euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 272
|
3
|
+
:name: Modular Cubes, part 2
|
4
|
+
:url: http://projecteuler.net/problem=272
|
5
|
+
:content: "\r\n<p>\r\nFor a positive number <var>n</var>, define C(<var>n</var>) as
|
6
|
+
the number of the integers <var>x,</var> for which 1<img src=\"images/symbol_lt.gif\"
|
7
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
|
8
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>n</var> and<br><var>x</var><sup>3</sup><img
|
10
|
+
src=\"images/symbol_cong.gif\" width=\"9\" height=\"11\" alt=\"≡\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\">1 mod <var>n</var>.\r\n</p>\r\n<p>\r\nWhen <var>n</var>=91,
|
12
|
+
there are 8 possible values for <var>x</var>, namely : 9, 16, 22, 29, 53, 74, 79,
|
13
|
+
81.<br>\r\nThus, C(91)=8.</p>\r\n<p>\r\nFind the sum of the positive numbers <var>n</var><img
|
14
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">10<sup>11</sup>
|
15
|
+
for which C(<var>n</var>)=242.\r\n</p>"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 273
|
3
|
+
:name: Sum of Squares
|
4
|
+
:url: http://projecteuler.net/problem=273
|
5
|
+
:content: "\r\n<p>Consider equations of the form: <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
|
6
|
+
= <var>N</var>, 0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
7
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>a</var> <img src=\"images/symbol_le.gif\"
|
8
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var>,
|
9
|
+
<var>a</var>, <var>b</var> and <var>N</var> integer.</p>\r\n\r\n<p>For <var>N</var>=65
|
10
|
+
there are two solutions:</p>\r\n<p><var>a</var>=1, <var>b</var>=8 and <var>a</var>=4,
|
11
|
+
<var>b</var>=7.</p>\r\n<p>We call S(<var>N</var>) the sum of the values of <var>a</var>
|
12
|
+
of all solutions of <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>,
|
13
|
+
0 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"><var>a</var> <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var>,
|
16
|
+
<var>a</var>, <var>b</var> and <var>N</var> integer.</p>\r\n<p>Thus S(65) = 1 +
|
17
|
+
4 = 5.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
18
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(<var>N</var>), for all
|
19
|
+
squarefree <var>N</var> only divisible by primes of the form 4<var>k</var>+1 with
|
20
|
+
4<var>k</var>+1 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
21
|
+
border=\"0\" style=\"vertical-align:middle;\"> 150.</p>\r\n\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 274
|
3
|
+
:name: Divisibility Multipliers
|
4
|
+
:url: http://projecteuler.net/problem=274
|
5
|
+
:content: "\r\n<p>For each integer <var>p</var> <img src=\"images/symbol_gt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
1 coprime to 10 there is a positive <em>divisibility multiplier</em> <var>m</var>
|
8
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\"><var>p</var> which preserves divisibility by <var>p</var>
|
10
|
+
for the following function on any positive integer, <var>n</var>:</p>\r\n\r\n<p><var>f</var>(<var>n</var>)
|
11
|
+
= (all but the last digit of <var>n</var>) + (the last digit of <var>n</var>) *
|
12
|
+
<var>m</var></p>\r\n\r\n<p>That is, if <var>m</var> is the divisibility multiplier
|
13
|
+
for <var>p</var>, then <var>f</var>(<var>n</var>) is divisible by <var>p</var> if
|
14
|
+
and only if <var>n</var> is divisible by <var>p</var>.</p>\r\n\r\n<p>(When <var>n</var>
|
15
|
+
is much larger than <var>p</var>, <var>f</var>(<var>n</var>) will be less than <var>n</var>
|
16
|
+
and repeated application of <var>f</var> provides a multiplicative divisibility
|
17
|
+
test for <var>p</var>.)</p>\r\n\r\n<p>For example, the divisibility multiplier for
|
18
|
+
113 is 34.</p>\r\n\r\n<p><var>f</var>(76275) = 7627 + 5 * 34 = 7797 : 76275 and
|
19
|
+
7797 are both divisible by 113<br><var>f</var>(12345) = 1234 + 5 * 34 = 1404 : 12345
|
20
|
+
and 1404 are both not divisible by 113</p>\r\n\r\n<p>The sum of the divisibility
|
21
|
+
multipliers for the primes that are coprime to 10 and less than 1000 is 39517. What
|
22
|
+
is the sum of the divisibility multipliers for the primes that are coprime to 10
|
23
|
+
and less than 10<sup>7</sup>?</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 275
|
3
|
+
:name: Balanced Sculptures
|
4
|
+
:url: http://projecteuler.net/problem=275
|
5
|
+
:content: "\r\n<p>Let us define a <i>balanced sculpture</i> of order <var>n</var>
|
6
|
+
as follows:\r\n</p>\n<ul>\n<li>A <dfn title=\"An arrangement of identical squares
|
7
|
+
connected through shared edges; holes are allowed.\">polyomino</dfn> made up of
|
8
|
+
<var>n</var>+1 tiles known as the <i>blocks</i> (<var>n</var> tiles)<br> and the
|
9
|
+
<i>plinth</i> (remaining tile);</li>\r\n<li>the plinth has its centre at position
|
10
|
+
(<var>x</var> = 0, <var>y</var> = 0);</li>\r\n<li>the blocks have <var>y</var>-coordinates
|
11
|
+
greater than zero (so the plinth is the unique lowest tile);</li>\r\n<li>the centre
|
12
|
+
of mass of all the blocks, combined, has <var>x</var>-coordinate equal to zero.</li>\r\n</ul>\n<p>When
|
13
|
+
counting the sculptures, any arrangements which are simply reflections about the
|
14
|
+
<var>y</var>-axis, are <u>not</u> counted as distinct. For example, the 18 balanced
|
15
|
+
sculptures of order 6 are shown below; note that each pair of mirror images (about
|
16
|
+
the <var>y</var>-axis) is counted as one sculpture:</p>\r\n<div align=\"center\"><img
|
17
|
+
src=\"project/images/p_275_sculptures2.gif\"></div>\r\n\r\n<p>There are 964 balanced
|
18
|
+
sculptures of order 10 and 360505 of order 15.<br>How many balanced sculptures are
|
19
|
+
there of order 18?</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 276
|
3
|
+
:name: Primitive Triangles
|
4
|
+
:url: http://projecteuler.net/problem=276
|
5
|
+
:content: "\r\n<p>Consider the triangles with integer sides a, b and c with a <img
|
6
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
b <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> c.<br>\r\nAn integer sided triangle (a,b,c) is
|
9
|
+
called primitive if <dfn title=\" gcd(a,b,c)=gcd(a,gcd(b,c))\"> gcd(a,b,c)</dfn>=1.
|
10
|
+
<br>\r\nHow many primitive integer sided triangles exist with a perimeter not exceeding
|
11
|
+
10 000 000?\r\n</p>\r\n\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,24 @@
|
|
1
|
+
---
|
2
|
+
:id: 277
|
3
|
+
:name: A Modified Collatz sequence
|
4
|
+
:url: http://projecteuler.net/problem=277
|
5
|
+
:content: "\r\n<p>\r\nA modified Collatz sequence of integers is obtained from a starting
|
6
|
+
value a<sub>1</sub> in the following way:</p>\r\n<p>\r\n<var>a<sub>n+1</sub></var>
|
7
|
+
= <var>a<sub>n</sub></var>/3 if <var>a<sub>n</sub></var> is divisible by 3. We shall
|
8
|
+
denote this as a large downward step, \"D\".</p>\r\n<p>\r\n<var>a<sub>n+1</sub></var>
|
9
|
+
= (4<var>a<sub>n</sub></var> + 2)/3 if <var>a<sub>n</sub></var> divided by 3 gives
|
10
|
+
a remainder of 1. We shall denote this as an upward step, \"U\".\r\n</p>\r\n<p>\r\n<var>a<sub>n+1</sub></var>
|
11
|
+
= (2<var>a<sub>n</sub></var> - 1)/3 if <var>a<sub>n</sub></var> divided by 3 gives
|
12
|
+
a remainder of 2. We shall denote this as a small downward step, \"d\".\r\n</p>\r\n\r\n\r\n<p>\r\nThe
|
13
|
+
sequence terminates when some <var>a<sub>n</sub></var> = 1.\r\n</p>\r\n<p>\r\nGiven
|
14
|
+
any integer, we can list out the sequence of steps.<br>\r\nFor instance if <var>a</var><sub>1</sub>=231,
|
15
|
+
then the sequence {<var>a<sub>n</sub></var>}={231,77,51,17,11,7,10,14,9,3,1} corresponds
|
16
|
+
to the steps \"DdDddUUdDD\".\r\n</p>\r\n<p>\r\nOf course, there are other sequences
|
17
|
+
that begin with that same sequence \"DdDddUUdDD....\".<br>\r\nFor instance, if <var>a</var><sub>1</sub>=1004064,
|
18
|
+
then the sequence is DdDddUUdDDDdUDUUUdDdUUDDDUdDD.<br>\r\nIn fact, 1004064 is the
|
19
|
+
smallest possible <var>a</var><sub>1</sub><img src=\"images/symbol_gt.gif\" width=\"10\"
|
20
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>6</sup>
|
21
|
+
that begins with the sequence DdDddUUdDD.\r\n</p>\r\n<p>\r\nWhat is the smallest
|
22
|
+
<var>a</var><sub>1</sub><img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\"
|
23
|
+
alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>15</sup> that
|
24
|
+
begins with the sequence \"UDDDUdddDDUDDddDdDddDDUDDdUUDd\"?\r\n</p>\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,32 @@
|
|
1
|
+
---
|
2
|
+
:id: 278
|
3
|
+
:name: Linear Combinations of Semiprimes
|
4
|
+
:url: http://projecteuler.net/problem=278
|
5
|
+
:content: "\r\n<p>\r\nGiven the values of integers 1 <img src=\"images/symbol_lt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>a</var><sub>1</sub><img
|
7
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"><var>a</var><sub>2</sub><img src=\"images/symbol_lt.gif\"
|
9
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">...
|
10
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><var>a</var><sub><var>n</var></sub>, consider the
|
12
|
+
linear combination<br><var>q</var><sub>1</sub><var>a</var><sub>1</sub> + <var>q</var><sub>2</sub><var>a</var><sub>2</sub>
|
13
|
+
+ ... + <var>q</var><sub><var>n</var></sub><var>a</var><sub><var>n</var></sub> =
|
14
|
+
<var>b</var>, using only integer values <var>q</var><sub><var>k</var></sub><img
|
15
|
+
src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
0. \r\n</p>\r\n<p>\r\nNote that for a given set of <var>a</var><sub><var>k</var></sub>,
|
17
|
+
it may be that not all values of <var>b</var> are possible.<br>\r\nFor instance,
|
18
|
+
if <var>a</var><sub>1</sub> = 5 and <var>a</var><sub>2</sub> = 7, there are no <var>q</var><sub>1</sub><img
|
19
|
+
src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
0 and <var>q</var><sub>2</sub><img src=\"images/symbol_ge.gif\" width=\"10\" height=\"12\"
|
21
|
+
alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 0 such that <var>b</var>
|
22
|
+
could be<br> \r\n1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23.\r\n<br>\r\nIn fact,
|
23
|
+
23 is the largest impossible value of <var>b</var> for <var>a</var><sub>1</sub>
|
24
|
+
= 5 and <var>a</var><sub>2</sub> = 7.<br> We therefore call <var>f</var>(5, 7) =
|
25
|
+
23.<br> Similarly, it can be shown that <var>f</var>(6, 10, 15)=29 and <var>f</var>(14,
|
26
|
+
22, 77) = 195.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\"
|
27
|
+
height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><var>f</var>(<var>p*q,p*r,q*r</var>),
|
28
|
+
where <var>p</var>, <var>q</var> and <var>r</var> are prime numbers and <var>p</var>
|
29
|
+
&lt <var>q</var> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
|
30
|
+
alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>r</var> <img src=\"images/symbol_lt.gif\"
|
31
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
32
|
+
5000.\r\n\r\n</p>"
|
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 279
|
3
|
+
:name: 'Triangles with integral sides and an integral angle '
|
4
|
+
:url: http://projecteuler.net/problem=279
|
5
|
+
:content: "\r\n<p>\r\nHow many triangles are there with integral sides, at least one
|
6
|
+
integral angle (measured in degrees), and a perimeter that does not exceed 10<sup>8</sup>?\r\n</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 28
|
3
|
+
:name: Number spiral diagonals
|
4
|
+
:url: http://projecteuler.net/problem=28
|
5
|
+
:content: "\r\n<p>Starting with the number 1 and moving to the right in a clockwise
|
6
|
+
direction a 5 by 5 spiral is formed as follows:</p>\r\n<p style=\"text-align:center;font-family:courier
|
7
|
+
new;\"><span style=\"color:#ff0000;font-family:courier new;\"><b>21</b></span> 22
|
8
|
+
23 24 <span style=\"color:#ff0000;font-family:courier new;\"><b>25</b></span><br>\r\n20
|
9
|
+
<span style=\"color:#ff0000;font-family:courier new;\"><b>7</b></span> 8 <span
|
10
|
+
style=\"color:#ff0000;font-family:courier new;\"><b>9</b></span> 10<br>\r\n19 6
|
11
|
+
<span style=\"color:#ff0000;font-family:courier new;\"><b>1</b></span> 2 11<br>\r\n18
|
12
|
+
<span style=\"color:#ff0000;font-family:courier new;\"><b>5</b></span> 4 <span
|
13
|
+
style=\"color:#ff0000;font-family:courier new;\"><b>3</b></span> 12<br><span style=\"color:#ff0000;font-family:courier
|
14
|
+
new;\"><b>17</b></span> 16 15 14 <span style=\"color:#ff0000;font-family:courier
|
15
|
+
new;\"><b>13</b></span></p>\r\n<p>It can be verified that the sum of the numbers
|
16
|
+
on the diagonals is 101.</p>\r\n<p>What is the sum of the numbers on the diagonals
|
17
|
+
in a 1001 by 1001 spiral formed in the same way?</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 280
|
3
|
+
:name: Ant and seeds
|
4
|
+
:url: http://projecteuler.net/problem=280
|
5
|
+
:content: "\r\n<p>A laborious ant walks randomly on a 5x5 grid. The walk starts from
|
6
|
+
the central square. At each step, the ant moves to an adjacent square at random,
|
7
|
+
without leaving the grid; thus there are 2, 3 or 4 possible moves at each step depending
|
8
|
+
on the ant's position.</p>\r\n\r\n<p>At the start of the walk, a seed is placed
|
9
|
+
on each square of the lower row. When the ant isn't carrying a seed and reaches
|
10
|
+
a square of the lower row containing a seed, it will start to carry the seed. The
|
11
|
+
ant will drop the seed on the first empty square of the upper row it eventually
|
12
|
+
reaches.</p>\r\n\r\n<p>What's the expected number of steps until all seeds have
|
13
|
+
been dropped in the top row? <br>\r\nGive your answer rounded to 6 decimal places.</p>\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 281
|
3
|
+
:name: Pizza Toppings
|
4
|
+
:url: http://projecteuler.net/problem=281
|
5
|
+
:content: "\r\n<p>You are given a pizza (perfect circle) that has been cut into <var>m</var>·<var>n</var>
|
6
|
+
equal pieces and you want to have exactly one topping on each slice.</p>\r\n\r\n<p>Let
|
7
|
+
<var>f</var>(<var>m</var>,<var>n</var>) denote the number of ways you can have toppings
|
8
|
+
on the pizza with <var>m</var> different toppings (<var>m</var> <img src=\"images/symbol_ge.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 2),
|
10
|
+
using each topping on exactly <var>n</var> slices (<var>n</var> <img src=\"images/symbol_ge.gif\"
|
11
|
+
width=\"10\" height=\"12\" alt=\"≥\" border=\"0\" style=\"vertical-align:middle;\"> 1).
|
12
|
+
<br>Reflections are considered distinct, rotations are not. </p>\r\n\r\n<p>Thus,
|
13
|
+
for instance, <var>f</var>(2,1) = 1, <var>f</var>(2,2) = <var>f</var>(3,1) = 2 and
|
14
|
+
<var>f</var>(3,2) = 16. <br><var>f</var>(3,2) is shown below:</p>\r\n\r\n<div align=\"center\"><img
|
15
|
+
src=\"project/images/p_281_pizza.gif\"></div>\r\n\r\n<p>Find the sum of all <var>f</var>(<var>m</var>,<var>n</var>)
|
16
|
+
such that <var>f</var>(<var>m</var>,<var>n</var>) <img src=\"images/symbol_le.gif\"
|
17
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>15</sup>.</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 282
|
3
|
+
:name: The Ackermann function
|
4
|
+
:url: http://projecteuler.net/problem=282
|
5
|
+
:content: "\r\n<p>\r\nFor non-negative integers <var>m</var>, <var>n</var>, the Ackermann
|
6
|
+
function <var>A</var>(<var>m</var>, <var>n</var>) is defined as follows:\r\n</p>\r\n<div
|
7
|
+
align=\"center\"><img src=\"project/images/p_282_formula.gif\"></div>\r\n<p>\r\nFor
|
8
|
+
example <var>A</var>(1, 0) = 2, <var>A</var>(2, 2) = 7 and <var>A</var>(3, 4) =
|
9
|
+
125.\r\n</p>\r\n<p>\r\nFind <img src=\"project/images/p_282formula3.gif\" style=\"vertical-align:middle\"><var>A</var>(<var>n</var>,
|
10
|
+
<var>n</var>) and give your answer mod 14<sup>8</sup>.</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 283
|
3
|
+
:name: Integer sided triangles for which the area/perimeter ratio is integral
|
4
|
+
:url: http://projecteuler.net/problem=283
|
5
|
+
:content: "\r\n<p>\r\nConsider the triangle with sides 6, 8 and 10. It can be seen
|
6
|
+
that the perimeter and the area are both equal to 24. \r\nSo the area/perimeter
|
7
|
+
ratio is equal to 1.<br>\r\nConsider also the triangle with sides 13, 14 and 15.
|
8
|
+
The perimeter equals 42 while the area is equal to 84. \r\nSo for this triangle
|
9
|
+
the area/perimeter ratio is equal to 2.\r\n</p>\r\n<p>\r\nFind the sum of the perimeters
|
10
|
+
of all integer sided triangles for which the area/perimeter ratios are equal to
|
11
|
+
positive integers not exceeding 1000.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 284
|
3
|
+
:name: Steady Squares
|
4
|
+
:url: http://projecteuler.net/problem=284
|
5
|
+
:content: "\r\n<p>The 3-digit number 376 in the decimal numbering system is an example
|
6
|
+
of numbers with the special property that its square ends with the same digits:
|
7
|
+
376<sup>2</sup> = 141376. Let's call a number with this property a steady square.</p>\r\n\r\n<p>Steady
|
8
|
+
squares can also be observed in other numbering systems. In the base 14 numbering
|
9
|
+
system, the 3-digit number c37 is also a steady square: c37<sup>2</sup> = aa0c37,
|
10
|
+
and the sum of its digits is c+3+7=18 in the same numbering system. The letters
|
11
|
+
a, b, c and d are used for the 10, 11, 12 and 13 digits respectively, in a manner
|
12
|
+
similar to the hexadecimal numbering system.</p>\r\n\r\n<p>For 1 <img src=\"images/symbol_le.gif\"
|
13
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
14
|
+
n <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"> 9, the sum of the digits of all the n-digit steady
|
16
|
+
squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares with
|
17
|
+
leading 0's are not allowed.</p>\r\n\r\n<p>Find the sum of the digits of all the
|
18
|
+
n-digit steady squares in the base 14 numbering system for<br>\r\n1 <img src=\"images/symbol_le.gif\"
|
19
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
n <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\"> 10000 (decimal) and give your answer in the base
|
22
|
+
14 system using lower case letters where necessary.</p>\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 285
|
3
|
+
:name: Pythagorean odds
|
4
|
+
:url: http://projecteuler.net/problem=285
|
5
|
+
:content: "\r\n<p>Albert chooses a positive integer <var>k</var>, then two real numbers
|
6
|
+
<var>a</var>, <var>b</var> are randomly chosen in the interval [0,1] with uniform
|
7
|
+
distribution.<br>\r\nThe square root of the sum (<var>k</var>·<var>a</var>+1)<sup>2</sup> + (<var>k</var>·<var>b</var>+1)<sup>2</sup>
|
8
|
+
is then computed and rounded to the nearest integer. If the result is equal to <var>k</var>,
|
9
|
+
he scores <var>k</var> points; otherwise he scores nothing.</p>\r\n\r\n<p>For example,
|
10
|
+
if <var>k</var> = 6, <var>a</var> = 0.2 and <var>b</var> = 0.85, then (<var>k</var>·<var>a</var>+1)<sup>2</sup> + (<var>k</var>·<var>b</var>+1)<sup>2</sup> = 42.05.<br>\r\nThe
|
11
|
+
square root of 42.05 is 6.484... and when rounded to the nearest integer, it becomes
|
12
|
+
6.<br>\r\nThis is equal to <var>k</var>, so he scores 6 points.</p>\r\n\r\n<p>It
|
13
|
+
can be shown that if he plays 10 turns with <var>k</var> = 1, <var>k</var> = 2,
|
14
|
+
..., <var>k</var> = 10, the expected value of his total score, rounded to five decimal
|
15
|
+
places, is 10.20914.</p>\r\n\r\n<p>If he plays 10<sup>5</sup> turns with <var>k</var> = 1,
|
16
|
+
<var>k</var> = 2, <var>k</var> = 3, ..., <var>k</var> = 10<sup>5</sup>, what is
|
17
|
+
the expected value of his total score, rounded to five decimal places?</p>\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 286
|
3
|
+
:name: Scoring probabilities
|
4
|
+
:url: http://projecteuler.net/problem=286
|
5
|
+
:content: "\r\n<p>Barbara is a mathematician and a basketball player. She has found
|
6
|
+
that the probability of scoring a point when shooting from a distance <var>x</var>
|
7
|
+
is exactly (1 - <sup><var>x</var></sup>/<sub><var>q</var></sub>), where <var>q</var>
|
8
|
+
is a real constant greater than 50.</p>\r\n\r\n<p>During each practice run, she
|
9
|
+
takes shots from distances <var>x</var> = 1, <var>x</var> = 2, ..., <var>x</var> = 50
|
10
|
+
and, according to her records, she has precisely a 2 % chance to score a total of
|
11
|
+
exactly 20 points.</p>\r\n\r\n<p>Find <var>q</var> and give your answer rounded
|
12
|
+
to 10 decimal places.</p>\r\n"
|
@@ -0,0 +1,36 @@
|
|
1
|
+
---
|
2
|
+
:id: 287
|
3
|
+
:name: Quadtree encoding (a simple compression algorithm)
|
4
|
+
:url: http://projecteuler.net/problem=287
|
5
|
+
:content: "\r\n<p>The quadtree encoding allows us to describe a 2<sup><var>N</var></sup><img
|
6
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
7
|
+
style=\"vertical-align:middle;\">2<sup><var>N</var></sup> black and white image
|
8
|
+
as a sequence of bits (0 and 1). Those sequences are to be read from left to right
|
9
|
+
like this:\r\n</p>\n<ul>\n<li>the first bit deals with the complete 2<sup><var>N</var></sup><img
|
10
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\">2<sup><var>N</var></sup> region;</li>\r\n<li>\"0\"
|
12
|
+
denotes a split:\r\n<br>the current 2<sup><var>n</var></sup><img src=\"images/symbol_times.gif\"
|
13
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup><var>n</var></sup>
|
14
|
+
region is divided into 4 sub-regions of dimension 2<sup><var>n</var>-1</sup><img
|
15
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\">2<sup><var>n</var>-1</sup>,<br>\r\nthe next bits
|
17
|
+
contains the description of the top left, top right, bottom left and bottom right
|
18
|
+
sub-regions - in that order;</li>\r\n<li>\"10\" indicates that the current region
|
19
|
+
contains only black pixels;</li>\r\n<li>\"11\" indicates that the current region
|
20
|
+
contains only white pixels.</li>\n</ul>\n<p>Consider the following 4<img src=\"images/symbol_times.gif\"
|
21
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">4
|
22
|
+
image (colored marks denote places where a split can occur):</p>\r\n<div align=\"center\"><img
|
23
|
+
src=\"project/images/p_287_quadtree.gif\"></div>\r\n<p>This image can be described
|
24
|
+
by several sequences, for example :<bp></bp>\r\n\"<span style=\"color:red;\"><b>0</b></span><span
|
25
|
+
style=\"color:blue;\"><b>0</b></span>10101010<span style=\"color:green;\"><b>0</b></span>1011111011<span
|
26
|
+
style=\"color:orange;\"><b>0</b></span>10101010\", of length 30, or<br>\r\n\"<span
|
27
|
+
style=\"color:red;\"><b>0</b></span>10<span style=\"color:green;\"><b>0</b></span>101111101110\",
|
28
|
+
of length 16, which is the minimal sequence for this image.</p>\r\n\r\n<p>For a
|
29
|
+
positive integer <var>N</var>, define <var>D<sub>N</sub></var> as the 2<sup><var>N</var></sup><img
|
30
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
31
|
+
style=\"vertical-align:middle;\">2<sup><var>N</var></sup> image with the following
|
32
|
+
coloring scheme:\r\n</p>\n<ul>\n<li>the pixel with coordinates <var>x</var> = 0,
|
33
|
+
<var>y</var> = 0 corresponds to the bottom left pixel,</li>\r\n<li>if (<var>x</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> + (<var>y</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> <img
|
34
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 2<sup>2<var>N</var>-2</sup>
|
35
|
+
then the pixel is black,</li>\r\n<li>otherwise the pixel is white.</li>\n</ul>\n<p>What
|
36
|
+
is the length of the minimal sequence describing <var>D</var><sub>24</sub> ?</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 288
|
3
|
+
:name: An enormous factorial
|
4
|
+
:url: http://projecteuler.net/problem=288
|
5
|
+
:content: "\r\n<p>\r\nFor any prime <var>p</var> the number N(<var>p</var>,<var>q</var>)
|
6
|
+
is defined by\r\nN(<var>p</var>,<var>q</var>) = <img src=\"images/symbol_sum.gif\"
|
7
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"><sub><var>n</var>=0
|
8
|
+
to <var>q</var></sub> T<sub><var>n</var></sub>*<var>p</var><sup><var>n</var></sup><br>
|
9
|
+
with T<sub><var>n</var></sub> generated by the following random number generator:</p>\r\n<p>\r\nS<sub>0</sub>
|
10
|
+
= 290797<br>\r\nS<sub><var>n</var>+1</sub> = S<sub><var>n</var></sub><sup>2</sup>
|
11
|
+
mod 50515093<br>\r\nT<sub><var>n</var></sub> = S<sub><var>n</var></sub> mod <var>p</var>\r\n</p>\r\n<p>\r\nLet
|
12
|
+
Nfac(<var>p</var>,<var>q</var>) be the factorial of N(<var>p</var>,<var>q</var>).<br>\r\nLet
|
13
|
+
NF(<var>p</var>,<var>q</var>) be the number of factors <var>p</var> in Nfac(<var>p</var>,<var>q</var>).\r\n</p>\r\n<p>\r\nYou
|
14
|
+
are given that NF(3,10000) mod 3<sup>20</sup>=624955285.\r\n</p>\r\n<p>\r\nFind
|
15
|
+
NF(61,10<sup>7</sup>) mod 61<sup>10</sup></p>\r\n\r\n \r\n\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 289
|
3
|
+
:name: Eulerian Cycles
|
4
|
+
:url: http://projecteuler.net/problem=289
|
5
|
+
:content: "\r\n<p>Let C(<var>x</var>,<var>y</var>) be a circle passing through the
|
6
|
+
points (<var>x</var>, <var>y</var>), (<var>x</var>, <var>y</var>+1), (<var>x</var>+1, <var>y</var>)
|
7
|
+
and (<var>x</var>+1, <var>y</var>+1).</p>\r\n\r\n<p>For positive integers m and
|
8
|
+
n, let E(<var>m</var>,<var>n</var>) be a configuration which consists of the <var>m</var>·<var>n</var>
|
9
|
+
circles:<br>\r\n{ C(<var>x</var>,<var>y</var>): 0 ≤ <var>x</var> m, 0 ≤ <var>y</var> n,
|
10
|
+
<var>x</var> and <var>y</var> are integers }</p>\r\n\r\n<p>An Eulerian cycle on
|
11
|
+
E(<var>m</var>,<var>n</var>) is a closed path that passes through each arc exactly
|
12
|
+
once.<br>\r\nMany such paths are possible on E(<var>m</var>,<var>n</var>), but we
|
13
|
+
are only interested in those which are not self-crossing: \r\nA non-crossing path
|
14
|
+
just touches itself at lattice points, but it never crosses itself.</p>\r\n\r\n<p>The
|
15
|
+
image below shows E(3,3) and an example of an Eulerian non-crossing path.<br></p>\n<div
|
16
|
+
align=\"center\"><img src=\"project/images/p_289_euler.gif\"></div>\r\n\r\n<p>Let
|
17
|
+
L(<var>m</var>,<var>n</var>) be the number of Eulerian non-crossing paths on E(<var>m</var>,<var>n</var>).<br>\r\nFor
|
18
|
+
example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.</p>\r\n\r\n<p>Find L(6,10)
|
19
|
+
mod 10<sup>10</sup>.</p>\r\n"
|
@@ -0,0 +1,24 @@
|
|
1
|
+
---
|
2
|
+
:id: 29
|
3
|
+
:name: Distinct powers
|
4
|
+
:url: http://projecteuler.net/problem=29
|
5
|
+
:content: "\r\n\n<p>Consider all integer combinations of <i>a</i><sup><i>b</i></sup>
|
6
|
+
for 2 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
7
|
+
style=\"vertical-align:middle;\"><i>a</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
8
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 5 and 2 <img
|
9
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>b</i>
|
10
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 5:</p>\n<blockquote>2<sup>2</sup>=4, 2<sup>3</sup>=8,
|
12
|
+
2<sup>4</sup>=16, 2<sup>5</sup>=32<br>\n3<sup>2</sup>=9, 3<sup>3</sup>=27, 3<sup>4</sup>=81,
|
13
|
+
3<sup>5</sup>=243<br>\n4<sup>2</sup>=16, 4<sup>3</sup>=64, 4<sup>4</sup>=256, 4<sup>5</sup>=1024<br>\n5<sup>2</sup>=25,
|
14
|
+
5<sup>3</sup>=125, 5<sup>4</sup>=625, 5<sup>5</sup>=3125<br>\n</blockquote>\n<p>If
|
15
|
+
they are then placed in numerical order, with any repeats removed, we get the following
|
16
|
+
sequence of 15 distinct terms:</p>\n<p style=\"text-align:center;\">4, 8, 9, 16,
|
17
|
+
25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125</p>\n<p>How many distinct terms
|
18
|
+
are in the sequence generated by <i>a</i><sup><i>b</i></sup> for 2 <img src=\"images/symbol_le.gif\"
|
19
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>a</i>
|
20
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\"> 100 and 2 <img src=\"images/symbol_le.gif\" width=\"10\"
|
22
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>b</i> <img
|
23
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
24
|
+
100?</p>\n\r\n"
|
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 290
|
3
|
+
:name: Digital Signature
|
4
|
+
:url: http://projecteuler.net/problem=290
|
5
|
+
:content: "\r\n<p>How many integers 0 <img src=\"images/symbol_le.gif\" width=\"10\"
|
6
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
7
|
+
&lt 10<sup>18</sup> have the property that the sum of the digits of <var>n</var>
|
8
|
+
equals the sum of digits of 137<var>n</var>?</p>\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 291
|
3
|
+
:name: Panaitopol Primes
|
4
|
+
:url: http://projecteuler.net/problem=291
|
5
|
+
:content: "\r\n<p>\r\nA prime number <var>p</var> is called a Panaitopol prime if
|
6
|
+
<img src=\"project/images/p_291_formula.gif\" style=\"vertical-align:middle\"> for
|
7
|
+
some positive integers<br><var>x</var> and <var>y</var>.\r\n</p>\r\n<p>\r\nFind
|
8
|
+
how many Panaitopol primes are less than 5<img src=\"images/symbol_times.gif\" width=\"9\"
|
9
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">10<sup>15</sup>.\r\n</p>\r\n\r\n
|
10
|
+
\ \r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 292
|
3
|
+
:name: Pythagorean Polygons
|
4
|
+
:url: http://projecteuler.net/problem=292
|
5
|
+
:content: "\r\n<p>We shall define a <i>pythagorean polygon</i> to be a <b>convex
|
6
|
+
polygon</b> with the following properties:<br></p>\n<ul>\n<li>there are at least
|
7
|
+
three vertices,</li>\r\n<li>no three vertices are aligned,</li>\r\n<li>each vertex
|
8
|
+
has <b>integer coordinates</b>,</li>\r\n<li>each edge has <b>integer length</b>.</li>\n</ul>\n<p>For
|
9
|
+
a given integer <var>n</var>, define P(<var>n</var>) as the number of distinct pythagorean
|
10
|
+
polygons for which the perimeter is <img src=\"images/symbol_le.gif\" width=\"10\"
|
11
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> <var>n</var>.<br>\r\nPythagorean
|
12
|
+
polygons should be considered distinct as long as none is a translation of another.</p>\r\n\r\n<p>You
|
13
|
+
are given that P(4) = 1, P(30) = 3655 and P(60) = 891045.<br>\r\nFind P(120).</p>\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 293
|
3
|
+
:name: Pseudo-Fortunate Numbers
|
4
|
+
:url: http://projecteuler.net/problem=293
|
5
|
+
:content: "\r\n<p>\r\nAn even positive integer N will be called admissible, if it
|
6
|
+
is a power of 2 or its distinct prime factors are consecutive primes.<br>\r\nThe
|
7
|
+
first twelve admissible numbers are 2,4,6,8,12,16,18,24,30,32,36,48.\r\n</p>\r\n<p>\r\nIf
|
8
|
+
N is admissible, the smallest integer M <img src=\"images/symbol_gt.gif\" width=\"10\"
|
9
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 1 such
|
10
|
+
that N+M is prime, will be called the pseudo-Fortunate number for N.\r\n</p>\r\n<p>\r\nFor
|
11
|
+
example, N=630 is admissible since it is even and its distinct prime factors are
|
12
|
+
the consecutive primes 2,3,5 and 7.<br> \r\nThe next prime number after 631 is 641;
|
13
|
+
hence, the pseudo-Fortunate number for 630 is M=11.<br>\r\nIt can also be seen that
|
14
|
+
the pseudo-Fortunate number for 16 is 3.\r\n</p>\r\n<p>\r\nFind the sum of all distinct
|
15
|
+
pseudo-Fortunate numbers for admissible numbers N less than 10<sup>9</sup>.\r\n</p>\r\n\r\n\r\n\r\n"
|