euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,62 @@
|
|
1
|
+
---
|
2
|
+
:id: 65
|
3
|
+
:name: Convergents of e
|
4
|
+
:url: http://projecteuler.net/problem=65
|
5
|
+
:content: "\r\n<p>The square root of 2 can be written as an infinite continued fraction.</p>\r\n<div
|
6
|
+
style=\"margin-left:20px;\">\r\n<table border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>\n<img
|
7
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\">2 = 1 +</td>\r\n<td colspan=\"4\"><div style=\"text-align:center;\">1<br><img
|
9
|
+
src=\"images/blackdot.gif\" width=\"135\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
|
10
|
+
+</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
11
|
+
width=\"110\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
|
12
|
+
+</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
13
|
+
width=\"85\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
|
14
|
+
+</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
15
|
+
width=\"60\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
|
16
|
+
+ ...</td>\r\n</tr>\n</table>\n</div>\r\n<p>The infinite continued fraction can
|
17
|
+
be written, <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\"
|
18
|
+
border=\"0\" style=\"vertical-align:middle;\">2 = [1;(2)], (2) indicates that 2
|
19
|
+
repeats <i>ad infinitum</i>. In a similar way, <img src=\"images/symbol_radic.gif\"
|
20
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">23
|
21
|
+
= [4;(1,3,1,8)].</p>\r\n<p>It turns out that the sequence of partial values of continued
|
22
|
+
fractions for square roots provide the best rational approximations. Let us consider
|
23
|
+
the convergents for <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
|
24
|
+
alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2.</p>\r\n<div style=\"margin-left:20px;\">\r\n\r\n<table
|
25
|
+
border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td><div
|
26
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
|
27
|
+
height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 3/2</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td><div
|
28
|
+
style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
|
29
|
+
border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"2\"><div
|
30
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"50\"
|
31
|
+
height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 7/5</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
|
32
|
+
+</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
33
|
+
width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td><div
|
34
|
+
style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
|
35
|
+
border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"3\"><div
|
36
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"80\"
|
37
|
+
height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 17/12</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
|
38
|
+
+</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
39
|
+
width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
|
40
|
+
+</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
41
|
+
width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
|
42
|
+
style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
|
43
|
+
border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"4\"><div
|
44
|
+
style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"110\"
|
45
|
+
height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 41/29</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
|
46
|
+
+</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
47
|
+
width=\"80\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
|
48
|
+
+</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
49
|
+
width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
|
50
|
+
+</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
|
51
|
+
width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
|
52
|
+
style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n</div>\r\n<p>Hence
|
53
|
+
the sequence of the first ten convergents for <img src=\"images/symbol_radic.gif\"
|
54
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2
|
55
|
+
are:</p>\r\n<div class=\"info\">1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408,
|
56
|
+
1393/985, 3363/2378, ...</div>\r\n<p>What is most surprising is that the important
|
57
|
+
mathematical constant,<br><i>e</i> = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2<i>k</i>,1,
|
58
|
+
...].</p>\r\n<p>The first ten terms in the sequence of convergents for <i>e</i>
|
59
|
+
are:</p>\r\n<div class=\"info\">2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465,
|
60
|
+
1457/536, ...</div>\r\n<p>The sum of digits in the numerator of the 10<sup>th</sup>
|
61
|
+
convergent is 1+4+5+7=17.</p>\r\n<p>Find the sum of digits in the numerator of the
|
62
|
+
100<sup>th</sup> convergent of the continued fraction for <i>e</i>.</p>\r\n"
|
@@ -0,0 +1,27 @@
|
|
1
|
+
---
|
2
|
+
:id: 66
|
3
|
+
:name: Diophantine equation
|
4
|
+
:url: http://projecteuler.net/problem=66
|
5
|
+
:content: "\r\n<p>Consider quadratic Diophantine equations of the form:</p>\r\n<p
|
6
|
+
style=\"text-align:center;\"><i>x</i><sup>2</sup> – D<i>y</i><sup>2</sup> = 1</p>\r\n<p>For
|
7
|
+
example, when D=13, the minimal solution in <i>x</i> is 649<sup>2</sup> – 13<img
|
8
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\">180<sup>2</sup> = 1.</p>\r\n<p>It can be assumed
|
10
|
+
that there are no solutions in positive integers when D is square.</p>\r\n<p>By
|
11
|
+
finding minimal solutions in <i>x</i> for D = {2, 3, 5, 6, 7}, we obtain the following:</p>\r\n<p
|
12
|
+
style=\"margin-left:20px;\">3<sup>2</sup> – 2<img src=\"images/symbol_times.gif\"
|
13
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup>
|
14
|
+
= 1<br>\r\n2<sup>2</sup> – 3<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
15
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">1<sup>2</sup> = 1<br><span
|
16
|
+
style=\"color:#dd0000;font-weight:bold;\">9</span><sup>2</sup> – 5<img src=\"images/symbol_times.gif\"
|
17
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">4<sup>2</sup>
|
18
|
+
= 1<br>\r\n5<sup>2</sup> – 6<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
|
19
|
+
alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup> = 1<br>\r\n8<sup>2</sup>
|
20
|
+
– 7<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\">3<sup>2</sup> = 1</p>\r\n<p>Hence, by considering
|
22
|
+
minimal solutions in <i>x</i> for D <img src=\"images/symbol_le.gif\" width=\"10\"
|
23
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 7, the largest
|
24
|
+
<i>x</i> is obtained when D=5.</p>\r\n<p>Find the value of D <img src=\"images/symbol_le.gif\"
|
25
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
26
|
+
1000 in minimal solutions of <i>x</i> for which the largest value of <i>x</i> is
|
27
|
+
obtained.</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 67
|
3
|
+
:name: Maximum path sum II
|
4
|
+
:url: http://projecteuler.net/problem=67
|
5
|
+
:content: "\r\n<p>By starting at the top of the triangle below and moving to adjacent
|
6
|
+
numbers on the row below, the maximum total from top to bottom is 23.</p>\r\n<p
|
7
|
+
style=\"text-align:center;font-family:courier new;font-size:12pt;\"><span style=\"color:#ff0000;\"><b>3</b></span><br><span
|
8
|
+
style=\"color:#ff0000;\"><b>7</b></span> 4<br>\r\n2 <span style=\"color:#ff0000;\"><b>4</b></span>
|
9
|
+
6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
|
10
|
+
3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom in <a href=\"project/triangle.txt\">triangle.txt</a>
|
11
|
+
(right click and 'Save Link/Target As...'), a 15K text file containing a triangle
|
12
|
+
with one-hundred rows.</p>\r\n<p class=\"info\"><b>NOTE:</b> This is a much more
|
13
|
+
difficult version of <a href=\"index.php?section=problems&id=18\">Problem 18</a>.
|
14
|
+
It is not possible to try every route to solve this problem, as there are 2<sup>99</sup>
|
15
|
+
altogether! If you could check one trillion (10<sup>12</sup>) routes every second
|
16
|
+
it would take over twenty billion years to check them all. There is an efficient
|
17
|
+
algorithm to solve it. ;o)</p>\r\n\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 68
|
3
|
+
:name: Magic 5-gon ring
|
4
|
+
:url: http://projecteuler.net/problem=68
|
5
|
+
:content: "\r\n<p>Consider the following \"magic\" 3-gon ring, filled with the numbers
|
6
|
+
1 to 6, and each line adding to nine.</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
7
|
+
src=\"project/images/p_068_1.gif\" alt=\"\"><br>\n</div>\r\n<p>Working <b>clockwise</b>,
|
8
|
+
and starting from the group of three with the numerically lowest external node (4,3,2
|
9
|
+
in this example), each solution can be described uniquely. For example, the above
|
10
|
+
solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.</p>\r\n<p>It is possible
|
11
|
+
to complete the ring with four different totals: 9, 10, 11, and 12. There are eight
|
12
|
+
solutions in total.</p>\r\n<div style=\"text-align:center;\">\r\n<table width=\"400\"
|
13
|
+
cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td width=\"100\"><b>Total</b></td>\n<td
|
14
|
+
width=\"300\"><b>Solution Set</b></td>\r\n</tr>\n<tr>\n<td>9</td>\n<td>4,2,3; 5,3,1;
|
15
|
+
6,1,2</td>\r\n</tr>\n<tr>\n<td>9</td>\n<td>4,3,2; 6,2,1; 5,1,3</td>\r\n</tr>\n<tr>\n<td>10</td>\n<td>2,3,5;
|
16
|
+
4,5,1; 6,1,3</td>\r\n</tr>\n<tr>\n<td>10</td>\n<td>2,5,3; 6,3,1; 4,1,5</td>\r\n</tr>\n<tr>\n<td>11</td>\n<td>1,4,6;
|
17
|
+
3,6,2; 5,2,4</td>\r\n</tr>\n<tr>\n<td>11</td>\n<td>1,6,4; 5,4,2; 3,2,6</td>\r\n</tr>\n<tr>\n<td>12</td>\n<td>1,5,6;
|
18
|
+
2,6,4; 3,4,5</td>\r\n</tr>\n<tr>\n<td>12</td>\n<td>1,6,5; 3,5,4; 2,4,6</td>\r\n</tr>\n</table>\n</div>\r\n<p>By
|
19
|
+
concatenating each group it is possible to form 9-digit strings; the maximum string
|
20
|
+
for a 3-gon ring is 432621513.</p>\r\n<p>Using the numbers 1 to 10, and depending
|
21
|
+
on arrangements, it is possible to form 16- and 17-digit strings. What is the maximum
|
22
|
+
<b>16-digit</b> string for a \"magic\" 5-gon ring?</p>\r\n<div style=\"text-align:center;\">\r\n<img
|
23
|
+
src=\"project/images/p_068_2.gif\" alt=\"\"><br>\n</div>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 69
|
3
|
+
:name: Totient maximum
|
4
|
+
:url: http://projecteuler.net/problem=69
|
5
|
+
:content: "\r\n\n<p>Euler's Totient function, φ(<i>n</i>) [sometimes called the phi
|
6
|
+
function], is used to determine the number of numbers less than <i>n</i> which are
|
7
|
+
relatively prime to <i>n</i>. For example, as 1, 2, 4, 5, 7, and 8, are all less
|
8
|
+
than nine and relatively prime to nine, φ(9)=6.</p>\n<div style=\"margin-left:100px;\">\n<table
|
9
|
+
border=\"1\">\n<tr>\n<td><b><i>n</i></b></td>\n<td><b>Relatively Prime</b></td>\n<td><b>φ(<i>n</i>)</b></td>\n<td><b><i>n</i>/φ(<i>n</i>)</b></td>\n</tr>\n<tr>\n<td>2</td>\n<td>1</td>\n<td>1</td>\n<td>2</td>\n</tr>\n<tr>\n<td>3</td>\n<td>1,2</td>\n<td>2</td>\n<td>1.5</td>\n</tr>\n<tr>\n<td>4</td>\n<td>1,3</td>\n<td>2</td>\n<td>2</td>\n</tr>\n<tr>\n<td>5</td>\n<td>1,2,3,4</td>\n<td>4</td>\n<td>1.25</td>\n</tr>\n<tr>\n<td>6</td>\n<td>1,5</td>\n<td>2</td>\n<td>3</td>\n</tr>\n<tr>\n<td>7</td>\n<td>1,2,3,4,5,6</td>\n<td>6</td>\n<td>1.1666...</td>\n</tr>\n<tr>\n<td>8</td>\n<td>1,3,5,7</td>\n<td>4</td>\n<td>2</td>\n</tr>\n<tr>\n<td>9</td>\n<td>1,2,4,5,7,8</td>\n<td>6</td>\n<td>1.5</td>\n</tr>\n<tr>\n<td>10</td>\n<td>1,3,7,9</td>\n<td>4</td>\n<td>2.5</td>\n</tr>\n</table>\n</div>\n<p>It
|
10
|
+
can be seen that <i>n</i>=6 produces a maximum <i>n</i>/φ(<i>n</i>) for <i>n</i>
|
11
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"> 10.</p>\n<p>Find the value of <i>n</i> <img src=\"images/symbol_le.gif\"
|
13
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
14
|
+
1,000,000 for which <i>n</i>/φ(<i>n</i>) is a maximum.</p>\n\r\n"
|
data/data/problems/7.yml
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 70
|
3
|
+
:name: Totient permutation
|
4
|
+
:url: http://projecteuler.net/problem=70
|
5
|
+
:content: "\r\n<p>Euler's Totient function, φ(<var>n</var>) [sometimes called the
|
6
|
+
phi function], is used to determine the number of positive numbers less than or
|
7
|
+
equal to <var>n</var> which are relatively prime to <var>n</var>. For example, as
|
8
|
+
1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.<br>The
|
9
|
+
number 1 is considered to be relatively prime to every positive number, so φ(1)=1.
|
10
|
+
</p>\r\n<p>Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation
|
11
|
+
of 79180.</p>\r\n<p>Find the value of <var>n</var>, 1 <img src=\"images/symbol_lt.gif\"
|
12
|
+
width=\"10\" height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
|
13
|
+
<img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"<\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"> 10<sup>7</sup>, for which φ(<var>n</var>) is a
|
15
|
+
permutation of <var>n</var> and the ratio <var>n</var>/φ(<var>n</var>) produces
|
16
|
+
a minimum.</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 71
|
3
|
+
:name: Ordered fractions
|
4
|
+
:url: http://projecteuler.net/problem=71
|
5
|
+
:content: "\r\n\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i>
|
6
|
+
are positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\"
|
7
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i>
|
8
|
+
and HCF(<i>n,d</i>)=1, it is called a reduced proper fraction.</p>\n<p>If we list
|
9
|
+
the set of reduced proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\"
|
10
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
8 in ascending order of size, we get:</p>\n<p style=\"text-align:center;font-size:8pt;\">1/8,
|
12
|
+
1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, <b>2/5</b>, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7,
|
13
|
+
3/4, 4/5, 5/6, 6/7, 7/8</p>\n<p>It can be seen that 2/5 is the fraction immediately
|
14
|
+
to the left of 3/7.</p>\n<p>By listing the set of reduced proper fractions for <i>d</i>
|
15
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"> 1,000,000 in ascending order of size, find the
|
17
|
+
numerator of the fraction immediately to the left of 3/7.</p>\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 72
|
3
|
+
:name: Counting fractions
|
4
|
+
:url: http://projecteuler.net/problem=72
|
5
|
+
:content: "\r\n\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i>
|
6
|
+
are positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\"
|
7
|
+
height=\"10\" alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i>
|
8
|
+
and HCF(<i>n,d</i>)=1, it is called a reduced proper fraction.</p>\n<p>If we list
|
9
|
+
the set of reduced proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\"
|
10
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
11
|
+
8 in ascending order of size, we get:</p>\n<p style=\"text-align:center;font-size:8pt;\">1/8,
|
12
|
+
1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4,
|
13
|
+
4/5, 5/6, 6/7, 7/8</p>\n<p>It can be seen that there are 21 elements in this set.</p>\n<p>How
|
14
|
+
many elements would be contained in the set of reduced proper fractions for <i>d</i>
|
15
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
16
|
+
style=\"vertical-align:middle;\"> 1,000,000?</p>\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 73
|
3
|
+
:name: Counting fractions in a range
|
4
|
+
:url: http://projecteuler.net/problem=73
|
5
|
+
:content: "\r\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i> are
|
6
|
+
positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
|
7
|
+
alt=\"<\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i> and HCF(<i>n,d</i>)=1,
|
8
|
+
it is called a reduced proper fraction.</p>\r\n<p>If we list the set of reduced
|
9
|
+
proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
10
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 8 in ascending order of
|
11
|
+
size, we get:</p>\r\n<p style=\"text-align:center;font-size:8pt;\">1/8, 1/7, 1/6,
|
12
|
+
1/5, 1/4, 2/7, 1/3, <b>3/8, 2/5, 3/7</b>, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5,
|
13
|
+
5/6, 6/7, 7/8</p>\r\n<p>It can be seen that there are 3 fractions between 1/3 and
|
14
|
+
1/2.</p>\r\n<p>How many fractions lie between 1/3 and 1/2 in the sorted set of reduced
|
15
|
+
proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
|
16
|
+
alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 12,000?</p>\r\n\r\n\r\n"
|
@@ -0,0 +1,41 @@
|
|
1
|
+
---
|
2
|
+
:id: 74
|
3
|
+
:name: Digit factorial chains
|
4
|
+
:url: http://projecteuler.net/problem=74
|
5
|
+
:content: "\r\n\n<p>The number 145 is well known for the property that the sum of
|
6
|
+
the factorial of its digits is equal to 145:</p>\n<p style=\"margin-left:50px;\">1!
|
7
|
+
+ 4! + 5! = 1 + 24 + 120 = 145</p>\n<p>Perhaps less well known is 169, in that it
|
8
|
+
produces the longest chain of numbers that link back to 169; it turns out that there
|
9
|
+
are only three such loops that exist:</p>\n<p style=\"margin-left:50px;\">169 <img
|
10
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 363601 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
12
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 1454 <img
|
13
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\"> 169<br>\n871 <img src=\"images/symbol_maps.gif\"
|
15
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
45361 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"> 871<br>\n872 <img src=\"images/symbol_maps.gif\"
|
18
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
19
|
+
45362 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"> 872</p>\n<p>It is not difficult to prove that
|
21
|
+
EVERY starting number will eventually get stuck in a loop. For example,</p>\n<p
|
22
|
+
style=\"margin-left:50px;\">69 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
23
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 363600 <img
|
24
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\"> 1454 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
26
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 169 <img src=\"images/symbol_maps.gif\"
|
27
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
28
|
+
363601 (<img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\"
|
29
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1454)<br>\n78 <img src=\"images/symbol_maps.gif\"
|
30
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
31
|
+
45360 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\"> 871 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
33
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 45361 (<img
|
34
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
35
|
+
style=\"vertical-align:middle;\"> 871)<br>\n540 <img src=\"images/symbol_maps.gif\"
|
36
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
37
|
+
145 (<img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
38
|
+
style=\"vertical-align:middle;\"> 145)</p>\n<p>Starting with 69 produces a chain
|
39
|
+
of five non-repeating terms, but the longest non-repeating chain with a starting
|
40
|
+
number below one million is sixty terms.</p>\n<p>How many chains, with a starting
|
41
|
+
number below one million, contain exactly sixty non-repeating terms?</p>\n\r\n"
|
@@ -0,0 +1,16 @@
|
|
1
|
+
---
|
2
|
+
:id: 75
|
3
|
+
:name: Singular integer right triangles
|
4
|
+
:url: http://projecteuler.net/problem=75
|
5
|
+
:content: "\r\n<p>It turns out that 12 cm is the smallest length of wire that can
|
6
|
+
be bent to form an integer sided right angle triangle in exactly one way, but there
|
7
|
+
are many more examples.</p>\r\n<p style=\"margin-left:50px;\"><b>12 cm</b>: (3,4,5)<br><b>24
|
8
|
+
cm</b>: (6,8,10)<br><b>30 cm</b>: (5,12,13)<br><b>36 cm</b>: (9,12,15)<br><b>40
|
9
|
+
cm</b>: (8,15,17)<br><b>48 cm</b>: (12,16,20)</p>\r\n<p>In contrast, some lengths
|
10
|
+
of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle,
|
11
|
+
and other lengths allow more than one solution to be found; for example, using 120
|
12
|
+
cm it is possible to form exactly three different integer sided right angle triangles.</p>\r\n<p
|
13
|
+
style=\"margin-left:50px;\"><b>120 cm</b>: (30,40,50), (20,48,52), (24,45,51)</p>\r\n<p>Given
|
14
|
+
that L is the length of the wire, for how many values of L <img src=\"images/symbol_le.gif\"
|
15
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
1,500,000 can exactly one integer sided right angle triangle be formed?</p>\r\n\r\n"
|
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 76
|
3
|
+
:name: Counting summations
|
4
|
+
:url: http://projecteuler.net/problem=76
|
5
|
+
:content: "\r\n\n<p>It is possible to write five as a sum in exactly six different
|
6
|
+
ways:</p>\n<p style=\"margin-left:50px;\">4 + 1<br>\n3 + 2<br>\n3 + 1 + 1<br>\n2
|
7
|
+
+ 2 + 1<br>\n2 + 1 + 1 + 1<br>\n1 + 1 + 1 + 1 + 1</p>\n<p>How many different ways
|
8
|
+
can one hundred be written as a sum of at least two positive integers?</p>\n\r\n"
|
@@ -0,0 +1,8 @@
|
|
1
|
+
---
|
2
|
+
:id: 77
|
3
|
+
:name: Prime summations
|
4
|
+
:url: http://projecteuler.net/problem=77
|
5
|
+
:content: "\r\n\n<p>It is possible to write ten as the sum of primes in exactly five
|
6
|
+
different ways:</p>\n<p style=\"margin-left:50px;\">7 + 3<br>\n5 + 5<br>\n5 + 3
|
7
|
+
+ 2<br>\n3 + 3 + 2 + 2<br>\n2 + 2 + 2 + 2 + 2</p>\n<p>What is the first value which
|
8
|
+
can be written as the sum of primes in over five thousand different ways?</p>\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 78
|
3
|
+
:name: Coin partitions
|
4
|
+
:url: http://projecteuler.net/problem=78
|
5
|
+
:content: "\r\n<p>Let p(<i>n</i>) represent the number of different ways in which
|
6
|
+
<i>n</i> coins can be separated into piles. For example, five coins can separated
|
7
|
+
into piles in exactly seven different ways, so p(5)=7.</p>\r\n<div style=\"text-align:center;\">\r\n<table
|
8
|
+
cellspacing=\"0\" cellpadding=\"10\">\n<tr>\n<td>OOOOO</td>\r\n</tr>\n<tr>\n<td>OOOO
|
9
|
+
O</td>\r\n</tr>\n<tr>\n<td>OOO OO</td>\r\n</tr>\n<tr>\n<td>OOO O O</td>\r\n</tr>\n<tr>\n<td>OO
|
10
|
+
OO O</td>\r\n</tr>\n<tr>\n<td>OO O O O</td>\r\n</tr>\n<tr>\n<td>O O
|
11
|
+
O O O</td>\r\n</tr>\n</table>\n</div>\r\n<p>Find the least value of <i>n</i>
|
12
|
+
for which p(<i>n</i>) is divisible by one million.</p>\r\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 79
|
3
|
+
:name: Passcode derivation
|
4
|
+
:url: http://projecteuler.net/problem=79
|
5
|
+
:content: "\r\n<p>A common security method used for online banking is to ask the user
|
6
|
+
for three random characters from a passcode. For example, if the passcode was 531278,
|
7
|
+
they may ask for the 2nd, 3rd, and 5th characters; the expected reply would be:
|
8
|
+
317.</p>\r\n<p>The text file, <a href=\"project/keylog.txt\">keylog.txt</a>, contains
|
9
|
+
fifty successful login attempts.</p>\r\n<p>Given that the three characters are always
|
10
|
+
asked for in order, analyse the file so as to determine the shortest possible secret
|
11
|
+
passcode of unknown length.</p>\r\n\r\n"
|
data/data/problems/8.yml
ADDED
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 8
|
3
|
+
:name: Largest product in a series
|
4
|
+
:url: http://projecteuler.net/problem=8
|
5
|
+
:content: "\r\n\n<p>Find the greatest product of five consecutive digits in the 1000-digit
|
6
|
+
number.</p>\n<p style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n73167176531330624919225119674426574742355349194934<br>\n96983520312774506326239578318016984801869478851843<br>\n85861560789112949495459501737958331952853208805511<br>\n12540698747158523863050715693290963295227443043557<br>\n66896648950445244523161731856403098711121722383113<br>\n62229893423380308135336276614282806444486645238749<br>\n30358907296290491560440772390713810515859307960866<br>\n70172427121883998797908792274921901699720888093776<br>\n65727333001053367881220235421809751254540594752243<br>\n52584907711670556013604839586446706324415722155397<br>\n53697817977846174064955149290862569321978468622482<br>\n83972241375657056057490261407972968652414535100474<br>\n82166370484403199890008895243450658541227588666881<br>\n16427171479924442928230863465674813919123162824586<br>\n17866458359124566529476545682848912883142607690042<br>\n24219022671055626321111109370544217506941658960408<br>\n07198403850962455444362981230987879927244284909188<br>\n84580156166097919133875499200524063689912560717606<br>\n05886116467109405077541002256983155200055935729725<br>\n71636269561882670428252483600823257530420752963450<br></p>\n\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 80
|
3
|
+
:name: Square root digital expansion
|
4
|
+
:url: http://projecteuler.net/problem=80
|
5
|
+
:content: "\r\n\n<p>It is well known that if the square root of a natural number is
|
6
|
+
not an integer, then it is irrational. The decimal expansion of such square roots
|
7
|
+
is infinite without any repeating pattern at all.</p>\n<p>The square root of two
|
8
|
+
is 1.41421356237309504880..., and the digital sum of the first one hundred decimal
|
9
|
+
digits is 475.</p>\n<p>For the first one hundred natural numbers, find the total
|
10
|
+
of the digital sums of the first one hundred decimal digits for all the irrational
|
11
|
+
square roots.</p>\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 81
|
3
|
+
:name: 'Path sum: two ways'
|
4
|
+
:url: http://projecteuler.net/problem=81
|
5
|
+
:content: "\r\n<p>In the 5 by 5 matrix below, the minimal path sum from the top left
|
6
|
+
to the bottom right, by <b>only moving to the right and down</b>, is indicated in
|
7
|
+
bold red and is equal to 2427.</p>\r\n<div style=\"text-align:center;\">\r\n<table
|
8
|
+
cellpadding=\"0\" cellspacing=\"0\" border=\"0\" align=\"center\"><tr>\n<td>\n<img
|
9
|
+
src=\"images/bracket_left.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table
|
10
|
+
cellpadding=\"3\" cellspacing=\"0\" border=\"0\">\n<tr>\n<td><span style=\"color:#dd0000;\"><b>131</b></span></td>\n<td>673</td>\n<td>234</td>\n<td>103</td>\n<td>18</td>\r\n</tr>\n<tr>\n<td><span
|
11
|
+
style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span
|
12
|
+
style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td>150</td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td><span
|
13
|
+
style=\"color:#dd0000;\"><b>746</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>422</b></span></td>\n<td>111</td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td><span
|
14
|
+
style=\"color:#dd0000;\"><b>121</b></span></td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td><span
|
15
|
+
style=\"color:#dd0000;\"><b>37</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>331</b></span></td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
|
16
|
+
src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
|
17
|
+
the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
|
18
|
+
and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
|
19
|
+
the top left to the bottom right by only moving right and down.</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 82
|
3
|
+
:name: 'Path sum: three ways'
|
4
|
+
:url: http://projecteuler.net/problem=82
|
5
|
+
:content: "\r\n<p class=\"info\">NOTE: This problem is a more challenging version
|
6
|
+
of <a href=\"index.php?section=problems&id=81\">Problem 81</a>.</p>\r\n<p>The
|
7
|
+
minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left
|
8
|
+
column and finishing in any cell in the right column, and only moving up, down,
|
9
|
+
and right, is indicated in red and bold; the sum is equal to 994.</p>\r\n<div style=\"text-align:center;\">\r\n<table
|
10
|
+
cellpadding=\"0\" cellspacing=\"0\" border=\"0\" align=\"center\"><tr>\n<td>\n<img
|
11
|
+
src=\"images/bracket_left.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table
|
12
|
+
cellpadding=\"3\" cellspacing=\"0\" border=\"0\">\n<tr>\n<td>131</td>\n<td>673</td>\n<td><span
|
13
|
+
style=\"color:#dd0000;\"><b>234</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>103</b></span></td>\n<td><span
|
14
|
+
style=\"color:#dd0000;\"><b>18</b></span></td>\r\n</tr>\n<tr>\n<td><span style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span
|
15
|
+
style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td>150</td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td>746</td>\n<td>422</td>\n<td>111</td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td>121</td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td>37</td>\n<td>331</td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
|
16
|
+
src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
|
17
|
+
the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
|
18
|
+
and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
|
19
|
+
the left column to the right column.</p>\r\n\r\n"
|
@@ -0,0 +1,23 @@
|
|
1
|
+
---
|
2
|
+
:id: 83
|
3
|
+
:name: 'Path sum: four ways'
|
4
|
+
:url: http://projecteuler.net/problem=83
|
5
|
+
:content: "\r\n<p class=\"info\">NOTE: This problem is a significantly more challenging
|
6
|
+
version of <a href=\"index.php?section=problems&id=81\">Problem 81</a>.</p>\r\n<p>In
|
7
|
+
the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right,
|
8
|
+
by moving left, right, up, and down, is indicated in bold red and is equal to 2297.</p>\r\n<div
|
9
|
+
style=\"text-align:center;\">\r\n<table cellpadding=\"0\" cellspacing=\"0\" border=\"0\"
|
10
|
+
align=\"center\"><tr>\n<td>\n<img src=\"images/bracket_left.gif\" width=\"8\" height=\"120\"
|
11
|
+
alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table cellpadding=\"3\" cellspacing=\"0\"
|
12
|
+
border=\"0\">\n<tr>\n<td><span style=\"color:#dd0000;\"><b>131</b></span></td>\n<td>673</td>\n<td><span
|
13
|
+
style=\"color:#dd0000;\"><b>234</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>103</b></span></td>\n<td><span
|
14
|
+
style=\"color:#dd0000;\"><b>18</b></span></td>\r\n</tr>\n<tr>\n<td><span style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span
|
15
|
+
style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td><span
|
16
|
+
style=\"color:#dd0000;\"><b>150</b></span></td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td>746</td>\n<td><span
|
17
|
+
style=\"color:#dd0000;\"><b>422</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>111</b></span></td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td><span
|
18
|
+
style=\"color:#dd0000;\"><b>121</b></span></td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td><span
|
19
|
+
style=\"color:#dd0000;\"><b>37</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>331</b></span></td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
|
20
|
+
src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
|
21
|
+
the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
|
22
|
+
and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
|
23
|
+
the top left to the bottom right by moving left, right, up, and down.</p>\r\n\r\n"
|
@@ -0,0 +1,63 @@
|
|
1
|
+
---
|
2
|
+
:id: 84
|
3
|
+
:name: Monopoly odds
|
4
|
+
:url: http://projecteuler.net/problem=84
|
5
|
+
:content: "\r\n<p>In the game, <i>Monopoly</i>, the standard board is set up in the
|
6
|
+
following way:</p>\r\n<div style=\"text-align:center;\">\r\n<table cellspacing=\"1\"
|
7
|
+
cellpadding=\"5\" border=\"0\" style=\"background-color:#333333;\" align=\"center\">\n<tr>\n<td
|
8
|
+
style=\"background-color:#ffffff;\">GO</td>\r\n<td style=\"background-color:#ffffff;\">A1</td>\r\n<td
|
9
|
+
style=\"background-color:#ffffff;\">CC1</td>\r\n<td style=\"background-color:#ffffff;\">A2</td>\r\n<td
|
10
|
+
style=\"background-color:#ffffff;\">T1</td>\r\n<td style=\"background-color:#ffffff;\">R1</td>\r\n<td
|
11
|
+
style=\"background-color:#ffffff;\">B1</td>\r\n<td style=\"background-color:#ffffff;\">CH1</td>\r\n<td
|
12
|
+
style=\"background-color:#ffffff;\">B2</td>\r\n<td style=\"background-color:#ffffff;\">B3</td>\r\n<td
|
13
|
+
style=\"background-color:#ffffff;\">JAIL</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">H2</td>\r\n<td
|
14
|
+
colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">C1</td>\r\n</tr>\n<tr>\n<td
|
15
|
+
style=\"background-color:#ffffff;\">T2</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">U1</td>\r\n</tr>\n<tr>\n<td
|
16
|
+
style=\"background-color:#ffffff;\">H1</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">C2</td>\r\n</tr>\n<tr>\n<td
|
17
|
+
style=\"background-color:#ffffff;\">CH3</td>\r\n<td colspan=\"9\"> </td>\r\n<td
|
18
|
+
style=\"background-color:#ffffff;\">C3</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">R4</td>\r\n<td
|
19
|
+
colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">R2</td>\r\n</tr>\n<tr>\n<td
|
20
|
+
style=\"background-color:#ffffff;\">G3</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D1</td>\r\n</tr>\n<tr>\n<td
|
21
|
+
style=\"background-color:#ffffff;\">CC3</td>\r\n<td colspan=\"9\"> </td>\r\n<td
|
22
|
+
style=\"background-color:#ffffff;\">CC2</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">G2</td>\r\n<td
|
23
|
+
colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D2</td>\r\n</tr>\n<tr>\n<td
|
24
|
+
style=\"background-color:#ffffff;\">G1</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D3</td>\r\n</tr>\n<tr>\n<td
|
25
|
+
style=\"background-color:#ffffff;\">G2J</td>\r\n<td style=\"background-color:#ffffff;\">F3</td>\r\n<td
|
26
|
+
style=\"background-color:#ffffff;\">U2</td>\r\n<td style=\"background-color:#ffffff;\">F2</td>\r\n<td
|
27
|
+
style=\"background-color:#ffffff;\">F1</td>\r\n<td style=\"background-color:#ffffff;\">R3</td>\r\n<td
|
28
|
+
style=\"background-color:#ffffff;\">E3</td>\r\n<td style=\"background-color:#ffffff;\">E2</td>\r\n<td
|
29
|
+
style=\"background-color:#ffffff;\">CH2</td>\r\n<td style=\"background-color:#ffffff;\">E1</td>\r\n<td
|
30
|
+
style=\"background-color:#ffffff;\">FP</td>\r\n</tr>\n</table>\n</div>\r\n<p>A player
|
31
|
+
starts on the GO square and adds the scores on two 6-sided dice to determine the
|
32
|
+
number of squares they advance in a clockwise direction. Without any further rules
|
33
|
+
we would expect to visit each square with equal probability: 2.5%. However, landing
|
34
|
+
on G2J (Go To Jail), CC (community chest), and CH (chance) changes this distribution.</p>\r\n<p>In
|
35
|
+
addition to G2J, and one card from each of CC and CH, that orders the player to
|
36
|
+
go directly to jail, if a player rolls three consecutive doubles, they do not advance
|
37
|
+
the result of their 3rd roll. Instead they proceed directly to jail.</p>\r\n<p>At
|
38
|
+
the beginning of the game, the CC and CH cards are shuffled. When a player lands
|
39
|
+
on CC or CH they take a card from the top of the respective pile and, after following
|
40
|
+
the instructions, it is returned to the bottom of the pile. There are sixteen cards
|
41
|
+
in each pile, but for the purpose of this problem we are only concerned with cards
|
42
|
+
that order a movement; any instruction not concerned with movement will be ignored
|
43
|
+
and the player will remain on the CC/CH square.</p>\r\n<ul>\n<li>Community Chest
|
44
|
+
(2/16 cards):\r\n<ol>\n<li>Advance to GO</li>\r\n<li>Go to JAIL</li>\r\n</ol>\n</li>\r\n<li>Chance
|
45
|
+
(10/16 cards):\r\n<ol>\n<li>Advance to GO</li>\r\n<li>Go to JAIL</li>\r\n<li>Go
|
46
|
+
to C1</li>\r\n<li>Go to E3</li>\r\n<li>Go to H2</li>\r\n<li>Go to R1</li>\r\n<li>Go
|
47
|
+
to next R (railway company)</li>\r\n<li>Go to next R</li>\r\n<li>Go to next U (utility
|
48
|
+
company)</li>\r\n<li>Go back 3 squares.</li>\r\n</ol>\n</li>\r\n</ul>\n<p>The heart
|
49
|
+
of this problem concerns the likelihood of visiting a particular square. That is,
|
50
|
+
the probability of finishing at that square after a roll. For this reason it should
|
51
|
+
be clear that, with the exception of G2J for which the probability of finishing
|
52
|
+
on it is zero, the CH squares will have the lowest probabilities, as 5/8 request
|
53
|
+
a movement to another square, and it is the final square that the player finishes
|
54
|
+
at on each roll that we are interested in. We shall make no distinction between
|
55
|
+
\"Just Visiting\" and being sent to JAIL, and we shall also ignore the rule about
|
56
|
+
requiring a double to \"get out of jail\", assuming that they pay to get out on
|
57
|
+
their next turn.</p>\r\n<p>By starting at GO and numbering the squares sequentially
|
58
|
+
from 00 to 39 we can concatenate these two-digit numbers to produce strings that
|
59
|
+
correspond with sets of squares.</p>\r\n<p>Statistically it can be shown that the
|
60
|
+
three most popular squares, in order, are JAIL (6.24%) = Square 10, E3 (3.18%) =
|
61
|
+
Square 24, and GO (3.09%) = Square 00. So these three most popular squares can be
|
62
|
+
listed with the six-digit modal string: 102400.</p>\r\n<p>If, instead of using two
|
63
|
+
6-sided dice, two 4-sided dice are used, find the six-digit modal string.</p>\r\n\r\n"
|