euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 364
|
3
|
+
:name: Comfortable distance
|
4
|
+
:url: http://projecteuler.net/problem=364
|
5
|
+
:content: "\r\n<p>\r\nThere are <var>N</var> seats in a row. <var>N</var> people come
|
6
|
+
after each other to fill the seats according to the following rules:\r\n</p>\n<ol
|
7
|
+
type=\"1\">\n<li>If there is any seat whose adjacent seat(s) are not occupied take
|
8
|
+
such a seat.</li>\r\n<li>If there is no such seat and there is any seat for which
|
9
|
+
only one adjacent seat is occupied take such a seat.</li>\r\n<li>Otherwise take
|
10
|
+
one of the remaining available seats. </li>\r\n</ol>\r\nLet T(<var>N</var>) be the
|
11
|
+
number of possibilities that <var>N</var> seats are occupied by <var>N</var> people
|
12
|
+
with the given rules.<br> The following figure shows T(4)=8.\r\n\r\n\r\n<div align=\"center\">\r\n<img
|
13
|
+
src=\"project/images/p_364_comf_dist.gif\">\n</div>\r\n\r\n<p>We can verify that
|
14
|
+
T(10) = 61632 and T(1 000) mod 100 000 007 = 47255094.</p>\r\n<p>Find T(1 000 000)
|
15
|
+
mod 100 000 007.</p>\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 365
|
3
|
+
:name: A huge binomial coefficient
|
4
|
+
:url: http://projecteuler.net/problem=365
|
5
|
+
:content: "\r\n<p>\r\nThe binomial coeffient C(10<sup>18</sup>,10<sup>9</sup>) is
|
6
|
+
a number with more than 9 billion (9<img src=\"images/symbol_times.gif\" width=\"9\"
|
7
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">10<sup>9</sup>)
|
8
|
+
digits.\r\n</p>\r\n<p>\r\nLet M(n,k,m) denote the binomial coefficient C(n,k) modulo
|
9
|
+
m.\r\n</p>\r\n<p>\r\nCalculate <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
10
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">M(10<sup>18</sup>,10<sup>9</sup>,p*q*r)
|
11
|
+
for 1000<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
12
|
+
border=\"0\" style=\"vertical-align:middle;\">p<img src=\"images/symbol_lt.gif\"
|
13
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">q<img
|
14
|
+
src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\">r<img src=\"images/symbol_lt.gif\" width=\"10\"
|
16
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">5000 and
|
17
|
+
p,q,r prime.\r\n</p>\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,26 @@
|
|
1
|
+
---
|
2
|
+
:id: 366
|
3
|
+
:name: Stone Game III
|
4
|
+
:url: http://projecteuler.net/problem=366
|
5
|
+
:content: "\r\n<p>\r\nTwo players, Anton and Bernhard, are playing the following game.<br>\r\nThere
|
6
|
+
is one pile of n stones.<br>\r\nThe first player may remove any positive number
|
7
|
+
of stones, but not the whole pile.<br>\r\nThereafter, each player may remove at
|
8
|
+
most twice the number of stones his opponent took on the previous move.<br>\r\nThe
|
9
|
+
player who removes the last stone wins.\r\n</p>\r\n<p>\r\nE.g. n=5<br>\r\nIf the
|
10
|
+
first player takes anything more than one stone the next player will be able to
|
11
|
+
take all remaining stones.<br>\r\nIf the first player takes one stone, leaving four,
|
12
|
+
his opponent will take also one stone, leaving three stones.<br>\r\nThe first player
|
13
|
+
cannot take all three because he may take at most 2x1=2 stones. So let's say he
|
14
|
+
takes also one stone, leaving 2. The second player can take the two remaining stones
|
15
|
+
and wins.<br>\r\nSo 5 is a losing position for the first player.<br>\r\nFor some
|
16
|
+
winning positions there is more than one possible move for the first player.<br>\r\nE.g.
|
17
|
+
when n=17 the first player can remove one or four stones.\r\n</p>\r\n<p>\r\nLet
|
18
|
+
M(n) be the maximum number of stones the first player can take from a winning position
|
19
|
+
<i>at his first turn</i> and M(n)=0 for any other position.\r\n</p>\r\n<p>\r\n<img
|
20
|
+
src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\">M(n) for n<img src=\"images/symbol_le.gif\" width=\"10\"
|
22
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">100 is 728.\r\n</p>\r\n<p>\r\nFind
|
23
|
+
\ <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\">M(n) for n<img src=\"images/symbol_le.gif\" width=\"10\"
|
25
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">10<sup>18</sup>.\r\nGive
|
26
|
+
your answer modulo 10<sup>8</sup>.\r\n</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 367
|
3
|
+
:name: Bozo sort
|
4
|
+
:url: http://projecteuler.net/problem=367
|
5
|
+
:content: "\r\n<p>\r\n<b>Bozo sort</b>, not to be confused with the slightly less
|
6
|
+
efficient <b>bogo sort</b>, consists out of checking if the input sequence is sorted
|
7
|
+
and if not swapping randomly two elements. This is repeated until eventually the
|
8
|
+
sequence is sorted.\r\n</p>\r\n<p>\r\nIf we consider all permutations of the first
|
9
|
+
4 natural numbers as input the expectation value of the number of swaps, averaged
|
10
|
+
over all 4! input sequences is 24.75.<br>\r\nThe already sorted sequence takes 0
|
11
|
+
steps. \r\n</p>\r\n<p>\r\nIn this problem we consider the following variant on bozo
|
12
|
+
sort.<br>\r\nIf the sequence is not in order we pick three elements at random and
|
13
|
+
shuffle these three elements randomly.<br>\r\nAll 3!=6 permutations of those three
|
14
|
+
elements are equally likely. <br>\r\nThe already sorted sequence will take 0 steps.<br>\r\nIf
|
15
|
+
we consider all permutations of the first 4 natural numbers as input the expectation
|
16
|
+
value of the number of shuffles, averaged over all 4! input sequences is 27.5. <br>\r\nConsider
|
17
|
+
as input sequences the permutations of the first 11 natural numbers.<br>\r\nAveraged
|
18
|
+
over all 11! input sequences, what is the expected number of shuffles this sorting
|
19
|
+
algorithm will perform?\r\n</p>\r\n<p>\r\nGive your answer rounded to the nearest
|
20
|
+
integer.\r\n</p>\r\n"
|
@@ -0,0 +1,39 @@
|
|
1
|
+
---
|
2
|
+
:id: 368
|
3
|
+
:name: A Kempner-like series
|
4
|
+
:url: http://projecteuler.net/problem=368
|
5
|
+
:content: "\r\n<p>\r\n</p>\n<table><tr>\n<td>The <b> harmonic series </b> 1</td>\r\n
|
6
|
+
\ <td>+</td>\n<td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">2</td></tr>\n</table></td>\r\n
|
7
|
+
\ <td>+</td>\r\n <td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">3</td></tr>\n</table></td>\r\n
|
8
|
+
\ <td>+</td>\r\n <td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">4</td></tr>\n</table></td>\r\n
|
9
|
+
\ <td>+ ... is well known to be divergent. </td>\r\n</tr></table>\n<p>\r\nIf we
|
10
|
+
however omit from this series every term where the denominator has a 9 in it, the
|
11
|
+
series remarkably enough converges to approximately 22.9206766193.<br>\r\nThis modified
|
12
|
+
harmonic series is called the <b>Kempner</b> series.\r\n</p>\r\n<p>\r\nLet us now
|
13
|
+
consider another modified harmonic series by omitting from the harmonic series every
|
14
|
+
term where the denominator has 3 or more equal consecutive digits.\r\nOne can verify
|
15
|
+
that out of the first 1200 terms of the harmonic series, only 20 terms will be omitted.<br>\r\nThese
|
16
|
+
20 omitted terms are:\r\n</p>\r\n<table>\n<td><table class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td
|
17
|
+
class=\"overline\">111</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table class=\"frac\"
|
18
|
+
style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">222</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
19
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">333</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
20
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">444</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
21
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">555</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
22
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">666</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
23
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">777</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
24
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">888</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
25
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">999</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
26
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1000</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
27
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1110</td></tr>\n</table></td>\r\n<td>,</td>\r\n</table>\n<table>\n<td><table
|
28
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1111</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
29
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1112</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
30
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1113</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
31
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1114</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
32
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1115</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
33
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1116</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
34
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1117</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
|
35
|
+
class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1118</td></tr>\n</table></td>\r\n<td>
|
36
|
+
and </td>\r\n<td><table class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td
|
37
|
+
class=\"overline\">1119</td></tr>\n</table></td>\r\n<td>.</td>\r\n\r\n</table>\n<p>\r\nThis
|
38
|
+
series converges as well.\r\n</p>\r\n<p> \r\nFind the value the series converges
|
39
|
+
to.<br>\r\nGive your answer rounded to 10 digits behind the decimal point.\r\n</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 369
|
3
|
+
:name: "Badugi\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=369
|
5
|
+
:content: "\r\n<p>In a standard 52 card deck of playing cards, a set of 4 cards is
|
6
|
+
a <b>Badugi</b> if it contains 4 cards with no pairs and no two cards of the same
|
7
|
+
suit.</p>\r\n\r\n<p>Let f(<var>n</var>) be the number of ways to choose <var>n</var>
|
8
|
+
cards with a 4 card subset that is a Badugi. For example, there are 2598960 ways
|
9
|
+
to choose five cards from a standard 52 card deck, of which 514800 contain a 4 card
|
10
|
+
subset that is a Badugi, so f(5) = 514800.</p>\r\n\r\n<p>Find <img src=\"images/symbol_sum.gif\"
|
11
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)
|
12
|
+
\ for 4 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
14
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
13.</p>\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 37
|
3
|
+
:name: Truncatable primes
|
4
|
+
:url: http://projecteuler.net/problem=37
|
5
|
+
:content: "\r\n\n<p>The number 3797 has an interesting property. Being prime itself,
|
6
|
+
it is possible to continuously remove digits from left to right, and remain prime
|
7
|
+
at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797,
|
8
|
+
379, 37, and 3.</p>\n<p>Find the sum of the only eleven primes that are both truncatable
|
9
|
+
from left to right and right to left.</p>\n<p class=\"info\">NOTE: 2, 3, 5, and
|
10
|
+
7 are not considered to be truncatable primes.</p>\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 370
|
3
|
+
:name: "Geometric triangles\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=370
|
5
|
+
:content: "\r\n<p>Let us define a <i>geometric triangle</i> as an integer sided triangle
|
6
|
+
with sides <var>a</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
7
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_le.gif\"
|
8
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>c</var>
|
9
|
+
so that its sides form a <b>geometric progression</b>, i.e. <var>b<sup>2</sup></var> = <var>a</var> · <var>c</var> . </p>
|
10
|
+
\r\n\r\n<p>An example of such a geometric triangle is the triangle with sides <var>a</var>
|
11
|
+
= 144, <var>b</var> = 156 and <var>c</var> = 169.</p>\r\n\r\n<p>There are 861805
|
12
|
+
geometric triangles with perimeter <img src=\"images/symbol_le.gif\" width=\"10\"
|
13
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>6</sup>
|
14
|
+
.</p>\r\n\r\n<p>How many geometric triangles exist with perimeter <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
2.5·10<sup>13</sup> ?</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 371
|
3
|
+
:name: Licence plates
|
4
|
+
:url: http://projecteuler.net/problem=371
|
5
|
+
:content: "\r\n<p>\r\nOregon licence plates consist of three letters followed by a
|
6
|
+
three digit number (each digit can be from [0..9]).<br>\r\nWhile driving to work
|
7
|
+
Seth plays the following game:<br>\r\nWhenever the numbers of two licence plates
|
8
|
+
seen on his trip add to 1000 that's a win.\r\n</p>\r\n<p>\r\nE.g. MIC-012 and HAN-988
|
9
|
+
is a win and RYU-500 and SET-500 too. (as long as he sees them in the same trip).
|
10
|
+
\r\n</p>\n<p>\r\n</p>\n<p>\r\nFind the expected number of plates he needs to see
|
11
|
+
for a win.<br>\r\nGive your answer rounded to 8 decimal places behind the decimal
|
12
|
+
point.\r\n</p>\r\n<p style=\"font-size:88%\">\r\n<b>Note:</b> We assume that each
|
13
|
+
licence plate seen is equally likely to have any three digit number on it.\r\n</p>\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 372
|
3
|
+
:name: Pencils of rays
|
4
|
+
:url: http://projecteuler.net/problem=372
|
5
|
+
:content: "\r\n<p>\r\nLet R(<var>M</var>, <var>N</var>) be the number of lattice points
|
6
|
+
(<var>x</var>, <var>y</var>) which satisfy <var>M</var><img src=\"images/symbol_lt.gif\"
|
7
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
|
8
|
+
src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>,
|
9
|
+
<var>M</var><img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\"
|
10
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>y</var><img src=\"images/symbol_le.gif\"
|
11
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>
|
12
|
+
and <img style=\"vertical-align:middle\" src=\"project/images/p_372_pencilray1.jpg\">
|
13
|
+
is odd.<br>\r\nWe can verify that R(0, 100) = 3019 and R(100, 10000) = 29750422.<br>\r\nFind
|
14
|
+
R(2·10<sup>6</sup>, 10<sup>9</sup>).\r\n</p>\r\n\r\n<p>\r\n<u><i>Note</i></u>: <img
|
15
|
+
style=\"vertical-align:middle\" src=\"project/images/p_372_pencilray2.gif\"> represents
|
16
|
+
the floor function.</p>\r\n\r\n"
|
@@ -0,0 +1,10 @@
|
|
1
|
+
---
|
2
|
+
:id: 373
|
3
|
+
:name: Circumscribed Circles
|
4
|
+
:url: http://projecteuler.net/problem=373
|
5
|
+
:content: "\r\n<p>\r\nEvery triangle has a circumscribed circle that goes through
|
6
|
+
the three vertices.\r\nConsider all integer sided triangles for which the radius
|
7
|
+
of the circumscribed circle is integral as well.\r\n</p>\r\n<p>\r\nLet S(<var>n</var>)
|
8
|
+
be the sum of the radii of the circumscribed circles of all such triangles for which
|
9
|
+
the radius does not exceed <var>n</var>.\r\n</p>\r\n<p>S(100)=4950 and S(1200)=1653605.\r\n</p>\r\n<p>\r\nFind
|
10
|
+
S(10<sup>7</sup>).\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
---
|
2
|
+
:id: 374
|
3
|
+
:name: "Maximum Integer Partition Product\r\n"
|
4
|
+
:url: http://projecteuler.net/problem=374
|
5
|
+
:content: "\r\n<p>An integer partition of a number <var>n</var> is a way of writing
|
6
|
+
<var>n</var> as a sum of positive integers.</p>\r\n\r\n<p>Partitions that differ
|
7
|
+
only in the order of their summands are considered the same.\r\nA partition of <var>n</var>
|
8
|
+
into <b>distinct parts</b> is a partition of <var>n</var> in which every part occurs
|
9
|
+
at most once.</p>\r\n\r\n<p>The partitions of 5 into distinct parts are:\r\n<br>5,
|
10
|
+
4+1 and 3+2.</p>\r\n\r\n<p>Let f(<var>n</var>) be the maximum product of the parts
|
11
|
+
of any such partition of <var>n</var> into distinct parts and let m(<var>n</var>)
|
12
|
+
be the number of elements of any such partition of <var>n</var> with that product.</p>\r\n\r\n<p>So
|
13
|
+
f(5)=6 and m(5)=2.</p>\r\n\r\n<p>For <var>n</var>=10 the partition with the largest
|
14
|
+
product is 10=2+3+5, which gives f(10)=30 and m(10)=3.\r\n<br>And their product,
|
15
|
+
f(10)·m(10) = 30·3 = 90</p>\r\n\r\n<p>It can be verified that\r\n<br><img src=\"images/symbol_sum.gif\"
|
16
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)·m(<var>n</var>)
|
17
|
+
for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
19
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
100 = 1683550844462.</p>\r\n\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\"
|
21
|
+
height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)·m(<var>n</var>)
|
22
|
+
for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
23
|
+
style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
|
24
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
25
|
+
10<sup>14</sup>.\r\n<br>Give your answer modulo 982451653, the 50 millionth prime.</p>\r\n\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 375
|
3
|
+
:name: Minimum of subsequences
|
4
|
+
:url: http://projecteuler.net/problem=375
|
5
|
+
:content: "\r\n<style type=\"text/css\">\r\ntable.p375 td {\r\n padding: 0px 3px
|
6
|
+
0px 3px;\r\n vertical-align: bottom;\r\n text-align: left;\r\n}\r\n</style>\n<p>Let
|
7
|
+
<var>S</var><sub><var>n</var></sub> be an integer sequence produced with the following
|
8
|
+
pseudo-random number generator:</p>\r\n<center><table class=\"p375\">\n<tr>\n<td
|
9
|
+
style=\"text-align:right\">\n<var>S</var><sub>0</sub>\n</td>\r\n <td>=<sub> </sub>\n</td>\r\n
|
10
|
+
\ <td>290797<sub> </sub>\n</td>\r\n </tr>\n<tr>\n<td>\n<var>S</var><sub><var>n</var>+1</sub>\n</td>\r\n
|
11
|
+
\ <td>=<sub> </sub>\n</td>\r\n <td>\n<var>S</var><sub><var>n</var></sub><sup>2</sup>
|
12
|
+
mod 50515093</td>\r\n </tr>\n</table></center>\r\n\r\n<p>\r\nLet A(<var>i</var>,
|
13
|
+
<var>j</var>) be the minimum of the numbers <var>S</var><sub><var>i</var></sub>,
|
14
|
+
<var>S</var><sub><var>i</var>+1</sub>, ... , <var>S</var><sub><var>j</var></sub>
|
15
|
+
for <var>i</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
16
|
+
border=\"0\" style=\"vertical-align:middle;\"><var>j</var>.<br>\r\nLet M(<var>N</var>)
|
17
|
+
= ΣA(<var>i</var>, <var>j</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
|
18
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
|
19
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"><var>j</var> <img src=\"images/symbol_le.gif\"
|
21
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nWe
|
22
|
+
can verify that M(10) = 432256955 and M(10 000) = 3264567774119.</p>\r\n\r\n<p>\r\nFind
|
23
|
+
M(2 000 000 000).\r\n</p>\r\n"
|
@@ -0,0 +1,25 @@
|
|
1
|
+
---
|
2
|
+
:id: 376
|
3
|
+
:name: Nontransitive sets of dice
|
4
|
+
:url: http://projecteuler.net/problem=376
|
5
|
+
:content: "\r\n<p>\r\nConsider the following set of dice with nonstandard pips:\r\n</p>\r\n\r\n<p>\r\nDie
|
6
|
+
A: 1 4 4 4 4 4<br>\r\nDie B: 2 2 2 5 5 5<br>\r\nDie C: 3 3 3 3 3 6<br></p>\r\n\r\n<p>\r\nA
|
7
|
+
game is played by two players picking a die in turn and rolling it. The player who
|
8
|
+
rolls the highest value wins.\r\n</p>\r\n\r\n<p>\r\nIf the first player picks die
|
9
|
+
A and the second player picks die B we get<br>\r\nP(second player wins) = <sup>7</sup>/<sub>12</sub>
|
10
|
+
> <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nIf the first player picks die B
|
11
|
+
and the second player picks die C we get<br>\r\nP(second player wins) = <sup>7</sup>/<sub>12</sub>
|
12
|
+
> <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nIf the first player picks die C
|
13
|
+
and the second player picks die A we get<br>\r\nP(second player wins) = <sup>25</sup>/<sub>36</sub>
|
14
|
+
> <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nSo whatever die the first player
|
15
|
+
picks, the second player can pick another die and have a larger than 50% chance
|
16
|
+
of winning.<br>\r\nA set of dice having this property is called a <b>nontransitive
|
17
|
+
set of dice</b>.\r\n</p>\r\n\r\n<p>\r\nWe wish to investigate how many sets of nontransitive
|
18
|
+
dice exist. We will assume the following conditions:</p>\n<ul>\n<li>There are three
|
19
|
+
six-sided dice with each side having between 1 and <var>N</var> pips, inclusive.</li>\r\n<li>Dice
|
20
|
+
with the same set of pips are equal, regardless of which side on the die the pips
|
21
|
+
are located.</li>\r\n<li>The same pip value may appear on multiple dice; if both
|
22
|
+
players roll the same value neither player wins.</li>\r\n<li>The sets of dice {A,B,C},
|
23
|
+
{B,C,A} and {C,A,B} are the same set.</li>\r\n</ul>\n<p>\r\nFor <var>N</var> = 7
|
24
|
+
we find there are 9780 such sets.<br>\r\nHow many are there for <var>N</var> = 30
|
25
|
+
?\r\n</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 377
|
3
|
+
:name: Sum of digits, experience 13
|
4
|
+
:url: http://projecteuler.net/problem=377
|
5
|
+
:content: "\r\n<p>\r\nThere are 16 positive integers that do not have a zero in their
|
6
|
+
digits and that have a digital sum equal to 5, namely: <br>\r\n5, 14, 23, 32, 41,
|
7
|
+
113, 122, 131, 212, 221, 311, 1112, 1121, 1211, 2111 and 11111.<br>\r\nTheir sum
|
8
|
+
is 17891.\r\n</p>\r\n<p>\r\nLet <var>f</var>(<var>n</var>) be the sum of all positive
|
9
|
+
integers that do not have a zero in their digits and have a digital sum equal to
|
10
|
+
<var>n</var>.\r\n</p>\r\n<p>\r\nFind <img src=\"project/images/sod_13.gif\" style=\"margin-top:-8px;\">.<br>\r\nGive
|
11
|
+
the last 9 digits as your answer.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 378
|
3
|
+
:name: Triangle Triples
|
4
|
+
:url: http://projecteuler.net/problem=378
|
5
|
+
:content: "\r\n<p>\r\n</p>\n<table class=\"formula\"><tr>\n<td>\r\nLet T(<var>n</var>)
|
6
|
+
be the <var>n</var><sup>th</sup> triangle number, so T(<var>n</var>) =\r\n</td>\r\n<td>\r\n<table
|
7
|
+
class=\"frac\" style=\"font-size: smaller\">\n<tr><td>\n<var>n</var> (<var>n</var>+1)</td></tr>\n<tr><td
|
8
|
+
class=\"overline\" text-align:center>2</td></tr>\n</table>\n</td>\r\n<td>\r\n.\r\n</td>\r\n</tr></table>\n<p>\r\nLet
|
9
|
+
dT(<var>n</var>) be the number of divisors of T(<var>n</var>).<br>\r\nE.g.:\r\nT(7)
|
10
|
+
= 28 and dT(7) = 6.\r\n</p>\r\n<p>\r\nLet Tr(<var>n</var>) be the number of triples
|
11
|
+
(<var>i</var>, <var>j</var>, <var>k</var>) such that 1 <img src=\"images/symbol_le.gif\"
|
12
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i
|
13
|
+
\ n</var> and dT(<var>i</var>) > dT(<var>j</var>) > dT(<var>k</var>).<br>\r\nTr(20)
|
14
|
+
= 14, Tr(100) = 5772 and Tr(1000) = 11174776.\r\n</p>\r\n<p>\r\nFind Tr(60 000 000).
|
15
|
+
<br>\r\nGive the last 18 digits of your answer.\r\n</p>\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 379
|
3
|
+
:name: Least common multiple count
|
4
|
+
:url: http://projecteuler.net/problem=379
|
5
|
+
:content: "\r\n<p>\r\nLet <var>f</var>(<var>n</var>) be the number of couples (<var>x</var>,<var>y</var>)
|
6
|
+
with <var>x</var> and <var>y</var> positive integers, <var>x</var> <img src=\"images/symbol_le.gif\"
|
7
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>y</var>
|
8
|
+
and the least common multiple of <var>x</var> and <var>y</var> equal to <var>n</var>.\r\n</p>\r\n<p>\r\nLet
|
9
|
+
<var>g</var> be the <b>summatory function</b> of <var>f</var>, i.e.: \r\n<var>g</var>(<var>n</var>)
|
10
|
+
= <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><var>f</var>(<var>i</var>) for 1 <img src=\"images/symbol_le.gif\"
|
12
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
|
13
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"><var>n</var>.\r\n</p>\n<p>\r\n</p>\n<p>\r\nYou
|
15
|
+
are given that <var>g</var>(10<sup>6</sup>) = 37429395.\r\n</p>\r\n<p>\r\nFind <var>g</var>(10<sup>12</sup>).\r\n</p>\r\n\r\n\r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,18 @@
|
|
1
|
+
---
|
2
|
+
:id: 38
|
3
|
+
:name: Pandigital multiples
|
4
|
+
:url: http://projecteuler.net/problem=38
|
5
|
+
:content: "\r\n<p>Take the number 192 and multiply it by each of 1, 2, and 3:</p>\r\n<blockquote>192
|
6
|
+
<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
7
|
+
style=\"vertical-align:middle;\"> 1 = 192<br>\r\n192 <img src=\"images/symbol_times.gif\"
|
8
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
|
9
|
+
2 = 384<br>\r\n192 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
10
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 3 = 576</blockquote>\r\n<p>By
|
11
|
+
concatenating each product we get the 1 to 9 pandigital, 192384576. We will call
|
12
|
+
192384576 the concatenated product of 192 and (1,2,3)</p>\r\n<p>The same can be
|
13
|
+
achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital,
|
14
|
+
918273645, which is the concatenated product of 9 and (1,2,3,4,5).</p>\r\n<p>What
|
15
|
+
is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated
|
16
|
+
product of an integer with (1,2, ... , <var>n</var>) where <var>n</var> <img src=\"images/symbol_gt.gif\"
|
17
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
18
|
+
1?</p>\r\n\r\n"
|
@@ -0,0 +1,22 @@
|
|
1
|
+
---
|
2
|
+
:id: 380
|
3
|
+
:name: Amazing Mazes!
|
4
|
+
:url: http://projecteuler.net/problem=380
|
5
|
+
:content: "\r\n<p>\r\nAn m<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
6
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n maze is an m<img src=\"images/symbol_times.gif\"
|
7
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n
|
8
|
+
rectangular grid with walls placed between grid cells such that there is exactly
|
9
|
+
one path from the top-left square to any other square. <br>The following are examples
|
10
|
+
of a 9<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\">12 maze and a 15<img src=\"images/symbol_times.gif\"
|
12
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20
|
13
|
+
maze:\r\n</p>\r\n<p>\r\n<img src=\"project/images/p_380_mazes.gif\"></p>\r\n<p>\r\nLet
|
14
|
+
C(m,n) be the number of distinct m<img src=\"images/symbol_times.gif\" width=\"9\"
|
15
|
+
height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n mazes. Mazes
|
16
|
+
which can be formed by rotation and reflection from another maze are considered
|
17
|
+
distinct.\r\n</p>\r\n<p>\r\nIt can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4)
|
18
|
+
= 2415, and C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant
|
19
|
+
digits).<br>\r\nFind C(100,500) and write your answer in scientific notation rounded
|
20
|
+
to 5 significant digits.\r\n</p>\r\n<p>\r\nWhen giving your answer, use a lowercase
|
21
|
+
e to separate mantissa and exponent.\r\nE.g. if the answer is 1234567891011 then
|
22
|
+
the answer format would be 1.2346e12.\r\n\r\n</p> \r\n\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,21 @@
|
|
1
|
+
---
|
2
|
+
:id: 381
|
3
|
+
:name: "(prime-k) factorial"
|
4
|
+
:url: http://projecteuler.net/problem=381
|
5
|
+
:content: "\r\n<p>\r\nFor a prime p let S(p) = (<img src=\"images/symbol_sum.gif\"
|
6
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">(p-k)!)
|
7
|
+
mod(p) for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\"> k <img src=\"images/symbol_le.gif\"
|
9
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
10
|
+
5.\r\n</p>\r\n<p>\r\nFor example, if p=7,<br>\r\n(7-1)! + (7-2)! + (7-3)! + (7-4)!
|
11
|
+
+ (7-5)! = 6! + 5! + 4! + 3! + 2! = 720+120+24+6+2 = 872.<br> \r\nAs 872 mod(7)
|
12
|
+
= 4, S(7) = 4.\r\n</p>\r\n<p>\r\nIt can be verified that <img src=\"images/symbol_sum.gif\"
|
13
|
+
width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(p)
|
14
|
+
= 480 for 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
15
|
+
border=\"0\" style=\"vertical-align:middle;\"> p <img src=\"images/symbol_lt.gif\"
|
16
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\">
|
17
|
+
100.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
18
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(p) for 5 <img src=\"images/symbol_le.gif\"
|
19
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
p <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\"> 10<sup>8</sup>.\r\n</p>\r\n\r\n\r\n\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 382
|
3
|
+
:name: Generating polygons
|
4
|
+
:url: http://projecteuler.net/problem=382
|
5
|
+
:content: "\r\n<p>\r\nA <b>polygon</b> is a flat shape consisting of straight line
|
6
|
+
segments that are joined to form a closed chain or circuit. A polygon consists of
|
7
|
+
at least three sides and does not self-intersect.\r\n</p>\r\n\r\n<p>\r\nA set S
|
8
|
+
of positive numbers is said to <i>generate a polygon</i> P if:</p>\n<ul>\n<li> no
|
9
|
+
two sides of P are the same length,\r\n</li>\n<li> the length of every side of P
|
10
|
+
is in S, and\r\n</li>\n<li> S contains no other value.\r\n</li>\n</ul>\n<p>\r\nFor
|
11
|
+
example:<br>\r\nThe set {3, 4, 5} generates a polygon with sides 3, 4, and 5 (a
|
12
|
+
triangle).<br>\r\nThe set {6, 9, 11, 24} generates a polygon with sides 6, 9, 11,
|
13
|
+
and 24 (a quadrilateral).<br>\r\nThe sets {1, 2, 3} and {2, 3, 4, 9} do not generate
|
14
|
+
any polygon at all.<br></p>\r\n\r\n<p>\r\nConsider the sequence s, defined as follows:</p>\n<ul>\n<li>s<sub>1</sub>
|
15
|
+
= 1, s<sub>2</sub> = 2, s<sub>3</sub> = 3\r\n</li>\n<li>s<sub><var>n</var></sub>
|
16
|
+
= s<sub><var>n</var>-1</sub> + s<sub><var>n</var>-3</sub> for <var>n</var> <img
|
17
|
+
src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 3.\r\n</li>\n</ul>\n<p>\r\nLet U<sub><var>n</var></sub>
|
19
|
+
be the set {s<sub>1</sub>, s<sub>2</sub>, ..., s<sub><var>n</var></sub>}. For example,
|
20
|
+
U<sub>10</sub> = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41}.<br>\r\nLet f(<var>n</var>)
|
21
|
+
be the number of subsets of U<sub><var>n</var></sub> which generate at least one
|
22
|
+
polygon.<br>\r\nFor example, f(5) = 7, f(10) = 501 and f(25) = 18635853.\r\n</p>\r\n\r\n<p>\r\nFind
|
23
|
+
the last 9 digits of f(10<sup>18</sup>).\r\n</p>\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 383
|
3
|
+
:name: Divisibility comparison between factorials
|
4
|
+
:url: http://projecteuler.net/problem=383
|
5
|
+
:content: "\r\n<p>\r\nLet f<sub>5</sub>(<var>n</var>) be the largest integer <var>x</var>
|
6
|
+
for which 5<sup><var>x</var></sup> divides <var>n</var>.<br>\r\nFor example, f<sub>5</sub>(625000)
|
7
|
+
= 7.\r\n</p>\r\n\r\n<p>\r\nLet T<sub>5</sub>(<var>n</var>) be the number of integers
|
8
|
+
<var>i</var> which satisfy f<sub>5</sub>((2·<var>i</var>-1)!) 5(<var>i</var>!) and
|
9
|
+
1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"><var>i</var> <img src=\"images/symbol_le.gif\"
|
11
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.<br>\r\nIt
|
12
|
+
can be verified that T<sub>5</sub>(10<sup>3</sup>) = 68 and T<sub>5</sub>(10<sup>9</sup>)
|
13
|
+
= 2408210.\r\n</p>\r\n\r\n<p>\r\nFind T<sub>5</sub>(10<sup>18</sup>).\r\n</p>\r\n"
|