euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,7 @@
1
+ ---
2
+ :id: 1
3
+ :name: Multiples of 3 and 5
4
+ :url: http://projecteuler.net/problem=1
5
+ :content: "\r\n<p>If we list all the natural numbers below 10 that are multiples of
6
+ 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.</p>\r\n<p>Find the
7
+ sum of all the multiples of 3 or 5 below 1000.</p>\r\n\r\n"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 10
3
+ :name: Summation of primes
4
+ :url: http://projecteuler.net/problem=10
5
+ :content: "\r\n<p>The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.</p>\r\n<p>Find
6
+ the sum of all the primes below two million.</p>\r\n<!--\r\n<p class=\"info\">Note:
7
+ This problem has been changed recently, please check that you are using the right
8
+ parameters.</p>\r\n-->\r\n\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 100
3
+ :name: Arranged probability
4
+ :url: http://projecteuler.net/problem=100
5
+ :content: "\r\n\n<p>If a box contains twenty-one coloured discs, composed of fifteen
6
+ blue discs and six red discs, and two discs were taken at random, it can be seen
7
+ that the probability of taking two blue discs, P(BB) = (15/21)<img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">(14/20)
9
+ = 1/2.</p>\n<p>The next such arrangement, for which there is exactly 50% chance
10
+ of taking two blue discs at random, is a box containing eighty-five blue discs and
11
+ thirty-five red discs.</p>\n<p>By finding the first arrangement to contain over
12
+ 10<sup>12</sup> = 1,000,000,000,000 discs in total, determine the number of blue
13
+ discs that the box would contain.</p>\n\r\n"
@@ -0,0 +1,49 @@
1
+ ---
2
+ :id: 101
3
+ :name: Optimum polynomial
4
+ :url: http://projecteuler.net/problem=101
5
+ :content: "\r\n<p>If we are presented with the first <var>k</var> terms of a sequence
6
+ it is impossible to say with certainty the value of the next term, as there are
7
+ infinitely many polynomial functions that can model the sequence.</p>\r\n<p>As an
8
+ example, let us consider the sequence of cube numbers. This is defined by the generating
9
+ function, <br><var>u</var><sub><var>n</var></sub> = <var>n</var><sup>3</sup>: 1,
10
+ 8, 27, 64, 125, 216, ...</p>\r\n<p>Suppose we were only given the first two terms
11
+ of this sequence. Working on the principle that \"simple is best\" we should assume
12
+ a linear relationship and predict the next term to be 15 (common difference 7).
13
+ Even if we were presented with the first three terms, by the same principle of simplicity,
14
+ a quadratic relationship should be assumed.</p>\r\n<p>We shall define OP(<var>k</var>,
15
+ <var>n</var>) to be the <var>n</var><sup>th</sup> term of the optimum polynomial
16
+ generating function for the first <var>k</var> terms of a sequence. It should be
17
+ clear that OP(<var>k</var>, <var>n</var>) will accurately generate the terms of
18
+ the sequence for <var>n</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
19
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var>, and potentially
20
+ the <i>first incorrect term</i> (FIT) will be OP(<var>k</var>, <var>k</var>+1);
21
+ in which case we shall call it a <i>bad OP</i> (BOP).</p>\r\n<p>As a basis, if we
22
+ were only given the first term of sequence, it would be most sensible to assume
23
+ constancy; that is, for <var>n</var> <img src=\"images/symbol_ge.gif\" width=\"10\"
24
+ height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 2, OP(1,
25
+ <var>n</var>) = <var>u</var><sub>1</sub>.</p>\r\n<p>Hence we obtain the following
26
+ OPs for the cubic sequence:</p>\r\n<div style=\"margin-left:50px;\">\r\n<table>\n<tr>\n<td>OP(1,
27
+ <var>n</var>) = 1</td>\r\n<td>1, <span style=\"color:red;\"><b>1</b></span>, 1,
28
+ 1, ...</td>\r\n</tr>\n<tr>\n<td>OP(2, <var>n</var>) = 7<var>n</var><img src=\"images/symbol_minus.gif\"
29
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">6</td>\r\n<td>1,
30
+ 8, <span style=\"color:red;\"><b>15</b></span>, ...</td>\r\n</tr>\n<tr>\n<td>OP(3,
31
+ <var>n</var>) = 6<var>n</var><sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
32
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">11<var>n</var>+6     </td>\r\n<td>1,
33
+ 8, 27, <span style=\"color:red;\"><b>58</b></span>, ...</td>\r\n</tr>\n<tr>\n<td>OP(4,
34
+ <var>n</var>) = <var>n</var><sup>3</sup>\n</td>\r\n<td>1, 8, 27, 64, 125, ...</td>\r\n</tr>\n</table>\n</div>\r\n<p>Clearly
35
+ no BOPs exist for <var>k</var> <img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
36
+ alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 4.</p>\r\n<p>By considering
37
+ the sum of FITs generated by the BOPs (indicated in <span style=\"color:red;\"><b>red</b></span>
38
+ above), we obtain 1 + 15 + 58 = 74.</p>\r\n<p>Consider the following tenth degree
39
+ polynomial generating function:</p>\r\n<p style=\"text-align:center;\"><var>u</var><sub><var>n</var></sub>
40
+ = 1 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
41
+ style=\"vertical-align:middle;\"><var>n</var> + <var>n</var><sup>2</sup><img src=\"images/symbol_minus.gif\"
42
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>3</sup>
43
+ + <var>n</var><sup>4</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
44
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>5</sup>
45
+ + <var>n</var><sup>6</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
46
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>7</sup>
47
+ + <var>n</var><sup>8</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
48
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var><sup>9</sup>
49
+ + <var>n</var><sup>10</sup></p>\r\n<p>Find the sum of FITs for the BOPs.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 102
3
+ :name: Triangle containment
4
+ :url: http://projecteuler.net/problem=102
5
+ :content: "\r\n\n<p>Three distinct points are plotted at random on a Cartesian plane,
6
+ for which -1000 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
7
+ border=\"0\" style=\"vertical-align:middle;\"><i>x</i>, <i>y</i> <img src=\"images/symbol_le.gif\"
8
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 1000, such that a triangle is formed.</p>\n<p>Consider the following two triangles:</p>\n<p
10
+ style=\"text-align:center;\">A(-340,495), B(-153,-910), C(835,-947)<br><br>\nX(-175,41),
11
+ Y(-421,-714), Z(574,-645)</p>\n<p>It can be verified that triangle ABC contains
12
+ the origin, whereas triangle XYZ does not.</p>\n<p>Using <a href=\"project/triangles.txt\">triangles.txt</a>
13
+ (right click and 'Save Link/Target As...'), a 27K text file containing the co-ordinates
14
+ of one thousand \"random\" triangles, find the number of triangles for which the
15
+ interior contains the origin.</p>\n<p class=\"info\">NOTE: The first two examples
16
+ in the file represent the triangles in the example given above.</p>\n\r\n"
@@ -0,0 +1,26 @@
1
+ ---
2
+ :id: 103
3
+ :name: 'Special subset sums: optimum'
4
+ :url: http://projecteuler.net/problem=103
5
+ :content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
6
+ We shall call it a special sum set if for any two non-empty disjoint subsets, B
7
+ and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
8
+ <img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
10
+ B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
11
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>If
12
+ S(A) is minimised for a given <i>n</i>, we shall call it an optimum special sum
13
+ set. The first five optimum special sum sets are given below.</p>\r\n<p style=\"margin-left:50px;\"><i>n</i>
14
+ = 1: {1}<br><i>n</i> = 2: {1, 2}<br><i>n</i> = 3: {2, 3, 4}<br><i>n</i> = 4: {3,
15
+ 5, 6, 7}<br><i>n</i> = 5: {6, 9, 11, 12, 13}</p>\r\n<p>It <i>seems</i> that for
16
+ a given optimum set, A = {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a</i><sub>n</sub>},
17
+ the next optimum set is of the form B = {<i>b</i>, <i>a</i><sub>1</sub>+<i>b</i>,
18
+ <i>a</i><sub>2</sub>+<i>b</i>, ... ,<i>a</i><sub>n</sub>+<i>b</i>}, where <i>b</i>
19
+ is the \"middle\" element on the previous row.</p>\r\n<p>By applying this \"rule\"
20
+ we would expect the optimum set for <i>n</i> = 6 to be A = {11, 17, 20, 22, 23,
21
+ 24}, with S(A) = 117. However, this is not the optimum set, as we have merely applied
22
+ an algorithm to provide a near optimum set. The optimum set for <i>n</i> = 6 is
23
+ A = {11, 18, 19, 20, 22, 25}, with S(A) = 115 and corresponding set string: 111819202225.</p>\r\n<p>Given
24
+ that A is an optimum special sum set for <i>n</i> = 7, find its set string.</p>\r\n<p
25
+ class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&amp;id=105\">105</a>
26
+ and <a href=\"index.php?section=problems&amp;id=106\">106</a>.</p>\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 104
3
+ :name: Pandigital Fibonacci ends
4
+ :url: http://projecteuler.net/problem=104
5
+ :content: "\r\n\n<p>The Fibonacci sequence is defined by the recurrence relation:</p>\n<blockquote>F<sub><i>n</i></sub>
6
+ = F<sub><i>n</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
7
+ border=\"0\" style=\"vertical-align:middle;\">1</sub> + F<sub><i>n</i><img src=\"images/symbol_minus.gif\"
8
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</sub>,
9
+ where F<sub>1</sub> = 1 and F<sub>2</sub> = 1.</blockquote>\n<p>It turns out that
10
+ F<sub>541</sub>, which contains 113 digits, is the first Fibonacci number for which
11
+ the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not
12
+ necessarily in order). And F<sub>2749</sub>, which contains 575 digits, is the first
13
+ Fibonacci number for which the first nine digits are 1-9 pandigital.</p>\n<p>Given
14
+ that F<sub><i>k</i></sub> is the first Fibonacci number for which the first nine
15
+ digits AND the last nine digits are 1-9 pandigital, find <i>k</i>.</p>\n\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 105
3
+ :name: 'Special subset sums: testing'
4
+ :url: http://projecteuler.net/problem=105
5
+ :content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
6
+ We shall call it a special sum set if for any two non-empty disjoint subsets, B
7
+ and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
8
+ <img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
10
+ B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
11
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>For
12
+ example, {81, 88, 75, 42, 87, 84, 86, 65} is not a special sum set because 65 +
13
+ 87 + 88 = 75 + 81 + 84, whereas {157, 150, 164, 119, 79, 159, 161, 139, 158} satisfies
14
+ both rules for all possible subset pair combinations and S(A) = 1286.</p>\r\n<p>Using
15
+ <a href=\"project/sets.txt\">sets.txt</a> (right click and \"Save Link/Target As...\"),
16
+ a 4K text file with one-hundred sets containing seven to twelve elements (the two
17
+ examples given above are the first two sets in the file), identify all the special
18
+ sum sets, A<sub>1</sub>, A<sub>2</sub>, ..., A<sub><i>k</i></sub>, and find the
19
+ value of S(A<sub>1</sub>) + S(A<sub>2</sub>) + ... + S(A<sub><i>k</i></sub>).</p>\r\n<p
20
+ class=\"info\">NOTE: This problem is related to problems <a href=\"index.php?section=problems&amp;id=103\">103</a>
21
+ and <a href=\"index.php?section=problems&amp;id=106\">106</a>.</p>\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 106
3
+ :name: 'Special subset sums: meta-testing'
4
+ :url: http://projecteuler.net/problem=106
5
+ :content: "\r\n<p>Let S(A) represent the sum of elements in set A of size <i>n</i>.
6
+ We shall call it a special sum set if for any two non-empty disjoint subsets, B
7
+ and C, the following properties are true:</p>\r\n<ol style=\"list-style-type:lower-roman;\">\n<li>S(B)
8
+ <img src=\"images/symbol_ne.gif\" width=\"11\" height=\"10\" alt=\"≠\" border=\"0\"
9
+ style=\"vertical-align:middle;\"> S(C); that is, sums of subsets cannot be equal.</li>\r\n<li>If
10
+ B contains more elements than C then S(B) <img src=\"images/symbol_gt.gif\" width=\"10\"
11
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"> S(C).</li>\r\n</ol>\n<p>For
12
+ this problem we shall assume that a given set contains <i>n</i> strictly increasing
13
+ elements and it already satisfies the second rule.</p>\r\n<p>Surprisingly, out of
14
+ the 25 possible subset pairs that can be obtained from a set for which <i>n</i>
15
+ = 4, only 1 of these pairs need to be tested for equality (first rule). Similarly,
16
+ when <i>n</i> = 7, only 70 out of the 966 subset pairs need to be tested.</p>\r\n<p>For
17
+ <i>n</i> = 12, how many of the 261625 subset pairs that can be obtained need to
18
+ be tested for equality?</p>\r\n<p class=\"info\">NOTE: This problem is related to
19
+ problems <a href=\"index.php?section=problems&amp;id=103\">103</a> and <a href=\"index.php?section=problems&amp;id=105\">105</a>.</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 107
3
+ :name: Minimal network
4
+ :url: http://projecteuler.net/problem=107
5
+ :content: "\r\n\n<p>The following undirected network consists of seven vertices and
6
+ twelve edges with a total weight of 243.</p>\n<div style=\"text-align:center;\">\n<img
7
+ src=\"project/images/p_107_1.gif\" width=\"381\" height=\"278\" alt=\"\"><br>\n</div>\n<p>The
8
+ same network can be represented by the matrix below.</p>\n<table cellpadding=\"5\"
9
+ cellspacing=\"0\" border=\"1\" align=\"center\">\n<tr>\n<td>    </td>\n<td><b>A</b></td>\n<td><b>B</b></td>\n<td><b>C</b></td>\n<td><b>D</b></td>\n<td><b>E</b></td>\n<td><b>F</b></td>\n<td><b>G</b></td>\n</tr>\n<tr>\n<td><b>A</b></td>\n<td>-</td>\n<td>16</td>\n<td>12</td>\n<td>21</td>\n<td>-</td>\n<td>-</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>B</b></td>\n<td>16</td>\n<td>-</td>\n<td>-</td>\n<td>17</td>\n<td>20</td>\n<td>-</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>C</b></td>\n<td>12</td>\n<td>-</td>\n<td>-</td>\n<td>28</td>\n<td>-</td>\n<td>31</td>\n<td>-</td>\n</tr>\n<tr>\n<td><b>D</b></td>\n<td>21</td>\n<td>17</td>\n<td>28</td>\n<td>-</td>\n<td>18</td>\n<td>19</td>\n<td>23</td>\n</tr>\n<tr>\n<td><b>E</b></td>\n<td>-</td>\n<td>20</td>\n<td>-</td>\n<td>18</td>\n<td>-</td>\n<td>-</td>\n<td>11</td>\n</tr>\n<tr>\n<td><b>F</b></td>\n<td>-</td>\n<td>-</td>\n<td>31</td>\n<td>19</td>\n<td>-</td>\n<td>-</td>\n<td>27</td>\n</tr>\n<tr>\n<td><b>G</b></td>\n<td>-</td>\n<td>-</td>\n<td>-</td>\n<td>23</td>\n<td>11</td>\n<td>27</td>\n<td>-</td>\n</tr>\n</table>\n<p>However,
10
+ it is possible to optimise the network by removing some edges and still ensure that
11
+ all points on the network remain connected. The network which achieves the maximum
12
+ saving is shown below. It has a weight of 93, representing a saving of 243 <img
13
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
14
+ style=\"vertical-align:middle;\"> 93 = 150 from the original network.</p>\n<div
15
+ style=\"text-align:center;\">\n<img src=\"project/images/p_107_2.gif\" width=\"385\"
16
+ height=\"288\" alt=\"\"><br>\n</div>\n<p>Using <a href=\"project/network.txt\">network.txt</a>
17
+ (right click and 'Save Link/Target As...'), a 6K text file containing a network
18
+ with forty vertices, and given in matrix form, find the maximum saving which can
19
+ be achieved by removing redundant edges whilst ensuring that the network remains
20
+ connected.</p>\n\r\n"
@@ -0,0 +1,32 @@
1
+ ---
2
+ :id: 108
3
+ :name: Diophantine reciprocals I
4
+ :url: http://projecteuler.net/problem=108
5
+ :content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
6
+ are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
7
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
8
+ height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
9
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
10
+ height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
11
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
12
+ height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>For
13
+ <var>n</var> = 4 there are exactly three distinct solutions:</p>\r\n<div style=\"text-align:center;\">\r\n<table
14
+ align=\"center\">\n<tr>\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
15
+ width=\"15\" height=\"1\" alt=\"\"><br> 5</div></td>\r\n<td> + </td>\r\n<td><div
16
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
17
+ height=\"1\" alt=\"\"><br> 20</div></td>\r\n<td> = </td>\r\n<td><div style=\"text-align:center;\">1<br><img
18
+ src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n<tr>\n<td><div
19
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
20
+ height=\"1\" alt=\"\"><br> 6</div></td>\r\n<td> + </td>\r\n<td><div style=\"text-align:center;\">1<br><img
21
+ src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 12</div></td>\r\n<td>
22
+ = </td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
23
+ width=\"15\" height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n<tr>\n<td><div style=\"text-align:center;\">1<br><img
24
+ src=\"images/blackdot.gif\" width=\"15\" height=\"1\" alt=\"\"><br> 8</div></td>\r\n<td>
25
+ + </td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
26
+ width=\"15\" height=\"1\" alt=\"\"><br> 8</div></td>\r\n<td> = </td>\r\n<td><div
27
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
28
+ height=\"1\" alt=\"\"><br> 4</div></td>\r\n</tr>\n</table>\n</div>\r\n<p>What is
29
+ the least value of <var>n</var> for which the number of distinct solutions exceeds
30
+ one-thousand?</p>\r\n<p class=\"info\">NOTE: This problem is an easier version of
31
+ problem <a href=\"index.php?section=problems&amp;id=110\">110</a>; it is strongly
32
+ advised that you solve this one first.</p>\r\n"
@@ -0,0 +1,33 @@
1
+ ---
2
+ :id: 109
3
+ :name: Darts
4
+ :url: http://projecteuler.net/problem=109
5
+ :content: "\r\n<p>In the game of darts a player throws three darts at a target board
6
+ which is split into twenty equal sized sections numbered one to twenty.</p>\r\n<div
7
+ style=\"text-align:center;\">\r\n<img src=\"project/images/p_109.gif\" width=\"400\"
8
+ height=\"400\" alt=\"\"><br>\n</div>\r\n<p>The score of a dart is determined by
9
+ the number of the region that the dart lands in. A dart landing outside the red/green
10
+ outer ring scores zero. The black and cream regions inside this ring represent single
11
+ scores. However, the red/green outer ring and middle ring score double and treble
12
+ scores respectively.</p>\r\n<p>At the centre of the board are two concentric circles
13
+ called the bull region, or bulls-eye. The outer bull is worth 25 points and the
14
+ inner bull is a double, worth 50 points.</p>\r\n<p>There are many variations of
15
+ rules but in the most popular game the players will begin with a score 301 or 501
16
+ and the first player to reduce their running total to zero is a winner. However,
17
+ it is normal to play a \"doubles out\" system, which means that the player must
18
+ land a double (including the double bulls-eye at the centre of the board) on their
19
+ final dart to win; any other dart that would reduce their running total to one or
20
+ lower means the score for that set of three darts is \"bust\".</p>\r\n<p>When a
21
+ player is able to finish on their current score it is called a \"checkout\" and
22
+ the highest checkout is 170: T20 T20 D25 (two treble 20s and double bull).</p>\r\n<p>There
23
+ are exactly eleven distinct ways to checkout on a score of 6:</p>\r\n<div style=\"text-align:center;\">\r\n<table
24
+ border=\"1\" cellpadding=\"3\" cellspacing=\"0\" align=\"center\">\n<tr>\n<td>\n<img
25
+ src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br>D3</td>\r\n<td>\n<img
26
+ src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br> </td>\r\n<td>\n<img
27
+ src=\"images/spacer.gif\" width=\"80\" height=\"1\" alt=\"\"><br> </td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>D2</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S2</td>\r\n<td>D2</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>D2</td>\r\n<td>D1</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S4</td>\r\n<td>D1</td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>S1</td>\r\n<td>D2</td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>T1</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>S1</td>\r\n<td>S3</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>D1</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>D1</td>\r\n<td>S2</td>\r\n<td>D1</td>\r\n</tr>\n<tr>\n<td>S2</td>\r\n<td>S2</td>\r\n<td>D1</td>\r\n</tr>\n</table>\n</div>\r\n<p>Note
28
+ that D1 D2 is considered <b>different</b> to D2 D1 as they finish on different doubles.
29
+ However, the combination S1 T1 D1 is considered the <b>same</b> as T1 S1 D1.</p>\r\n<p>In
30
+ addition we shall not include misses in considering combinations; for example, D3
31
+ is the <b>same</b> as 0 D3 and 0 0 D3.</p>\r\n<p>Incredibly there are 42336 distinct
32
+ ways of checking out in total.</p>\r\n<p>How many distinct ways can a player checkout
33
+ with a score less than 100?</p>\r\n\r\n"
@@ -0,0 +1,33 @@
1
+ ---
2
+ :id: 11
3
+ :name: Largest product in a grid
4
+ :url: http://projecteuler.net/problem=11
5
+ :content: "\r\n<p>In the 20<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
6
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20 grid below, four numbers
7
+ along a diagonal line have been marked in red.</p>\r\n<p style=\"font-family:courier
8
+ new;text-align:center;font-size:10pt;\">\r\n08 02 22 97 38 15 00 40 00 75 04 05
9
+ 07 78 52 12 50 77 91 08<br>\r\n49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04
10
+ 56 62 00<br>\r\n81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65<br>\r\n52
11
+ 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91<br>\r\n22 31 16 71 51 67
12
+ 63 89 41 92 36 54 22 40 40 28 66 33 13 80<br>\r\n24 47 32 60 99 03 45 02 44 75 33
13
+ 53 78 36 84 20 35 17 12 50<br>\r\n32 98 81 28 64 23 67 10 <span style=\"color:#ff0000;\"><b>26</b></span>
14
+ 38 40 67 59 54 70 66 18 38 64 70<br>\r\n67 26 20 68 02 62 12 20 95 <span style=\"color:#ff0000;\"><b>63</b></span>
15
+ 94 39 63 08 40 91 66 49 94 21<br>\r\n24 55 58 05 66 73 99 26 97 17 <span style=\"color:#ff0000;\"><b>78</b></span>
16
+ 78 96 83 14 88 34 89 63 72<br>\r\n21 36 23 09 75 00 76 44 20 45 35 <span style=\"color:#ff0000;\"><b>14</b></span>
17
+ 00 61 33 97 34 31 33 95<br>\r\n78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09
18
+ 53 56 92<br>\r\n16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57<br>\r\n86
19
+ 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58<br>\r\n19 80 81 68 05 94
20
+ 47 69 28 73 92 13 86 52 17 77 04 89 55 40<br>\r\n04 52 08 83 97 35 99 16 07 97 57
21
+ 32 16 26 26 79 33 27 98 66<br>\r\n88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32
22
+ 63 93 53 69<br>\r\n04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36<br>\r\n20
23
+ 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16<br>\r\n20 73 35 29 78 31
24
+ 90 01 74 31 49 71 48 86 81 16 23 57 05 54<br>\r\n01 70 54 71 83 51 54 69 16 92 33
25
+ 48 61 43 52 01 89 19 67 48<br></p>\r\n<p>The product of these numbers is 26 <img
26
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
27
+ style=\"vertical-align:middle;\"> 63 <img src=\"images/symbol_times.gif\" width=\"9\"
28
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 78 <img src=\"images/symbol_times.gif\"
29
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
30
+ 14 = 1788696.</p>\r\n<p>What is the greatest product of four adjacent numbers in
31
+ the same direction (up, down, left, right, or diagonally) in the 20<img src=\"images/symbol_times.gif\"
32
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20
33
+ grid?</p>\r\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 110
3
+ :name: Diophantine reciprocals II
4
+ :url: http://projecteuler.net/problem=110
5
+ :content: "\r\n<p>In the following equation <var>x</var>, <var>y</var>, and <var>n</var>
6
+ are positive integers.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"><tr>\n<td><div
7
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
8
+ height=\"1\" alt=\"\"><br><var>x</var>\n</div></td>\r\n<td> + </td>\r\n<td><div
9
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
10
+ height=\"1\" alt=\"\"><br><var>y</var>\n</div></td>\r\n<td> = </td>\r\n<td><div
11
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
12
+ height=\"1\" alt=\"\"><br><var>n</var>\n</div></td>\r\n</tr></table>\n</div>\r\n<p>It
13
+ can be verified that when <var>n</var> = 1260 there are 113 distinct solutions and
14
+ this is the least value of <var>n</var> for which the total number of distinct solutions
15
+ exceeds one hundred.</p>\r\n<p>What is the least value of <var>n</var> for which
16
+ the number of distinct solutions exceeds four million?</p>\r\n<p class=\"info\">NOTE:
17
+ This problem is a much more difficult version of problem <a href=\"index.php?section=problems&amp;id=108\">108</a>
18
+ and as it is well beyond the limitations of a brute force approach it requires a
19
+ clever implementation.</p>\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 111
3
+ :name: Primes with runs
4
+ :url: http://projecteuler.net/problem=111
5
+ :content: "\r\n<p>Considering 4-digit primes containing repeated digits it is clear
6
+ that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by
7
+ 22, and so on. But there are nine 4-digit primes containing three ones:</p>\r\n<p
8
+ style=\"text-align:center;\">1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111</p>\r\n<p>We
9
+ shall say that M(<i>n</i>, <i>d</i>) represents the maximum number of repeated digits
10
+ for an <i>n</i>-digit prime where <i>d</i> is the repeated digit, N(<i>n</i>, <i>d</i>)
11
+ represents the number of such primes, and S(<i>n</i>, <i>d</i>) represents the sum
12
+ of these primes.</p>\r\n<p>So M(4, 1) = 3 is the maximum number of repeated digits
13
+ for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such
14
+ primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for <i>d</i>
15
+ = 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4,
16
+ 0) = 13 such cases.</p>\r\n<p>In the same way we obtain the following results for
17
+ 4-digit primes.</p>\r\n<div style=\"text-align:center;\">\r\n<table align=\"center\"
18
+ border=\"1\" cellspacing=\"0\" cellpadding=\"5\">\n<tr>\n<td><b>Digit, <i>d</i></b></td>\r\n<td><b>M(4,
19
+ <i>d</i>)</b></td>\r\n<td><b>N(4, <i>d</i>)</b></td>\r\n<td><b>S(4, <i>d</i>)</b></td>\r\n</tr>\n<tr>\n<td>0</td>\r\n<td>2</td>\r\n<td>13</td>\r\n<td>67061</td>\r\n</tr>\n<tr>\n<td>1</td>\r\n<td>3</td>\r\n<td>9</td>\r\n<td>22275</td>\r\n</tr>\n<tr>\n<td>2</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>2221</td>\r\n</tr>\n<tr>\n<td>3</td>\r\n<td>3</td>\r\n<td>12</td>\r\n<td>46214</td>\r\n</tr>\n<tr>\n<td>4</td>\r\n<td>3</td>\r\n<td>2</td>\r\n<td>8888</td>\r\n</tr>\n<tr>\n<td>5</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>5557</td>\r\n</tr>\n<tr>\n<td>6</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>6661</td>\r\n</tr>\n<tr>\n<td>7</td>\r\n<td>3</td>\r\n<td>9</td>\r\n<td>57863</td>\r\n</tr>\n<tr>\n<td>8</td>\r\n<td>3</td>\r\n<td>1</td>\r\n<td>8887</td>\r\n</tr>\n<tr>\n<td>9</td>\r\n<td>3</td>\r\n<td>7</td>\r\n<td>48073</td>\r\n</tr>\n</table>\n</div>\r\n<p>For
20
+ <i>d</i> = 0 to 9, the sum of all S(4, <i>d</i>) is 273700.</p>\r\n<p>Find the sum
21
+ of all S(10, <i>d</i>).</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 112
3
+ :name: Bouncy numbers
4
+ :url: http://projecteuler.net/problem=112
5
+ :content: "\r\n<p>Working from left-to-right if no digit is exceeded by the digit
6
+ to its left it is called an increasing number; for example, 134468.</p>\r\n<p>Similarly
7
+ if no digit is exceeded by the digit to its right it is called a decreasing number;
8
+ for example, 66420.</p>\r\n<p>We shall call a positive integer that is neither increasing
9
+ nor decreasing a \"bouncy\" number; for example, 155349.</p>\r\n<p>Clearly there
10
+ cannot be any bouncy numbers below one-hundred, but just over half of the numbers
11
+ below one-thousand (525) are bouncy. In fact, the least number for which the proportion
12
+ of bouncy numbers first reaches 50% is 538.</p>\r\n<p>Surprisingly, bouncy numbers
13
+ become more and more common and by the time we reach 21780 the proportion of bouncy
14
+ numbers is equal to 90%.</p>\r\n<p>Find the least number for which the proportion
15
+ of bouncy numbers is exactly 99%.</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 113
3
+ :name: Non-bouncy numbers
4
+ :url: http://projecteuler.net/problem=113
5
+ :content: "\r\n\n<p>Working from left-to-right if no digit is exceeded by the digit
6
+ to its left it is called an increasing number; for example, 134468.</p>\n<p>Similarly
7
+ if no digit is exceeded by the digit to its right it is called a decreasing number;
8
+ for example, 66420.</p>\n<p>We shall call a positive integer that is neither increasing
9
+ nor decreasing a \"bouncy\" number; for example, 155349.</p>\n<p>As <i>n</i> increases,
10
+ the proportion of bouncy numbers below <i>n</i> increases such that there are only
11
+ 12951 numbers below one-million that are not bouncy and only 277032 non-bouncy numbers
12
+ below 10<sup>10</sup>.</p>\n<p>How many numbers below a googol (10<sup>100</sup>)
13
+ are not bouncy?</p>\n\r\n"
@@ -0,0 +1,106 @@
1
+ ---
2
+ :id: 114
3
+ :name: Counting block combinations I
4
+ :url: http://projecteuler.net/problem=114
5
+ :content: "\r\n<p>A row measuring seven units in length has red blocks with a minimum
6
+ length of three units placed on it, such that any two red blocks (which are allowed
7
+ to be different lengths) are separated by at least one black square. There are exactly
8
+ seventeen ways of doing this.</p>\r\n\r\n<table cellpadding=\"5\" cellspacing=\"1\"
9
+ border=\"0\" align=\"center\">\n<tr>\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
10
+ border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
11
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
12
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
13
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
14
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
15
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
16
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
17
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
18
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#cc0000\"><img
19
+ src=\"images/spacer.gif\" width=\"66\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
20
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
21
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
22
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
23
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
24
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
25
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
26
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
27
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
28
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
29
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
30
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
31
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
32
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
33
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
34
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
35
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
36
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
37
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
38
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
39
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
40
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
41
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
42
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
43
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
44
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
45
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
46
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
47
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
48
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
49
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
50
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
51
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table cellspacing=\"1\"
52
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"3\" style=\"background-color:#cc0000\"><img
53
+ src=\"images/spacer.gif\" width=\"66\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
54
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"3\"
55
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"66\" height=\"20\"
56
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
57
+ border=\"1\"><tr>\n<td colspan=\"4\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
58
+ width=\"89\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
59
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
60
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
61
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
62
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
63
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
64
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
65
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
66
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
67
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
68
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
69
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
70
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
71
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
72
+ alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
73
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
74
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
75
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
76
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
77
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"4\"
78
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"89\" height=\"20\"
79
+ alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\" cellpadding=\"0\"
80
+ border=\"1\"><tr>\n<td colspan=\"5\" style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\"
81
+ width=\"112\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
82
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
83
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
84
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
85
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"5\"
86
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"112\"
87
+ height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img src=\"images/spacer.gif\"
88
+ width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table
89
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
90
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
91
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"5\"
92
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"112\"
93
+ height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\"
94
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"6\" style=\"background-color:#cc0000\"><img
95
+ src=\"images/spacer.gif\" width=\"135\" height=\"20\" alt=\"\"></td>\r\n<td style=\"background-color:#000000\"><img
96
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n</tr>\n<tr>\n<td>\r\n<table
97
+ cellspacing=\"1\" cellpadding=\"0\" border=\"1\"><tr>\n<td style=\"background-color:#000000\"><img
98
+ src=\"images/spacer.gif\" width=\"20\" height=\"20\" alt=\"\"></td>\r\n<td colspan=\"6\"
99
+ style=\"background-color:#cc0000\"><img src=\"images/spacer.gif\" width=\"135\"
100
+ height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td>\r\n<table cellspacing=\"1\"
101
+ cellpadding=\"0\" border=\"1\"><tr>\n<td colspan=\"7\" style=\"background-color:#cc0000\"><img
102
+ src=\"images/spacer.gif\" width=\"158\" height=\"20\" alt=\"\"></td>\r\n</tr></table>\n</td>\r\n<td> </td>\r\n</tr>\n</table>\n<p>How
103
+ many ways can a row measuring fifty units in length be filled?</p>\r\n<p class=\"info\">NOTE:
104
+ Although the example above does not lend itself to the possibility, in general it
105
+ is permitted to mix block sizes. For example, on a row measuring eight units in
106
+ length you could use red (3), black (1), and red (4).</p>\r\n"