euler-manager 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 129
|
3
|
+
:name: Repunit divisibility
|
4
|
+
:url: http://projecteuler.net/problem=129
|
5
|
+
:content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
|
7
|
+
that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
|
8
|
+
there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
|
9
|
+
and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
|
10
|
+
A(41) = 5.</p>\n<p>The least value of <i>n</i> for which A(<i>n</i>) first exceeds
|
11
|
+
ten is 17.</p>\n<p>Find the least value of <i>n</i> for which A(<i>n</i>) first
|
12
|
+
exceeds one-million.</p>\n\r\n"
|
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 13
|
3
|
+
:name: Large sum
|
4
|
+
:url: http://projecteuler.net/problem=13
|
5
|
+
:content: "\r\n\n<p>Work out the first ten digits of the sum of the following one-hundred
|
6
|
+
50-digit numbers.</p>\n<div style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n37107287533902102798797998220837590246510135740250<br>\n46376937677490009712648124896970078050417018260538<br>\n74324986199524741059474233309513058123726617309629<br>\n91942213363574161572522430563301811072406154908250<br>\n23067588207539346171171980310421047513778063246676<br>\n89261670696623633820136378418383684178734361726757<br>\n28112879812849979408065481931592621691275889832738<br>\n44274228917432520321923589422876796487670272189318<br>\n47451445736001306439091167216856844588711603153276<br>\n70386486105843025439939619828917593665686757934951<br>\n62176457141856560629502157223196586755079324193331<br>\n64906352462741904929101432445813822663347944758178<br>\n92575867718337217661963751590579239728245598838407<br>\n58203565325359399008402633568948830189458628227828<br>\n80181199384826282014278194139940567587151170094390<br>\n35398664372827112653829987240784473053190104293586<br>\n86515506006295864861532075273371959191420517255829<br>\n71693888707715466499115593487603532921714970056938<br>\n54370070576826684624621495650076471787294438377604<br>\n53282654108756828443191190634694037855217779295145<br>\n36123272525000296071075082563815656710885258350721<br>\n45876576172410976447339110607218265236877223636045<br>\n17423706905851860660448207621209813287860733969412<br>\n81142660418086830619328460811191061556940512689692<br>\n51934325451728388641918047049293215058642563049483<br>\n62467221648435076201727918039944693004732956340691<br>\n15732444386908125794514089057706229429197107928209<br>\n55037687525678773091862540744969844508330393682126<br>\n18336384825330154686196124348767681297534375946515<br>\n80386287592878490201521685554828717201219257766954<br>\n78182833757993103614740356856449095527097864797581<br>\n16726320100436897842553539920931837441497806860984<br>\n48403098129077791799088218795327364475675590848030<br>\n87086987551392711854517078544161852424320693150332<br>\n59959406895756536782107074926966537676326235447210<br>\n69793950679652694742597709739166693763042633987085<br>\n41052684708299085211399427365734116182760315001271<br>\n65378607361501080857009149939512557028198746004375<br>\n35829035317434717326932123578154982629742552737307<br>\n94953759765105305946966067683156574377167401875275<br>\n88902802571733229619176668713819931811048770190271<br>\n25267680276078003013678680992525463401061632866526<br>\n36270218540497705585629946580636237993140746255962<br>\n24074486908231174977792365466257246923322810917141<br>\n91430288197103288597806669760892938638285025333403<br>\n34413065578016127815921815005561868836468420090470<br>\n23053081172816430487623791969842487255036638784583<br>\n11487696932154902810424020138335124462181441773470<br>\n63783299490636259666498587618221225225512486764533<br>\n67720186971698544312419572409913959008952310058822<br>\n95548255300263520781532296796249481641953868218774<br>\n76085327132285723110424803456124867697064507995236<br>\n37774242535411291684276865538926205024910326572967<br>\n23701913275725675285653248258265463092207058596522<br>\n29798860272258331913126375147341994889534765745501<br>\n18495701454879288984856827726077713721403798879715<br>\n38298203783031473527721580348144513491373226651381<br>\n34829543829199918180278916522431027392251122869539<br>\n40957953066405232632538044100059654939159879593635<br>\n29746152185502371307642255121183693803580388584903<br>\n41698116222072977186158236678424689157993532961922<br>\n62467957194401269043877107275048102390895523597457<br>\n23189706772547915061505504953922979530901129967519<br>\n86188088225875314529584099251203829009407770775672<br>\n11306739708304724483816533873502340845647058077308<br>\n82959174767140363198008187129011875491310547126581<br>\n97623331044818386269515456334926366572897563400500<br>\n42846280183517070527831839425882145521227251250327<br>\n55121603546981200581762165212827652751691296897789<br>\n32238195734329339946437501907836945765883352399886<br>\n75506164965184775180738168837861091527357929701337<br>\n62177842752192623401942399639168044983993173312731<br>\n32924185707147349566916674687634660915035914677504<br>\n99518671430235219628894890102423325116913619626622<br>\n73267460800591547471830798392868535206946944540724<br>\n76841822524674417161514036427982273348055556214818<br>\n97142617910342598647204516893989422179826088076852<br>\n87783646182799346313767754307809363333018982642090<br>\n10848802521674670883215120185883543223812876952786<br>\n71329612474782464538636993009049310363619763878039<br>\n62184073572399794223406235393808339651327408011116<br>\n66627891981488087797941876876144230030984490851411<br>\n60661826293682836764744779239180335110989069790714<br>\n85786944089552990653640447425576083659976645795096<br>\n66024396409905389607120198219976047599490197230297<br>\n64913982680032973156037120041377903785566085089252<br>\n16730939319872750275468906903707539413042652315011<br>\n94809377245048795150954100921645863754710598436791<br>\n78639167021187492431995700641917969777599028300699<br>\n15368713711936614952811305876380278410754449733078<br>\n40789923115535562561142322423255033685442488917353<br>\n44889911501440648020369068063960672322193204149535<br>\n41503128880339536053299340368006977710650566631954<br>\n81234880673210146739058568557934581403627822703280<br>\n82616570773948327592232845941706525094512325230608<br>\n22918802058777319719839450180888072429661980811197<br>\n77158542502016545090413245809786882778948721859617<br>\n72107838435069186155435662884062257473692284509516<br>\n20849603980134001723930671666823555245252804609722<br>\n53503534226472524250874054075591789781264330331690<br>\n</div>\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 130
|
3
|
+
:name: Composites with prime repunit property
|
4
|
+
:url: http://projecteuler.net/problem=130
|
5
|
+
:content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
|
7
|
+
that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
|
8
|
+
there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
|
9
|
+
and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
|
10
|
+
A(41) = 5.</p>\n<p>You are given that for all primes, <i>p</i> <img src=\"images/symbol_gt.gif\"
|
11
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
12
|
+
5, that <i>p</i> <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
13
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1 is divisible by A(<i>p</i>). For
|
14
|
+
example, when <i>p</i> = 41, A(41) = 5, and 40 is divisible by 5.</p>\n<p>However,
|
15
|
+
there are rare composite values for which this is also true; the first five examples
|
16
|
+
being 91, 259, 451, 481, and 703.</p>\n<p>Find the sum of the first twenty-five
|
17
|
+
composite values of <i>n</i> for which<br>GCD(<i>n</i>, 10) = 1 and <i>n</i> <img
|
18
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
19
|
+
style=\"vertical-align:middle;\"> 1 is divisible by A(<i>n</i>).</p>\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 131
|
3
|
+
:name: Prime cube partnership
|
4
|
+
:url: http://projecteuler.net/problem=131
|
5
|
+
:content: "\r\n<p>There are some prime values, <i>p</i>, for which there exists a
|
6
|
+
positive integer, <i>n</i>, such that the expression <i>n</i><sup>3</sup> + <i>n</i><sup>2</sup><i>p</i>
|
7
|
+
is a perfect cube.</p>\r\n<p>For example, when <i>p</i> = 19, 8<sup>3</sup> + 8<sup>2</sup><img
|
8
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\">19 = 12<sup>3</sup>.</p>\r\n<p>What is perhaps
|
10
|
+
most surprising is that for each prime with this property the value of <i>n</i>
|
11
|
+
is unique, and there are only four such primes below one-hundred.</p>\r\n<p>How
|
12
|
+
many primes below one million have this remarkable property?</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 132
|
3
|
+
:name: Large repunit factors
|
4
|
+
:url: http://projecteuler.net/problem=132
|
5
|
+
:content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>.</p>\r\n<p>For example, R(10)
|
7
|
+
= 1111111111 = 11<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\">41<img src=\"images/symbol_times.gif\"
|
9
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">271<img
|
10
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\">9091, and the sum of these prime factors is 9414.</p>\r\n<p>Find
|
12
|
+
the sum of the first forty prime factors of R(10<sup>9</sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 133
|
3
|
+
:name: Repunit nonfactors
|
4
|
+
:url: http://projecteuler.net/problem=133
|
5
|
+
:content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<var>k</var>) to be a repunit of length <var>k</var>; for example, R(6)
|
7
|
+
= 111111.</p>\r\n<p>Let us consider repunits of the form R(10<sup><var>n</var></sup>).</p>\r\n<p>Although
|
8
|
+
R(10), R(100), or R(1000) are not divisible by 17, R(10000) is divisible by 17.
|
9
|
+
Yet there is no value of <var>n</var> for which R(10<sup><var>n</var></sup>) will
|
10
|
+
divide by 19. In fact, it is remarkable that 11, 17, 41, and 73 are the only four
|
11
|
+
primes below one-hundred that can <!-- ever--> be a factor of R(10<sup><var>n</var></sup>).</p>\r\n<p>Find
|
12
|
+
the sum of all the primes below one-hundred thousand that will never be a factor
|
13
|
+
of R(10<sup><var>n</var></sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 134
|
3
|
+
:name: Prime pair connection
|
4
|
+
:url: http://projecteuler.net/problem=134
|
5
|
+
:content: "\r\n\n<p>Consider the consecutive primes <i>p</i><sub>1</sub> = 19 and
|
6
|
+
<i>p</i><sub>2</sub> = 23. It can be verified that 1219 is the smallest number such
|
7
|
+
that the last digits are formed by <i>p</i><sub>1</sub> whilst also being divisible
|
8
|
+
by <i>p</i><sub>2</sub>.</p>\n<p>In fact, with the exception of <i>p</i><sub>1</sub>
|
9
|
+
= 3 and <i>p</i><sub>2</sub> = 5, for every pair of consecutive primes, <i>p</i><sub>2</sub><img
|
10
|
+
src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><i>p</i><sub>1</sub>, there exist values of <i>n</i>
|
12
|
+
for which the last digits are formed by <i>p</i><sub>1</sub> and <i>n</i> is divisible
|
13
|
+
by <i>p</i><sub>2</sub>. Let <i>S</i> be the smallest of these values of <i>n</i>.</p>\n<p>Find
|
14
|
+
<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"><i>S</i> for every pair of consecutive primes with
|
16
|
+
5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"><i>p</i><sub>1</sub><img src=\"images/symbol_le.gif\"
|
18
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
19
|
+
1000000.</p>\n\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 135
|
3
|
+
:name: Same differences
|
4
|
+
:url: http://projecteuler.net/problem=135
|
5
|
+
:content: "\r\n<p>Given the positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are
|
6
|
+
consecutive terms of an arithmetic progression, the least value of the positive
|
7
|
+
integer, <i>n</i>, for which the equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\"
|
8
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
|
9
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly two
|
11
|
+
solutions is <i>n</i> = 27:</p>\r\n<p style=\"text-align:center;\">34<sup>2</sup><img
|
12
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 27<sup>2</sup><img src=\"images/symbol_minus.gif\"
|
14
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
20<sup>2</sup> = 12<sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
|
16
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 9<sup>2</sup><img
|
17
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 6<sup>2</sup> = 27</p>\r\n<p>It turns out that
|
19
|
+
<i>n</i> = 1155 is the least value which has exactly ten solutions.</p>\r\n<p>How
|
20
|
+
many values of <i>n</i> less than one million have exactly ten distinct solutions?</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 136
|
3
|
+
:name: Singleton difference
|
4
|
+
:url: http://projecteuler.net/problem=136
|
5
|
+
:content: "\r\n<p>The positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are consecutive
|
6
|
+
terms of an arithmetic progression. Given that <i>n</i> is a positive integer, the
|
7
|
+
equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
8
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
|
9
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly one
|
11
|
+
solution when <i>n</i> = 20:</p>\r\n<p style=\"text-align:center;\">13<sup>2</sup><img
|
12
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 10<sup>2</sup><img src=\"images/symbol_minus.gif\"
|
14
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
7<sup>2</sup> = 20</p>\r\n<p>In fact there are twenty-five values of <i>n</i> below
|
16
|
+
one hundred for which the equation has a unique solution.</p>\r\n<p>How many values
|
17
|
+
of <i>n</i> less than fifty million have exactly one solution?</p>\r\n\r\n"
|
@@ -0,0 +1,36 @@
|
|
1
|
+
---
|
2
|
+
:id: 137
|
3
|
+
:name: Fibonacci golden nuggets
|
4
|
+
:url: http://projecteuler.net/problem=137
|
5
|
+
:content: "\r\n\n<p>Consider the infinite polynomial series A<sub>F</sub>(<i>x</i>)
|
6
|
+
= <i>x</i>F<sub>1</sub> + <i>x</i><sup>2</sup>F<sub>2</sub> + <i>x</i><sup>3</sup>F<sub>3</sub>
|
7
|
+
+ ..., where F<sub><i>k</i></sub> is the <i>k</i>th term in the Fibonacci sequence:
|
8
|
+
1, 1, 2, 3, 5, 8, ... ; that is, F<sub><i>k</i></sub> = F<sub><i>k</i><img src=\"images/symbol_minus.gif\"
|
9
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
|
10
|
+
+ F<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\">2</sub>, F<sub>1</sub> = 1 and F<sub>2</sub>
|
12
|
+
= 1.</p>\n<p>For this problem we shall be interested in values of <i>x</i> for which
|
13
|
+
A<sub>F</sub>(<i>x</i>) is a positive integer.</p>\n<table cellpadding=\"0\" cellspacing=\"0\"
|
14
|
+
border=\"0\">\n<tr>\n<td>Surprisingly A<sub>F</sub>(1/2)</td>\n<td> = </td>\n<td>(1/2).1
|
15
|
+
+ (1/2)<sup>2</sup>.1 + (1/2)<sup>3</sup>.2 + (1/2)<sup>4</sup>.3 + (1/2)<sup>5</sup>.5
|
16
|
+
+ ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>1/2 + 1/4 + 2/8 + 3/16 +
|
17
|
+
5/32 + ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>2</td>\n</tr>\n</table>\n<p>The
|
18
|
+
corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\n<div
|
19
|
+
style=\"text-align:center;\">\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
|
20
|
+
align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
|
21
|
+
width=\"50\"><b>A<sub>F</sub>(<i>x</i>)</b></td>\n</tr>\n<tr>\n<td>\n<img src=\"images/symbol_radic.gif\"
|
22
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2<img
|
23
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\">1</td>\n<td>1</td>\n</tr>\n<tr>\n<td>1/2</td>\n<td>2</td>\n</tr>\n<tr>\n<td>(<img
|
25
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
26
|
+
style=\"vertical-align:middle;\">13<img src=\"images/symbol_minus.gif\" width=\"9\"
|
27
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/3</td>\n<td>3</td>\n</tr>\n<tr>\n<td>(<img
|
28
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
29
|
+
style=\"vertical-align:middle;\">89<img src=\"images/symbol_minus.gif\" width=\"9\"
|
30
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/8</td>\n<td>4</td>\n</tr>\n<tr>\n<td>(<img
|
31
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\">34<img src=\"images/symbol_minus.gif\" width=\"9\"
|
33
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">3)/5</td>\n<td>5</td>\n</tr>\n</table>\n</div>\n<p>We
|
34
|
+
shall call A<sub>F</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
|
35
|
+
they become increasingly rarer; for example, the 10th golden nugget is 74049690.</p>\n<p>Find
|
36
|
+
the 15th golden nugget.</p>\n\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 138
|
3
|
+
:name: Special isosceles triangles
|
4
|
+
:url: http://projecteuler.net/problem=138
|
5
|
+
:content: "\r\n<p>Consider the isosceles triangle with base length, <i>b</i> = 16,
|
6
|
+
and legs, L = 17.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_138.gif\"
|
7
|
+
width=\"230\" height=\"228\" alt=\"\">\n</div>\r\n<p>By using the Pythagorean theorem
|
8
|
+
it can be seen that the height of the triangle, <i>h</i> = <img src=\"images/symbol_radic.gif\"
|
9
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(17<sup>2</sup><img
|
10
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 8<sup>2</sup>) = 15, which is one less than the
|
12
|
+
base length.</p>\r\n<p>With <i>b</i> = 272 and L = 305, we get <i>h</i> = 273, which
|
13
|
+
is one more than the base length, and this is the second smallest isosceles triangle
|
14
|
+
with the property that <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
|
15
|
+
width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
1.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
17
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"> L for the twelve smallest
|
18
|
+
isosceles triangles for which <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
|
19
|
+
width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
1 and <i>b</i>, L are positive integers.</p>\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 139
|
3
|
+
:name: Pythagorean tiles
|
4
|
+
:url: http://projecteuler.net/problem=139
|
5
|
+
:content: "\r\n<p>Let (<i>a</i>, <i>b</i>, <i>c</i>) represent the three sides of
|
6
|
+
a right angle triangle with integral length sides. It is possible to place four
|
7
|
+
such triangles together to form a square with length <i>c</i>.</p>\r\n<p>For example,
|
8
|
+
(3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1
|
9
|
+
hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five
|
10
|
+
1 by 1 squares.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_139.gif\"
|
11
|
+
width=\"400\" height=\"180\" alt=\"\">\n</div>\r\n<p>However, if (5, 12, 13) triangles
|
12
|
+
were used then the hole would measure 7 by 7 and these could not be used to tile
|
13
|
+
the 13 by 13 square.</p>\r\n<p>Given that the perimeter of the right triangle is
|
14
|
+
less than one-hundred million, how many Pythagorean triangles would allow such a
|
15
|
+
tiling to take place?</p>\r\n\r\n"
|
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 14
|
3
|
+
:name: Longest Collatz sequence
|
4
|
+
:url: http://projecteuler.net/problem=14
|
5
|
+
:content: "\r\n<p>The following iterative sequence is defined for the set of positive
|
6
|
+
integers:</p>\r\n<p style=\"margin-left:50px;\"><var>n</var> <img src=\"images/symbol_maps.gif\"
|
7
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>/2
|
8
|
+
(<var>n</var> is even)<br><var>n</var> <img src=\"images/symbol_maps.gif\" width=\"15\"
|
9
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 3<var>n</var>
|
10
|
+
+ 1 (<var>n</var> is odd)</p>\r\n<p>Using the rule above and starting with 13, we
|
11
|
+
generate the following sequence:</p>\r\n<div style=\"text-align:center;\">13 <img
|
12
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 40 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
14
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 20 <img src=\"images/symbol_maps.gif\"
|
15
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
10 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"> 5 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
18
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 16 <img src=\"images/symbol_maps.gif\"
|
19
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
8 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\"> 4 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
22
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_maps.gif\"
|
23
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
24
|
+
1</div>\r\n<p>It can be seen that this sequence (starting at 13 and finishing at
|
25
|
+
1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it
|
26
|
+
is thought that all starting numbers finish at 1.</p>\r\n<p>Which starting number,
|
27
|
+
under one million, produces the longest chain?</p>\r\n<p class=\"info\"><b>NOTE:</b>
|
28
|
+
Once the chain starts the terms are allowed to go above one million.</p>\r\n\r\n"
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
:id: 140
|
3
|
+
:name: Modified Fibonacci golden nuggets
|
4
|
+
:url: http://projecteuler.net/problem=140
|
5
|
+
:content: "\r\n<p>Consider the infinite polynomial series A<sub>G</sub>(<i>x</i>)
|
6
|
+
= <i>x</i>G<sub>1</sub> + <i>x</i><sup>2</sup>G<sub>2</sub> + <i>x</i><sup>3</sup>G<sub>3</sub>
|
7
|
+
+ ..., where G<sub><i>k</i></sub> is the <i>k</i>th term of the second order recurrence
|
8
|
+
relation G<sub><i>k</i></sub> = G<sub><i>k</i><img src=\"images/symbol_minus.gif\"
|
9
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
|
10
|
+
+ G<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\">2</sub>, G<sub>1</sub> = 1 and G<sub>2</sub>
|
12
|
+
= 4; that is, 1, 4, 5, 9, 14, 23, ... .</p>\r\n<p>For this problem we shall be concerned
|
13
|
+
with values of <i>x</i> for which A<sub>G</sub>(<i>x</i>) is a positive integer.</p>\r\n<p>The
|
14
|
+
corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\r\n<div
|
15
|
+
style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
|
16
|
+
align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
|
17
|
+
width=\"50\"><b>A<sub>G</sub>(<i>x</i>)</b></td>\r\n</tr>\n<tr>\n<td>(<img src=\"images/symbol_radic.gif\"
|
18
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5<img
|
19
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\">1)/4</td>\n<td>1</td>\r\n</tr>\n<tr>\n<td>2/5</td>\n<td>2</td>\r\n</tr>\n<tr>\n<td>(<img
|
21
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
22
|
+
style=\"vertical-align:middle;\">22<img src=\"images/symbol_minus.gif\" width=\"9\"
|
23
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/6</td>\n<td>3</td>\r\n</tr>\n<tr>\n<td>(<img
|
24
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\">137<img src=\"images/symbol_minus.gif\" width=\"9\"
|
26
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/14</td>\n<td>4</td>\r\n</tr>\n<tr>\n<td>1/2</td>\n<td>5</td>\r\n</tr>\n</table>\n</div>\r\n<p>We
|
27
|
+
shall call A<sub>G</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
|
28
|
+
they become increasingly rarer; for example, the 20th golden nugget is 211345365.</p>\r\n<p>Find
|
29
|
+
the sum of the first thirty golden nuggets.</p>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 141
|
3
|
+
:name: Investigating progressive numbers, <i>n</i>, which are also square
|
4
|
+
:url: http://projecteuler.net/problem=141
|
5
|
+
:content: "\r\n<p>A positive integer, <i>n</i>, is divided by <i>d</i> and the quotient
|
6
|
+
and remainder are <i>q</i> and <i>r</i> respectively. In addition <i>d</i>, <i>q</i>,
|
7
|
+
and <i>r</i> are consecutive positive integer terms in a geometric sequence, but
|
8
|
+
not necessarily in that order.</p>\r\n<p>For example, 58 divided by 6 has quotient
|
9
|
+
9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric
|
10
|
+
sequence (common ratio 3/2).<br>\r\nWe will call such numbers, <i>n</i>, progressive.</p>\r\n<p>Some
|
11
|
+
progressive numbers, such as 9 and 10404 = 102<sup>2</sup>, happen to also be perfect
|
12
|
+
squares.<br> The sum of all progressive perfect squares below one hundred thousand
|
13
|
+
is 124657.</p>\r\n<p>Find the sum of all progressive perfect squares below one trillion
|
14
|
+
(10<sup>12</sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 142
|
3
|
+
:name: Perfect Square Collection
|
4
|
+
:url: http://projecteuler.net/problem=142
|
5
|
+
:content: "\r\n<p>Find the smallest x + y + z with integers x <img src=\"images/symbol_gt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
y <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> z <img src=\"images/symbol_gt.gif\" width=\"10\"
|
9
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 0 such
|
10
|
+
that x + y, x <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\"> y, x + z, x <img src=\"images/symbol_minus.gif\"
|
12
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
13
|
+
z, y + z, y <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
14
|
+
border=\"0\" style=\"vertical-align:middle;\"> z are all perfect squares.</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 143
|
3
|
+
:name: Investigating the Torricelli point of a triangle
|
4
|
+
:url: http://projecteuler.net/problem=143
|
5
|
+
:content: "\r\n<p>Let ABC be a triangle with all interior angles being less than 120
|
6
|
+
degrees. Let X be any point inside the triangle and let XA = p, XC = q, and XB =
|
7
|
+
r.</p>\r\n<p>Fermat challenged Torricelli to find the position of X such that p
|
8
|
+
+ q + r was minimised.</p>\r\n<p>Torricelli was able to prove that if equilateral
|
9
|
+
triangles AOB, BNC and AMC are constructed on each side of triangle ABC, the circumscribed
|
10
|
+
circles of AOB, BNC, and AMC will intersect at a single point, T, inside the triangle.
|
11
|
+
Moreover he proved that T, called the Torricelli/Fermat point, minimises p + q +
|
12
|
+
r. Even more remarkable, it can be shown that when the sum is minimised, AN = BM
|
13
|
+
= CO = p + q + r and that AN, BM and CO also intersect at T.</p>\r\n<div style=\"text-align:center;\"><img
|
14
|
+
src=\"project/images/p_143_torricelli.gif\" width=\"564\" height=\"560\" alt=\"\"></div>\r\n<p>If
|
15
|
+
the sum is minimised and a, b, c, p, q and r are all positive integers we shall
|
16
|
+
call triangle ABC a Torricelli triangle. For example, a = 399, b = 455, c = 511
|
17
|
+
is an example of a Torricelli triangle, with p + q + r = 784.</p>\r\n<p>Find the
|
18
|
+
sum of all distinct values of p + q + r <img src=\"images/symbol_le.gif\" width=\"10\"
|
19
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 120000 for
|
20
|
+
Torricelli triangles.</p>\r\n\r\n"
|
@@ -0,0 +1,30 @@
|
|
1
|
+
---
|
2
|
+
:id: 144
|
3
|
+
:name: Investigating multiple reflections of a laser beam
|
4
|
+
:url: http://projecteuler.net/problem=144
|
5
|
+
:content: "\r\n<p>In laser physics, a \"white cell\" is a mirror system that acts
|
6
|
+
as a delay line for the laser beam. The beam enters the cell, bounces around on
|
7
|
+
the mirrors, and eventually works its way back out.</p>\r\n<p>The specific white
|
8
|
+
cell we will be considering is an ellipse with the equation 4<i>x</i><sup>2</sup>
|
9
|
+
+ <i>y</i><sup>2</sup> = 100</p>\r\n<p>The section corresponding to <img src=\"images/symbol_minus.gif\"
|
10
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">0.01
|
11
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"><i>x</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
13
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> +0.01 at
|
14
|
+
the top is missing, allowing the light to enter and exit through the hole.</p>\r\n<div
|
15
|
+
style=\"text-align:center;\">\n<img src=\"project/images/p_144_1.gif\" width=\"268\"
|
16
|
+
height=\"240\" alt=\"\"><img src=\"project/images/p_144_2.gif\" width=\"141\" height=\"287\"
|
17
|
+
alt=\"\">\n</div>\r\n<p>The light beam in this problem starts at the point (0.0,10.1)
|
18
|
+
just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6).</p>\r\n<p>Each
|
19
|
+
time the laser beam hits the surface of the ellipse, it follows the usual law of
|
20
|
+
reflection \"angle of incidence equals angle of reflection.\" That is, both the
|
21
|
+
incident and reflected beams make the same angle with the normal line at the point
|
22
|
+
of incidence.</p>\r\n<p>In the figure on the left, the red line shows the first
|
23
|
+
two points of contact between the laser beam and the wall of the white cell; the
|
24
|
+
blue line shows the line tangent to the ellipse at the point of incidence of the
|
25
|
+
first bounce.</p>\n<p>The slope <i>m</i> of the tangent line at any point (<i>x</i>,<i>y</i>)
|
26
|
+
of the given ellipse is: <i>m</i> = <img src=\"images/symbol_minus.gif\" width=\"9\"
|
27
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4<i>x</i>/<i>y</i></p>\n<p>The
|
28
|
+
normal line is perpendicular to this tangent line at the point of incidence.</p>\r\n<p>The
|
29
|
+
animation on the right shows the first 10 reflections of the beam.</p>\r\n\r\n<p>How
|
30
|
+
many times does the beam hit the internal surface of the white cell before exiting?</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 145
|
3
|
+
:name: How many reversible numbers are there below one-billion?
|
4
|
+
:url: http://projecteuler.net/problem=145
|
5
|
+
:content: "\r\n<p>Some positive integers <i>n</i> have the property that the sum [
|
6
|
+
<i>n</i> + reverse(<i>n</i>) ] consists entirely of odd (decimal) digits. For instance,
|
7
|
+
36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers <em>reversible</em>;
|
8
|
+
so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either
|
9
|
+
<i>n</i> or reverse(<i>n</i>).</p>\r\n\r\n<p>There are 120 reversible numbers below
|
10
|
+
one-thousand.</p>\r\n\r\n<p>How many reversible numbers are there below one-billion
|
11
|
+
(10<sup>9</sup>)?</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 146
|
3
|
+
:name: 'Investigating a Prime Pattern '
|
4
|
+
:url: http://projecteuler.net/problem=146
|
5
|
+
:content: "\r\n<p>The smallest positive integer <i>n</i> for which the numbers <i>n</i><sup>2</sup>+1,
|
6
|
+
<i>n</i><sup>2</sup>+3, <i>n</i><sup>2</sup>+7, <i>n</i><sup>2</sup>+9, <i>n</i><sup>2</sup>+13,
|
7
|
+
and <i>n</i><sup>2</sup>+27 are consecutive primes is 10. The sum of all such integers
|
8
|
+
<i>n</i> below one-million is 1242490.</p>\r\n\r\n<p>What is the sum of all such
|
9
|
+
integers <i>n</i> below 150 million?</p>\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 147
|
3
|
+
:name: Rectangles in cross-hatched grids
|
4
|
+
:url: http://projecteuler.net/problem=147
|
5
|
+
:content: "\r\n<p>In a 3x2 cross-hatched grid, a total of 37 different rectangles
|
6
|
+
could be situated within that grid as indicated in the sketch.</p>\r\n<div style=\"text-align:center;\"><img
|
7
|
+
src=\"project/images/p_147.gif\" width=\"361\" height=\"176\" alt=\"\"></div>\r\n<p>There
|
8
|
+
are 5 grids smaller than 3x2, vertical and horizontal dimensions being important,
|
9
|
+
i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following
|
10
|
+
number of different rectangles could be situated within those smaller grids:</p>\r\n<p>1x1:
|
11
|
+
1\r\n<br>2x1: 4\r\n<br>3x1: 8\r\n<br>1x2: 4\r\n<br>2x2: 18</p>\r\n\r\n<p>Adding
|
12
|
+
those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated
|
13
|
+
within 3x2 and smaller grids.</p>\r\n\r\n<p>How many different rectangles could
|
14
|
+
be situated within 47x43 and smaller grids?</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 148
|
3
|
+
:name: Exploring Pascal's triangle
|
4
|
+
:url: http://projecteuler.net/problem=148
|
5
|
+
:content: "\r\n<p>We can easily verify that none of the entries in the first seven
|
6
|
+
rows of Pascal's triangle are divisible by 7:</p>\r\n<table cellpadding=\"0\" cellspacing=\"0\"
|
7
|
+
border=\"0\" align=\"center\">\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 2</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td>1</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td>20</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n</table>\n<p>However,
|
8
|
+
if we check the first one hundred rows, we will find that only 2361 of the 5050
|
9
|
+
entries are <i>not</i> divisible by 7.</p>\r\n\r\n<p>Find the number of entries
|
10
|
+
which are <i>not</i> divisible by 7 in the first one billion (10<sup>9</sup>) rows
|
11
|
+
of Pascal's triangle.</p>\r\n"
|
@@ -0,0 +1,41 @@
|
|
1
|
+
---
|
2
|
+
:id: 149
|
3
|
+
:name: Searching for a maximum-sum subsequence
|
4
|
+
:url: http://projecteuler.net/problem=149
|
5
|
+
:content: "\r\n<p>Looking at the table below, it is easy to verify that the maximum
|
6
|
+
possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal
|
7
|
+
or anti-diagonal) <span style=\"white-space:nowrap\">is 16 (= 8 + 7 + 1).</span></p>\r\n\r\n<div
|
8
|
+
style=\"text-align:center\">\r\n<table border=\"1\" cellpadding=\"6\" cellspacing=\"0\"
|
9
|
+
style=\"margin:auto\"><tbody align=\"right\">\n<tr>\n<td>\n<img src=\"images/symbol_minus.gif\"
|
10
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</td>\n<td>5</td>\n<td>3</td>\n<td>2</td>\n</tr>\n<tr>\n<td>9</td>\n<td>\n<img
|
11
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\">6</td>\n<td>5</td>\n<td>1</td>\n</tr>\n<tr>\n<td>3</td>\n<td>2</td>\n<td>7</td>\n<td>3</td>\n</tr>\n<tr>\n<td>\n<img
|
13
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\">1</td>\n<td>8</td>\n<td>\n<img src=\"images/symbol_minus.gif\"
|
15
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4</td>\n<td>
|
16
|
+
8</td>\n</tr>\n</tbody></table>\n</div>\r\n\r\n<p>Now, let us repeat the search,
|
17
|
+
but on a much larger scale:</p>\r\n\r\n<p>First, generate four million pseudo-random
|
18
|
+
numbers using a specific form of what is known as a \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For
|
19
|
+
1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
21
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 55, <i>s</i><sub><i>k</i></sub>
|
22
|
+
= [100003 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
23
|
+
border=\"0\" style=\"vertical-align:middle;\"> 200003<i>k</i> + 300007<i>k</i><sup>3</sup>]
|
24
|
+
(modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
25
|
+
border=\"0\" style=\"vertical-align:middle;\"> 500000.<br>\r\nFor 56 <img src=\"images/symbol_le.gif\"
|
26
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i>
|
27
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
28
|
+
style=\"vertical-align:middle;\"> 4000000, <i>s</i><sub><i>k</i></sub> = [<i>s</i><sub><i>k<img
|
29
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
30
|
+
style=\"vertical-align:middle;\">24</i></sub> + <i>s</i><sub><i>k<img src=\"images/symbol_minus.gif\"
|
31
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">55</i></sub>
|
32
|
+
+ 1000000] (modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
33
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 500000.</p>\r\n\r\n<p>Thus,
|
34
|
+
<i>s</i><sub>10</sub> = <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
35
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">393027 and <i>s</i><sub>100</sub>
|
36
|
+
= 86613.</p>\r\n\r\n<p>The terms of <i>s</i> are then arranged in a 2000<img src=\"images/symbol_times.gif\"
|
37
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2000
|
38
|
+
table, using the first 2000 numbers to fill the first row (sequentially), the next
|
39
|
+
2000 numbers to fill the second row, and so on.</p>\r\n\r\n<p>Finally, find the
|
40
|
+
greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical,
|
41
|
+
diagonal or anti-diagonal).</p>\r\n"
|