the denominator
6
+ bound <var>d</var> is a rational number <var>r</var>/<var>s</var> (in reduced form)
7
+ with <var>s</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
8
+ border=\"0\" style=\"vertical-align:middle;\"><var>d</var>, so that any rational
9
+ number <var>p</var>/<var>q</var> which is closer to <var>x</var> than <var>r</var>/<var>s</var>
10
+ has <var>q</var> <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\"
11
+ border=\"0\" style=\"vertical-align:middle;\"><var>d</var>.</p>\r\n\r\n<p>Usually
12
+ the best approximation to a real number is uniquely determined for all denominator
13
+ bounds. However, there are some exceptions, e.g. 9/40 has the two best approximations
14
+ 1/4 and 1/5 for the denominator bound 6.\r\nWe shall call a real number <var>x</var>
15
+ <i>ambiguous</i>, if there is at least one denominator bound for which <var>x</var>
16
+ possesses two best approximations. Clearly, an ambiguous number is necessarily rational.</p>\r\n\r\n<p>How
17
+ many ambiguous numbers <var>x</var> = <var>p</var>/<var>q</var>,\r\n0 <img src=\"images/symbol_lt.gif\"
18
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var>
19
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
20
+ style=\"vertical-align:middle;\"> 1/100, are there whose denominator <var>q</var>
21
+ does not exceed 10<sup>8</sup>?</p>\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 199
3
+ :name: Iterative Circle Packing
4
+ :url: http://projecteuler.net/problem=199
5
+ :content: "\r\n<p>Three circles of equal radius are placed inside a larger circle
6
+ such that each pair of circles is tangent to one another and the inner circles do
7
+ not overlap. There are four uncovered \"gaps\" which are to be filled iteratively
8
+ with more tangent circles.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_199_circles_in_circles.gif\"
9
+ alt=\"\">\n</div>\r\n<p>\r\nAt each iteration, a maximally sized circle is placed
10
+ in each gap, which creates more gaps for the next iteration. After 3 iterations
11
+ (pictured), there are 108 gaps and the fraction of the area which is not covered
12
+ by circles is 0.06790342, rounded to eight decimal places.\r\n</p>\r\n<p>\r\nWhat
13
+ fraction of the area is not covered by circles after 10 iterations?<br>\r\nGive
14
+ your answer rounded to eight decimal places using the format x.xxxxxxxx .\r\n</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 2
3
+ :name: Even Fibonacci numbers
4
+ :url: http://projecteuler.net/problem=2
5
+ :content: "\r\n<p>Each new term in the Fibonacci sequence is generated by adding the
6
+ previous two terms. By starting with 1 and 2, the first 10 terms will be:</p>\r\n<p
7
+ style=\"text-align:center;\">1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...</p>\r\n<p>By
8
+ considering the terms in the Fibonacci sequence whose values do not exceed four
9
+ million, find the sum of the even-valued terms.</p>\r\n<!--\r\nNote: This problem
10
+ has been changed recently, please check that you are using the right parameters.\r\n-->\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 20
3
+ :name: Factorial digit sum
4
+ :url: http://projecteuler.net/problem=20
5
+ :content: "\r\n<p><i>n</i>! means <i>n</i> <img src=\"images/symbol_times.gif\" width=\"9\"
6
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> (<i>n</i>
7
+ <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
8
+ style=\"vertical-align:middle;\"> 1) <img src=\"images/symbol_times.gif\" width=\"9\"
9
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> ... <img src=\"images/symbol_times.gif\"
10
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 3 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\" width=\"9\"
13
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1</p>\r\n<p>For
14
+ example, 10! = 10 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
15
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 9 <img src=\"images/symbol_times.gif\"
16
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
17
+ ... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 3 <img src=\"images/symbol_times.gif\" width=\"9\"
19
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
20
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
21
+ 1 = 3628800,<br>and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8
22
+ + 0 + 0 = 27.</p>\r\n<p>Find the sum of the digits in the number 100!</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 200
3
+ :name: Find the 200th prime-proof sqube containing the contiguous sub-string "200"
4
+ :url: http://projecteuler.net/problem=200
5
+ :content: "\r\n<p>We shall define a sqube to be a number of the form, <var>p</var><sup>2</sup><var>q</var><sup>3</sup>,
6
+ where <var>p</var> and <var>q</var> are distinct primes.<br>\r\nFor example, 200
7
+ = 5<sup>2</sup>2<sup>3</sup> or 120072949 = 23<sup>2</sup>61<sup>3</sup>.</p>\r\n\r\n<p>The
8
+ first five squbes are 72, 108, 200, 392, and 500.</p>\r\n\r\n<p>Interestingly, 200
9
+ is also the first number for which you cannot change any single digit to make a
10
+ prime; we shall call such numbers, prime-proof. The next prime-proof sqube which
11
+ contains the contiguous sub-string \"200\" is 1992008.</p>\r\n\r\n<p>Find the 200th
12
+ prime-proof sqube containing the contiguous sub-string \"200\".</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 201
3
+ :name: Subsets with a unique sum
4
+ :url: http://projecteuler.net/problem=201
5
+ :content: "\r\n<p>For any set A of numbers, let sum(A) be the sum of the elements
6
+ of A.<br>\r\nConsider the set B = {1,3,6,8,10,11}.<br> There are 20 subsets of B
7
+ containing three elements, and their sums are:</p>\r\n\r\n<p style=\"margin-left:100px\">\r\nsum({1,3,6})
8
+ = 10,<br>\r\nsum({1,3,8}) = 12,<br>\r\nsum({1,3,10}) = 14,<br>\r\nsum({1,3,11})
9
+ = 15,<br>\r\nsum({1,6,8}) = 15,<br>\r\nsum({1,6,10}) = 17,<br>\r\nsum({1,6,11})
10
+ = 18,<br>\r\nsum({1,8,10}) = 19,<br>\r\nsum({1,8,11}) = 20,<br>\r\nsum({1,10,11})
11
+ = 22,<br>\r\nsum({3,6,8}) = 17,<br>\r\nsum({3,6,10}) = 19,<br>\r\nsum({3,6,11})
12
+ = 20,<br>\r\nsum({3,8,10}) = 21,<br>\r\nsum({3,8,11}) = 22,<br>\r\nsum({3,10,11})
13
+ = 24,<br>\r\nsum({6,8,10}) = 24,<br>\r\nsum({6,8,11}) = 25,<br>\r\nsum({6,10,11})
14
+ = 27,<br>\r\nsum({8,10,11}) = 29.</p>\r\n\r\n<p>Some of these sums occur more than
15
+ once, others are unique.<br>\r\nFor a set A, let U(A,k) be the set of unique sums
16
+ of k-element subsets of A, in our example we find U(B,3) = {10,12,14,18,21,25,27,29}
17
+ and sum(U(B,3)) = 156.</p>\r\n\r\n<p>Now consider the 100-element set S = {1<sup>2</sup>,
18
+ 2<sup>2</sup>, ... , 100<sup>2</sup>}.<br>\r\nS has 100891344545564193334812497256
19
+ 50-element subsets.</p>\r\n\r\n<p>Determine the sum of all integers which are the
20
+ sum of exactly one of the 50-element subsets of S, i.e. find sum(U(S,50)).</p>\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 202
3
+ :name: Laserbeam
4
+ :url: http://projecteuler.net/problem=202
5
+ :content: "\r\n<p>Three mirrors are arranged in the shape of an equilateral triangle,
6
+ with their reflective surfaces pointing inwards. There is an infinitesimal gap at
7
+ each vertex of the triangle through which a laser beam may pass.</p>\r\n\r\n<p>Label
8
+ the vertices A, B and C. There are 2 ways in which a laser beam may enter vertex
9
+ C, bounce off 11 surfaces, then exit through the same vertex: one way is shown below;
10
+ the other is the reverse of that.</p>\r\n\r\n<div style=\"text-align:center;\">\r\n
11
+ \ <img src=\"project/images/p_201_laserbeam.gif\" alt=\"\">\n</div>\r\n\r\n<p>There
12
+ are 80840 ways in which a laser beam may enter vertex C, bounce off 1000001 surfaces,
13
+ then exit through the same vertex.</p>\r\n\r\n<p>In how many ways can a laser beam
14
+ enter at vertex C, bounce off 12017639147 surfaces, then exit through the same vertex?</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 203
3
+ :name: Squarefree Binomial Coefficients
4
+ :url: http://projecteuler.net/problem=203
5
+ :content: "\r\n<p>The binomial coefficients <sup>n</sup>C<sub>k</sub> can be arranged
6
+ in triangular form, Pascal's triangle, like this:</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<table
7
+ align=\"center\">\n<tr>\n<td colspan=\"7\"></td>\n<td>1</td>\n<td colspan=\"7\"></td>\n</tr>\n<tr>\n<td
8
+ colspan=\"6\"></td>\n<td>1</td>\n<td></td>\n<td>1</td>\n<td colspan=\"6\"></td>\n</tr>\n<tr>\n<td
9
+ colspan=\"5\"></td>\n<td>1</td>\n<td></td>\n<td>2</td>\n<td></td>\n<td>1</td>\n<td
10
+ colspan=\"5\"></td>\n</tr>\n<tr>\n<td colspan=\"4\"></td>\n<td>1</td>\n<td></td>\n<td>3</td>\n<td></td>\n<td>3</td>\n<td></td>\n<td>1</td>\n<td
11
+ colspan=\"4\"></td>\n</tr>\n<tr>\n<td colspan=\"3\"></td>\n<td>1</td>\n<td></td>\n<td>4</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>4</td>\n<td></td>\n<td>1</td>\n<td
12
+ colspan=\"3\"></td>\n</tr>\n<tr>\n<td colspan=\"2\"></td>\n<td>1</td>\n<td></td>\n<td>5</td>\n<td></td>\n<td>10</td>\n<td></td>\n<td>10</td>\n<td></td>\n<td>5</td>\n<td></td>\n<td>1</td>\n<td
13
+ colspan=\"2\"></td>\n</tr>\n<tr>\n<td colspan=\"1\"></td>\n<td>1</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>15</td>\n<td></td>\n<td>20</td>\n<td></td>\n<td>15</td>\n<td></td>\n<td>6</td>\n<td></td>\n<td>1</td>\n<td
14
+ colspan=\"1\"></td>\n</tr>\n<tr>\n<td>1</td>\n<td></td>\n<td>7</td>\n<td></td>\n<td>21</td>\n<td></td>\n<td>35</td>\n<td></td>\n<td>35</td>\n<td></td>\n<td>21</td>\n<td></td>\n<td>7</td>\n<td></td>\n<td>1</td>\n</tr>\n</table>\r\n.........\r\n</div>\r\n\r\n<p>It
15
+ can be seen that the first eight rows of Pascal's triangle contain twelve distinct
16
+ numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35.</p>\r\n\r\n<p>A positive integer
17
+ <var>n</var> is called squarefree if no square of a prime divides <var>n</var>.\r\nOf
18
+ the twelve distinct numbers in the first eight rows of Pascal's triangle, all except
19
+ 4 and 20 are squarefree.\r\nThe sum of the distinct squarefree numbers in the first
20
+ eight rows is 105.</p>\r\n\r\n<p>Find the sum of the distinct squarefree numbers
21
+ in the first 51 rows of Pascal's triangle.</p>\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 204
3
+ :name: Generalised Hamming Numbers
4
+ :url: http://projecteuler.net/problem=204
5
+ :content: "\r\n<p>A Hamming number is a positive number which has no prime factor
6
+ larger than 5.<br>\r\nSo the first few Hamming numbers are 1, 2, 3, 4, 5, 6, 8,
7
+ 9, 10, 12, 15.<br>\r\nThere are 1105 Hamming numbers not exceeding 10<sup>8</sup>.</p>\r\n\r\n<p>We
8
+ will call a positive number a generalised Hamming number of type <var>n</var>, if
9
+ it has no prime factor larger than <var>n</var>.<br>\r\nHence the Hamming numbers
10
+ are the generalised Hamming numbers of type 5.</p>\r\n\r\n<p>How many generalised
11
+ Hamming numbers of type 100 are there which don't exceed 10<sup>9</sup>?</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 205
3
+ :name: Dice Game
4
+ :url: http://projecteuler.net/problem=205
5
+ :content: "\r\n<p>Peter has nine four-sided (pyramidal) dice, each with faces numbered
6
+ 1, 2, 3, 4.<br>\r\nColin has six six-sided (cubic) dice, each with faces numbered
7
+ 1, 2, 3, 4, 5, 6.</p>\r\n\r\n<p>Peter and Colin roll their dice and compare totals:
8
+ the highest total wins. The result is a draw if the totals are equal.</p>\r\n\r\n<p>What
9
+ is the probability that Pyramidal Pete beats Cubic Colin? Give your answer rounded
10
+ to seven decimal places in the form 0.abcdefg</p>\r\n"
@@ -0,0 +1,6 @@
1
+ ---
2
+ :id: 206
3
+ :name: Concealed Square
4
+ :url: http://projecteuler.net/problem=206
5
+ :content: "\r\n<p>Find the unique positive integer whose square has the form 1_2_3_4_5_6_7_8_9_0,<br>
6
+ where each “_” is a single digit.</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 207
3
+ :name: Integer partition equations
4
+ :url: http://projecteuler.net/problem=207
5
+ :content: "\r\n<p>For some positive integers <var>k</var>, there exists an integer
6
+ partition of the form   4<sup>t</sup> = 2<sup>t</sup> + <var>k</var>,<br>\r\nwhere
7
+ 4<sup>t</sup>, 2<sup>t</sup>, and <var>k</var> are all positive integers and <var>t</var>
8
+ is a real number.</p>\r\n\r\n<p>The first two such partitions are 4<sup>1</sup>
9
+ = 2<sup>1</sup> + 2 and 4<sup>1.5849625...</sup> = 2<sup>1.5849625...</sup> + 6.</p>\r\n\r\n<p>Partitions
10
+ where <var>t</var> is also an integer are called <i>perfect</i>.<br> \r\nFor any
11
+ <var>m</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\"
12
+ border=\"0\" style=\"vertical-align:middle;\"> 1 let P(<var>m</var>) be the proportion
13
+ of such partitions that are perfect with <var>k</var> <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>m</var>.<br>\r\nThus
15
+ P(6) = 1/2.</p>\r\n\r\n<p>In the following table are listed some values of P(<var>m</var>)</p>\r\n<p>   P(5)
16
+ = 1/1<br>\r\n   P(10) = 1/2<br>\r\n   P(15) = 2/3<br>\r\n   P(20) = 1/2<br>\r\n   P(25)
17
+ = 1/2<br>\r\n   P(30) = 2/5<br>\r\n   ...<br>\r\n   P(180) = 1/4<br>\r\n   P(185)
18
+ = 3/13</p>\r\n\r\n\r\n<p>Find the smallest <var>m</var> for which P(<var>m</var>)
19
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
20
+ style=\"vertical-align:middle;\"> 1/12345</p>\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 208
3
+ :name: Robot Walks
4
+ :url: http://projecteuler.net/problem=208
5
+ :content: "\r\n<p>A robot moves in a series of one-fifth circular arcs (72°), with
6
+ a free choice of a clockwise or an anticlockwise arc for each step, but no turning
7
+ on the spot.</p>\r\n\r\n<p>One of 70932 possible closed paths of 25 arcs starting
8
+ northward is</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"http://projecteuler.net/project/images/p_208_robotwalk.gif\"
9
+ alt=\"\">\n</div>\r\n\r\n<p>Given that the robot starts facing North, how many journeys
10
+ of 70 arcs in length can it take that return it, after the final arc, to its starting
11
+ position?<br><!--(Journeys are allowed to return multiple times to the start.)-->\r\n(Any
12
+ arc may be traversed multiple times.) \r\n</p>\r\n\r\n"
@@ -0,0 +1,27 @@
1
+ ---
2
+ :id: 209
3
+ :name: Circular Logic
4
+ :url: http://projecteuler.net/problem=209
5
+ :content: "\r\n<p>A <var>k</var>-input <i>binary truth table</i> is a map from <var>k</var>
6
+ input bits\r\n(binary digits, 0 [false] or 1 [true]) to 1 output bit. For example,
7
+ the 2-input binary truth tables for the logical AND and XOR functions are:</p>\r\n<div
8
+ style=\"text-align:center; margin-left:150px; margin-right:150px;\">\r\n<table cellspacing=\"0\"
9
+ cellpadding=\"2\" border=\"1\" align=\"left\">\n<tr style=\"background-color:#c1daf9;\">\n<td
10
+ width=\"30\" align=\"center\"><var>x</var></td>\r\n<td width=\"30\" align=\"center\"><var>y</var></td>\r\n<td>\n<var>x</var>
11
+ AND <var>y</var>\n</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">0</td>\n<td
12
+ align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">1</td>\n<td
13
+ align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">0</td>\n<td
14
+ align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">1</td>\n<td
15
+ align=\"center\">1</td>\n</tr>\n</table>\n<table cellspacing=\"0\" cellpadding=\"2\"
16
+ border=\"1\" align=\"right\">\n<tr style=\"background-color:#c1daf9;\">\n<td width=\"30\"
17
+ align=\"center\"><var>x</var></td>\r\n<td width=\"30\" align=\"center\"><var>y</var></td>\r\n<td>\n<var>x</var>
18
+ XOR <var>y</var>\n</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">0</td>\n<td
19
+ align=\"center\">0</td>\n</tr>\n<tr>\n<td align=\"center\">0</td>\n<td align=\"center\">1</td>\n<td
20
+ align=\"center\">1</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">0</td>\n<td
21
+ align=\"center\">1</td>\n</tr>\n<tr>\n<td align=\"center\">1</td>\n<td align=\"center\">1</td>\n<td
22
+ align=\"center\">0</td>\n</tr>\n</table>\n</div>\n<br clear=\"all\"><p>How many
23
+ 6-input binary truth tables, τ, satisfy the formula</p>\r\n<div style=\"text-align:center;\">\r\nτ(<var>a</var>,
24
+ <var>b</var>, <var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>) AND τ(<var>b</var>,
25
+ <var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>, <var>a</var> XOR (<var>b</var>
26
+ AND <var>c</var>)) = 0\r\n</div>\n<br><p>for all 6-bit inputs (<var>a</var>, <var>b</var>,
27
+ <var>c</var>, <var>d</var>, <var>e</var>, <var>f</var>)?\r\n</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 21
3
+ :name: Amicable numbers
4
+ :url: http://projecteuler.net/problem=21
5
+ :content: "\r\n<p>Let d(<i>n</i>) be defined as the sum of proper divisors of <i>n</i>
6
+ (numbers less than <i>n</i> which divide evenly into <i>n</i>).<br>\r\nIf d(<i>a</i>)
7
+ = <i>b</i> and d(<i>b</i>) = <i>a</i>, where <i>a</i> <img src=\"images/symbol_ne.gif\"
8
+ width=\"11\" height=\"10\" alt=\"≠\" border=\"0\" style=\"vertical-align:middle;\"><i>b</i>,
9
+ then <i>a</i> and <i>b</i> are an amicable pair and each of <i>a</i> and <i>b</i>
10
+ are called amicable numbers.</p>\r\n<p>For example, the proper divisors of 220 are
11
+ 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors
12
+ of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.</p>\r\n<p>Evaluate the sum of all
13
+ the amicable numbers under 10000.</p>\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 210
3
+ :name: Obtuse Angled Triangles
4
+ :url: http://projecteuler.net/problem=210
5
+ :content: "\r\nConsider the set S(r) of points (x,y) with integer coordinates satisfying
6
+ |x| + |y| <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
7
+ border=\"0\" style=\"vertical-align:middle;\"> r. <br>\r\nLet O be the point (0,0)
8
+ and C the point (r/4,r/4). <br>\r\nLet N(r) be the number of points B in S(r), so
9
+ that the triangle OBC has an obtuse angle, i.e. the largest angle α satisfies 90°\r\nSo,
10
+ for example, N(4)=24 and N(8)=100.\r\n<p>\r\nWhat is N(1,000,000,000)?\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 211
3
+ :name: Divisor Square Sum
4
+ :url: http://projecteuler.net/problem=211
5
+ :content: "\r\n<p>For a positive integer <var>n</var>, let σ<sub>2</sub>(<var>n</var>)
6
+ be the sum of the squares of its divisors. For example,</p>\r\n<div style=\"text-align:center;\">σ<sub>2</sub>(10)
7
+ = 1 + 4 + 25 + 100 = 130.</div>\r\n<p>Find the sum of all <var>n</var>, 0 <img src=\"images/symbol_lt.gif\"
8
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
9
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
10
+ style=\"vertical-align:middle;\"> 64,000,000 such that σ<sub>2</sub>(<var>n</var>)
11
+ is a perfect square.</p>\r\n"