euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
data/data/problems/1.yml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
:id: 1
|
3
|
+
:name: Multiples of 3 and 5
|
4
|
+
:url: http://projecteuler.net/problem=1
|
5
|
+
:content: "\r\n<p>If we list all the natural numbers below 10 that are multiples of
|
6
|
+
3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.</p>\r\n<p>Find the
|
7
|
+
sum of all the multiples of 3 or 5 below 1000.</p>\r\n\r\n"
|
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 10
|
3
|
+
:name: Summation of primes
|
4
|
+
:url: http://projecteuler.net/problem=10
|
5
|
+
:content: "\r\n<p>The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.</p>\r\n<p>Find
|
6
|
+
the sum of all the primes below two million.</p>\r\n<!--\r\n<p class=\"info\">Note:
|
7
|
+
This problem has been changed recently, please check that you are using the right
|
8
|
+
parameters.</p>\r\n-->\r\n\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 100
|
3
|
+
:name: Arranged probability
|
4
|
+
:url: http://projecteuler.net/problem=100
|
5
|
+
:content: "\r\n\n<p>If a box contains twenty-one coloured discs, composed of fifteen
|
6
|
+
blue discs and six red discs, and two discs were taken at random, it can be seen
|
7
|
+
that the probability of taking two blue discs, P(BB) = (15/21)<img src=\"images/symbol_times.gif\"
|
8
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">(14/20)
|
9
|
+
= 1/2.</p>\n<p>The next such arrangement, for which there is exactly 50% chance
|
10
|
+
of taking two blue discs at random, is a box containing eighty-five blue discs and
|
11
|
+
thirty-five red discs.</p>\n<p>By finding the first arrangement to contain over
|
12
|
+
10<sup>12</sup> = 1,000,000,000,000 discs in total, determine the number of blue
|
13
|
+
discs that the box would contain.</p>\n\r\n"
|
@@ -0,0 +1,49 @@
|
|
1
|
+
---
|
2
|
+
:id: 101
|
3
|
+
:name: Optimum polynomial
|
4
|
+
:url: http://projecteuler.net/problem=101
|
5
|
+
:content: "\r\n<p>If we are presented with the first <var>k</var> terms of a sequence
|
6
|
+
it is impossible to say with certainty the value of the next term, as there are
|
7
|
+
infinitely many polynomial functions that can model the sequence.</p>\r\n<p>As an
|
8
|
+
example, let us consider the sequence of cube numbers. This is defined by the generating
|
9
|
+
function, <br><var>u</var><sub><var>n</var></sub> = <var>n</var><sup>3</sup>: 1,
|
10
|
+
8, 27, 64, 125, 216, ...</p>\r\n<p>Suppose we were only given the first two terms
|
11
|
+
of this sequence. Working on the principle that \"simple is best\" we should assume
|
12
|
+
a linear relationship and predict the next term to be 15 (common difference 7).
|
13
|
+
Even if we were presented with the first three terms, by the same principle of simplicity,
|
14
|
+
a quadratic relationship should be assumed.</p>\r\n<p>We shall define OP(<var>k</var>,
|
15
|
+
<var>n</var>) to be the <var>n</var><sup>th</sup> term of the optimum polynomial
|
16
|
+
generating function for the first <var>k</var> terms of a sequence. It should be
|
17
|
+
clear that OP(<var>k</var>, <var>n</var>) will accurately generate the terms of
|
18
|
+
the sequence for <var>n</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
19
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>, and potentially
|
20
|
+
the <i>first incorrect term</i> (FIT) will be OP(<var>k</var>, <var>k</var>+1);
|
21
|
+
in which case we shall call it a <i>bad OP</i> (BOP).</p>\r\n<p>As a basis, if we
|
22
|
+
were only given the first term of sequence, it would be most sensible to assume
|
23
|
+
constancy; that is, for <var>n</var> <img src=\"images/symbol_ge.gif\" width=\"10\"
|
24
|
+
height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 2, OP(1,
|
25
|
+
<var>n</var>) = <var>u</var><sub>1</sub>.</p>\r\n<p>Hence we obtain the following
|
26
|
+
OPs for the cubic sequence:</p>\r\n<div style=\"margin-left:50px;\">\r\n<table>\n<tr>\n<td>OP(1,
|
27
|
+
<var>n</var>) = 1</td>\r\n<td>1, <span style=\"color:red;\"><b>1</b></span>, 1,
|
28
|
+
1, ...</td>\r\n</tr>\n<tr>\n<td>OP(2, <var>n</var>) = 7<var>n</var><img src=\"images/symbol_minus.gif\"
|
29
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">6</td>\r\n<td>1,
|
30
|
+
8, <span style=\"color:red;\"><b>15</b></span>, ...</td>\r\n</tr>\n<tr>\n<td>OP(3,
|
31
|
+
<var>n</var>) = 6<var>n</var><sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
|
32
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">11<var>n</var>+6 </td>\r\n<td>1,
|
33
|
+
8, 27, <span style=\"color:red;\"><b>58</b></span>, ...</td>\r\n</tr>\n<tr>\n<td>OP(4,
|
34
|
+
<var>n</var>) = <var>n</var><sup>3</sup>\n</td>\r\n<td>1, 8, 27, 64, 125, ...</td>\r\n</tr>\n</table>\n</div>\r\n<p>Clearly
|
35
|
+
no BOPs exist for <var>k</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
|
36
|
+
alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 4.</p>\r\n<p>By considering
|
37
|
+
the sum of FITs generated by the BOPs (indicated in <span style=\"color:red;\"><b>red</b></span>
|
38
|
+
above), we obtain 1 + 15 + 58 = 74.</p>\r\n<p>Consider the following tenth degree
|
39
|
+
polynomial generating function:</p>\r\n<p style=\"text-align:center;\"><var>u</var><sub><var>n</var></sub>
|
40
|
+
= 1 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
41
|
+
style=\"vertical-align:middle;\"><var>n</var> + <var>n</var><sup>2</sup><img src=\"images/symbol_minus.gif\"
|
42
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>3</sup>
|
43
|
+
+ <var>n</var><sup>4</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
44
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>5</sup>
|
45
|
+
+ <var>n</var><sup>6</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
46
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>7</sup>
|
47
|
+
+ <var>n</var><sup>8</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
48
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>9</sup>
|
49
|
+
+ <var>n</var><sup>10</sup></p>\r\n<p>Find the sum of FITs for the BOPs.</p>\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 102
|
3
|
+
:name: Triangle containment
|
4
|
+
:url: http://projecteuler.net/problem=102
|
5
|
+
:content: "\r\n\n<p>Three distinct points are plotted at random on a Cartesian plane,
|
6
|
+
for which -1000 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\"><i>x</i>, <i>y</i> <img src=\"images/symbol_le.gif\"
|
8
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
9
|
+
1000, such that a triangle is formed.</p>\n<p>Consider the following two triangles:</p>\n<p
|
10
|
+
style=\"text-align:center;\">A(-340,495), B(-153,-910), C(835,-947)<br><br>\nX(-175,41),
|
11
|
+
Y(-421,-714), Z(574,-645)</p>\n<p>It can be verified that triangle ABC contains
|
12
|
+
the origin, whereas triangle XYZ does not.</p>\n<p>Using <a href=\"project/triangles.txt\">triangles.txt</a>
|
13
|
+
(right click and 'Save Link/Target As...'), a 27K text file containing the co-ordinates
|
14
|
+
of one thousand \"random\" triangles, find the number of triangles for which the
|
15
|
+
interior contains the origin.</p>\n<p class=\"info\">NOTE: The first two examples
|
16
|
+
in the file represent the triangles in the example given above.</p>\n\r\n"
|
@@ -0,0 +1,26 @@
|
|
1
|
+
---
|
2
|
+
:id: 103
|
3
|
+
:name: 'Special subset sums: optimum'
|
4
|
+
:url: http://projecteuler.net/problem=103
|
5
|
+
:content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
|
6
|
+
We shall call it a special sum set if for any two non-empty disjoint subsets, B
|
7
|
+
and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
|
8
|
+
<img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
|
10
|
+
B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
|
11
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>If
|
12
|
+
S(A) is minimised for a given <i>n</i>, we shall call it an optimum special sum
|
13
|
+
set. The first five optimum special sum sets are given below.</p>\r\n<p style=\"margin-left:50px;\"><i>n</i>
|
14
|
+
= 1: {1}<br><i>n</i> = 2: {1, 2}<br><i>n</i> = 3: {2, 3, 4}<br><i>n</i> = 4: {3,
|
15
|
+
5, 6, 7}<br><i>n</i> = 5: {6, 9, 11, 12, 13}</p>\r\n<p>It <i>seems</i> that for
|
16
|
+
a given optimum set, A = {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a</i><sub>n</sub>},
|
17
|
+
the next optimum set is of the form B = {<i>b</i>, <i>a</i><sub>1</sub>+<i>b</i>,
|
18
|
+
<i>a</i><sub>2</sub>+<i>b</i>, ... ,<i>a</i><sub>n</sub>+<i>b</i>}, where <i>b</i>
|
19
|
+
is the \"middle\" element on the previous row.</p>\r\n<p>By applying this \"rule\"
|
20
|
+
we would expect the optimum set for <i>n</i> = 6 to be A = {11, 17, 20, 22, 23,
|
21
|
+
24}, with S(A) = 117. However, this is not the optimum set, as we have merely applied
|
22
|
+
an algorithm to provide a near optimum set. The optimum set for <i>n</i> = 6 is
|
23
|
+
A = {11, 18, 19, 20, 22, 25}, with S(A) = 115 and corresponding set string: 111819202225.</p>\r\n<p>Given
|
24
|
+
that A is an optimum special sum set for <i>n</i> = 7, find its set string.</p>\r\n<p
|
25
|
+
class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&id=105\">105</a>
|
26
|
+
and <a href=\"index.php?section=problems&id=106\">106</a>.</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 104
|
3
|
+
:name: Pandigital Fibonacci ends
|
4
|
+
:url: http://projecteuler.net/problem=104
|
5
|
+
:content: "\r\n\n<p>The Fibonacci sequence is defined by the recurrence relation:</p>\n<blockquote>F<sub><i>n</i></sub>
|
6
|
+
= F<sub><i>n</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\">1</sub> + F<sub><i>n</i><img src=\"images/symbol_minus.gif\"
|
8
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</sub>,
|
9
|
+
where F<sub>1</sub> = 1 and F<sub>2</sub> = 1.</blockquote>\n<p>It turns out that
|
10
|
+
F<sub>541</sub>, which contains 113 digits, is the first Fibonacci number for which
|
11
|
+
the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not
|
12
|
+
necessarily in order). And F<sub>2749</sub>, which contains 575 digits, is the first
|
13
|
+
Fibonacci number for which the first nine digits are 1-9 pandigital.</p>\n<p>Given
|
14
|
+
that F<sub><i>k</i></sub> is the first Fibonacci number for which the first nine
|
15
|
+
digits AND the last nine digits are 1-9 pandigital, find <i>k</i>.</p>\n\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 105
|
3
|
+
:name: 'Special subset sums: testing'
|
4
|
+
:url: http://projecteuler.net/problem=105
|
5
|
+
:content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
|
6
|
+
We shall call it a special sum set if for any two non-empty disjoint subsets, B
|
7
|
+
and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
|
8
|
+
<img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
|
10
|
+
B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
|
11
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>For
|
12
|
+
example, {81, 88, 75, 42, 87, 84, 86, 65} is not a special sum set because 65 +
|
13
|
+
87 + 88 = 75 + 81 + 84, whereas {157, 150, 164, 119, 79, 159, 161, 139, 158} satisfies
|
14
|
+
both rules for all possible subset pair combinations and S(A) = 1286.</p>\r\n<p>Using
|
15
|
+
<a href=\"project/sets.txt\">sets.txt</a> (right click and \"Save Link/Target As...\"),
|
16
|
+
a 4K text file with one-hundred sets containing seven to twelve elements (the two
|
17
|
+
examples given above are the first two sets in the file), identify all the special
|
18
|
+
sum sets, A<sub>1</sub>, A<sub>2</sub>, ..., A<sub><i>k</i></sub>, and find the
|
19
|
+
value of S(A<sub>1</sub>) + S(A<sub>2</sub>) + ... + S(A<sub><i>k</i></sub>).</p>\r\n<p
|
20
|
+
class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&id=103\">103</a>
|
21
|
+
and <a href=\"index.php?section=problems&id=106\">106</a>.</p>\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 106
|
3
|
+
:name: 'Special subset sums: meta-testing'
|
4
|
+
:url: http://projecteuler.net/problem=106
|
5
|
+
:content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
|
6
|
+
We shall call it a special sum set if for any two non-empty disjoint subsets, B
|
7
|
+
and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
|
8
|
+
<img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
|
10
|
+
B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
|
11
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>For
|
12
|
+
this problem we shall assume that a given set contains <i>n</i> strictly increasing
|
13
|
+
elements and it already satisfies the second rule.</p>\r\n<p>Surprisingly, out of
|
14
|
+
the 25 possible subset pairs that can be obtained from a set for which <i>n</i>
|
15
|
+
= 4, only 1 of these pairs need to be tested for equality (first rule). Similarly,
|
16
|
+
when <i>n</i> = 7, only 70 out of the 966 subset pairs need to be tested.</p>\r\n<p>For
|
17
|
+
<i>n</i> = 12, how many of the 261625 subset pairs that can be obtained need to
|
18
|
+
be tested for equality?</p>\r\n<p class=\"info\">NOTE: This problem is related to
|
19
|
+
problems <a href=\"index.php?section=problems&id=103\">103</a> and <a href=\"index.php?section=problems&id=105\">105</a>.</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 107
|
3
|
+
:name: Minimal network
|
4
|
+
:url: http://projecteuler.net/problem=107
|
5
|
+
:content: "\r\n\n<p>The following undirected network consists of seven vertices and
|
6
|
+
twelve edges with a total weight of 243.</p>\n<div style=\"text-align:center;\">\n<img
|
7
|
+
src=\"project/images/p_107_1.gif\" width=\"381\" height=\"278\" alt=\"\"><br>\n</div>\n<p>The
|
8
|
+
same network can be represented by the matrix below.</p>\n<table cellpadding=\"5\"
|
9
|
+
cellspacing=\"0\" border=\"1\" align=\"center\">\n<tr>\n<td> </td>\n<td><b>A</b></td>\n<td><b>B</b></td>\n<td><b>C</b></td>\n<td><b>D</b></td>\n<td><b>E</b></td>\n<td><b>F</b></td>\n<td><b>G</b></td>\n</tr>\n<tr>\n<td><b>A</b></td>\n<td>-</td>\n<td>16</td>\n<td>12</td>\n<td>21</td>\n<td>-</td>\n<td>-</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>B</b></td>\n<td>16</td>\n<td>-</td>\n<td>-</td>\n<td>17</td>\n<td>20</td>\n<td>-</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>C</b></td>\n<td>12</td>\n<td>-</td>\n<td>-</td>\n<td>28</td>\n<td>-</td>\n<td>31</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>D</b></td>\n<td>21</td>\n<td>17</td>\n<td>28</td>\n<td>-</td>\n<td>18</td>\n<td>19</td>\n<td>23</td>\n</tr>\n<tr>\n<td><b>E</b></td>\n<td>-</td>\n<td>20</td>\n<td>-</td>\n<td>18</td>\n<td>-</td>\n<td>-</td>\n<td>11</td>\n</tr>\n<tr>\n<td><b>F</b></td>\n<td>-</td>\n<td>-</td>\n<td>31</td>\n<td>19</td>\n<td>-</td>\n<td>-</td>\n<td>27</td>\n</tr>\n<tr>\n<td><b>G</b></td>\n<td>-</td>\n<td>-</td>\n<td>-</td>\n<td>23</td>\n<td>11</td>\n<td>27</td>\n<td>-</td>\n</tr>\n</table>\n<p>However,
|
10
|
+
it is possible to optimise the network by removing some edges and still ensure that
|
11
|
+
all points on the network remain connected. The network which achieves the maximum
|
12
|
+
saving is shown below. It has a weight of 93, representing a saving of 243 <img
|
13
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"> 93 = 150 from the original network.</p>\n<div
|
15
|
+
style=\"text-align:center;\">\n<img src=\"project/images/p_107_2.gif\" width=\"385\"
|
16
|
+
height=\"288\" alt=\"\"><br>\n</div>\n<p>Using <a href=\"project/network.txt\">network.txt</a>
|
17
|
+
(right click and 'Save Link/Target As...'), a 6K text file containing a network
|
18
|
+
with forty vertices, and given in matrix form, find the maximum saving which can
|
19
|
+
be achieved by removing redundant edges whilst ensuring that the network remains
|
20
|
+
connected.</p>\n\r\n"
|
@@ -0,0 +1,32 @@
|
|
1
|
+
---
|
2
|
+
:id: 108
|
3
|
+
:name: Diophantine reciprocals I
|
4
|
+
:url: http://projecteuler.net/problem=108
|
5
|
+
:content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
|
6
|
+
are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
|
7
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
8
|
+
height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
|
9
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
10
|
+
height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
|
11
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
12
|
+
height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>For
|
13
|
+
<var>n</var> = 4 there are exactly three distinct solutions:</p>\r\n<div style=\"text-align:center;\">\r\n<table
|
14
|
+
align=\"center\">\n<tr>\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
15
|
+
width=\"15\" height=\"1\" alt=\"\"><br> 5</div></td>\r\n<td> + </td>\r\n<td><div
|
16
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
17
|
+
height=\"1\" alt=\"\"><br> 20</div></td>\r\n<td> = </td>\r\n<td><div style=\"text-align:center;\">1<br><img
|
18
|
+
src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n<tr>\n<td><div
|
19
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
20
|
+
height=\"1\" alt=\"\"><br> 6</div></td>\r\n<td> + </td>\r\n<td><div style=\"text-align:center;\">1<br><img
|
21
|
+
src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 12</div></td>\r\n<td>
|
22
|
+
= </td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
23
|
+
width=\"15\" height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1<br><img
|
24
|
+
src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 8</div></td>\r\n<td>
|
25
|
+
+ </td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
26
|
+
width=\"15\" height=\"1\" alt=\"\"><br> 8</div></td>\r\n<td> = </td>\r\n<td><div
|
27
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
28
|
+
height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n</table>\n</div>\r\n<p>What is
|
29
|
+
the least value of <var>n</var> for which the number of distinct solutions exceeds
|
30
|
+
one-thousand?</p>\r\n<p class=\"info\">NOTE: This problem is an easier version of
|
31
|
+
problem <a href=\"index.php?section=problems&id=110\">110</a>; it is strongly
|
32
|
+
advised that you solve this one first.</p>\r\n"
|
@@ -0,0 +1,33 @@
|
|
1
|
+
---
|
2
|
+
:id: 109
|
3
|
+
:name: Darts
|
4
|
+
:url: http://projecteuler.net/problem=109
|
5
|
+
:content: "\r\n<p>In the game of darts a player throws three darts at a target board
|
6
|
+
which is split into twenty equal sized sections numbered one to twenty.</p>\r\n<div
|
7
|
+
style=\"text-align:center;\">\r\n<img src=\"project/images/p_109.gif\" width=\"400\"
|
8
|
+
height=\"400\" alt=\"\"><br>\n</div>\r\n<p>The score of a dart is determined by
|
9
|
+
the number of the region that the dart lands in. A dart landing outside the red/green
|
10
|
+
outer ring scores zero. The black and cream regions inside this ring represent single
|
11
|
+
scores. However, the red/green outer ring and middle ring score double and treble
|
12
|
+
scores respectively.</p>\r\n<p>At the centre of the board are two concentric circles
|
13
|
+
called the bull region, or bulls-eye. The outer bull is worth 25 points and the
|
14
|
+
inner bull is a double, worth 50 points.</p>\r\n<p>There are many variations of
|
15
|
+
rules but in the most popular game the players will begin with a score 301 or 501
|
16
|
+
and the first player to reduce their running total to zero is a winner. However,
|
17
|
+
it is normal to play a \"doubles out\" system, which means that the player must
|
18
|
+
land a double (including the double bulls-eye at the centre of the board) on their
|
19
|
+
final dart to win; any other dart that would reduce their running total to one or
|
20
|
+
lower means the score for that set of three darts is \"bust\".</p>\r\n<p>When a
|
21
|
+
player is able to finish on their current score it is called a \"checkout\" and
|
22
|
+
the highest checkout is 170: T20 T20 D25 (two treble 20s and double bull).</p>\r\n<p>There
|
23
|
+
are exactly eleven distinct ways to checkout on a score of 6:</p>\r\n<div style=\"text-align:center;\">\r\n<table
|
24
|
+
border=\"1\" cellpadding=\"3\" cellspacing=\"0\" align=\"center\">\n<tr>\n<td>\n<img
|
25
|
+
src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br>D3</td>\r\n<td>\n<img
|
26
|
+
src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br> </td>\r\n<td>\n<img
|
27
|
+
src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br> </td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>D2</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S2</td>\r\n<td>D2</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>D2</td>\r\n<td>D1</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S4</td>\r\n<td>D1</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>S1</td>\r\n<td>D2</td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>T1</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>S3</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>D1</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>S2</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>S2</td>\r\n<td>S2</td>\r\n<td>D1</td>\r\n</tr>\n</table>\n</div>\r\n<p>Note
|
28
|
+
that D1 D2 is considered <b>different</b> to D2 D1 as they finish on different doubles.
|
29
|
+
However, the combination S1 T1 D1 is considered the <b>same</b> as T1 S1 D1.</p>\r\n<p>In
|
30
|
+
addition we shall not include misses in considering combinations; for example, D3
|
31
|
+
is the <b>same</b> as 0 D3 and 0 0 D3.</p>\r\n<p>Incredibly there are 42336 distinct
|
32
|
+
ways of checking out in total.</p>\r\n<p>How many distinct ways can a player checkout
|
33
|
+
with a score less than 100?</p>\r\n\r\n"
|
@@ -0,0 +1,33 @@
|
|
1
|
+
---
|
2
|
+
:id: 11
|
3
|
+
:name: Largest product in a grid
|
4
|
+
:url: http://projecteuler.net/problem=11
|
5
|
+
:content: "\r\n<p>In the 20<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
6
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20 grid below, four numbers
|
7
|
+
along a diagonal line have been marked in red.</p>\r\n<p style=\"font-family:courier
|
8
|
+
new;text-align:center;font-size:10pt;\">\r\n08 02 22 97 38 15 00 40 00 75 04 05
|
9
|
+
07 78 52 12 50 77 91 08<br>\r\n49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04
|
10
|
+
56 62 00<br>\r\n81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65<br>\r\n52
|
11
|
+
70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91<br>\r\n22 31 16 71 51 67
|
12
|
+
63 89 41 92 36 54 22 40 40 28 66 33 13 80<br>\r\n24 47 32 60 99 03 45 02 44 75 33
|
13
|
+
53 78 36 84 20 35 17 12 50<br>\r\n32 98 81 28 64 23 67 10 <span style=\"color:#ff0000;\"><b>26</b></span>
|
14
|
+
38 40 67 59 54 70 66 18 38 64 70<br>\r\n67 26 20 68 02 62 12 20 95 <span style=\"color:#ff0000;\"><b>63</b></span>
|
15
|
+
94 39 63 08 40 91 66 49 94 21<br>\r\n24 55 58 05 66 73 99 26 97 17 <span style=\"color:#ff0000;\"><b>78</b></span>
|
16
|
+
78 96 83 14 88 34 89 63 72<br>\r\n21 36 23 09 75 00 76 44 20 45 35 <span style=\"color:#ff0000;\"><b>14</b></span>
|
17
|
+
00 61 33 97 34 31 33 95<br>\r\n78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09
|
18
|
+
53 56 92<br>\r\n16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57<br>\r\n86
|
19
|
+
56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58<br>\r\n19 80 81 68 05 94
|
20
|
+
47 69 28 73 92 13 86 52 17 77 04 89 55 40<br>\r\n04 52 08 83 97 35 99 16 07 97 57
|
21
|
+
32 16 26 26 79 33 27 98 66<br>\r\n88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32
|
22
|
+
63 93 53 69<br>\r\n04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36<br>\r\n20
|
23
|
+
69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16<br>\r\n20 73 35 29 78 31
|
24
|
+
90 01 74 31 49 71 48 86 81 16 23 57 05 54<br>\r\n01 70 54 71 83 51 54 69 16 92 33
|
25
|
+
48 61 43 52 01 89 19 67 48<br></p>\r\n<p>The product of these numbers is 26 <img
|
26
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
27
|
+
style=\"vertical-align:middle;\"> 63 <img src=\"images/symbol_times.gif\" width=\"9\"
|
28
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 78 <img src=\"images/symbol_times.gif\"
|
29
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
30
|
+
14 = 1788696.</p>\r\n<p>What is the greatest product of four adjacent numbers in
|
31
|
+
the same direction (up, down, left, right, or diagonally) in the 20<img src=\"images/symbol_times.gif\"
|
32
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20
|
33
|
+
grid?</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 110
|
3
|
+
:name: Diophantine reciprocals II
|
4
|
+
:url: http://projecteuler.net/problem=110
|
5
|
+
:content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
|
6
|
+
are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
|
7
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
8
|
+
height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
|
9
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
10
|
+
height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
|
11
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
12
|
+
height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>It
|
13
|
+
can be verified that when <var>n</var> = 1260 there are 113 distinct solutions and
|
14
|
+
this is the least value of <var>n</var> for which the total number of distinct solutions
|
15
|
+
exceeds one hundred.</p>\r\n<p>What is the least value of <var>n</var> for which
|
16
|
+
the number of distinct solutions exceeds four million?</p>\r\n<p class=\"info\">NOTE:
|
17
|
+
This problem is a much more difficult version of problem <a href=\"index.php?section=problems&id=108\">108</a>
|
18
|
+
and as it is well beyond the limitations of a brute force approach it requires a
|
19
|
+
clever implementation.</p>\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 111
|
3
|
+
:name: Primes with runs
|
4
|
+
:url: http://projecteuler.net/problem=111
|
5
|
+
:content: "\r\n<p>Considering 4-digit primes containing repeated digits it is clear
|
6
|
+
that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by
|
7
|
+
22, and so on. But there are nine 4-digit primes containing three ones:</p>\r\n<p
|
8
|
+
style=\"text-align:center;\">1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111</p>\r\n<p>We
|
9
|
+
shall say that M(<i>n</i>, <i>d</i>) represents the maximum number of repeated digits
|
10
|
+
for an <i>n</i>-digit prime where <i>d</i> is the repeated digit, N(<i>n</i>, <i>d</i>)
|
11
|
+
represents the number of such primes, and S(<i>n</i>, <i>d</i>) represents the sum
|
12
|
+
of these primes.</p>\r\n<p>So M(4, 1) = 3 is the maximum number of repeated digits
|
13
|
+
for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such
|
14
|
+
primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for <i>d</i>
|
15
|
+
= 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4,
|
16
|
+
0) = 13 such cases.</p>\r\n<p>In the same way we obtain the following results for
|
17
|
+
4-digit primes.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"
|
18
|
+
border=\"1\" cellspacing=\"0\" cellpadding=\"5\">\n<tr>\n<td><b>Digit, <i>d</i></b></td>\r\n<td><b>M(4,
|
19
|
+
<i>d</i>)</b></td>\r\n<td><b>N(4, <i>d</i>)</b></td>\r\n<td><b>S(4, <i>d</i>)</b></td>\r\n</tr>\n<tr>\n<td>0</td>\r\n<td>2</td>\r\n<td>13</td>\r\n<td>67061</td>\r\n</tr>\n<tr>\n<td>1</td>\r\n<td>3</td>\r\n<td>9</td>\r\n<td>22275</td>\r\n</tr>\n<tr>\n<td>2</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>2221</td>\r\n</tr>\n<tr>\n<td>3</td>\r\n<td>3</td>\r\n<td>12</td>\r\n<td>46214</td>\r\n</tr>\n<tr>\n<td>4</td>\r\n<td>3</td>\r\n<td>2</td>\r\n<td>8888</td>\r\n</tr>\n<tr>\n<td>5</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>5557</td>\r\n</tr>\n<tr>\n<td>6</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>6661</td>\r\n</tr>\n<tr>\n<td>7</td>\r\n<td>3</td>\r\n<td>9</td>\r\n<td>57863</td>\r\n</tr>\n<tr>\n<td>8</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>8887</td>\r\n</tr>\n<tr>\n<td>9</td>\r\n<td>3</td>\r\n<td>7</td>\r\n<td>48073</td>\r\n</tr>\n</table>\n</div>\r\n<p>For
|
20
|
+
<i>d</i> = 0 to 9, the sum of all S(4, <i>d</i>) is 273700.</p>\r\n<p>Find the sum
|
21
|
+
of all S(10, <i>d</i>).</p>\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 112
|
3
|
+
:name: Bouncy numbers
|
4
|
+
:url: http://projecteuler.net/problem=112
|
5
|
+
:content: "\r\n<p>Working from left-to-right if no digit is exceeded by the digit
|
6
|
+
to its left it is called an increasing number; for example, 134468.</p>\r\n<p>Similarly
|
7
|
+
if no digit is exceeded by the digit to its right it is called a decreasing number;
|
8
|
+
for example, 66420.</p>\r\n<p>We shall call a positive integer that is neither increasing
|
9
|
+
nor decreasing a \"bouncy\" number; for example, 155349.</p>\r\n<p>Clearly there
|
10
|
+
cannot be any bouncy numbers below one-hundred, but just over half of the numbers
|
11
|
+
below one-thousand (525) are bouncy. In fact, the least number for which the proportion
|
12
|
+
of bouncy numbers first reaches 50% is 538.</p>\r\n<p>Surprisingly, bouncy numbers
|
13
|
+
become more and more common and by the time we reach 21780 the proportion of bouncy
|
14
|
+
numbers is equal to 90%.</p>\r\n<p>Find the least number for which the proportion
|
15
|
+
of bouncy numbers is exactly 99%.</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 113
|
3
|
+
:name: Non-bouncy numbers
|
4
|
+
:url: http://projecteuler.net/problem=113
|
5
|
+
:content: "\r\n\n<p>Working from left-to-right if no digit is exceeded by the digit
|
6
|
+
to its left it is called an increasing number; for example, 134468.</p>\n<p>Similarly
|
7
|
+
if no digit is exceeded by the digit to its right it is called a decreasing number;
|
8
|
+
for example, 66420.</p>\n<p>We shall call a positive integer that is neither increasing
|
9
|
+
nor decreasing a \"bouncy\" number; for example, 155349.</p>\n<p>As <i>n</i> increases,
|
10
|
+
the proportion of bouncy numbers below <i>n</i> increases such that there are only
|
11
|
+
12951 numbers below one-million that are not bouncy and only 277032 non-bouncy numbers
|
12
|
+
below 10<sup>10</sup>.</p>\n<p>How many numbers below a googol (10<sup>100</sup>)
|
13
|
+
are not bouncy?</p>\n\r\n"
|
@@ -0,0 +1,106 @@
|
|
1
|
+
---
|
2
|
+
:id: 114
|
3
|
+
:name: Counting block combinations I
|
4
|
+
:url: http://projecteuler.net/problem=114
|
5
|
+
:content: "\r\n<p>A row measuring seven units in length has red blocks with a minimum
|
6
|
+
length of three units placed on it, such that any two red blocks (which are allowed
|
7
|
+
to be different lengths) are separated by at least one black square. There are exactly
|
8
|
+
seventeen ways of doing this.</p>\r\n\r\n<table cellpadding=\"5\" cellspacing=\"1\"
|
9
|
+
border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
|
10
|
+
border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
11
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
12
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
13
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
14
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
15
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
16
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
17
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
18
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#cc0000\"><img
|
19
|
+
src=\"images/spacer.gif\" width=\"66\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
20
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
21
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
22
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
23
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
24
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
25
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
26
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
|
27
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
28
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
29
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
30
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
31
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
32
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
33
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
34
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
|
35
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
36
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
37
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
38
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
39
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
40
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
41
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
42
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
|
43
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
44
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
45
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
46
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
47
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
48
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
49
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
50
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
|
51
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"1\"
|
52
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#cc0000\"><img
|
53
|
+
src=\"images/spacer.gif\" width=\"66\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
54
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
|
55
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
|
56
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
|
57
|
+
border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
58
|
+
width=\"89\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
59
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
60
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
61
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
62
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
63
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
|
64
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
|
65
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
66
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
67
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
68
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
69
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
70
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
|
71
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
|
72
|
+
alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
73
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
74
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
75
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
76
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
77
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
|
78
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
|
79
|
+
alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
|
80
|
+
border=\"1\"><tr>\n<td colspan=\"5\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
|
81
|
+
width=\"112\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
82
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
83
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
84
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
85
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"5\"
|
86
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"112\"
|
87
|
+
height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
|
88
|
+
width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
|
89
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
90
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
91
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"5\"
|
92
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"112\"
|
93
|
+
height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\"
|
94
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"6\" style=\"background-color:#cc0000\"><img
|
95
|
+
src=\"images/spacer.gif\" width=\"135\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
|
96
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
|
97
|
+
cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
|
98
|
+
src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"6\"
|
99
|
+
style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"135\"
|
100
|
+
height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\"
|
101
|
+
cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"7\" style=\"background-color:#cc0000\"><img
|
102
|
+
src=\"images/spacer.gif\" width=\"158\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
|
103
|
+
many ways can a row measuring fifty units in length be filled?</p>\r\n<p class=\"info\">NOTE:
|
104
|
+
Although the example above does not lend itself to the possibility, in general it
|
105
|
+
is permitted to mix block sizes. For example, on a row measuring eight units in
|
106
|
+
length you could use red (3), black (1), and red (4).</p>\r\n"
|