euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 85
3
+ :name: Counting rectangles
4
+ :url: http://projecteuler.net/problem=85
5
+ :content: "\r\n<p>By counting carefully it can be seen that a rectangular grid measuring
6
+ 3 by 2 contains eighteen rectangles:</p>\r\n<div style=\"text-align:center;\">\r\n<img
7
+ src=\"project/images/p_085.gif\" alt=\"\">\n</div>\r\n<p>Although there exists no
8
+ rectangular grid that contains exactly two million rectangles, find the area of
9
+ the grid with the nearest solution.</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 86
3
+ :name: Cuboid route
4
+ :url: http://projecteuler.net/problem=86
5
+ :content: "\r\n<p>A spider, S, sits in one corner of a cuboid room, measuring 6 by
6
+ 5 by 3, and a fly, F, sits in the opposite corner. By travelling on the surfaces
7
+ of the room the shortest \"straight line\" distance from S to F is 10 and the path
8
+ is shown on the diagram.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_086.gif\"
9
+ alt=\"\"><br>\n</div>\r\n<p>However, there are up to three \"shortest\" path candidates
10
+ for any given cuboid and the shortest route doesn't always have integer length.</p>\r\n<p>By
11
+ considering all cuboid rooms with integer dimensions, up to a maximum size of M
12
+ by M by M, there are exactly 2060 cuboids for which the shortest route has integer
13
+ length when M=100, and this is the least value of M for which the number of solutions
14
+ first exceeds two thousand; the number of solutions is 1975 when M=99.</p>\r\n<p>Find
15
+ the least value of M such that the number of solutions first exceeds one million.</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 87
3
+ :name: Prime power triples
4
+ :url: http://projecteuler.net/problem=87
5
+ :content: "\r\n\n<p>The smallest number expressible as the sum of a prime square,
6
+ prime cube, and prime fourth power is 28. In fact, there are exactly four numbers
7
+ below fifty that can be expressed in such a way:</p>\n<p style=\"margin-left:50px;\">28
8
+ = 2<sup>2</sup> + 2<sup>3</sup> + 2<sup>4</sup><br>\n33 = 3<sup>2</sup> + 2<sup>3</sup>
9
+ + 2<sup>4</sup><br>\n49 = 5<sup>2</sup> + 2<sup>3</sup> + 2<sup>4</sup><br>\n47
10
+ = 2<sup>2</sup> + 3<sup>3</sup> + 2<sup>4</sup></p>\n<p>How many numbers below fifty
11
+ million can be expressed as the sum of a prime square, prime cube, and prime fourth
12
+ power?</p>\n\r\n"
@@ -0,0 +1,53 @@
1
+ ---
2
+ :id: 88
3
+ :name: Product-sum numbers
4
+ :url: http://projecteuler.net/problem=88
5
+ :content: "\r\n\n<p>A natural number, N, that can be written as the sum and product
6
+ of a given set of at least two natural numbers, {<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>,
7
+ ... , <i>a</i><sub><i>k</i></sub>} is called a product-sum number: N = <i>a</i><sub>1</sub>
8
+ + <i>a</i><sub>2</sub> + ... + <i>a</i><sub><i>k</i></sub> = <i>a</i><sub>1</sub><img
9
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><i>a</i><sub>2</sub><img src=\"images/symbol_times.gif\"
11
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
12
+ ... <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
13
+ style=\"vertical-align:middle;\"><i>a</i><sub><i>k</i></sub>.</p>\n<p>For example,
14
+ 6 = 1 + 2 + 3 = 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
15
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
16
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
17
+ 3.</p>\n<p>For a given set of size, <i>k</i>, we shall call the smallest N with
18
+ this property a minimal product-sum number. The minimal product-sum numbers for
19
+ sets of size, <i>k</i> = 2, 3, 4, 5, and 6 are as follows.</p>\n<p style=\"margin-left:50px;\"><i>k</i>=2:
20
+ 4 = 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
21
+ style=\"vertical-align:middle;\"> 2 = 2 + 2<br><i>k</i>=3: 6 = 1 <img src=\"images/symbol_times.gif\"
22
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
23
+ 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
24
+ style=\"vertical-align:middle;\"> 3 = 1 + 2 + 3<br><i>k</i>=4: 8 = 1 <img src=\"images/symbol_times.gif\"
25
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
26
+ 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
27
+ style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\" width=\"9\"
28
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 4 = 1 + 1
29
+ + 2 + 4<br><i>k</i>=5: 8 = 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\"
30
+ alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1 <img src=\"images/symbol_times.gif\"
31
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
32
+ 2 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
33
+ style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\" width=\"9\"
34
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 2 = 1 + 1
35
+ + 2 + 2 + 2<br><i>k</i>=6: 12 = 1 <img src=\"images/symbol_times.gif\" width=\"9\"
36
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 1 <img src=\"images/symbol_times.gif\"
37
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
38
+ 1 <img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
39
+ style=\"vertical-align:middle;\"> 1 <img src=\"images/symbol_times.gif\" width=\"9\"
40
+ height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_times.gif\"
41
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">
42
+ 6 = 1 + 1 + 1 + 1 + 2 + 6</p>\n<p>Hence for 2<img src=\"images/symbol_le.gif\" width=\"10\"
43
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i><img
44
+ src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">6,
45
+ the sum of all the minimal product-sum numbers is 4+6+8+12 = 30; note that 8 is
46
+ only counted once in the sum.</p>\n<p>In fact, as the complete set of minimal product-sum
47
+ numbers for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
48
+ border=\"0\" style=\"vertical-align:middle;\"><i>k</i><img src=\"images/symbol_le.gif\"
49
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">12
50
+ is {4, 6, 8, 12, 15, 16}, the sum is 61.</p>\n<p>What is the sum of all the minimal
51
+ product-sum numbers for 2<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\"
52
+ alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i><img src=\"images/symbol_le.gif\"
53
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">12000?</p>\n\r\n"
@@ -0,0 +1,18 @@
1
+ ---
2
+ :id: 89
3
+ :name: Roman numerals
4
+ :url: http://projecteuler.net/problem=89
5
+ :content: "\r\n<p>The rules for writing Roman numerals allow for many ways of writing
6
+ each number (see <a href=\"about=roman_numerals\">About Roman Numerals...</a>).
7
+ However, there is always a \"best\" way of writing a particular number.</p>\r\n<p>For
8
+ example, the following represent all of the legitimate ways of writing the number
9
+ sixteen:</p>\r\n<p style=\"margin-left:50px;font-family:courier new,monospace;\">IIIIIIIIIIIIIIII<br>\r\nVIIIIIIIIIII<br>\r\nVVIIIIII<br>\r\nXIIIIII<br>\r\nVVVI<br>\r\nXVI</p>\r\n<p>The
10
+ last example being considered the most efficient, as it uses the least number of
11
+ numerals.</p>\r\n<p>The 11K text file, <a href=\"project/roman.txt\">roman.txt</a>
12
+ (right click and 'Save Link/Target As...'), contains one thousand numbers written
13
+ in valid, but not necessarily minimal, Roman numerals; that is, they are arranged
14
+ in descending units and obey the subtractive pair rule (see <a href=\"about=roman_numerals\">About
15
+ Roman Numerals...</a> for the definitive rules for this problem).</p>\r\n<p>Find
16
+ the number of characters saved by writing each of these in their minimal form.</p>\r\n<p
17
+ class=\"info\">Note: You can assume that all the Roman numerals in the file contain
18
+ no more than four consecutive identical units.</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 9
3
+ :name: Special Pythagorean triplet
4
+ :url: http://projecteuler.net/problem=9
5
+ :content: "\r\n<p>A Pythagorean triplet is a set of three natural numbers, <var>a</var>
6
+ <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\"
7
+ style=\"vertical-align:middle;\"><var>b</var> <img src=\"images/symbol_lt.gif\"
8
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><var>c</var>,
9
+ for which,</p>\r\n<div style=\"text-align:center;\"> <var>a</var><sup>2</sup> +
10
+ <var>b</var><sup>2</sup> = <var>c</var><sup>2</sup>\n</div>\r\n<p>For example, 3<sup>2</sup>
11
+ + 4<sup>2</sup> = 9 + 16 = 25 = 5<sup>2</sup>.</p>\r\n<p>There exists exactly one
12
+ Pythagorean triplet for which <var>a</var> + <var>b</var> + <var>c</var> = 1000.<br>Find
13
+ the product <var>abc</var>.</p>\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 90
3
+ :name: Cube digit pairs
4
+ :url: http://projecteuler.net/problem=90
5
+ :content: "\r\n<p>Each of the six faces on a cube has a different digit (0 to 9) written
6
+ on it; the same is done to a second cube. By placing the two cubes side-by-side
7
+ in different positions we can form a variety of 2-digit numbers.</p>\r\n\r\n<p>For
8
+ example, the square number 64 could be formed:</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<img
9
+ src=\"project/images/p_090.gif\" alt=\"\"><br>\n</div>\r\n\r\n<p>In fact, by carefully
10
+ choosing the digits on both cubes it is possible to display all of the square numbers
11
+ below one-hundred: 01, 04, 09, 16, 25, 36, 49, 64, and 81.</p>\r\n\r\n<p>For example,
12
+ one way this can be achieved is by placing {0, 5, 6, 7, 8, 9} on one cube and {1,
13
+ 2, 3, 4, 8, 9} on the other cube.</p>\r\n\r\n<p>However, for this problem we shall
14
+ allow the 6 or 9 to be turned upside-down so that an arrangement like {0, 5, 6,
15
+ 7, 8, 9} and {1, 2, 3, 4, 6, 7} allows for all nine square numbers to be displayed;
16
+ otherwise it would be impossible to obtain 09.</p>\r\n\r\n<p>In determining a distinct
17
+ arrangement we are interested in the digits on each cube, not the order.</p>\r\n\r\n<p
18
+ style=\"margin-left:50px;\">{1, 2, 3, 4, 5, 6} is equivalent to {3, 6, 4, 1, 2,
19
+ 5}<br>\r\n{1, 2, 3, 4, 5, 6} is distinct from {1, 2, 3, 4, 5, 9}</p>\r\n\r\n<p>But
20
+ because we are allowing 6 and 9 to be reversed, the two distinct sets in the last
21
+ example both represent the extended set {1, 2, 3, 4, 5, 6, 9} for the purpose of
22
+ forming 2-digit numbers.</p>\r\n\r\n<p>How many distinct arrangements of the two
23
+ cubes allow for all of the square numbers to be displayed?</p>\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 91
3
+ :name: Right triangles with integer coordinates
4
+ :url: http://projecteuler.net/problem=91
5
+ :content: "\r\n<p>The points P (<i>x</i><sub>1</sub>, <i>y</i><sub>1</sub>) and Q
6
+ (<i>x</i><sub>2</sub>, <i>y</i><sub>2</sub>) are plotted at integer co-ordinates
7
+ and are joined to the origin, O(0,0), to form ΔOPQ.</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<img
8
+ src=\"project/images/p_091_1.gif\" alt=\"\"><br>\n</div>\r\n\r\n<p>There are exactly
9
+ fourteen triangles containing a right angle that can be formed when each co-ordinate
10
+ lies between 0 and 2 inclusive; that is,<br>0 <img src=\"images/symbol_le.gif\"
11
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>x</i><sub>1</sub>,
12
+ <i>y</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>2</sub><img src=\"images/symbol_le.gif\"
13
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
14
+ 2.</p>\r\n\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_091_2.gif\"
15
+ alt=\"\"><br>\n</div>\r\n\r\n<p>Given that 0 <img src=\"images/symbol_le.gif\" width=\"10\"
16
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>x</i><sub>1</sub>,
17
+ <i>y</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>y</i><sub>2</sub><img src=\"images/symbol_le.gif\"
18
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
19
+ 50, how many right triangles can be formed?</p>\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 92
3
+ :name: Square digit chains
4
+ :url: http://projecteuler.net/problem=92
5
+ :content: "\r\n\n<p>A number chain is created by continuously adding the square of
6
+ the digits in a number to form a new number until it has been seen before.</p>\n<p>For
7
+ example,</p>\n<p style=\"margin-left:50px;\">44 <img src=\"images/symbol_maps.gif\"
8
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
9
+ 32 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
10
+ style=\"vertical-align:middle;\"> 13 <img src=\"images/symbol_maps.gif\" width=\"15\"
11
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 10 <img src=\"images/symbol_maps.gif\"
12
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><b>1</b>
13
+ <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
14
+ style=\"vertical-align:middle;\"><b>1</b><br>\n85 <img src=\"images/symbol_maps.gif\"
15
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><b>89</b>
16
+ <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
17
+ style=\"vertical-align:middle;\"> 145 <img src=\"images/symbol_maps.gif\" width=\"15\"
18
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 42 <img src=\"images/symbol_maps.gif\"
19
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
20
+ 20 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
21
+ style=\"vertical-align:middle;\"> 4 <img src=\"images/symbol_maps.gif\" width=\"15\"
22
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 16 <img src=\"images/symbol_maps.gif\"
23
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
24
+ 37 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
25
+ style=\"vertical-align:middle;\"> 58 <img src=\"images/symbol_maps.gif\" width=\"15\"
26
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><b>89</b></p>\n<p>Therefore
27
+ any chain that arrives at 1 or 89 will become stuck in an endless loop. What is
28
+ most amazing is that EVERY starting number will eventually arrive at 1 or 89.</p>\n<p>How
29
+ many starting numbers below ten million will arrive at 89?</p>\n\r\n"
@@ -0,0 +1,21 @@
1
+ ---
2
+ :id: 93
3
+ :name: Arithmetic expressions
4
+ :url: http://projecteuler.net/problem=93
5
+ :content: "\r\n\n<p>By using each of the digits from the set, {1, 2, 3, 4}, exactly
6
+ once, and making use of the four arithmetic operations (+, <img src=\"images/symbol_minus.gif\"
7
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">,
8
+ *, /) and brackets/parentheses, it is possible to form different positive integer
9
+ targets.</p>\n<p>For example,</p>\n<p style=\"margin-left:50px;font-family:courier
10
+ new;\">8 = (4 * (1 + 3)) / 2<br>\n14 = 4 * (3 + 1 / 2)<br>\n19 = 4 * (2 + 3) <img
11
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
12
+ style=\"vertical-align:middle;\"> 1<br>\n36 = 3 * 4 * (2 + 1)</p>\n<p>Note that
13
+ concatenations of the digits, like 12 + 34, are not allowed.</p>\n<p>Using the set,
14
+ {1, 2, 3, 4}, it is possible to obtain thirty-one different target numbers of which
15
+ 36 is the maximum, and each of the numbers 1 to 28 can be obtained before encountering
16
+ the first non-expressible number.</p>\n<p>Find the set of four distinct digits,
17
+ <i>a</i> <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
18
+ border=\"0\" style=\"vertical-align:middle;\"><i>b</i> &amp;lt <i>c</i> <img src=\"images/symbol_lt.gif\"
19
+ width=\"10\" height=\"10\" alt=\"&lt;\" border=\"0\" style=\"vertical-align:middle;\"><i>d</i>,
20
+ for which the longest set of consecutive positive integers, 1 to <i>n</i>, can be
21
+ obtained, giving your answer as a string: <i>abcd</i>.</p>\n\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 94
3
+ :name: Almost equilateral triangles
4
+ :url: http://projecteuler.net/problem=94
5
+ :content: "\r\n<p>It is easily proved that no equilateral triangle exists with integral
6
+ length sides and integral area. However, the <i>almost equilateral triangle</i>
7
+ 5-5-6 has an area of 12 square units.</p>\r\n<p>We shall define an <i>almost equilateral
8
+ triangle</i> to be a triangle for which two sides are equal and the third differs
9
+ by no more than one unit.</p>\r\n<p>Find the sum of the perimeters of all <i>almost
10
+ equilateral triangles</i> with integral side lengths and area and whose perimeters
11
+ do not exceed one billion (1,000,000,000).</p>\r\n\r\n"
@@ -0,0 +1,23 @@
1
+ ---
2
+ :id: 95
3
+ :name: Amicable chains
4
+ :url: http://projecteuler.net/problem=95
5
+ :content: "\r\n<p>The proper divisors of a number are all the divisors excluding the
6
+ number itself. For example, the proper divisors of 28 are 1, 2, 4, 7, and 14. As
7
+ the sum of these divisors is equal to 28, we call it a perfect number.</p>\r\n<p>Interestingly
8
+ the sum of the proper divisors of 220 is 284 and the sum of the proper divisors
9
+ of 284 is 220, forming a chain of two numbers. For this reason, 220 and 284 are
10
+ called an amicable pair.</p>\r\n<p>Perhaps less well known are longer chains. For
11
+ example, starting with 12496, we form a chain of five numbers:</p>\r\n<p style=\"text-align:center;\">12496
12
+ <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> 14288 <img src=\"images/symbol_maps.gif\" width=\"15\"
14
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 15472 <img
15
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
16
+ style=\"vertical-align:middle;\"> 14536 <img src=\"images/symbol_maps.gif\" width=\"15\"
17
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 14264 (<img
18
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
19
+ style=\"vertical-align:middle;\"> 12496 <img src=\"images/symbol_maps.gif\" width=\"15\"
20
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> ...)</p>\r\n<p>Since
21
+ this chain returns to its starting point, it is called an amicable chain.</p>\r\n<p>Find
22
+ the smallest member of the longest amicable chain with no element exceeding one
23
+ million.</p>\r\n\r\n"
@@ -0,0 +1,46 @@
1
+ ---
2
+ :id: 96
3
+ :name: Su Doku
4
+ :url: http://projecteuler.net/problem=96
5
+ :content: "\r\n<p>Su Doku (Japanese meaning <i>number place</i>) is the name given
6
+ to a popular puzzle concept. Its origin is unclear, but credit must be attributed
7
+ to Leonhard Euler who invented a similar, and much more difficult, puzzle idea called
8
+ Latin Squares. The objective of Su Doku puzzles, however, is to replace the blanks
9
+ (or zeros) in a 9 by 9 grid in such that each row, column, and 3 by 3 box contains
10
+ each of the digits 1 to 9. Below is an example of a typical starting puzzle grid
11
+ and its solution grid.</p>\r\n<div style=\"text-align:center;\">\r\n<table border=\"0\"
12
+ cellpadding=\"0\" cellspacing=\"0\" align=\"center\"><tr>\n<td>\r\n<table cellpadding=\"5\"
13
+ cellspacing=\"0\" border=\"1\">\n<tr>\n<td style=\"font-family:courier new;font-size:14pt;\">0
14
+ 0 3<br>9 0 0<br>0 0 1</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">0
15
+ 2 0<br>3 0 5<br>8 0 6</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">6
16
+ 0 0<br>0 0 1<br>4 0 0</td>\r\n</tr>\n<tr>\n<td style=\"font-family:courier new;font-size:14pt;\">0
17
+ 0 8<br>7 0 0<br>0 0 6</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">1
18
+ 0 2<br>0 0 0<br>7 0 8</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">9
19
+ 0 0<br>0 0 8<br>2 0 0</td>\r\n</tr>\n<tr>\n<td style=\"font-family:courier new;font-size:14pt;\">0
20
+ 0 2<br>8 0 0<br>0 0 5</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">6
21
+ 0 9<br>2 0 3<br>0 1 0</td>\r\n<td style=\"font-family:courier new;font-size:14pt;\">5
22
+ 0 0<br>0 0 9<br>3 0 0</td>\r\n</tr>\n</table>\n</td>\r\n<td width=\"50\">\n<img
23
+ src=\"images/spacer.gif\" width=\"50\" height=\"1\" alt=\"\"><br>\n</td>\r\n<td>\r\n<table
24
+ cellpadding=\"5\" cellspacing=\"0\" border=\"1\">\n<tr>\n<td style=\"font-family:courier
25
+ new;font-size:14pt;\">4 8 3<br>9 6 7<br>2 5 1</td>\r\n<td style=\"font-family:courier
26
+ new;font-size:14pt;\">9 2 1<br>3 4 5<br>8 7 6</td>\r\n<td style=\"font-family:courier
27
+ new;font-size:14pt;\">6 5 7<br>8 2 1<br>4 9 3</td>\r\n</tr>\n<tr>\n<td style=\"font-family:courier
28
+ new;font-size:14pt;\">5 4 8<br>7 2 9<br>1 3 6</td>\r\n<td style=\"font-family:courier
29
+ new;font-size:14pt;\">1 3 2<br>5 6 4<br>7 9 8</td>\r\n<td style=\"font-family:courier
30
+ new;font-size:14pt;\">9 7 6<br>1 3 8<br>2 4 5</td>\r\n</tr>\n<tr>\n<td style=\"font-family:courier
31
+ new;font-size:14pt;\">3 7 2<br>8 1 4<br>6 9 5</td>\r\n<td style=\"font-family:courier
32
+ new;font-size:14pt;\">6 8 9<br>2 5 3<br>4 1 7</td>\r\n<td style=\"font-family:courier
33
+ new;font-size:14pt;\">5 1 4<br>7 6 9<br>3 8 2</td>\r\n</tr>\n</table>\n</td>\r\n</tr></table>\n</div>\r\n<p>A
34
+ well constructed Su Doku puzzle has a unique solution and can be solved by logic,
35
+ although it may be necessary to employ \"guess and test\" methods in order to eliminate
36
+ options (there is much contested opinion over this). The complexity of the search
37
+ determines the difficulty of the puzzle; the example above is considered <i>easy</i>
38
+ because it can be solved by straight forward direct deduction.</p>\r\n<p>The 6K
39
+ text file, <a href=\"project/sudoku.txt\">sudoku.txt</a> (right click and 'Save
40
+ Link/Target As...'), contains fifty different Su Doku puzzles ranging in difficulty,
41
+ but all with unique solutions (the first puzzle in the file is the example above).</p>\r\n<p>By
42
+ solving all fifty puzzles find the sum of the 3-digit numbers found in the top left
43
+ corner of each solution grid; for example, 483 is the 3-digit number found in the
44
+ top left corner of the solution grid above.</p>\r\n<!--<p class='info'>Note: If
45
+ you're convinced that &quot;guess and test&quot; methods need not be employed please
46
+ tell how you would solve #6 and #46. (c;</p>-->\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 97
3
+ :name: Large non-Mersenne prime
4
+ :url: http://projecteuler.net/problem=97
5
+ :content: "\r\n<p>The first known prime found to exceed one million digits was discovered
6
+ in 1999, and is a Mersenne prime of the form 2<sup>6972593</sup><img src=\"images/symbol_minus.gif\"
7
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1;
8
+ it contains exactly 2,098,960 digits. Subsequently other Mersenne primes, of the
9
+ form 2<sup><i>p</i></sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
10
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1, have been found which
11
+ contain more digits.</p>\r\n<p>However, in 2004 there was found a massive non-Mersenne
12
+ prime which contains 2,357,207 digits: 28433<img src=\"images/symbol_times.gif\"
13
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2<sup>7830457</sup>+1.</p>\r\n<p>Find
14
+ the last ten digits of this prime number.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 98
3
+ :name: Anagramic squares
4
+ :url: http://projecteuler.net/problem=98
5
+ :content: "\r\n<p>By replacing each of the letters in the word CARE with 1, 2, 9,
6
+ and 6 respectively, we form a square number: 1296 = 36<sup>2</sup>. What is remarkable
7
+ is that, by using the same digital substitutions, the anagram, RACE, also forms
8
+ a square number: 9216 = 96<sup>2</sup>. We shall call CARE (and RACE) a square anagram
9
+ word pair and specify further that leading zeroes are not permitted, neither may
10
+ a different letter have the same digital value as another letter.</p>\r\n<p>Using
11
+ <a href=\"project/words.txt\">words.txt</a> (right click and 'Save Link/Target As...'),
12
+ a 16K text file containing nearly two-thousand common English words, find all the
13
+ square anagram word pairs (a palindromic word is NOT considered to be an anagram
14
+ of itself).</p>\r\n<p>What is the largest square number formed by any member of
15
+ such a pair?</p>\r\n<p class=\"info\">NOTE: All anagrams formed must be contained
16
+ in the given text file.</p>\r\n\r\n"
@@ -0,0 +1,16 @@
1
+ ---
2
+ :id: 99
3
+ :name: Largest exponential
4
+ :url: http://projecteuler.net/problem=99
5
+ :content: "\r\n\n<p>Comparing two numbers written in index form like 2<sup>11</sup>
6
+ and 3<sup>7</sup> is not difficult, as any calculator would confirm that 2<sup>11</sup>
7
+ = 2048 <img src=\"images/symbol_lt.gif\" width=\"10\" height=\"10\" alt=\"&lt;\"
8
+ border=\"0\" style=\"vertical-align:middle;\"> 3<sup>7</sup> = 2187.</p>\n<p>However,
9
+ confirming that 632382<sup>518061</sup><img src=\"images/symbol_gt.gif\" width=\"10\"
10
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"> 519432<sup>525806</sup>
11
+ would be much more difficult, as both numbers contain over three million digits.</p>\n<p>Using
12
+ <a href=\"project/base_exp.txt\">base_exp.txt</a> (right click and 'Save Link/Target
13
+ As...'), a 22K text file containing one thousand lines with a base/exponent pair
14
+ on each line, determine which line number has the greatest numerical value.</p>\n<p
15
+ class=\"info\">NOTE: The first two lines in the file represent the numbers in the
16
+ example given above.</p>\n\r\n"
@@ -0,0 +1,31 @@
1
+ # coding: utf-8
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'euler/version'
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = 'euler-manager'
8
+ spec.version = Euler::VERSION
9
+ spec.authors = ['William Yaworsky']
10
+ spec.email = ['wj.px01@gmail.com']
11
+ spec.summary = %q{Manage and test project Euler problems from your command line.}
12
+ # spec.description = %q{This gem provides a framework for solving project Euler problems. You can test}
13
+ spec.homepage = 'https://github.com/yaworsw/euler-manager'
14
+ spec.license = 'MIT'
15
+
16
+ spec.files = `git ls-files -z`.split("\x0")
17
+ spec.executables = spec.files.grep(%r{^bin/}) { |f| File.basename(f) }
18
+ spec.test_files = spec.files.grep(%r{^(test|spec|features)/})
19
+ spec.require_paths = ['lib']
20
+
21
+ spec.add_dependency 'commander'
22
+ spec.add_dependency 'colorize'
23
+
24
+ spec.add_development_dependency 'bundler', '~> 1.5'
25
+ spec.add_development_dependency 'rake'
26
+
27
+ spec.add_development_dependency 'rspec'
28
+ spec.add_development_dependency 'fakefs', '~> 0.5.2'
29
+
30
+ spec.add_development_dependency 'nokogiri'
31
+ end
@@ -0,0 +1,12 @@
1
+ {
2
+ "folders":
3
+ [
4
+ {
5
+ "follow_symlinks": true,
6
+ "path": ".",
7
+ "folder_exclude_patterns": [
8
+ "*/scala/euler"
9
+ ]
10
+ }
11
+ ]
12
+ }
@@ -0,0 +1,6 @@
1
+ # [Multiples of 3 and 5](http://projecteuler.net/problem=1)
2
+
3
+
4
+ <p>If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.</p>
5
+ <p>Find the sum of all the multiples of 3 or 5 below 1000.</p>
6
+
@@ -0,0 +1,5 @@
1
+ require_relative '../../lib/euler.rb'
2
+
3
+ answer = 0
4
+
5
+ puts answer
@@ -0,0 +1,9 @@
1
+ import euler._
2
+
3
+ object Main extends App {
4
+
5
+ val answer = 0
6
+
7
+ println(answer)
8
+
9
+ }
@@ -0,0 +1,9 @@
1
+ # [Even Fibonacci numbers](http://projecteuler.net/problem=2)
2
+
3
+
4
+ <p>Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:</p>
5
+ <p style="text-align:center;">1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...</p>
6
+ <p>By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.</p>
7
+ <!--
8
+ Note: This problem has been changed recently, please check that you are using the right parameters.
9
+ -->