euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 364
3
+ :name: Comfortable distance
4
+ :url: http://projecteuler.net/problem=364
5
+ :content: "\r\n<p>\r\nThere are <var>N</var> seats in a row. <var>N</var> people come
6
+ after each other to fill the seats according to the following rules:\r\n</p>\n<ol
7
+ type=\"1\">\n<li>If there is any seat whose adjacent seat(s) are not occupied take
8
+ such a seat.</li>\r\n<li>If there is no such seat and there is any seat for which
9
+ only one adjacent seat is occupied take such a seat.</li>\r\n<li>Otherwise take
10
+ one of the remaining available seats. </li>\r\n</ol>\r\nLet T(<var>N</var>) be the
11
+ number of possibilities that <var>N</var> seats are occupied by <var>N</var> people
12
+ with the given rules.<br> The following figure shows T(4)=8.\r\n\r\n\r\n<div align=\"center\">\r\n<img
13
+ src=\"project/images/p_364_comf_dist.gif\">\n</div>\r\n\r\n<p>We can verify that
14
+ T(10) = 61632 and T(1 000) mod 100 000 007 = 47255094.</p>\r\n<p>Find T(1 000 000)
15
+ mod 100 000 007.</p>\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 365
3
+ :name: A huge binomial coefficient
4
+ :url: http://projecteuler.net/problem=365
5
+ :content: "\r\n<p>\r\nThe binomial coeffient C(10<sup>18</sup>,10<sup>9</sup>) is
6
+ a number with more than 9 billion (9<img src=\"images/symbol_times.gif\" width=\"9\"
7
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">10<sup>9</sup>)
8
+ digits.\r\n</p>\r\n<p>\r\nLet M(n,k,m) denote the binomial coefficient C(n,k) modulo
9
+ m.\r\n</p>\r\n<p>\r\nCalculate <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
10
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">M(10<sup>18</sup>,10<sup>9</sup>,p*q*r)
11
+ for 1000<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
12
+ border=\"0\" style=\"vertical-align:middle;\">p<img src=\"images/symbol_lt.gif\"
13
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">q<img
14
+ src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
15
+ style=\"vertical-align:middle;\">r<img src=\"images/symbol_lt.gif\" width=\"10\"
16
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">5000 and
17
+ p,q,r prime.\r\n</p>\r\n\r\n\r\n\r\n\r\n"
@@ -0,0 +1,26 @@
1
+ ---
2
+ :id: 366
3
+ :name: Stone Game III
4
+ :url: http://projecteuler.net/problem=366
5
+ :content: "\r\n<p>\r\nTwo players, Anton and Bernhard, are playing the following game.<br>\r\nThere
6
+ is one pile of n stones.<br>\r\nThe first player may remove any positive number
7
+ of stones, but not the whole pile.<br>\r\nThereafter, each player may remove at
8
+ most twice the number of stones his opponent took on the previous move.<br>\r\nThe
9
+ player who removes the last stone wins.\r\n</p>\r\n<p>\r\nE.g. n=5<br>\r\nIf the
10
+ first player takes anything more than one stone the next player will be able to
11
+ take all remaining stones.<br>\r\nIf the first player takes one stone, leaving four,
12
+ his opponent will take also one stone, leaving three stones.<br>\r\nThe first player
13
+ cannot take all three because he may take at most 2x1=2 stones. So let's say he
14
+ takes also one stone, leaving 2. The second player can take the two remaining stones
15
+ and wins.<br>\r\nSo 5 is a losing position for the first player.<br>\r\nFor some
16
+ winning positions there is more than one possible move for the first player.<br>\r\nE.g.
17
+ when n=17 the first player can remove one or four stones.\r\n</p>\r\n<p>\r\nLet
18
+ M(n) be the maximum number of stones the first player can take from a winning position
19
+ <i>at his first turn</i> and M(n)=0 for any other position.\r\n</p>\r\n<p>\r\n<img
20
+ src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
21
+ style=\"vertical-align:middle;\">M(n) for n<img src=\"images/symbol_le.gif\" width=\"10\"
22
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">100 is 728.\r\n</p>\r\n<p>\r\nFind
23
+ \ <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
24
+ style=\"vertical-align:middle;\">M(n) for n<img src=\"images/symbol_le.gif\" width=\"10\"
25
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">10<sup>18</sup>.\r\nGive
26
+ your answer modulo 10<sup>8</sup>.\r\n</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 367
3
+ :name: Bozo sort
4
+ :url: http://projecteuler.net/problem=367
5
+ :content: "\r\n<p>\r\n<b>Bozo sort</b>, not to be confused with the slightly less
6
+ efficient <b>bogo sort</b>, consists out of checking if the input sequence is sorted
7
+ and if not swapping randomly two elements. This is repeated until eventually the
8
+ sequence is sorted.\r\n</p>\r\n<p>\r\nIf we consider all permutations of the first
9
+ 4 natural numbers as input the expectation value of the number of swaps, averaged
10
+ over all 4! input sequences is 24.75.<br>\r\nThe already sorted sequence takes 0
11
+ steps. \r\n</p>\r\n<p>\r\nIn this problem we consider the following variant on bozo
12
+ sort.<br>\r\nIf the sequence is not in order we pick three elements at random and
13
+ shuffle these three elements randomly.<br>\r\nAll 3!=6 permutations of those three
14
+ elements are equally likely. <br>\r\nThe already sorted sequence will take 0 steps.<br>\r\nIf
15
+ we consider all permutations of the first 4 natural numbers as input the expectation
16
+ value of the number of shuffles, averaged over all 4! input sequences is 27.5. <br>\r\nConsider
17
+ as input sequences the permutations of the first 11 natural numbers.<br>\r\nAveraged
18
+ over all 11! input sequences, what is the expected number of shuffles this sorting
19
+ algorithm will perform?\r\n</p>\r\n<p>\r\nGive your answer rounded to the nearest
20
+ integer.\r\n</p>\r\n"
@@ -0,0 +1,39 @@
1
+ ---
2
+ :id: 368
3
+ :name: A Kempner-like series
4
+ :url: http://projecteuler.net/problem=368
5
+ :content: "\r\n<p>\r\n</p>\n<table><tr>\n<td>The <b> harmonic series </b> 1</td>\r\n
6
+ \ <td>+</td>\n<td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">2</td></tr>\n</table></td>\r\n
7
+ \ <td>+</td>\r\n <td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">3</td></tr>\n</table></td>\r\n
8
+ \ <td>+</td>\r\n <td><table class=\"frac\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">4</td></tr>\n</table></td>\r\n
9
+ \ <td>+ ... is well known to be divergent. </td>\r\n</tr></table>\n<p>\r\nIf we
10
+ however omit from this series every term where the denominator has a 9 in it, the
11
+ series remarkably enough converges to approximately 22.9206766193.<br>\r\nThis modified
12
+ harmonic series is called the <b>Kempner</b> series.\r\n</p>\r\n<p>\r\nLet us now
13
+ consider another modified harmonic series by omitting from the harmonic series every
14
+ term where the denominator has 3 or more equal consecutive digits.\r\nOne can verify
15
+ that out of the first 1200 terms of the harmonic series, only 20 terms will be omitted.<br>\r\nThese
16
+ 20 omitted terms are:\r\n</p>\r\n<table>\n<td><table class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td
17
+ class=\"overline\">111</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table class=\"frac\"
18
+ style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">222</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
19
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">333</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
20
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">444</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
21
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">555</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
22
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">666</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
23
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">777</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
24
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">888</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
25
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">999</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
26
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1000</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
27
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1110</td></tr>\n</table></td>\r\n<td>,</td>\r\n</table>\n<table>\n<td><table
28
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1111</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
29
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1112</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
30
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1113</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
31
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1114</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
32
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1115</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
33
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1116</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
34
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1117</td></tr>\n</table></td>\r\n<td>,</td>\r\n<td><table
35
+ class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td class=\"overline\">1118</td></tr>\n</table></td>\r\n<td>
36
+ and </td>\r\n<td><table class=\"frac\" style=\"text-align:center;\">\n<tr><td>1</td></tr>\n<tr><td
37
+ class=\"overline\">1119</td></tr>\n</table></td>\r\n<td>.</td>\r\n\r\n</table>\n<p>\r\nThis
38
+ series converges as well.\r\n</p>\r\n<p> \r\nFind the value the series converges
39
+ to.<br>\r\nGive your answer rounded to 10 digits behind the decimal point.\r\n</p>\r\n\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 369
3
+ :name: "Badugi\r\n"
4
+ :url: http://projecteuler.net/problem=369
5
+ :content: "\r\n<p>In a standard 52 card deck of playing cards, a set of 4 cards is
6
+ a <b>Badugi</b> if it contains 4 cards with no pairs and no two cards of the same
7
+ suit.</p>\r\n\r\n<p>Let f(<var>n</var>) be the number of ways to choose <var>n</var>
8
+ cards with a 4 card subset that is a Badugi. For example, there are 2598960 ways
9
+ to choose five cards from a standard 52 card deck, of which 514800 contain a 4 card
10
+ subset that is a Badugi, so f(5) = 514800.</p>\r\n\r\n<p>Find <img src=\"images/symbol_sum.gif\"
11
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)
12
+ \ for 4 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
13
+ style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
14
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
15
+ 13.</p>\r\n\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 37
3
+ :name: Truncatable primes
4
+ :url: http://projecteuler.net/problem=37
5
+ :content: "\r\n\n<p>The number 3797 has an interesting property. Being prime itself,
6
+ it is possible to continuously remove digits from left to right, and remain prime
7
+ at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797,
8
+ 379, 37, and 3.</p>\n<p>Find the sum of the only eleven primes that are both truncatable
9
+ from left to right and right to left.</p>\n<p class=\"info\">NOTE: 2, 3, 5, and
10
+ 7 are not considered to be truncatable primes.</p>\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 370
3
+ :name: "Geometric triangles\r\n"
4
+ :url: http://projecteuler.net/problem=370
5
+ :content: "\r\n<p>Let us define a <i>geometric triangle</i> as an integer sided triangle
6
+ with sides <var>a</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
7
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_le.gif\"
8
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>c</var>
9
+ so that its sides form a <b>geometric progression</b>, i.e. <var>b<sup>2</sup></var> = <var>a</var> · <var>c</var> . </p>
10
+ \r\n\r\n<p>An example of such a geometric triangle is the triangle with sides <var>a</var>
11
+ = 144, <var>b</var> = 156 and <var>c</var> = 169.</p>\r\n\r\n<p>There are 861805
12
+ geometric triangles with perimeter <img src=\"images/symbol_le.gif\" width=\"10\"
13
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 10<sup>6</sup>
14
+ .</p>\r\n\r\n<p>How many geometric triangles exist with perimeter <img src=\"images/symbol_le.gif\"
15
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 2.5·10<sup>13</sup> ?</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 371
3
+ :name: Licence plates
4
+ :url: http://projecteuler.net/problem=371
5
+ :content: "\r\n<p>\r\nOregon licence plates consist of three letters followed by a
6
+ three digit number (each digit can be from [0..9]).<br>\r\nWhile driving to work
7
+ Seth plays the following game:<br>\r\nWhenever the numbers of two licence plates
8
+ seen on his trip add to 1000 that's a win.\r\n</p>\r\n<p>\r\nE.g. MIC-012 and HAN-988
9
+ is a win and RYU-500 and SET-500 too. (as long as he sees them in the same trip).
10
+ \r\n</p>\n<p>\r\n</p>\n<p>\r\nFind the expected number of plates he needs to see
11
+ for a win.<br>\r\nGive your answer rounded to 8 decimal places behind the decimal
12
+ point.\r\n</p>\r\n<p style=\"font-size:88%\">\r\n<b>Note:</b> We assume that each
13
+ licence plate seen is equally likely to have any three digit number on it.\r\n</p>\r\n\r\n\r\n\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 372
3
+ :name: Pencils of rays
4
+ :url: http://projecteuler.net/problem=372
5
+ :content: "\r\n<p>\r\nLet R(<var>M</var>, <var>N</var>) be the number of lattice points
6
+ (<var>x</var>, <var>y</var>) which satisfy <var>M</var><img src=\"images/symbol_lt.gif\"
7
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>x</var><img
8
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>,
9
+ <var>M</var><img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
10
+ border=\"0\" style=\"vertical-align:middle;\"><var>y</var><img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>
12
+ and <img style=\"vertical-align:middle\" src=\"project/images/p_372_pencilray1.jpg\">
13
+ is odd.<br>\r\nWe can verify that R(0, 100) = 3019 and R(100, 10000) = 29750422.<br>\r\nFind
14
+ R(2·10<sup>6</sup>, 10<sup>9</sup>).\r\n</p>\r\n\r\n<p>\r\n<u><i>Note</i></u>: <img
15
+ style=\"vertical-align:middle\" src=\"project/images/p_372_pencilray2.gif\"> represents
16
+ the floor function.</p>\r\n\r\n"
@@ -0,0 +1,10 @@
1
+ ---
2
+ :id: 373
3
+ :name: Circumscribed Circles
4
+ :url: http://projecteuler.net/problem=373
5
+ :content: "\r\n<p>\r\nEvery triangle has a circumscribed circle that goes through
6
+ the three vertices.\r\nConsider all integer sided triangles for which the radius
7
+ of the circumscribed circle is integral as well.\r\n</p>\r\n<p>\r\nLet S(<var>n</var>)
8
+ be the sum of the radii of the circumscribed circles of all such triangles for which
9
+ the radius does not exceed <var>n</var>.\r\n</p>\r\n<p>S(100)=4950 and S(1200)=1653605.\r\n</p>\r\n<p>\r\nFind
10
+ S(10<sup>7</sup>).\r\n</p>\r\n\r\n"
@@ -0,0 +1,25 @@
1
+ ---
2
+ :id: 374
3
+ :name: "Maximum Integer Partition Product\r\n"
4
+ :url: http://projecteuler.net/problem=374
5
+ :content: "\r\n<p>An integer partition of a number <var>n</var> is a way of writing
6
+ <var>n</var> as a sum of positive integers.</p>\r\n\r\n<p>Partitions that differ
7
+ only in the order of their summands are considered the same.\r\nA partition of <var>n</var>
8
+ into <b>distinct parts</b> is a partition of <var>n</var> in which every part occurs
9
+ at most once.</p>\r\n\r\n<p>The partitions of 5 into distinct parts are:\r\n<br>5,
10
+ 4+1 and 3+2.</p>\r\n\r\n<p>Let f(<var>n</var>) be the maximum product of the parts
11
+ of any such partition of <var>n</var> into distinct parts and let m(<var>n</var>)
12
+ be the number of elements of any such partition of <var>n</var> with that product.</p>\r\n\r\n<p>So
13
+ f(5)=6 and m(5)=2.</p>\r\n\r\n<p>For <var>n</var>=10 the partition with the largest
14
+ product is 10=2+3+5, which gives f(10)=30 and m(10)=3.\r\n<br>And their product,
15
+ f(10)·m(10) = 30·3 = 90</p>\r\n\r\n<p>It can be verified that\r\n<br><img src=\"images/symbol_sum.gif\"
16
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)·m(<var>n</var>)
17
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
18
+ style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
19
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
20
+ 100 = 1683550844462.</p>\r\n\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\"
21
+ height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">f(<var>n</var>)·m(<var>n</var>)
22
+ for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
23
+ style=\"vertical-align:middle;\"><var>n</var> <img src=\"images/symbol_le.gif\"
24
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
25
+ 10<sup>14</sup>.\r\n<br>Give your answer modulo 982451653, the 50 millionth prime.</p>\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 375
3
+ :name: Minimum of subsequences
4
+ :url: http://projecteuler.net/problem=375
5
+ :content: "\r\n<style type=\"text/css\">\r\ntable.p375 td {\r\n padding: 0px 3px
6
+ 0px 3px;\r\n vertical-align: bottom;\r\n text-align: left;\r\n}\r\n</style>\n<p>Let
7
+ <var>S</var><sub><var>n</var></sub> be an integer sequence produced with the following
8
+ pseudo-random number generator:</p>\r\n<center><table class=\"p375\">\n<tr>\n<td
9
+ style=\"text-align:right\">\n<var>S</var><sub>0</sub>\n</td>\r\n <td>=<sub> </sub>\n</td>\r\n
10
+ \ <td>290797<sub> </sub>\n</td>\r\n </tr>\n<tr>\n<td>\n<var>S</var><sub><var>n</var>+1</sub>\n</td>\r\n
11
+ \ <td>=<sub> </sub>\n</td>\r\n <td>\n<var>S</var><sub><var>n</var></sub><sup>2</sup>
12
+ mod 50515093</td>\r\n </tr>\n</table></center>\r\n\r\n<p>\r\nLet A(<var>i</var>,
13
+ <var>j</var>) be the minimum of the numbers <var>S</var><sub><var>i</var></sub>,
14
+ <var>S</var><sub><var>i</var>+1</sub>, ... , <var>S</var><sub><var>j</var></sub>
15
+ for <var>i</var> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
16
+ border=\"0\" style=\"vertical-align:middle;\"><var>j</var>.<br>\r\nLet M(<var>N</var>)
17
+ = ΣA(<var>i</var>, <var>j</var>) for 1 <img src=\"images/symbol_le.gif\" width=\"10\"
18
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
19
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
20
+ style=\"vertical-align:middle;\"><var>j</var> <img src=\"images/symbol_le.gif\"
21
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>N</var>.<br>\r\nWe
22
+ can verify that M(10) = 432256955 and M(10 000) = 3264567774119.</p>\r\n\r\n<p>\r\nFind
23
+ M(2 000 000 000).\r\n</p>\r\n"
@@ -0,0 +1,25 @@
1
+ ---
2
+ :id: 376
3
+ :name: Nontransitive sets of dice
4
+ :url: http://projecteuler.net/problem=376
5
+ :content: "\r\n<p>\r\nConsider the following set of dice with nonstandard pips:\r\n</p>\r\n\r\n<p>\r\nDie
6
+ A: 1 4 4 4 4 4<br>\r\nDie B: 2 2 2 5 5 5<br>\r\nDie C: 3 3 3 3 3 6<br></p>\r\n\r\n<p>\r\nA
7
+ game is played by two players picking a die in turn and rolling it. The player who
8
+ rolls the highest value wins.\r\n</p>\r\n\r\n<p>\r\nIf the first player picks die
9
+ A and the second player picks die B we get<br>\r\nP(second player wins) = <sup>7</sup>/<sub>12</sub>
10
+ &gt; <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nIf the first player picks die B
11
+ and the second player picks die C we get<br>\r\nP(second player wins) = <sup>7</sup>/<sub>12</sub>
12
+ &gt; <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nIf the first player picks die C
13
+ and the second player picks die A we get<br>\r\nP(second player wins) = <sup>25</sup>/<sub>36</sub>
14
+ &gt; <sup>1</sup>/<sub>2</sub></p>\r\n\r\n<p>\r\nSo whatever die the first player
15
+ picks, the second player can pick another die and have a larger than 50% chance
16
+ of winning.<br>\r\nA set of dice having this property is called a <b>nontransitive
17
+ set of dice</b>.\r\n</p>\r\n\r\n<p>\r\nWe wish to investigate how many sets of nontransitive
18
+ dice exist. We will assume the following conditions:</p>\n<ul>\n<li>There are three
19
+ six-sided dice with each side having between 1 and <var>N</var> pips, inclusive.</li>\r\n<li>Dice
20
+ with the same set of pips are equal, regardless of which side on the die the pips
21
+ are located.</li>\r\n<li>The same pip value may appear on multiple dice; if both
22
+ players roll the same value neither player wins.</li>\r\n<li>The sets of dice {A,B,C},
23
+ {B,C,A} and {C,A,B} are the same set.</li>\r\n</ul>\n<p>\r\nFor <var>N</var> = 7
24
+ we find there are 9780 such sets.<br>\r\nHow many are there for <var>N</var> = 30
25
+ ?\r\n</p>\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 377
3
+ :name: Sum of digits, experience 13
4
+ :url: http://projecteuler.net/problem=377
5
+ :content: "\r\n<p>\r\nThere are 16 positive integers that do not have a zero in their
6
+ digits and that have a digital sum equal to 5, namely: <br>\r\n5, 14, 23, 32, 41,
7
+ 113, 122, 131, 212, 221, 311, 1112, 1121, 1211, 2111 and 11111.<br>\r\nTheir sum
8
+ is 17891.\r\n</p>\r\n<p>\r\nLet <var>f</var>(<var>n</var>) be the sum of all positive
9
+ integers that do not have a zero in their digits and have a digital sum equal to
10
+ <var>n</var>.\r\n</p>\r\n<p>\r\nFind <img src=\"project/images/sod_13.gif\" style=\"margin-top:-8px;\">.<br>\r\nGive
11
+ the last 9 digits as your answer.\r\n</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 378
3
+ :name: Triangle Triples
4
+ :url: http://projecteuler.net/problem=378
5
+ :content: "\r\n<p>\r\n</p>\n<table class=\"formula\"><tr>\n<td>\r\nLet T(<var>n</var>)
6
+ be the <var>n</var><sup>th</sup> triangle number, so T(<var>n</var>) =\r\n</td>\r\n<td>\r\n<table
7
+ class=\"frac\" style=\"font-size: smaller\">\n<tr><td>\n<var>n</var> (<var>n</var>+1)</td></tr>\n<tr><td
8
+ class=\"overline\" text-align:center>2</td></tr>\n</table>\n</td>\r\n<td>\r\n.\r\n</td>\r\n</tr></table>\n<p>\r\nLet
9
+ dT(<var>n</var>) be the number of divisors of T(<var>n</var>).<br>\r\nE.g.:\r\nT(7)
10
+ = 28 and dT(7) = 6.\r\n</p>\r\n<p>\r\nLet Tr(<var>n</var>) be the number of triples
11
+ (<var>i</var>, <var>j</var>, <var>k</var>) such that 1 <img src=\"images/symbol_le.gif\"
12
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i
13
+ \ n</var> and dT(<var>i</var>) &gt; dT(<var>j</var>) &gt; dT(<var>k</var>).<br>\r\nTr(20)
14
+ = 14, Tr(100) = 5772 and Tr(1000) = 11174776.\r\n</p>\r\n<p>\r\nFind Tr(60 000 000).
15
+ <br>\r\nGive the last 18 digits of your answer.\r\n</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 379
3
+ :name: Least common multiple count
4
+ :url: http://projecteuler.net/problem=379
5
+ :content: "\r\n<p>\r\nLet <var>f</var>(<var>n</var>) be the number of couples (<var>x</var>,<var>y</var>)
6
+ with <var>x</var> and <var>y</var> positive integers, <var>x</var> <img src=\"images/symbol_le.gif\"
7
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>y</var>
8
+ and the least common multiple of <var>x</var> and <var>y</var> equal to <var>n</var>.\r\n</p>\r\n<p>\r\nLet
9
+ <var>g</var> be the <b>summatory function</b> of <var>f</var>, i.e.: \r\n<var>g</var>(<var>n</var>)
10
+ = <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><var>f</var>(<var>i</var>) for 1 <img src=\"images/symbol_le.gif\"
12
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>i</var>
13
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
14
+ style=\"vertical-align:middle;\"><var>n</var>.\r\n</p>\n<p>\r\n</p>\n<p>\r\nYou
15
+ are given that <var>g</var>(10<sup>6</sup>) = 37429395.\r\n</p>\r\n<p>\r\nFind <var>g</var>(10<sup>12</sup>).\r\n</p>\r\n\r\n\r\n\r\n\r\n\r\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 38
3
+ :name: Pandigital multiples
4
+ :url: http://projecteuler.net/problem=38
5
+ :content: "\r\n<p>Take the number 192 and multiply it by each of 1, 2, and 3:</p>\r\n<blockquote>192
6
+ <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
7
+ style=\"vertical-align:middle;\"> 1 = 192<br>\r\n192 <img src=\"images/symbol_times.gif\"
8
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 2 = 384<br>\r\n192 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
10
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 3 = 576</blockquote>\r\n<p>By
11
+ concatenating each product we get the 1 to 9 pandigital, 192384576. We will call
12
+ 192384576 the concatenated product of 192 and (1,2,3)</p>\r\n<p>The same can be
13
+ achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital,
14
+ 918273645, which is the concatenated product of 9 and (1,2,3,4,5).</p>\r\n<p>What
15
+ is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated
16
+ product of an integer with (1,2, ... , <var>n</var>) where <var>n</var> <img src=\"images/symbol_gt.gif\"
17
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
18
+ 1?</p>\r\n\r\n"
@@ -0,0 +1,22 @@
1
+ ---
2
+ :id: 380
3
+ :name: Amazing Mazes!
4
+ :url: http://projecteuler.net/problem=380
5
+ :content: "\r\n<p>\r\nAn m<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
6
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n maze is an m<img src=\"images/symbol_times.gif\"
7
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n
8
+ rectangular grid with walls placed between grid cells such that there is exactly
9
+ one path from the top-left square to any other square. <br>The following are examples
10
+ of a 9<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
11
+ style=\"vertical-align:middle;\">12 maze and a 15<img src=\"images/symbol_times.gif\"
12
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">20
13
+ maze:\r\n</p>\r\n<p>\r\n<img src=\"project/images/p_380_mazes.gif\"></p>\r\n<p>\r\nLet
14
+ C(m,n) be the number of distinct m<img src=\"images/symbol_times.gif\" width=\"9\"
15
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">n mazes. Mazes
16
+ which can be formed by rotation and reflection from another maze are considered
17
+ distinct.\r\n</p>\r\n<p>\r\nIt can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4)
18
+ = 2415, and C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant
19
+ digits).<br>\r\nFind C(100,500) and write your answer in scientific notation rounded
20
+ to 5 significant digits.\r\n</p>\r\n<p>\r\nWhen giving your answer, use a lowercase
21
+ e to separate mantissa and exponent.\r\nE.g. if the answer is 1234567891011 then
22
+ the answer format would be 1.2346e12.\r\n\r\n</p> \r\n\r\n\r\n\r\n\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 381
3
+ :name: "(prime-k) factorial"
4
+ :url: http://projecteuler.net/problem=381
5
+ :content: "\r\n<p>\r\nFor a prime p let S(p) = (<img src=\"images/symbol_sum.gif\"
6
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">(p-k)!)
7
+ mod(p) for 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
8
+ border=\"0\" style=\"vertical-align:middle;\"> k <img src=\"images/symbol_le.gif\"
9
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
10
+ 5.\r\n</p>\r\n<p>\r\nFor example, if p=7,<br>\r\n(7-1)! + (7-2)! + (7-3)! + (7-4)!
11
+ + (7-5)! = 6! + 5! + 4! + 3! + 2! = 720+120+24+6+2 = 872.<br> \r\nAs 872 mod(7)
12
+ = 4, S(7) = 4.\r\n</p>\r\n<p>\r\nIt can be verified that <img src=\"images/symbol_sum.gif\"
13
+ width=\"11\" height=\"14\" alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(p)
14
+ = 480 for 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
15
+ border=\"0\" style=\"vertical-align:middle;\"> p <img src=\"images/symbol_lt.gif\"
16
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\">
17
+ 100.\r\n</p>\r\n<p>\r\nFind <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
18
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\">S(p) for 5 <img src=\"images/symbol_le.gif\"
19
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
20
+ p <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
21
+ style=\"vertical-align:middle;\"> 10<sup>8</sup>.\r\n</p>\r\n\r\n\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 382
3
+ :name: Generating polygons
4
+ :url: http://projecteuler.net/problem=382
5
+ :content: "\r\n<p>\r\nA <b>polygon</b> is a flat shape consisting of straight line
6
+ segments that are joined to form a closed chain or circuit. A polygon consists of
7
+ at least three sides and does not self-intersect.\r\n</p>\r\n\r\n<p>\r\nA set S
8
+ of positive numbers is said to <i>generate a polygon</i> P if:</p>\n<ul>\n<li> no
9
+ two sides of P are the same length,\r\n</li>\n<li> the length of every side of P
10
+ is in S, and\r\n</li>\n<li> S contains no other value.\r\n</li>\n</ul>\n<p>\r\nFor
11
+ example:<br>\r\nThe set {3, 4, 5} generates a polygon with sides 3, 4, and 5 (a
12
+ triangle).<br>\r\nThe set {6, 9, 11, 24} generates a polygon with sides 6, 9, 11,
13
+ and 24 (a quadrilateral).<br>\r\nThe sets {1, 2, 3} and {2, 3, 4, 9} do not generate
14
+ any polygon at all.<br></p>\r\n\r\n<p>\r\nConsider the sequence s, defined as follows:</p>\n<ul>\n<li>s<sub>1</sub>
15
+ = 1, s<sub>2</sub> = 2, s<sub>3</sub> = 3\r\n</li>\n<li>s<sub><var>n</var></sub>
16
+ = s<sub><var>n</var>-1</sub> + s<sub><var>n</var>-3</sub> for <var>n</var> <img
17
+ src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 3.\r\n</li>\n</ul>\n<p>\r\nLet U<sub><var>n</var></sub>
19
+ be the set {s<sub>1</sub>, s<sub>2</sub>, ..., s<sub><var>n</var></sub>}. For example,
20
+ U<sub>10</sub> = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41}.<br>\r\nLet f(<var>n</var>)
21
+ be the number of subsets of U<sub><var>n</var></sub> which generate at least one
22
+ polygon.<br>\r\nFor example, f(5) = 7, f(10) = 501 and f(25) = 18635853.\r\n</p>\r\n\r\n<p>\r\nFind
23
+ the last 9 digits of f(10<sup>18</sup>).\r\n</p>\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 383
3
+ :name: Divisibility comparison between factorials
4
+ :url: http://projecteuler.net/problem=383
5
+ :content: "\r\n<p>\r\nLet f<sub>5</sub>(<var>n</var>) be the largest integer <var>x</var>
6
+ for which 5<sup><var>x</var></sup> divides <var>n</var>.<br>\r\nFor example, f<sub>5</sub>(625000)
7
+ = 7.\r\n</p>\r\n\r\n<p>\r\nLet T<sub>5</sub>(<var>n</var>) be the number of integers
8
+ <var>i</var> which satisfy f<sub>5</sub>((2·<var>i</var>-1)!) 5(<var>i</var>!) and
9
+ 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><var>i</var> <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>.<br>\r\nIt
12
+ can be verified that T<sub>5</sub>(10<sup>3</sup>) = 68 and T<sub>5</sub>(10<sup>9</sup>)
13
+ = 2408210.\r\n</p>\r\n\r\n<p>\r\nFind T<sub>5</sub>(10<sup>18</sup>).\r\n</p>\r\n"