euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,62 @@
1
+ ---
2
+ :id: 65
3
+ :name: Convergents of e
4
+ :url: http://projecteuler.net/problem=65
5
+ :content: "\r\n<p>The square root of 2 can be written as an infinite continued fraction.</p>\r\n<div
6
+ style=\"margin-left:20px;\">\r\n<table border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>\n<img
7
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
8
+ style=\"vertical-align:middle;\">2 = 1 +</td>\r\n<td colspan=\"4\"><div style=\"text-align:center;\">1<br><img
9
+ src=\"images/blackdot.gif\" width=\"135\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
10
+ +</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
11
+ width=\"110\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
12
+ +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
13
+ width=\"85\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
14
+ +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
15
+ width=\"60\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
16
+ + ...</td>\r\n</tr>\n</table>\n</div>\r\n<p>The infinite continued fraction can
17
+ be written, <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\"
18
+ border=\"0\" style=\"vertical-align:middle;\">2 = [1;(2)], (2) indicates that 2
19
+ repeats <i>ad infinitum</i>. In a similar way, <img src=\"images/symbol_radic.gif\"
20
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">23
21
+ = [4;(1,3,1,8)].</p>\r\n<p>It turns out that the sequence of partial values of continued
22
+ fractions for square roots provide the best rational approximations. Let us consider
23
+ the convergents for <img src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\"
24
+ alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2.</p>\r\n<div style=\"margin-left:20px;\">\r\n\r\n<table
25
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td><div
26
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"15\"
27
+ height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 3/2</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td><div
28
+ style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
29
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"2\"><div
30
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"50\"
31
+ height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 7/5</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
32
+ +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
33
+ width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td><div
34
+ style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
35
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"3\"><div
36
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"80\"
37
+ height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 17/12</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
38
+ +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
39
+ width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
40
+ +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
41
+ width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
42
+ style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n<table
43
+ border=\"0\" cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td>1 +</td>\r\n<td colspan=\"4\"><div
44
+ style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\" width=\"110\"
45
+ height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td>= 41/29</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td>2
46
+ +</td>\r\n<td colspan=\"3\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
47
+ width=\"80\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td>2
48
+ +</td>\r\n<td colspan=\"2\"><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
49
+ width=\"50\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td>2
50
+ +</td>\r\n<td><div style=\"text-align:center;\">1<br><img src=\"images/blackdot.gif\"
51
+ width=\"15\" height=\"1\" alt=\"\"><br>\n</div></td>\r\n<td> </td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td><div
52
+ style=\"text-align:center;\">2</div></td>\r\n<td> </td>\r\n</tr>\n</table>\n</div>\r\n<p>Hence
53
+ the sequence of the first ten convergents for <img src=\"images/symbol_radic.gif\"
54
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2
55
+ are:</p>\r\n<div class=\"info\">1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408,
56
+ 1393/985, 3363/2378, ...</div>\r\n<p>What is most surprising is that the important
57
+ mathematical constant,<br><i>e</i> = [2; 1,2,1, 1,4,1, 1,6,1 , ... , 1,2<i>k</i>,1,
58
+ ...].</p>\r\n<p>The first ten terms in the sequence of convergents for <i>e</i>
59
+ are:</p>\r\n<div class=\"info\">2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465,
60
+ 1457/536, ...</div>\r\n<p>The sum of digits in the numerator of the 10<sup>th</sup>
61
+ convergent is 1+4+5+7=17.</p>\r\n<p>Find the sum of digits in the numerator of the
62
+ 100<sup>th</sup> convergent of the continued fraction for <i>e</i>.</p>\r\n"
@@ -0,0 +1,27 @@
1
+ ---
2
+ :id: 66
3
+ :name: Diophantine equation
4
+ :url: http://projecteuler.net/problem=66
5
+ :content: "\r\n<p>Consider quadratic Diophantine equations of the form:</p>\r\n<p
6
+ style=\"text-align:center;\"><i>x</i><sup>2</sup> – D<i>y</i><sup>2</sup> = 1</p>\r\n<p>For
7
+ example, when D=13, the minimal solution in <i>x</i> is 649<sup>2</sup> – 13<img
8
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\">180<sup>2</sup> = 1.</p>\r\n<p>It can be assumed
10
+ that there are no solutions in positive integers when D is square.</p>\r\n<p>By
11
+ finding minimal solutions in <i>x</i> for D = {2, 3, 5, 6, 7}, we obtain the following:</p>\r\n<p
12
+ style=\"margin-left:20px;\">3<sup>2</sup> – 2<img src=\"images/symbol_times.gif\"
13
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup>
14
+ = 1<br>\r\n2<sup>2</sup> – 3<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
15
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">1<sup>2</sup> = 1<br><span
16
+ style=\"color:#dd0000;font-weight:bold;\">9</span><sup>2</sup> – 5<img src=\"images/symbol_times.gif\"
17
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">4<sup>2</sup>
18
+ = 1<br>\r\n5<sup>2</sup> – 6<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
19
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>2</sup> = 1<br>\r\n8<sup>2</sup>
20
+ – 7<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
21
+ style=\"vertical-align:middle;\">3<sup>2</sup> = 1</p>\r\n<p>Hence, by considering
22
+ minimal solutions in <i>x</i> for D <img src=\"images/symbol_le.gif\" width=\"10\"
23
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 7, the largest
24
+ <i>x</i> is obtained when D=5.</p>\r\n<p>Find the value of D <img src=\"images/symbol_le.gif\"
25
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
26
+ 1000 in minimal solutions of <i>x</i> for which the largest value of <i>x</i> is
27
+ obtained.</p>\r\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 67
3
+ :name: Maximum path sum II
4
+ :url: http://projecteuler.net/problem=67
5
+ :content: "\r\n<p>By starting at the top of the triangle below and moving to adjacent
6
+ numbers on the row below, the maximum total from top to bottom is 23.</p>\r\n<p
7
+ style=\"text-align:center;font-family:courier new;font-size:12pt;\"><span style=\"color:#ff0000;\"><b>3</b></span><br><span
8
+ style=\"color:#ff0000;\"><b>7</b></span> 4<br>\r\n2 <span style=\"color:#ff0000;\"><b>4</b></span>
9
+ 6<br>\r\n8 5 <span style=\"color:#ff0000;\"><b>9</b></span> 3</p>\r\n<p>That is,
10
+ 3 + 7 + 4 + 9 = 23.</p>\r\n<p>Find the maximum total from top to bottom in <a href=\"project/triangle.txt\">triangle.txt</a>
11
+ (right click and 'Save Link/Target As...'), a 15K text file containing a triangle
12
+ with one-hundred rows.</p>\r\n<p class=\"info\"><b>NOTE:</b> This is a much more
13
+ difficult version of <a href=\"index.php?section=problems&amp;id=18\">Problem 18</a>.
14
+ It is not possible to try every route to solve this problem, as there are 2<sup>99</sup>
15
+ altogether! If you could check one trillion (10<sup>12</sup>) routes every second
16
+ it would take over twenty billion years to check them all. There is an efficient
17
+ algorithm to solve it. ;o)</p>\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 68
3
+ :name: Magic 5-gon ring
4
+ :url: http://projecteuler.net/problem=68
5
+ :content: "\r\n<p>Consider the following \"magic\" 3-gon ring, filled with the numbers
6
+ 1 to 6, and each line adding to nine.</p>\r\n<div style=\"text-align:center;\">\r\n<img
7
+ src=\"project/images/p_068_1.gif\" alt=\"\"><br>\n</div>\r\n<p>Working <b>clockwise</b>,
8
+ and starting from the group of three with the numerically lowest external node (4,3,2
9
+ in this example), each solution can be described uniquely. For example, the above
10
+ solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.</p>\r\n<p>It is possible
11
+ to complete the ring with four different totals: 9, 10, 11, and 12. There are eight
12
+ solutions in total.</p>\r\n<div style=\"text-align:center;\">\r\n<table width=\"400\"
13
+ cellspacing=\"0\" cellpadding=\"0\">\n<tr>\n<td width=\"100\"><b>Total</b></td>\n<td
14
+ width=\"300\"><b>Solution Set</b></td>\r\n</tr>\n<tr>\n<td>9</td>\n<td>4,2,3; 5,3,1;
15
+ 6,1,2</td>\r\n</tr>\n<tr>\n<td>9</td>\n<td>4,3,2; 6,2,1; 5,1,3</td>\r\n</tr>\n<tr>\n<td>10</td>\n<td>2,3,5;
16
+ 4,5,1; 6,1,3</td>\r\n</tr>\n<tr>\n<td>10</td>\n<td>2,5,3; 6,3,1; 4,1,5</td>\r\n</tr>\n<tr>\n<td>11</td>\n<td>1,4,6;
17
+ 3,6,2; 5,2,4</td>\r\n</tr>\n<tr>\n<td>11</td>\n<td>1,6,4; 5,4,2; 3,2,6</td>\r\n</tr>\n<tr>\n<td>12</td>\n<td>1,5,6;
18
+ 2,6,4; 3,4,5</td>\r\n</tr>\n<tr>\n<td>12</td>\n<td>1,6,5; 3,5,4; 2,4,6</td>\r\n</tr>\n</table>\n</div>\r\n<p>By
19
+ concatenating each group it is possible to form 9-digit strings; the maximum string
20
+ for a 3-gon ring is 432621513.</p>\r\n<p>Using the numbers 1 to 10, and depending
21
+ on arrangements, it is possible to form 16- and 17-digit strings. What is the maximum
22
+ <b>16-digit</b> string for a \"magic\" 5-gon ring?</p>\r\n<div style=\"text-align:center;\">\r\n<img
23
+ src=\"project/images/p_068_2.gif\" alt=\"\"><br>\n</div>\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 69
3
+ :name: Totient maximum
4
+ :url: http://projecteuler.net/problem=69
5
+ :content: "\r\n\n<p>Euler's Totient function, φ(<i>n</i>) [sometimes called the phi
6
+ function], is used to determine the number of numbers less than <i>n</i> which are
7
+ relatively prime to <i>n</i>. For example, as 1, 2, 4, 5, 7, and 8, are all less
8
+ than nine and relatively prime to nine, φ(9)=6.</p>\n<div style=\"margin-left:100px;\">\n<table
9
+ border=\"1\">\n<tr>\n<td><b><i>n</i></b></td>\n<td><b>Relatively Prime</b></td>\n<td><b>φ(<i>n</i>)</b></td>\n<td><b><i>n</i>/φ(<i>n</i>)</b></td>\n</tr>\n<tr>\n<td>2</td>\n<td>1</td>\n<td>1</td>\n<td>2</td>\n</tr>\n<tr>\n<td>3</td>\n<td>1,2</td>\n<td>2</td>\n<td>1.5</td>\n</tr>\n<tr>\n<td>4</td>\n<td>1,3</td>\n<td>2</td>\n<td>2</td>\n</tr>\n<tr>\n<td>5</td>\n<td>1,2,3,4</td>\n<td>4</td>\n<td>1.25</td>\n</tr>\n<tr>\n<td>6</td>\n<td>1,5</td>\n<td>2</td>\n<td>3</td>\n</tr>\n<tr>\n<td>7</td>\n<td>1,2,3,4,5,6</td>\n<td>6</td>\n<td>1.1666...</td>\n</tr>\n<tr>\n<td>8</td>\n<td>1,3,5,7</td>\n<td>4</td>\n<td>2</td>\n</tr>\n<tr>\n<td>9</td>\n<td>1,2,4,5,7,8</td>\n<td>6</td>\n<td>1.5</td>\n</tr>\n<tr>\n<td>10</td>\n<td>1,3,7,9</td>\n<td>4</td>\n<td>2.5</td>\n</tr>\n</table>\n</div>\n<p>It
10
+ can be seen that <i>n</i>=6 produces a maximum <i>n</i>/φ(<i>n</i>) for <i>n</i>
11
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 10.</p>\n<p>Find the value of <i>n</i> <img src=\"images/symbol_le.gif\"
13
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
14
+ 1,000,000 for which <i>n</i>/φ(<i>n</i>) is a maximum.</p>\n\r\n"
@@ -0,0 +1,6 @@
1
+ ---
2
+ :id: 7
3
+ :name: 10001st prime
4
+ :url: http://projecteuler.net/problem=7
5
+ :content: "\r\n<p>By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13,
6
+ we can see that the 6th prime is 13.</p>\r\n<p>What is the 10 001st prime number?</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 70
3
+ :name: Totient permutation
4
+ :url: http://projecteuler.net/problem=70
5
+ :content: "\r\n<p>Euler's Totient function, φ(<var>n</var>) [sometimes called the
6
+ phi function], is used to determine the number of positive numbers less than or
7
+ equal to <var>n</var> which are relatively prime to <var>n</var>. For example, as
8
+ 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6.<br>The
9
+ number 1 is considered to be relatively prime to every positive number, so φ(1)=1.
10
+ </p>\r\n<p>Interestingly, φ(87109)=79180, and it can be seen that 87109 is a permutation
11
+ of 79180.</p>\r\n<p>Find the value of <var>n</var>, 1 <img src=\"images/symbol_lt.gif\"
12
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>
13
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
14
+ style=\"vertical-align:middle;\"> 10<sup>7</sup>, for which φ(<var>n</var>) is a
15
+ permutation of <var>n</var> and the ratio <var>n</var>/φ(<var>n</var>) produces
16
+ a minimum.</p>\r\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 71
3
+ :name: Ordered fractions
4
+ :url: http://projecteuler.net/problem=71
5
+ :content: "\r\n\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i>
6
+ are positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\"
7
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i>
8
+ and HCF(<i>n,d</i>)=1, it is called a reduced proper fraction.</p>\n<p>If we list
9
+ the set of reduced proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\"
10
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 8 in ascending order of size, we get:</p>\n<p style=\"text-align:center;font-size:8pt;\">1/8,
12
+ 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, <b>2/5</b>, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7,
13
+ 3/4, 4/5, 5/6, 6/7, 7/8</p>\n<p>It can be seen that 2/5 is the fraction immediately
14
+ to the left of 3/7.</p>\n<p>By listing the set of reduced proper fractions for <i>d</i>
15
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 1,000,000 in ascending order of size, find the
17
+ numerator of the fraction immediately to the left of 3/7.</p>\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 72
3
+ :name: Counting fractions
4
+ :url: http://projecteuler.net/problem=72
5
+ :content: "\r\n\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i>
6
+ are positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\"
7
+ height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i>
8
+ and HCF(<i>n,d</i>)=1, it is called a reduced proper fraction.</p>\n<p>If we list
9
+ the set of reduced proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\"
10
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
11
+ 8 in ascending order of size, we get:</p>\n<p style=\"text-align:center;font-size:8pt;\">1/8,
12
+ 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4,
13
+ 4/5, 5/6, 6/7, 7/8</p>\n<p>It can be seen that there are 21 elements in this set.</p>\n<p>How
14
+ many elements would be contained in the set of reduced proper fractions for <i>d</i>
15
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 1,000,000?</p>\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 73
3
+ :name: Counting fractions in a range
4
+ :url: http://projecteuler.net/problem=73
5
+ :content: "\r\n<p>Consider the fraction, <i>n/d</i>, where <i>n</i> and <i>d</i> are
6
+ positive integers. If <i>n</i><img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\"
7
+ alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i> and HCF(<i>n,d</i>)=1,
8
+ it is called a reduced proper fraction.</p>\r\n<p>If we list the set of reduced
9
+ proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
10
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 8 in ascending order of
11
+ size, we get:</p>\r\n<p style=\"text-align:center;font-size:8pt;\">1/8, 1/7, 1/6,
12
+ 1/5, 1/4, 2/7, 1/3, <b>3/8, 2/5, 3/7</b>, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5,
13
+ 5/6, 6/7, 7/8</p>\r\n<p>It can be seen that there are 3 fractions between 1/3 and
14
+ 1/2.</p>\r\n<p>How many fractions lie between 1/3 and 1/2 in the sorted set of reduced
15
+ proper fractions for <i>d</i> <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
16
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 12,000?</p>\r\n\r\n\r\n"
@@ -0,0 +1,41 @@
1
+ ---
2
+ :id: 74
3
+ :name: Digit factorial chains
4
+ :url: http://projecteuler.net/problem=74
5
+ :content: "\r\n\n<p>The number 145 is well known for the property that the sum of
6
+ the factorial of its digits is equal to 145:</p>\n<p style=\"margin-left:50px;\">1!
7
+ + 4! + 5! = 1 + 24 + 120 = 145</p>\n<p>Perhaps less well known is 169, in that it
8
+ produces the longest chain of numbers that link back to 169; it turns out that there
9
+ are only three such loops that exist:</p>\n<p style=\"margin-left:50px;\">169 <img
10
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> 363601 <img src=\"images/symbol_maps.gif\" width=\"15\"
12
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 1454 <img
13
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
14
+ style=\"vertical-align:middle;\"> 169<br>\n871 <img src=\"images/symbol_maps.gif\"
15
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 45361 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
17
+ style=\"vertical-align:middle;\"> 871<br>\n872 <img src=\"images/symbol_maps.gif\"
18
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
19
+ 45362 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
20
+ style=\"vertical-align:middle;\"> 872</p>\n<p>It is not difficult to prove that
21
+ EVERY starting number will eventually get stuck in a loop. For example,</p>\n<p
22
+ style=\"margin-left:50px;\">69 <img src=\"images/symbol_maps.gif\" width=\"15\"
23
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 363600 <img
24
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
25
+ style=\"vertical-align:middle;\"> 1454 <img src=\"images/symbol_maps.gif\" width=\"15\"
26
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 169 <img src=\"images/symbol_maps.gif\"
27
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
28
+ 363601 (<img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\"
29
+ border=\"0\" style=\"vertical-align:middle;\"> 1454)<br>\n78 <img src=\"images/symbol_maps.gif\"
30
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
31
+ 45360 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
32
+ style=\"vertical-align:middle;\"> 871 <img src=\"images/symbol_maps.gif\" width=\"15\"
33
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 45361 (<img
34
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
35
+ style=\"vertical-align:middle;\"> 871)<br>\n540 <img src=\"images/symbol_maps.gif\"
36
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
37
+ 145 (<img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
38
+ style=\"vertical-align:middle;\"> 145)</p>\n<p>Starting with 69 produces a chain
39
+ of five non-repeating terms, but the longest non-repeating chain with a starting
40
+ number below one million is sixty terms.</p>\n<p>How many chains, with a starting
41
+ number below one million, contain exactly sixty non-repeating terms?</p>\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 75
3
+ :name: Singular integer right triangles
4
+ :url: http://projecteuler.net/problem=75
5
+ :content: "\r\n<p>It turns out that 12 cm is the smallest length of wire that can
6
+ be bent to form an integer sided right angle triangle in exactly one way, but there
7
+ are many more examples.</p>\r\n<p style=\"margin-left:50px;\"><b>12 cm</b>: (3,4,5)<br><b>24
8
+ cm</b>: (6,8,10)<br><b>30 cm</b>: (5,12,13)<br><b>36 cm</b>: (9,12,15)<br><b>40
9
+ cm</b>: (8,15,17)<br><b>48 cm</b>: (12,16,20)</p>\r\n<p>In contrast, some lengths
10
+ of wire, like 20 cm, cannot be bent to form an integer sided right angle triangle,
11
+ and other lengths allow more than one solution to be found; for example, using 120
12
+ cm it is possible to form exactly three different integer sided right angle triangles.</p>\r\n<p
13
+ style=\"margin-left:50px;\"><b>120 cm</b>: (30,40,50), (20,48,52), (24,45,51)</p>\r\n<p>Given
14
+ that L is the length of the wire, for how many values of L <img src=\"images/symbol_le.gif\"
15
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 1,500,000 can exactly one integer sided right angle triangle be formed?</p>\r\n\r\n"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 76
3
+ :name: Counting summations
4
+ :url: http://projecteuler.net/problem=76
5
+ :content: "\r\n\n<p>It is possible to write five as a sum in exactly six different
6
+ ways:</p>\n<p style=\"margin-left:50px;\">4 + 1<br>\n3 + 2<br>\n3 + 1 + 1<br>\n2
7
+ + 2 + 1<br>\n2 + 1 + 1 + 1<br>\n1 + 1 + 1 + 1 + 1</p>\n<p>How many different ways
8
+ can one hundred be written as a sum of at least two positive integers?</p>\n\r\n"
@@ -0,0 +1,8 @@
1
+ ---
2
+ :id: 77
3
+ :name: Prime summations
4
+ :url: http://projecteuler.net/problem=77
5
+ :content: "\r\n\n<p>It is possible to write ten as the sum of primes in exactly five
6
+ different ways:</p>\n<p style=\"margin-left:50px;\">7 + 3<br>\n5 + 5<br>\n5 + 3
7
+ + 2<br>\n3 + 3 + 2 + 2<br>\n2 + 2 + 2 + 2 + 2</p>\n<p>What is the first value which
8
+ can be written as the sum of primes in over five thousand different ways?</p>\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 78
3
+ :name: Coin partitions
4
+ :url: http://projecteuler.net/problem=78
5
+ :content: "\r\n<p>Let p(<i>n</i>) represent the number of different ways in which
6
+ <i>n</i> coins can be separated into piles. For example, five coins can separated
7
+ into piles in exactly seven different ways, so p(5)=7.</p>\r\n<div style=\"text-align:center;\">\r\n<table
8
+ cellspacing=\"0\" cellpadding=\"10\">\n<tr>\n<td>OOOOO</td>\r\n</tr>\n<tr>\n<td>OOOO 
9
+  O</td>\r\n</tr>\n<tr>\n<td>OOO   OO</td>\r\n</tr>\n<tr>\n<td>OOO   O   O</td>\r\n</tr>\n<tr>\n<td>OO 
10
+  OO   O</td>\r\n</tr>\n<tr>\n<td>OO   O   O   O</td>\r\n</tr>\n<tr>\n<td>O   O 
11
+  O   O   O</td>\r\n</tr>\n</table>\n</div>\r\n<p>Find the least value of <i>n</i>
12
+ for which p(<i>n</i>) is divisible by one million.</p>\r\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 79
3
+ :name: Passcode derivation
4
+ :url: http://projecteuler.net/problem=79
5
+ :content: "\r\n<p>A common security method used for online banking is to ask the user
6
+ for three random characters from a passcode. For example, if the passcode was 531278,
7
+ they may ask for the 2nd, 3rd, and 5th characters; the expected reply would be:
8
+ 317.</p>\r\n<p>The text file, <a href=\"project/keylog.txt\">keylog.txt</a>, contains
9
+ fifty successful login attempts.</p>\r\n<p>Given that the three characters are always
10
+ asked for in order, analyse the file so as to determine the shortest possible secret
11
+ passcode of unknown length.</p>\r\n\r\n"
@@ -0,0 +1,6 @@
1
+ ---
2
+ :id: 8
3
+ :name: Largest product in a series
4
+ :url: http://projecteuler.net/problem=8
5
+ :content: "\r\n\n<p>Find the greatest product of five consecutive digits in the 1000-digit
6
+ number.</p>\n<p style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n73167176531330624919225119674426574742355349194934<br>\n96983520312774506326239578318016984801869478851843<br>\n85861560789112949495459501737958331952853208805511<br>\n12540698747158523863050715693290963295227443043557<br>\n66896648950445244523161731856403098711121722383113<br>\n62229893423380308135336276614282806444486645238749<br>\n30358907296290491560440772390713810515859307960866<br>\n70172427121883998797908792274921901699720888093776<br>\n65727333001053367881220235421809751254540594752243<br>\n52584907711670556013604839586446706324415722155397<br>\n53697817977846174064955149290862569321978468622482<br>\n83972241375657056057490261407972968652414535100474<br>\n82166370484403199890008895243450658541227588666881<br>\n16427171479924442928230863465674813919123162824586<br>\n17866458359124566529476545682848912883142607690042<br>\n24219022671055626321111109370544217506941658960408<br>\n07198403850962455444362981230987879927244284909188<br>\n84580156166097919133875499200524063689912560717606<br>\n05886116467109405077541002256983155200055935729725<br>\n71636269561882670428252483600823257530420752963450<br></p>\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 80
3
+ :name: Square root digital expansion
4
+ :url: http://projecteuler.net/problem=80
5
+ :content: "\r\n\n<p>It is well known that if the square root of a natural number is
6
+ not an integer, then it is irrational. The decimal expansion of such square roots
7
+ is infinite without any repeating pattern at all.</p>\n<p>The square root of two
8
+ is 1.41421356237309504880..., and the digital sum of the first one hundred decimal
9
+ digits is 475.</p>\n<p>For the first one hundred natural numbers, find the total
10
+ of the digital sums of the first one hundred decimal digits for all the irrational
11
+ square roots.</p>\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 81
3
+ :name: 'Path sum: two ways'
4
+ :url: http://projecteuler.net/problem=81
5
+ :content: "\r\n<p>In the 5 by 5 matrix below, the minimal path sum from the top left
6
+ to the bottom right, by <b>only moving to the right and down</b>, is indicated in
7
+ bold red and is equal to 2427.</p>\r\n<div style=\"text-align:center;\">\r\n<table
8
+ cellpadding=\"0\" cellspacing=\"0\" border=\"0\" align=\"center\"><tr>\n<td>\n<img
9
+ src=\"images/bracket_left.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table
10
+ cellpadding=\"3\" cellspacing=\"0\" border=\"0\">\n<tr>\n<td><span style=\"color:#dd0000;\"><b>131</b></span></td>\n<td>673</td>\n<td>234</td>\n<td>103</td>\n<td>18</td>\r\n</tr>\n<tr>\n<td><span
11
+ style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span
12
+ style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td>150</td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td><span
13
+ style=\"color:#dd0000;\"><b>746</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>422</b></span></td>\n<td>111</td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td><span
14
+ style=\"color:#dd0000;\"><b>121</b></span></td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td><span
15
+ style=\"color:#dd0000;\"><b>37</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>331</b></span></td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
16
+ src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
17
+ the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
18
+ and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
19
+ the top left to the bottom right by only moving right and down.</p>\r\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 82
3
+ :name: 'Path sum: three ways'
4
+ :url: http://projecteuler.net/problem=82
5
+ :content: "\r\n<p class=\"info\">NOTE: This problem is a more challenging version
6
+ of <a href=\"index.php?section=problems&amp;id=81\">Problem 81</a>.</p>\r\n<p>The
7
+ minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left
8
+ column and finishing in any cell in the right column, and only moving up, down,
9
+ and right, is indicated in red and bold; the sum is equal to 994.</p>\r\n<div style=\"text-align:center;\">\r\n<table
10
+ cellpadding=\"0\" cellspacing=\"0\" border=\"0\" align=\"center\"><tr>\n<td>\n<img
11
+ src=\"images/bracket_left.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table
12
+ cellpadding=\"3\" cellspacing=\"0\" border=\"0\">\n<tr>\n<td>131</td>\n<td>673</td>\n<td><span
13
+ style=\"color:#dd0000;\"><b>234</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>103</b></span></td>\n<td><span
14
+ style=\"color:#dd0000;\"><b>18</b></span></td>\r\n</tr>\n<tr>\n<td><span style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span
15
+ style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td>150</td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td>746</td>\n<td>422</td>\n<td>111</td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td>121</td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td>37</td>\n<td>331</td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
16
+ src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
17
+ the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
18
+ and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
19
+ the left column to the right column.</p>\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 83
3
+ :name: 'Path sum: four ways'
4
+ :url: http://projecteuler.net/problem=83
5
+ :content: "\r\n<p class=\"info\">NOTE: This problem is a significantly more challenging
6
+ version of <a href=\"index.php?section=problems&amp;id=81\">Problem 81</a>.</p>\r\n<p>In
7
+ the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right,
8
+ by moving left, right, up, and down, is indicated in bold red and is equal to 2297.</p>\r\n<div
9
+ style=\"text-align:center;\">\r\n<table cellpadding=\"0\" cellspacing=\"0\" border=\"0\"
10
+ align=\"center\"><tr>\n<td>\n<img src=\"images/bracket_left.gif\" width=\"8\" height=\"120\"
11
+ alt=\"\" align=\"middle\"><br>\n</td>\r\n<td>\r\n<table cellpadding=\"3\" cellspacing=\"0\"
12
+ border=\"0\">\n<tr>\n<td><span style=\"color:#dd0000;\"><b>131</b></span></td>\n<td>673</td>\n<td><span
13
+ style=\"color:#dd0000;\"><b>234</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>103</b></span></td>\n<td><span
14
+ style=\"color:#dd0000;\"><b>18</b></span></td>\r\n</tr>\n<tr>\n<td><span style=\"color:#dd0000;\"><b>201</b></span></td>\n<td><span
15
+ style=\"color:#dd0000;\"><b>96</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>342</b></span></td>\n<td>965</td>\n<td><span
16
+ style=\"color:#dd0000;\"><b>150</b></span></td>\r\n</tr>\n<tr>\n<td>630</td>\n<td>803</td>\n<td>746</td>\n<td><span
17
+ style=\"color:#dd0000;\"><b>422</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>111</b></span></td>\r\n</tr>\n<tr>\n<td>537</td>\n<td>699</td>\n<td>497</td>\n<td><span
18
+ style=\"color:#dd0000;\"><b>121</b></span></td>\n<td>956</td>\r\n</tr>\n<tr>\n<td>805</td>\n<td>732</td>\n<td>524</td>\n<td><span
19
+ style=\"color:#dd0000;\"><b>37</b></span></td>\n<td><span style=\"color:#dd0000;\"><b>331</b></span></td>\r\n</tr>\n</table>\n</td>\r\n<td>\n<img
20
+ src=\"images/bracket_right.gif\" width=\"8\" height=\"120\" alt=\"\" align=\"middle\"><br>\n</td>\r\n</tr></table>\n</div>\r\n<p>Find
21
+ the minimal path sum, in <a href=\"project/matrix.txt\">matrix.txt</a> (right click
22
+ and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from
23
+ the top left to the bottom right by moving left, right, up, and down.</p>\r\n\r\n"
@@ -0,0 +1,63 @@
1
+ ---
2
+ :id: 84
3
+ :name: Monopoly odds
4
+ :url: http://projecteuler.net/problem=84
5
+ :content: "\r\n<p>In the game, <i>Monopoly</i>, the standard board is set up in the
6
+ following way:</p>\r\n<div style=\"text-align:center;\">\r\n<table cellspacing=\"1\"
7
+ cellpadding=\"5\" border=\"0\" style=\"background-color:#333333;\" align=\"center\">\n<tr>\n<td
8
+ style=\"background-color:#ffffff;\">GO</td>\r\n<td style=\"background-color:#ffffff;\">A1</td>\r\n<td
9
+ style=\"background-color:#ffffff;\">CC1</td>\r\n<td style=\"background-color:#ffffff;\">A2</td>\r\n<td
10
+ style=\"background-color:#ffffff;\">T1</td>\r\n<td style=\"background-color:#ffffff;\">R1</td>\r\n<td
11
+ style=\"background-color:#ffffff;\">B1</td>\r\n<td style=\"background-color:#ffffff;\">CH1</td>\r\n<td
12
+ style=\"background-color:#ffffff;\">B2</td>\r\n<td style=\"background-color:#ffffff;\">B3</td>\r\n<td
13
+ style=\"background-color:#ffffff;\">JAIL</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">H2</td>\r\n<td
14
+ colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">C1</td>\r\n</tr>\n<tr>\n<td
15
+ style=\"background-color:#ffffff;\">T2</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">U1</td>\r\n</tr>\n<tr>\n<td
16
+ style=\"background-color:#ffffff;\">H1</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">C2</td>\r\n</tr>\n<tr>\n<td
17
+ style=\"background-color:#ffffff;\">CH3</td>\r\n<td colspan=\"9\"> </td>\r\n<td
18
+ style=\"background-color:#ffffff;\">C3</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">R4</td>\r\n<td
19
+ colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">R2</td>\r\n</tr>\n<tr>\n<td
20
+ style=\"background-color:#ffffff;\">G3</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D1</td>\r\n</tr>\n<tr>\n<td
21
+ style=\"background-color:#ffffff;\">CC3</td>\r\n<td colspan=\"9\"> </td>\r\n<td
22
+ style=\"background-color:#ffffff;\">CC2</td>\r\n</tr>\n<tr>\n<td style=\"background-color:#ffffff;\">G2</td>\r\n<td
23
+ colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D2</td>\r\n</tr>\n<tr>\n<td
24
+ style=\"background-color:#ffffff;\">G1</td>\r\n<td colspan=\"9\"> </td>\r\n<td style=\"background-color:#ffffff;\">D3</td>\r\n</tr>\n<tr>\n<td
25
+ style=\"background-color:#ffffff;\">G2J</td>\r\n<td style=\"background-color:#ffffff;\">F3</td>\r\n<td
26
+ style=\"background-color:#ffffff;\">U2</td>\r\n<td style=\"background-color:#ffffff;\">F2</td>\r\n<td
27
+ style=\"background-color:#ffffff;\">F1</td>\r\n<td style=\"background-color:#ffffff;\">R3</td>\r\n<td
28
+ style=\"background-color:#ffffff;\">E3</td>\r\n<td style=\"background-color:#ffffff;\">E2</td>\r\n<td
29
+ style=\"background-color:#ffffff;\">CH2</td>\r\n<td style=\"background-color:#ffffff;\">E1</td>\r\n<td
30
+ style=\"background-color:#ffffff;\">FP</td>\r\n</tr>\n</table>\n</div>\r\n<p>A player
31
+ starts on the GO square and adds the scores on two 6-sided dice to determine the
32
+ number of squares they advance in a clockwise direction. Without any further rules
33
+ we would expect to visit each square with equal probability: 2.5%. However, landing
34
+ on G2J (Go To Jail), CC (community chest), and CH (chance) changes this distribution.</p>\r\n<p>In
35
+ addition to G2J, and one card from each of CC and CH, that orders the player to
36
+ go directly to jail, if a player rolls three consecutive doubles, they do not advance
37
+ the result of their 3rd roll. Instead they proceed directly to jail.</p>\r\n<p>At
38
+ the beginning of the game, the CC and CH cards are shuffled. When a player lands
39
+ on CC or CH they take a card from the top of the respective pile and, after following
40
+ the instructions, it is returned to the bottom of the pile. There are sixteen cards
41
+ in each pile, but for the purpose of this problem we are only concerned with cards
42
+ that order a movement; any instruction not concerned with movement will be ignored
43
+ and the player will remain on the CC/CH square.</p>\r\n<ul>\n<li>Community Chest
44
+ (2/16 cards):\r\n<ol>\n<li>Advance to GO</li>\r\n<li>Go to JAIL</li>\r\n</ol>\n</li>\r\n<li>Chance
45
+ (10/16 cards):\r\n<ol>\n<li>Advance to GO</li>\r\n<li>Go to JAIL</li>\r\n<li>Go
46
+ to C1</li>\r\n<li>Go to E3</li>\r\n<li>Go to H2</li>\r\n<li>Go to R1</li>\r\n<li>Go
47
+ to next R (railway company)</li>\r\n<li>Go to next R</li>\r\n<li>Go to next U (utility
48
+ company)</li>\r\n<li>Go back 3 squares.</li>\r\n</ol>\n</li>\r\n</ul>\n<p>The heart
49
+ of this problem concerns the likelihood of visiting a particular square. That is,
50
+ the probability of finishing at that square after a roll. For this reason it should
51
+ be clear that, with the exception of G2J for which the probability of finishing
52
+ on it is zero, the CH squares will have the lowest probabilities, as 5/8 request
53
+ a movement to another square, and it is the final square that the player finishes
54
+ at on each roll that we are interested in. We shall make no distinction between
55
+ \"Just Visiting\" and being sent to JAIL, and we shall also ignore the rule about
56
+ requiring a double to \"get out of jail\", assuming that they pay to get out on
57
+ their next turn.</p>\r\n<p>By starting at GO and numbering the squares sequentially
58
+ from 00 to 39 we can concatenate these two-digit numbers to produce strings that
59
+ correspond with sets of squares.</p>\r\n<p>Statistically it can be shown that the
60
+ three most popular squares, in order, are JAIL (6.24%) = Square 10, E3 (3.18%) =
61
+ Square 24, and GO (3.09%) = Square 00. So these three most popular squares can be
62
+ listed with the six-digit modal string: 102400.</p>\r\n<p>If, instead of using two
63
+ 6-sided dice, two 4-sided dice are used, find the six-digit modal string.</p>\r\n\r\n"