euler-manager 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (499) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +21 -0
  3. data/Gemfile +4 -0
  4. data/LICENSE.txt +22 -0
  5. data/README.md +37 -0
  6. data/Rakefile +1 -0
  7. data/bin/euler +145 -0
  8. data/data/answers.yml +456 -0
  9. data/data/problems/1.yml +7 -0
  10. data/data/problems/10.yml +8 -0
  11. data/data/problems/100.yml +13 -0
  12. data/data/problems/101.yml +49 -0
  13. data/data/problems/102.yml +16 -0
  14. data/data/problems/103.yml +26 -0
  15. data/data/problems/104.yml +15 -0
  16. data/data/problems/105.yml +21 -0
  17. data/data/problems/106.yml +19 -0
  18. data/data/problems/107.yml +20 -0
  19. data/data/problems/108.yml +32 -0
  20. data/data/problems/109.yml +33 -0
  21. data/data/problems/11.yml +33 -0
  22. data/data/problems/110.yml +19 -0
  23. data/data/problems/111.yml +21 -0
  24. data/data/problems/112.yml +15 -0
  25. data/data/problems/113.yml +13 -0
  26. data/data/problems/114.yml +106 -0
  27. data/data/problems/115.yml +17 -0
  28. data/data/problems/116.yml +76 -0
  29. data/data/problems/117.yml +82 -0
  30. data/data/problems/118.yml +9 -0
  31. data/data/problems/119.yml +11 -0
  32. data/data/problems/12.yml +13 -0
  33. data/data/problems/120.yml +17 -0
  34. data/data/problems/121.yml +15 -0
  35. data/data/problems/122.yml +42 -0
  36. data/data/problems/123.yml +13 -0
  37. data/data/problems/124.yml +58 -0
  38. data/data/problems/125.yml +12 -0
  39. data/data/problems/126.yml +17 -0
  40. data/data/problems/127.yml +31 -0
  41. data/data/problems/128.yml +18 -0
  42. data/data/problems/129.yml +12 -0
  43. data/data/problems/13.yml +6 -0
  44. data/data/problems/130.yml +19 -0
  45. data/data/problems/131.yml +12 -0
  46. data/data/problems/132.yml +12 -0
  47. data/data/problems/133.yml +13 -0
  48. data/data/problems/134.yml +19 -0
  49. data/data/problems/135.yml +20 -0
  50. data/data/problems/136.yml +17 -0
  51. data/data/problems/137.yml +36 -0
  52. data/data/problems/138.yml +20 -0
  53. data/data/problems/139.yml +15 -0
  54. data/data/problems/14.yml +28 -0
  55. data/data/problems/140.yml +29 -0
  56. data/data/problems/141.yml +14 -0
  57. data/data/problems/142.yml +14 -0
  58. data/data/problems/143.yml +20 -0
  59. data/data/problems/144.yml +30 -0
  60. data/data/problems/145.yml +11 -0
  61. data/data/problems/146.yml +9 -0
  62. data/data/problems/147.yml +14 -0
  63. data/data/problems/148.yml +11 -0
  64. data/data/problems/149.yml +41 -0
  65. data/data/problems/15.yml +11 -0
  66. data/data/problems/150.yml +34 -0
  67. data/data/problems/151.yml +19 -0
  68. data/data/problems/152.yml +12 -0
  69. data/data/problems/153.yml +57 -0
  70. data/data/problems/154.yml +16 -0
  71. data/data/problems/155.yml +22 -0
  72. data/data/problems/156.yml +27 -0
  73. data/data/problems/157.yml +34 -0
  74. data/data/problems/158.yml +19 -0
  75. data/data/problems/159.yml +29 -0
  76. data/data/problems/16.yml +6 -0
  77. data/data/problems/160.yml +8 -0
  78. data/data/problems/161.yml +15 -0
  79. data/data/problems/162.yml +15 -0
  80. data/data/problems/163.yml +19 -0
  81. data/data/problems/164.yml +8 -0
  82. data/data/problems/165.yml +32 -0
  83. data/data/problems/166.yml +15 -0
  84. data/data/problems/167.yml +17 -0
  85. data/data/problems/168.yml +13 -0
  86. data/data/problems/169.yml +10 -0
  87. data/data/problems/17.yml +11 -0
  88. data/data/problems/170.yml +16 -0
  89. data/data/problems/171.yml +13 -0
  90. data/data/problems/172.yml +6 -0
  91. data/data/problems/173.yml +12 -0
  92. data/data/problems/174.yml +20 -0
  93. data/data/problems/175.yml +21 -0
  94. data/data/problems/176.yml +9 -0
  95. data/data/problems/177.yml +16 -0
  96. data/data/problems/178.yml +9 -0
  97. data/data/problems/179.yml +10 -0
  98. data/data/problems/18.yml +21 -0
  99. data/data/problems/180.yml +34 -0
  100. data/data/problems/181.yml +7 -0
  101. data/data/problems/182.yml +35 -0
  102. data/data/problems/183.yml +27 -0
  103. data/data/problems/184.yml +18 -0
  104. data/data/problems/185.yml +22 -0
  105. data/data/problems/186.yml +28 -0
  106. data/data/problems/187.yml +16 -0
  107. data/data/problems/188.yml +10 -0
  108. data/data/problems/189.yml +15 -0
  109. data/data/problems/19.yml +12 -0
  110. data/data/problems/190.yml +13 -0
  111. data/data/problems/191.yml +15 -0
  112. data/data/problems/192.yml +27 -0
  113. data/data/problems/193.yml +7 -0
  114. data/data/problems/194.yml +18 -0
  115. data/data/problems/195.yml +13 -0
  116. data/data/problems/196.yml +25 -0
  117. data/data/problems/197.yml +16 -0
  118. data/data/problems/198.yml +21 -0
  119. data/data/problems/199.yml +14 -0
  120. data/data/problems/2.yml +10 -0
  121. data/data/problems/20.yml +22 -0
  122. data/data/problems/200.yml +12 -0
  123. data/data/problems/201.yml +20 -0
  124. data/data/problems/202.yml +14 -0
  125. data/data/problems/203.yml +21 -0
  126. data/data/problems/204.yml +11 -0
  127. data/data/problems/205.yml +10 -0
  128. data/data/problems/206.yml +6 -0
  129. data/data/problems/207.yml +20 -0
  130. data/data/problems/208.yml +12 -0
  131. data/data/problems/209.yml +27 -0
  132. data/data/problems/21.yml +13 -0
  133. data/data/problems/210.yml +10 -0
  134. data/data/problems/211.yml +11 -0
  135. data/data/problems/212.yml +41 -0
  136. data/data/problems/213.yml +11 -0
  137. data/data/problems/214.yml +15 -0
  138. data/data/problems/215.yml +18 -0
  139. data/data/problems/216.yml +14 -0
  140. data/data/problems/217.yml +27 -0
  141. data/data/problems/218.yml +14 -0
  142. data/data/problems/219.yml +19 -0
  143. data/data/problems/22.yml +13 -0
  144. data/data/problems/220.yml +24 -0
  145. data/data/problems/221.yml +20 -0
  146. data/data/problems/222.yml +7 -0
  147. data/data/problems/223.yml +12 -0
  148. data/data/problems/224.yml +12 -0
  149. data/data/problems/225.yml +11 -0
  150. data/data/problems/226.yml +16 -0
  151. data/data/problems/227.yml +13 -0
  152. data/data/problems/228.yml +23 -0
  153. data/data/problems/229.yml +30 -0
  154. data/data/problems/23.yml +19 -0
  155. data/data/problems/230.yml +23 -0
  156. data/data/problems/231.yml +16 -0
  157. data/data/problems/232.yml +14 -0
  158. data/data/problems/233.yml +10 -0
  159. data/data/problems/234.yml +23 -0
  160. data/data/problems/235.yml +9 -0
  161. data/data/problems/236.yml +32 -0
  162. data/data/problems/237.yml +13 -0
  163. data/data/problems/238.yml +42 -0
  164. data/data/problems/239.yml +9 -0
  165. data/data/problems/24.yml +10 -0
  166. data/data/problems/240.yml +11 -0
  167. data/data/problems/241.yml +17 -0
  168. data/data/problems/242.yml +16 -0
  169. data/data/problems/243.yml +19 -0
  170. data/data/problems/244.yml +32 -0
  171. data/data/problems/245.yml +36 -0
  172. data/data/problems/246.yml +17 -0
  173. data/data/problems/247.yml +21 -0
  174. data/data/problems/248.yml +6 -0
  175. data/data/problems/249.yml +7 -0
  176. data/data/problems/25.yml +15 -0
  177. data/data/problems/250.yml +7 -0
  178. data/data/problems/251.yml +13 -0
  179. data/data/problems/252.yml +31 -0
  180. data/data/problems/253.yml +36 -0
  181. data/data/problems/254.yml +21 -0
  182. data/data/problems/255.yml +59 -0
  183. data/data/problems/256.yml +43 -0
  184. data/data/problems/257.yml +18 -0
  185. data/data/problems/258.yml +13 -0
  186. data/data/problems/259.yml +16 -0
  187. data/data/problems/26.yml +11 -0
  188. data/data/problems/260.yml +30 -0
  189. data/data/problems/261.yml +19 -0
  190. data/data/problems/262.yml +20 -0
  191. data/data/problems/263.yml +19 -0
  192. data/data/problems/264.yml +20 -0
  193. data/data/problems/265.yml +16 -0
  194. data/data/problems/266.yml +10 -0
  195. data/data/problems/267.yml +14 -0
  196. data/data/problems/268.yml +8 -0
  197. data/data/problems/269.yml +15 -0
  198. data/data/problems/27.yml +25 -0
  199. data/data/problems/270.yml +17 -0
  200. data/data/problems/271.yml +13 -0
  201. data/data/problems/272.yml +15 -0
  202. data/data/problems/273.yml +21 -0
  203. data/data/problems/274.yml +23 -0
  204. data/data/problems/275.yml +19 -0
  205. data/data/problems/276.yml +11 -0
  206. data/data/problems/277.yml +24 -0
  207. data/data/problems/278.yml +32 -0
  208. data/data/problems/279.yml +6 -0
  209. data/data/problems/28.yml +17 -0
  210. data/data/problems/280.yml +13 -0
  211. data/data/problems/281.yml +17 -0
  212. data/data/problems/282.yml +10 -0
  213. data/data/problems/283.yml +11 -0
  214. data/data/problems/284.yml +22 -0
  215. data/data/problems/285.yml +17 -0
  216. data/data/problems/286.yml +12 -0
  217. data/data/problems/287.yml +36 -0
  218. data/data/problems/288.yml +15 -0
  219. data/data/problems/289.yml +19 -0
  220. data/data/problems/29.yml +24 -0
  221. data/data/problems/290.yml +8 -0
  222. data/data/problems/291.yml +10 -0
  223. data/data/problems/292.yml +13 -0
  224. data/data/problems/293.yml +15 -0
  225. data/data/problems/294.yml +10 -0
  226. data/data/problems/295.yml +26 -0
  227. data/data/problems/296.yml +15 -0
  228. data/data/problems/297.yml +19 -0
  229. data/data/problems/298.yml +46 -0
  230. data/data/problems/299.yml +31 -0
  231. data/data/problems/3.yml +7 -0
  232. data/data/problems/30.yml +12 -0
  233. data/data/problems/300.yml +24 -0
  234. data/data/problems/301.yml +25 -0
  235. data/data/problems/302.yml +18 -0
  236. data/data/problems/303.yml +11 -0
  237. data/data/problems/304.yml +19 -0
  238. data/data/problems/305.yml +14 -0
  239. data/data/problems/306.yml +29 -0
  240. data/data/problems/307.yml +12 -0
  241. data/data/problems/308.yml +34 -0
  242. data/data/problems/309.yml +17 -0
  243. data/data/problems/31.yml +18 -0
  244. data/data/problems/310.yml +19 -0
  245. data/data/problems/311.yml +21 -0
  246. data/data/problems/312.yml +15 -0
  247. data/data/problems/313.yml +17 -0
  248. data/data/problems/314.yml +29 -0
  249. data/data/problems/315.yml +49 -0
  250. data/data/problems/316.yml +25 -0
  251. data/data/problems/317.yml +11 -0
  252. data/data/problems/318.yml +61 -0
  253. data/data/problems/319.yml +23 -0
  254. data/data/problems/32.yml +14 -0
  255. data/data/problems/320.yml +12 -0
  256. data/data/problems/321.yml +18 -0
  257. data/data/problems/322.yml +12 -0
  258. data/data/problems/323.yml +19 -0
  259. data/data/problems/324.yml +17 -0
  260. data/data/problems/325.yml +25 -0
  261. data/data/problems/326.yml +12 -0
  262. data/data/problems/327.yml +39 -0
  263. data/data/problems/328.yml +36 -0
  264. data/data/problems/329.yml +17 -0
  265. data/data/problems/33.yml +13 -0
  266. data/data/problems/330.yml +40 -0
  267. data/data/problems/331.yml +28 -0
  268. data/data/problems/332.yml +16 -0
  269. data/data/problems/333.yml +25 -0
  270. data/data/problems/334.yml +39 -0
  271. data/data/problems/335.yml +16 -0
  272. data/data/problems/336.yml +24 -0
  273. data/data/problems/337.yml +15 -0
  274. data/data/problems/338.yml +41 -0
  275. data/data/problems/339.yml +17 -0
  276. data/data/problems/34.yml +7 -0
  277. data/data/problems/340.yml +14 -0
  278. data/data/problems/341.yml +18 -0
  279. data/data/problems/342.yml +17 -0
  280. data/data/problems/343.yml +29 -0
  281. data/data/problems/344.yml +21 -0
  282. data/data/problems/345.yml +26 -0
  283. data/data/problems/346.yml +11 -0
  284. data/data/problems/347.yml +16 -0
  285. data/data/problems/348.yml +12 -0
  286. data/data/problems/349.yml +13 -0
  287. data/data/problems/35.yml +8 -0
  288. data/data/problems/350.yml +18 -0
  289. data/data/problems/351.yml +13 -0
  290. data/data/problems/352.yml +49 -0
  291. data/data/problems/353.yml +25 -0
  292. data/data/problems/354.yml +16 -0
  293. data/data/problems/355.yml +8 -0
  294. data/data/problems/356.yml +10 -0
  295. data/data/problems/357.yml +9 -0
  296. data/data/problems/358.yml +31 -0
  297. data/data/problems/359.yml +26 -0
  298. data/data/problems/36.yml +8 -0
  299. data/data/problems/360.yml +12 -0
  300. data/data/problems/361.yml +20 -0
  301. data/data/problems/362.yml +32 -0
  302. data/data/problems/363.yml +33 -0
  303. data/data/problems/364.yml +15 -0
  304. data/data/problems/365.yml +17 -0
  305. data/data/problems/366.yml +26 -0
  306. data/data/problems/367.yml +20 -0
  307. data/data/problems/368.yml +39 -0
  308. data/data/problems/369.yml +15 -0
  309. data/data/problems/37.yml +10 -0
  310. data/data/problems/370.yml +16 -0
  311. data/data/problems/371.yml +13 -0
  312. data/data/problems/372.yml +16 -0
  313. data/data/problems/373.yml +10 -0
  314. data/data/problems/374.yml +25 -0
  315. data/data/problems/375.yml +23 -0
  316. data/data/problems/376.yml +25 -0
  317. data/data/problems/377.yml +11 -0
  318. data/data/problems/378.yml +15 -0
  319. data/data/problems/379.yml +15 -0
  320. data/data/problems/38.yml +18 -0
  321. data/data/problems/380.yml +22 -0
  322. data/data/problems/381.yml +21 -0
  323. data/data/problems/382.yml +23 -0
  324. data/data/problems/383.yml +13 -0
  325. data/data/problems/384.yml +28 -0
  326. data/data/problems/385.yml +22 -0
  327. data/data/problems/386.yml +16 -0
  328. data/data/problems/387.yml +19 -0
  329. data/data/problems/388.yml +12 -0
  330. data/data/problems/389.yml +12 -0
  331. data/data/problems/39.yml +10 -0
  332. data/data/problems/390.yml +18 -0
  333. data/data/problems/391.yml +29 -0
  334. data/data/problems/392.yml +22 -0
  335. data/data/problems/393.yml +12 -0
  336. data/data/problems/394.yml +22 -0
  337. data/data/problems/395.yml +19 -0
  338. data/data/problems/396.yml +28 -0
  339. data/data/problems/397.yml +20 -0
  340. data/data/problems/398.yml +13 -0
  341. data/data/problems/399.yml +22 -0
  342. data/data/problems/4.yml +8 -0
  343. data/data/problems/40.yml +18 -0
  344. data/data/problems/400.yml +18 -0
  345. data/data/problems/401.yml +11 -0
  346. data/data/problems/402.yml +25 -0
  347. data/data/problems/403.yml +19 -0
  348. data/data/problems/404.yml +21 -0
  349. data/data/problems/405.yml +15 -0
  350. data/data/problems/406.yml +46 -0
  351. data/data/problems/407.yml +20 -0
  352. data/data/problems/408.yml +14 -0
  353. data/data/problems/409.yml +12 -0
  354. data/data/problems/41.yml +8 -0
  355. data/data/problems/410.yml +19 -0
  356. data/data/problems/411.yml +23 -0
  357. data/data/problems/412.yml +19 -0
  358. data/data/problems/413.yml +13 -0
  359. data/data/problems/414.yml +40 -0
  360. data/data/problems/415.yml +19 -0
  361. data/data/problems/416.yml +13 -0
  362. data/data/problems/417.yml +21 -0
  363. data/data/problems/418.yml +17 -0
  364. data/data/problems/419.yml +22 -0
  365. data/data/problems/42.yml +14 -0
  366. data/data/problems/420.yml +13 -0
  367. data/data/problems/421.yml +29 -0
  368. data/data/problems/422.yml +22 -0
  369. data/data/problems/423.yml +22 -0
  370. data/data/problems/424.yml +37 -0
  371. data/data/problems/425.yml +16 -0
  372. data/data/problems/426.yml +29 -0
  373. data/data/problems/427.yml +18 -0
  374. data/data/problems/428.yml +32 -0
  375. data/data/problems/429.yml +10 -0
  376. data/data/problems/43.yml +17 -0
  377. data/data/problems/430.yml +20 -0
  378. data/data/problems/431.yml +33 -0
  379. data/data/problems/432.yml +13 -0
  380. data/data/problems/433.yml +18 -0
  381. data/data/problems/434.yml +32 -0
  382. data/data/problems/435.yml +21 -0
  383. data/data/problems/436.yml +21 -0
  384. data/data/problems/437.yml +22 -0
  385. data/data/problems/438.yml +29 -0
  386. data/data/problems/439.yml +17 -0
  387. data/data/problems/44.yml +16 -0
  388. data/data/problems/440.yml +21 -0
  389. data/data/problems/441.yml +23 -0
  390. data/data/problems/442.yml +9 -0
  391. data/data/problems/443.yml +13 -0
  392. data/data/problems/444.yml +28 -0
  393. data/data/problems/445.yml +37 -0
  394. data/data/problems/446.yml +29 -0
  395. data/data/problems/447.yml +31 -0
  396. data/data/problems/448.yml +14 -0
  397. data/data/problems/449.yml +17 -0
  398. data/data/problems/45.yml +15 -0
  399. data/data/problems/450.yml +26 -0
  400. data/data/problems/451.yml +15 -0
  401. data/data/problems/452.yml +8 -0
  402. data/data/problems/453.yml +16 -0
  403. data/data/problems/454.yml +17 -0
  404. data/data/problems/455.yml +16 -0
  405. data/data/problems/456.yml +15 -0
  406. data/data/problems/46.yml +18 -0
  407. data/data/problems/47.yml +21 -0
  408. data/data/problems/48.yml +7 -0
  409. data/data/problems/49.yml +10 -0
  410. data/data/problems/5.yml +8 -0
  411. data/data/problems/50.yml +10 -0
  412. data/data/problems/51.yml +15 -0
  413. data/data/problems/52.yml +8 -0
  414. data/data/problems/53.yml +28 -0
  415. data/data/problems/54.yml +43 -0
  416. data/data/problems/55.yml +21 -0
  417. data/data/problems/56.yml +11 -0
  418. data/data/problems/57.yml +15 -0
  419. data/data/problems/58.yml +22 -0
  420. data/data/problems/59.yml +23 -0
  421. data/data/problems/6.yml +13 -0
  422. data/data/problems/60.yml +10 -0
  423. data/data/problems/61.yml +30 -0
  424. data/data/problems/62.yml +9 -0
  425. data/data/problems/63.yml +7 -0
  426. data/data/problems/64.yml +130 -0
  427. data/data/problems/65.yml +62 -0
  428. data/data/problems/66.yml +27 -0
  429. data/data/problems/67.yml +17 -0
  430. data/data/problems/68.yml +23 -0
  431. data/data/problems/69.yml +14 -0
  432. data/data/problems/7.yml +6 -0
  433. data/data/problems/70.yml +16 -0
  434. data/data/problems/71.yml +17 -0
  435. data/data/problems/72.yml +16 -0
  436. data/data/problems/73.yml +16 -0
  437. data/data/problems/74.yml +41 -0
  438. data/data/problems/75.yml +16 -0
  439. data/data/problems/76.yml +8 -0
  440. data/data/problems/77.yml +8 -0
  441. data/data/problems/78.yml +12 -0
  442. data/data/problems/79.yml +11 -0
  443. data/data/problems/8.yml +6 -0
  444. data/data/problems/80.yml +11 -0
  445. data/data/problems/81.yml +19 -0
  446. data/data/problems/82.yml +19 -0
  447. data/data/problems/83.yml +23 -0
  448. data/data/problems/84.yml +63 -0
  449. data/data/problems/85.yml +9 -0
  450. data/data/problems/86.yml +15 -0
  451. data/data/problems/87.yml +12 -0
  452. data/data/problems/88.yml +53 -0
  453. data/data/problems/89.yml +18 -0
  454. data/data/problems/9.yml +13 -0
  455. data/data/problems/90.yml +23 -0
  456. data/data/problems/91.yml +19 -0
  457. data/data/problems/92.yml +29 -0
  458. data/data/problems/93.yml +21 -0
  459. data/data/problems/94.yml +11 -0
  460. data/data/problems/95.yml +23 -0
  461. data/data/problems/96.yml +46 -0
  462. data/data/problems/97.yml +14 -0
  463. data/data/problems/98.yml +16 -0
  464. data/data/problems/99.yml +16 -0
  465. data/euler-manager.gemspec +31 -0
  466. data/euler-manager.sublime-project +12 -0
  467. data/example/1/README.md +6 -0
  468. data/example/1/ruby/1.rb +5 -0
  469. data/example/1/scala/1.scala +9 -0
  470. data/example/2/README.md +9 -0
  471. data/example/2/python/2.py +5 -0
  472. data/example/2/python/euler.py +0 -0
  473. data/example/Eulerfile.rb +87 -0
  474. data/example/README.md +26 -0
  475. data/example/lib/euler.py +0 -0
  476. data/example/lib/euler.rb +0 -0
  477. data/example/lib/euler.scala +5 -0
  478. data/lib/euler.rb +190 -0
  479. data/lib/euler/errors.rb +7 -0
  480. data/lib/euler/languages.rb +12 -0
  481. data/lib/euler/languages/coffeescript.rb +25 -0
  482. data/lib/euler/languages/javascript.rb +25 -0
  483. data/lib/euler/languages/python.rb +27 -0
  484. data/lib/euler/languages/ruby.rb +25 -0
  485. data/lib/euler/languages/scala.rb +27 -0
  486. data/lib/euler/languages/templates/coffeescript.coffee +5 -0
  487. data/lib/euler/languages/templates/javascript.js +5 -0
  488. data/lib/euler/languages/templates/python.py +5 -0
  489. data/lib/euler/languages/templates/ruby.rb +5 -0
  490. data/lib/euler/languages/templates/scala.scala +9 -0
  491. data/lib/euler/problem.rb +60 -0
  492. data/lib/euler/solution.rb +98 -0
  493. data/lib/euler/version.rb +3 -0
  494. data/scripts/update_problems +68 -0
  495. data/spec/euler/problem_spec.rb +5 -0
  496. data/spec/euler/solution_spec.rb +69 -0
  497. data/spec/euler_spec.rb +27 -0
  498. data/spec/spec_helper.rb +3 -0
  499. metadata +644 -0
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 129
3
+ :name: Repunit divisibility
4
+ :url: http://projecteuler.net/problem=129
5
+ :content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
6
+ define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
7
+ that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
8
+ there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
9
+ and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
10
+ A(41) = 5.</p>\n<p>The least value of <i>n</i> for which A(<i>n</i>) first exceeds
11
+ ten is 17.</p>\n<p>Find the least value of <i>n</i> for which A(<i>n</i>) first
12
+ exceeds one-million.</p>\n\r\n"
@@ -0,0 +1,6 @@
1
+ ---
2
+ :id: 13
3
+ :name: Large sum
4
+ :url: http://projecteuler.net/problem=13
5
+ :content: "\r\n\n<p>Work out the first ten digits of the sum of the following one-hundred
6
+ 50-digit numbers.</p>\n<div style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n37107287533902102798797998220837590246510135740250<br>\n46376937677490009712648124896970078050417018260538<br>\n74324986199524741059474233309513058123726617309629<br>\n91942213363574161572522430563301811072406154908250<br>\n23067588207539346171171980310421047513778063246676<br>\n89261670696623633820136378418383684178734361726757<br>\n28112879812849979408065481931592621691275889832738<br>\n44274228917432520321923589422876796487670272189318<br>\n47451445736001306439091167216856844588711603153276<br>\n70386486105843025439939619828917593665686757934951<br>\n62176457141856560629502157223196586755079324193331<br>\n64906352462741904929101432445813822663347944758178<br>\n92575867718337217661963751590579239728245598838407<br>\n58203565325359399008402633568948830189458628227828<br>\n80181199384826282014278194139940567587151170094390<br>\n35398664372827112653829987240784473053190104293586<br>\n86515506006295864861532075273371959191420517255829<br>\n71693888707715466499115593487603532921714970056938<br>\n54370070576826684624621495650076471787294438377604<br>\n53282654108756828443191190634694037855217779295145<br>\n36123272525000296071075082563815656710885258350721<br>\n45876576172410976447339110607218265236877223636045<br>\n17423706905851860660448207621209813287860733969412<br>\n81142660418086830619328460811191061556940512689692<br>\n51934325451728388641918047049293215058642563049483<br>\n62467221648435076201727918039944693004732956340691<br>\n15732444386908125794514089057706229429197107928209<br>\n55037687525678773091862540744969844508330393682126<br>\n18336384825330154686196124348767681297534375946515<br>\n80386287592878490201521685554828717201219257766954<br>\n78182833757993103614740356856449095527097864797581<br>\n16726320100436897842553539920931837441497806860984<br>\n48403098129077791799088218795327364475675590848030<br>\n87086987551392711854517078544161852424320693150332<br>\n59959406895756536782107074926966537676326235447210<br>\n69793950679652694742597709739166693763042633987085<br>\n41052684708299085211399427365734116182760315001271<br>\n65378607361501080857009149939512557028198746004375<br>\n35829035317434717326932123578154982629742552737307<br>\n94953759765105305946966067683156574377167401875275<br>\n88902802571733229619176668713819931811048770190271<br>\n25267680276078003013678680992525463401061632866526<br>\n36270218540497705585629946580636237993140746255962<br>\n24074486908231174977792365466257246923322810917141<br>\n91430288197103288597806669760892938638285025333403<br>\n34413065578016127815921815005561868836468420090470<br>\n23053081172816430487623791969842487255036638784583<br>\n11487696932154902810424020138335124462181441773470<br>\n63783299490636259666498587618221225225512486764533<br>\n67720186971698544312419572409913959008952310058822<br>\n95548255300263520781532296796249481641953868218774<br>\n76085327132285723110424803456124867697064507995236<br>\n37774242535411291684276865538926205024910326572967<br>\n23701913275725675285653248258265463092207058596522<br>\n29798860272258331913126375147341994889534765745501<br>\n18495701454879288984856827726077713721403798879715<br>\n38298203783031473527721580348144513491373226651381<br>\n34829543829199918180278916522431027392251122869539<br>\n40957953066405232632538044100059654939159879593635<br>\n29746152185502371307642255121183693803580388584903<br>\n41698116222072977186158236678424689157993532961922<br>\n62467957194401269043877107275048102390895523597457<br>\n23189706772547915061505504953922979530901129967519<br>\n86188088225875314529584099251203829009407770775672<br>\n11306739708304724483816533873502340845647058077308<br>\n82959174767140363198008187129011875491310547126581<br>\n97623331044818386269515456334926366572897563400500<br>\n42846280183517070527831839425882145521227251250327<br>\n55121603546981200581762165212827652751691296897789<br>\n32238195734329339946437501907836945765883352399886<br>\n75506164965184775180738168837861091527357929701337<br>\n62177842752192623401942399639168044983993173312731<br>\n32924185707147349566916674687634660915035914677504<br>\n99518671430235219628894890102423325116913619626622<br>\n73267460800591547471830798392868535206946944540724<br>\n76841822524674417161514036427982273348055556214818<br>\n97142617910342598647204516893989422179826088076852<br>\n87783646182799346313767754307809363333018982642090<br>\n10848802521674670883215120185883543223812876952786<br>\n71329612474782464538636993009049310363619763878039<br>\n62184073572399794223406235393808339651327408011116<br>\n66627891981488087797941876876144230030984490851411<br>\n60661826293682836764744779239180335110989069790714<br>\n85786944089552990653640447425576083659976645795096<br>\n66024396409905389607120198219976047599490197230297<br>\n64913982680032973156037120041377903785566085089252<br>\n16730939319872750275468906903707539413042652315011<br>\n94809377245048795150954100921645863754710598436791<br>\n78639167021187492431995700641917969777599028300699<br>\n15368713711936614952811305876380278410754449733078<br>\n40789923115535562561142322423255033685442488917353<br>\n44889911501440648020369068063960672322193204149535<br>\n41503128880339536053299340368006977710650566631954<br>\n81234880673210146739058568557934581403627822703280<br>\n82616570773948327592232845941706525094512325230608<br>\n22918802058777319719839450180888072429661980811197<br>\n77158542502016545090413245809786882778948721859617<br>\n72107838435069186155435662884062257473692284509516<br>\n20849603980134001723930671666823555245252804609722<br>\n53503534226472524250874054075591789781264330331690<br>\n</div>\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 130
3
+ :name: Composites with prime repunit property
4
+ :url: http://projecteuler.net/problem=130
5
+ :content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
6
+ define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
7
+ that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
8
+ there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
9
+ and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
10
+ A(41) = 5.</p>\n<p>You are given that for all primes, <i>p</i> <img src=\"images/symbol_gt.gif\"
11
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
12
+ 5, that <i>p</i> <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
13
+ border=\"0\" style=\"vertical-align:middle;\"> 1 is divisible by A(<i>p</i>). For
14
+ example, when <i>p</i> = 41, A(41) = 5, and 40 is divisible by 5.</p>\n<p>However,
15
+ there are rare composite values for which this is also true; the first five examples
16
+ being 91, 259, 451, 481, and 703.</p>\n<p>Find the sum of the first twenty-five
17
+ composite values of <i>n</i> for which<br>GCD(<i>n</i>, 10) = 1 and <i>n</i> <img
18
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
19
+ style=\"vertical-align:middle;\"> 1 is divisible by A(<i>n</i>).</p>\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 131
3
+ :name: Prime cube partnership
4
+ :url: http://projecteuler.net/problem=131
5
+ :content: "\r\n<p>There are some prime values, <i>p</i>, for which there exists a
6
+ positive integer, <i>n</i>, such that the expression <i>n</i><sup>3</sup> + <i>n</i><sup>2</sup><i>p</i>
7
+ is a perfect cube.</p>\r\n<p>For example, when <i>p</i> = 19, 8<sup>3</sup> + 8<sup>2</sup><img
8
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
9
+ style=\"vertical-align:middle;\">19 = 12<sup>3</sup>.</p>\r\n<p>What is perhaps
10
+ most surprising is that for each prime with this property the value of <i>n</i>
11
+ is unique, and there are only four such primes below one-hundred.</p>\r\n<p>How
12
+ many primes below one million have this remarkable property?</p>\r\n\r\n"
@@ -0,0 +1,12 @@
1
+ ---
2
+ :id: 132
3
+ :name: Large repunit factors
4
+ :url: http://projecteuler.net/problem=132
5
+ :content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
6
+ define R(<i>k</i>) to be a repunit of length <i>k</i>.</p>\r\n<p>For example, R(10)
7
+ = 1111111111 = 11<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
8
+ border=\"0\" style=\"vertical-align:middle;\">41<img src=\"images/symbol_times.gif\"
9
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">271<img
10
+ src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
11
+ style=\"vertical-align:middle;\">9091, and the sum of these prime factors is 9414.</p>\r\n<p>Find
12
+ the sum of the first forty prime factors of R(10<sup>9</sup>).</p>\r\n\r\n"
@@ -0,0 +1,13 @@
1
+ ---
2
+ :id: 133
3
+ :name: Repunit nonfactors
4
+ :url: http://projecteuler.net/problem=133
5
+ :content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
6
+ define R(<var>k</var>) to be a repunit of length <var>k</var>; for example, R(6)
7
+ = 111111.</p>\r\n<p>Let us consider repunits of the form R(10<sup><var>n</var></sup>).</p>\r\n<p>Although
8
+ R(10), R(100), or R(1000) are not divisible by 17, R(10000) is divisible by 17.
9
+ Yet there is no value of <var>n</var> for which R(10<sup><var>n</var></sup>) will
10
+ divide by 19. In fact, it is remarkable that 11, 17, 41, and 73 are the only four
11
+ primes below one-hundred that can <!-- ever--> be a factor of R(10<sup><var>n</var></sup>).</p>\r\n<p>Find
12
+ the sum of all the primes below one-hundred thousand that will never be a factor
13
+ of R(10<sup><var>n</var></sup>).</p>\r\n\r\n"
@@ -0,0 +1,19 @@
1
+ ---
2
+ :id: 134
3
+ :name: Prime pair connection
4
+ :url: http://projecteuler.net/problem=134
5
+ :content: "\r\n\n<p>Consider the consecutive primes <i>p</i><sub>1</sub> = 19 and
6
+ <i>p</i><sub>2</sub> = 23. It can be verified that 1219 is the smallest number such
7
+ that the last digits are formed by <i>p</i><sub>1</sub> whilst also being divisible
8
+ by <i>p</i><sub>2</sub>.</p>\n<p>In fact, with the exception of <i>p</i><sub>1</sub>
9
+ = 3 and <i>p</i><sub>2</sub> = 5, for every pair of consecutive primes, <i>p</i><sub>2</sub><img
10
+ src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\"
11
+ style=\"vertical-align:middle;\"><i>p</i><sub>1</sub>, there exist values of <i>n</i>
12
+ for which the last digits are formed by <i>p</i><sub>1</sub> and <i>n</i> is divisible
13
+ by <i>p</i><sub>2</sub>. Let <i>S</i> be the smallest of these values of <i>n</i>.</p>\n<p>Find
14
+ <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
15
+ style=\"vertical-align:middle;\"><i>S</i> for every pair of consecutive primes with
16
+ 5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
17
+ style=\"vertical-align:middle;\"><i>p</i><sub>1</sub><img src=\"images/symbol_le.gif\"
18
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
19
+ 1000000.</p>\n\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 135
3
+ :name: Same differences
4
+ :url: http://projecteuler.net/problem=135
5
+ :content: "\r\n<p>Given the positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are
6
+ consecutive terms of an arithmetic progression, the least value of the positive
7
+ integer, <i>n</i>, for which the equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\"
8
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
9
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly two
11
+ solutions is <i>n</i> = 27:</p>\r\n<p style=\"text-align:center;\">34<sup>2</sup><img
12
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> 27<sup>2</sup><img src=\"images/symbol_minus.gif\"
14
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
15
+ 20<sup>2</sup> = 12<sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
16
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 9<sup>2</sup><img
17
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
18
+ style=\"vertical-align:middle;\"> 6<sup>2</sup> = 27</p>\r\n<p>It turns out that
19
+ <i>n</i> = 1155 is the least value which has exactly ten solutions.</p>\r\n<p>How
20
+ many values of <i>n</i> less than one million have exactly ten distinct solutions?</p>\r\n\r\n"
@@ -0,0 +1,17 @@
1
+ ---
2
+ :id: 136
3
+ :name: Singleton difference
4
+ :url: http://projecteuler.net/problem=136
5
+ :content: "\r\n<p>The positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are consecutive
6
+ terms of an arithmetic progression. Given that <i>n</i> is a positive integer, the
7
+ equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
8
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
9
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
10
+ style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly one
11
+ solution when <i>n</i> = 20:</p>\r\n<p style=\"text-align:center;\">13<sup>2</sup><img
12
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> 10<sup>2</sup><img src=\"images/symbol_minus.gif\"
14
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
15
+ 7<sup>2</sup> = 20</p>\r\n<p>In fact there are twenty-five values of <i>n</i> below
16
+ one hundred for which the equation has a unique solution.</p>\r\n<p>How many values
17
+ of <i>n</i> less than fifty million have exactly one solution?</p>\r\n\r\n"
@@ -0,0 +1,36 @@
1
+ ---
2
+ :id: 137
3
+ :name: Fibonacci golden nuggets
4
+ :url: http://projecteuler.net/problem=137
5
+ :content: "\r\n\n<p>Consider the infinite polynomial series A<sub>F</sub>(<i>x</i>)
6
+ = <i>x</i>F<sub>1</sub> + <i>x</i><sup>2</sup>F<sub>2</sub> + <i>x</i><sup>3</sup>F<sub>3</sub>
7
+ + ..., where F<sub><i>k</i></sub> is the <i>k</i>th term in the Fibonacci sequence:
8
+ 1, 1, 2, 3, 5, 8, ... ; that is, F<sub><i>k</i></sub> = F<sub><i>k</i><img src=\"images/symbol_minus.gif\"
9
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
10
+ + F<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
11
+ border=\"0\" style=\"vertical-align:middle;\">2</sub>, F<sub>1</sub> = 1 and F<sub>2</sub>
12
+ = 1.</p>\n<p>For this problem we shall be interested in values of <i>x</i> for which
13
+ A<sub>F</sub>(<i>x</i>) is a positive integer.</p>\n<table cellpadding=\"0\" cellspacing=\"0\"
14
+ border=\"0\">\n<tr>\n<td>Surprisingly A<sub>F</sub>(1/2)</td>\n<td> = </td>\n<td>(1/2).1
15
+ + (1/2)<sup>2</sup>.1 + (1/2)<sup>3</sup>.2 + (1/2)<sup>4</sup>.3 + (1/2)<sup>5</sup>.5
16
+ + ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>1/2 + 1/4 + 2/8 + 3/16 +
17
+ 5/32 + ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>2</td>\n</tr>\n</table>\n<p>The
18
+ corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\n<div
19
+ style=\"text-align:center;\">\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
20
+ align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
21
+ width=\"50\"><b>A<sub>F</sub>(<i>x</i>)</b></td>\n</tr>\n<tr>\n<td>\n<img src=\"images/symbol_radic.gif\"
22
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2<img
23
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
24
+ style=\"vertical-align:middle;\">1</td>\n<td>1</td>\n</tr>\n<tr>\n<td>1/2</td>\n<td>2</td>\n</tr>\n<tr>\n<td>(<img
25
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
26
+ style=\"vertical-align:middle;\">13<img src=\"images/symbol_minus.gif\" width=\"9\"
27
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/3</td>\n<td>3</td>\n</tr>\n<tr>\n<td>(<img
28
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
29
+ style=\"vertical-align:middle;\">89<img src=\"images/symbol_minus.gif\" width=\"9\"
30
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/8</td>\n<td>4</td>\n</tr>\n<tr>\n<td>(<img
31
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
32
+ style=\"vertical-align:middle;\">34<img src=\"images/symbol_minus.gif\" width=\"9\"
33
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">3)/5</td>\n<td>5</td>\n</tr>\n</table>\n</div>\n<p>We
34
+ shall call A<sub>F</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
35
+ they become increasingly rarer; for example, the 10th golden nugget is 74049690.</p>\n<p>Find
36
+ the 15th golden nugget.</p>\n\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 138
3
+ :name: Special isosceles triangles
4
+ :url: http://projecteuler.net/problem=138
5
+ :content: "\r\n<p>Consider the isosceles triangle with base length, <i>b</i> = 16,
6
+ and legs, L = 17.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_138.gif\"
7
+ width=\"230\" height=\"228\" alt=\"\">\n</div>\r\n<p>By using the Pythagorean theorem
8
+ it can be seen that the height of the triangle, <i>h</i> = <img src=\"images/symbol_radic.gif\"
9
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(17<sup>2</sup><img
10
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
11
+ style=\"vertical-align:middle;\"> 8<sup>2</sup>) = 15, which is one less than the
12
+ base length.</p>\r\n<p>With <i>b</i> = 272 and L = 305, we get <i>h</i> = 273, which
13
+ is one more than the base length, and this is the second smallest isosceles triangle
14
+ with the property that <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
15
+ width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 1.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
17
+ alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"> L for the twelve smallest
18
+ isosceles triangles for which <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
19
+ width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
20
+ 1 and <i>b</i>, L are positive integers.</p>\r\n\r\n"
@@ -0,0 +1,15 @@
1
+ ---
2
+ :id: 139
3
+ :name: Pythagorean tiles
4
+ :url: http://projecteuler.net/problem=139
5
+ :content: "\r\n<p>Let (<i>a</i>, <i>b</i>, <i>c</i>) represent the three sides of
6
+ a right angle triangle with integral length sides. It is possible to place four
7
+ such triangles together to form a square with length <i>c</i>.</p>\r\n<p>For example,
8
+ (3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1
9
+ hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five
10
+ 1 by 1 squares.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_139.gif\"
11
+ width=\"400\" height=\"180\" alt=\"\">\n</div>\r\n<p>However, if (5, 12, 13) triangles
12
+ were used then the hole would measure 7 by 7 and these could not be used to tile
13
+ the 13 by 13 square.</p>\r\n<p>Given that the perimeter of the right triangle is
14
+ less than one-hundred million, how many Pythagorean triangles would allow such a
15
+ tiling to take place?</p>\r\n\r\n"
@@ -0,0 +1,28 @@
1
+ ---
2
+ :id: 14
3
+ :name: Longest Collatz sequence
4
+ :url: http://projecteuler.net/problem=14
5
+ :content: "\r\n<p>The following iterative sequence is defined for the set of positive
6
+ integers:</p>\r\n<p style=\"margin-left:50px;\"><var>n</var> <img src=\"images/symbol_maps.gif\"
7
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>/2
8
+ (<var>n</var> is even)<br><var>n</var> <img src=\"images/symbol_maps.gif\" width=\"15\"
9
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 3<var>n</var>
10
+ + 1 (<var>n</var> is odd)</p>\r\n<p>Using the rule above and starting with 13, we
11
+ generate the following sequence:</p>\r\n<div style=\"text-align:center;\">13 <img
12
+ src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
13
+ style=\"vertical-align:middle;\"> 40 <img src=\"images/symbol_maps.gif\" width=\"15\"
14
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 20 <img src=\"images/symbol_maps.gif\"
15
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
16
+ 10 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
17
+ style=\"vertical-align:middle;\"> 5 <img src=\"images/symbol_maps.gif\" width=\"15\"
18
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 16 <img src=\"images/symbol_maps.gif\"
19
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
20
+ 8 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
21
+ style=\"vertical-align:middle;\"> 4 <img src=\"images/symbol_maps.gif\" width=\"15\"
22
+ height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_maps.gif\"
23
+ width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
24
+ 1</div>\r\n<p>It can be seen that this sequence (starting at 13 and finishing at
25
+ 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it
26
+ is thought that all starting numbers finish at 1.</p>\r\n<p>Which starting number,
27
+ under one million, produces the longest chain?</p>\r\n<p class=\"info\"><b>NOTE:</b>
28
+ Once the chain starts the terms are allowed to go above one million.</p>\r\n\r\n"
@@ -0,0 +1,29 @@
1
+ ---
2
+ :id: 140
3
+ :name: Modified Fibonacci golden nuggets
4
+ :url: http://projecteuler.net/problem=140
5
+ :content: "\r\n<p>Consider the infinite polynomial series A<sub>G</sub>(<i>x</i>)
6
+ = <i>x</i>G<sub>1</sub> + <i>x</i><sup>2</sup>G<sub>2</sub> + <i>x</i><sup>3</sup>G<sub>3</sub>
7
+ + ..., where G<sub><i>k</i></sub> is the <i>k</i>th term of the second order recurrence
8
+ relation G<sub><i>k</i></sub> = G<sub><i>k</i><img src=\"images/symbol_minus.gif\"
9
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
10
+ + G<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
11
+ border=\"0\" style=\"vertical-align:middle;\">2</sub>, G<sub>1</sub> = 1 and G<sub>2</sub>
12
+ = 4; that is, 1, 4, 5, 9, 14, 23, ... .</p>\r\n<p>For this problem we shall be concerned
13
+ with values of <i>x</i> for which A<sub>G</sub>(<i>x</i>) is a positive integer.</p>\r\n<p>The
14
+ corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\r\n<div
15
+ style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
16
+ align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
17
+ width=\"50\"><b>A<sub>G</sub>(<i>x</i>)</b></td>\r\n</tr>\n<tr>\n<td>(<img src=\"images/symbol_radic.gif\"
18
+ width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5<img
19
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
20
+ style=\"vertical-align:middle;\">1)/4</td>\n<td>1</td>\r\n</tr>\n<tr>\n<td>2/5</td>\n<td>2</td>\r\n</tr>\n<tr>\n<td>(<img
21
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
22
+ style=\"vertical-align:middle;\">22<img src=\"images/symbol_minus.gif\" width=\"9\"
23
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/6</td>\n<td>3</td>\r\n</tr>\n<tr>\n<td>(<img
24
+ src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
25
+ style=\"vertical-align:middle;\">137<img src=\"images/symbol_minus.gif\" width=\"9\"
26
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/14</td>\n<td>4</td>\r\n</tr>\n<tr>\n<td>1/2</td>\n<td>5</td>\r\n</tr>\n</table>\n</div>\r\n<p>We
27
+ shall call A<sub>G</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
28
+ they become increasingly rarer; for example, the 20th golden nugget is 211345365.</p>\r\n<p>Find
29
+ the sum of the first thirty golden nuggets.</p>\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 141
3
+ :name: Investigating progressive numbers, <i>n</i>, which are also square
4
+ :url: http://projecteuler.net/problem=141
5
+ :content: "\r\n<p>A positive integer, <i>n</i>, is divided by <i>d</i> and the quotient
6
+ and remainder are <i>q</i> and <i>r</i> respectively. In addition <i>d</i>, <i>q</i>,
7
+ and <i>r</i> are consecutive positive integer terms in a geometric sequence, but
8
+ not necessarily in that order.</p>\r\n<p>For example, 58 divided by 6 has quotient
9
+ 9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric
10
+ sequence (common ratio 3/2).<br>\r\nWe will call such numbers, <i>n</i>, progressive.</p>\r\n<p>Some
11
+ progressive numbers, such as 9 and 10404 = 102<sup>2</sup>, happen to also be perfect
12
+ squares.<br> The sum of all progressive perfect squares below one hundred thousand
13
+ is 124657.</p>\r\n<p>Find the sum of all progressive perfect squares below one trillion
14
+ (10<sup>12</sup>).</p>\r\n\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 142
3
+ :name: Perfect Square Collection
4
+ :url: http://projecteuler.net/problem=142
5
+ :content: "\r\n<p>Find the smallest x + y + z with integers x <img src=\"images/symbol_gt.gif\"
6
+ width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\">
7
+ y <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\"&gt;\" border=\"0\"
8
+ style=\"vertical-align:middle;\"> z <img src=\"images/symbol_gt.gif\" width=\"10\"
9
+ height=\"10\" alt=\"&gt;\" border=\"0\" style=\"vertical-align:middle;\"> 0 such
10
+ that x + y, x <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
11
+ border=\"0\" style=\"vertical-align:middle;\"> y, x + z, x <img src=\"images/symbol_minus.gif\"
12
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
13
+ z, y + z, y <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
14
+ border=\"0\" style=\"vertical-align:middle;\"> z are all perfect squares.</p>\r\n"
@@ -0,0 +1,20 @@
1
+ ---
2
+ :id: 143
3
+ :name: Investigating the Torricelli point of a triangle
4
+ :url: http://projecteuler.net/problem=143
5
+ :content: "\r\n<p>Let ABC be a triangle with all interior angles being less than 120
6
+ degrees. Let X be any point inside the triangle and let XA = p, XC = q, and XB =
7
+ r.</p>\r\n<p>Fermat challenged Torricelli to find the position of X such that p
8
+ + q + r was minimised.</p>\r\n<p>Torricelli was able to prove that if equilateral
9
+ triangles AOB, BNC and AMC are constructed on each side of triangle ABC, the circumscribed
10
+ circles of AOB, BNC, and AMC will intersect at a single point, T, inside the triangle.
11
+ Moreover he proved that T, called the Torricelli/Fermat point, minimises p + q +
12
+ r. Even more remarkable, it can be shown that when the sum is minimised, AN = BM
13
+ = CO = p + q + r and that AN, BM and CO also intersect at T.</p>\r\n<div style=\"text-align:center;\"><img
14
+ src=\"project/images/p_143_torricelli.gif\" width=\"564\" height=\"560\" alt=\"\"></div>\r\n<p>If
15
+ the sum is minimised and a, b, c, p, q and r are all positive integers we shall
16
+ call triangle ABC a Torricelli triangle. For example, a = 399, b = 455, c = 511
17
+ is an example of a Torricelli triangle, with p + q + r = 784.</p>\r\n<p>Find the
18
+ sum of all distinct values of p + q + r <img src=\"images/symbol_le.gif\" width=\"10\"
19
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 120000 for
20
+ Torricelli triangles.</p>\r\n\r\n"
@@ -0,0 +1,30 @@
1
+ ---
2
+ :id: 144
3
+ :name: Investigating multiple reflections of a laser beam
4
+ :url: http://projecteuler.net/problem=144
5
+ :content: "\r\n<p>In laser physics, a \"white cell\" is a mirror system that acts
6
+ as a delay line for the laser beam. The beam enters the cell, bounces around on
7
+ the mirrors, and eventually works its way back out.</p>\r\n<p>The specific white
8
+ cell we will be considering is an ellipse with the equation 4<i>x</i><sup>2</sup>
9
+ + <i>y</i><sup>2</sup> = 100</p>\r\n<p>The section corresponding to <img src=\"images/symbol_minus.gif\"
10
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">0.01
11
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
12
+ style=\"vertical-align:middle;\"><i>x</i> <img src=\"images/symbol_le.gif\" width=\"10\"
13
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> +0.01 at
14
+ the top is missing, allowing the light to enter and exit through the hole.</p>\r\n<div
15
+ style=\"text-align:center;\">\n<img src=\"project/images/p_144_1.gif\" width=\"268\"
16
+ height=\"240\" alt=\"\"><img src=\"project/images/p_144_2.gif\" width=\"141\" height=\"287\"
17
+ alt=\"\">\n</div>\r\n<p>The light beam in this problem starts at the point (0.0,10.1)
18
+ just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6).</p>\r\n<p>Each
19
+ time the laser beam hits the surface of the ellipse, it follows the usual law of
20
+ reflection \"angle of incidence equals angle of reflection.\" That is, both the
21
+ incident and reflected beams make the same angle with the normal line at the point
22
+ of incidence.</p>\r\n<p>In the figure on the left, the red line shows the first
23
+ two points of contact between the laser beam and the wall of the white cell; the
24
+ blue line shows the line tangent to the ellipse at the point of incidence of the
25
+ first bounce.</p>\n<p>The slope <i>m</i> of the tangent line at any point (<i>x</i>,<i>y</i>)
26
+ of the given ellipse is: <i>m</i> = <img src=\"images/symbol_minus.gif\" width=\"9\"
27
+ height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4<i>x</i>/<i>y</i></p>\n<p>The
28
+ normal line is perpendicular to this tangent line at the point of incidence.</p>\r\n<p>The
29
+ animation on the right shows the first 10 reflections of the beam.</p>\r\n\r\n<p>How
30
+ many times does the beam hit the internal surface of the white cell before exiting?</p>\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 145
3
+ :name: How many reversible numbers are there below one-billion?
4
+ :url: http://projecteuler.net/problem=145
5
+ :content: "\r\n<p>Some positive integers <i>n</i> have the property that the sum [
6
+ <i>n</i> + reverse(<i>n</i>) ] consists entirely of odd (decimal) digits. For instance,
7
+ 36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers <em>reversible</em>;
8
+ so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either
9
+ <i>n</i> or reverse(<i>n</i>).</p>\r\n\r\n<p>There are 120 reversible numbers below
10
+ one-thousand.</p>\r\n\r\n<p>How many reversible numbers are there below one-billion
11
+ (10<sup>9</sup>)?</p>\r\n"
@@ -0,0 +1,9 @@
1
+ ---
2
+ :id: 146
3
+ :name: 'Investigating a Prime Pattern '
4
+ :url: http://projecteuler.net/problem=146
5
+ :content: "\r\n<p>The smallest positive integer <i>n</i> for which the numbers <i>n</i><sup>2</sup>+1,
6
+ <i>n</i><sup>2</sup>+3, <i>n</i><sup>2</sup>+7, <i>n</i><sup>2</sup>+9, <i>n</i><sup>2</sup>+13,
7
+ and <i>n</i><sup>2</sup>+27 are consecutive primes is 10. The sum of all such integers
8
+ <i>n</i> below one-million is 1242490.</p>\r\n\r\n<p>What is the sum of all such
9
+ integers <i>n</i> below 150 million?</p>\r\n"
@@ -0,0 +1,14 @@
1
+ ---
2
+ :id: 147
3
+ :name: Rectangles in cross-hatched grids
4
+ :url: http://projecteuler.net/problem=147
5
+ :content: "\r\n<p>In a 3x2 cross-hatched grid, a total of 37 different rectangles
6
+ could be situated within that grid as indicated in the sketch.</p>\r\n<div style=\"text-align:center;\"><img
7
+ src=\"project/images/p_147.gif\" width=\"361\" height=\"176\" alt=\"\"></div>\r\n<p>There
8
+ are 5 grids smaller than 3x2, vertical and horizontal dimensions being important,
9
+ i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following
10
+ number of different rectangles could be situated within those smaller grids:</p>\r\n<p>1x1:
11
+ 1\r\n<br>2x1: 4\r\n<br>3x1: 8\r\n<br>1x2: 4\r\n<br>2x2: 18</p>\r\n\r\n<p>Adding
12
+ those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated
13
+ within 3x2 and smaller grids.</p>\r\n\r\n<p>How many different rectangles could
14
+ be situated within 47x43 and smaller grids?</p>\r\n"
@@ -0,0 +1,11 @@
1
+ ---
2
+ :id: 148
3
+ :name: Exploring Pascal's triangle
4
+ :url: http://projecteuler.net/problem=148
5
+ :content: "\r\n<p>We can easily verify that none of the entries in the first seven
6
+ rows of Pascal's triangle are divisible by 7:</p>\r\n<table cellpadding=\"0\" cellspacing=\"0\"
7
+ border=\"0\" align=\"center\">\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 2</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td>1</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td>20</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n</table>\n<p>However,
8
+ if we check the first one hundred rows, we will find that only 2361 of the 5050
9
+ entries are <i>not</i> divisible by 7.</p>\r\n\r\n<p>Find the number of entries
10
+ which are <i>not</i> divisible by 7 in the first one billion (10<sup>9</sup>) rows
11
+ of Pascal's triangle.</p>\r\n"
@@ -0,0 +1,41 @@
1
+ ---
2
+ :id: 149
3
+ :name: Searching for a maximum-sum subsequence
4
+ :url: http://projecteuler.net/problem=149
5
+ :content: "\r\n<p>Looking at the table below, it is easy to verify that the maximum
6
+ possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal
7
+ or anti-diagonal) <span style=\"white-space:nowrap\">is 16 (= 8 + 7 + 1).</span></p>\r\n\r\n<div
8
+ style=\"text-align:center\">\r\n<table border=\"1\" cellpadding=\"6\" cellspacing=\"0\"
9
+ style=\"margin:auto\"><tbody align=\"right\">\n<tr>\n<td>\n<img src=\"images/symbol_minus.gif\"
10
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</td>\n<td>5</td>\n<td>3</td>\n<td>2</td>\n</tr>\n<tr>\n<td>9</td>\n<td>\n<img
11
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
12
+ style=\"vertical-align:middle;\">6</td>\n<td>5</td>\n<td>1</td>\n</tr>\n<tr>\n<td>3</td>\n<td>2</td>\n<td>7</td>\n<td>3</td>\n</tr>\n<tr>\n<td>\n<img
13
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
14
+ style=\"vertical-align:middle;\">1</td>\n<td>8</td>\n<td>\n<img src=\"images/symbol_minus.gif\"
15
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4</td>\n<td> 
16
+ 8</td>\n</tr>\n</tbody></table>\n</div>\r\n\r\n<p>Now, let us repeat the search,
17
+ but on a much larger scale:</p>\r\n\r\n<p>First, generate four million pseudo-random
18
+ numbers using a specific form of what is known as a \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For
19
+ 1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
20
+ style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\" width=\"10\"
21
+ height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 55, <i>s</i><sub><i>k</i></sub>
22
+ = [100003 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
23
+ border=\"0\" style=\"vertical-align:middle;\"> 200003<i>k</i> + 300007<i>k</i><sup>3</sup>]
24
+ (modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
25
+ border=\"0\" style=\"vertical-align:middle;\"> 500000.<br>\r\nFor 56 <img src=\"images/symbol_le.gif\"
26
+ width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i>
27
+ <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
28
+ style=\"vertical-align:middle;\"> 4000000, <i>s</i><sub><i>k</i></sub> = [<i>s</i><sub><i>k<img
29
+ src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
30
+ style=\"vertical-align:middle;\">24</i></sub> + <i>s</i><sub><i>k<img src=\"images/symbol_minus.gif\"
31
+ width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">55</i></sub>
32
+ + 1000000] (modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
33
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 500000.</p>\r\n\r\n<p>Thus,
34
+ <i>s</i><sub>10</sub> = <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
35
+ alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">393027 and <i>s</i><sub>100</sub>
36
+ = 86613.</p>\r\n\r\n<p>The terms of <i>s</i> are then arranged in a 2000<img src=\"images/symbol_times.gif\"
37
+ width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2000
38
+ table, using the first 2000 numbers to fill the first row (sequentially), the next
39
+ 2000 numbers to fill the second row, and so on.</p>\r\n\r\n<p>Finally, find the
40
+ greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical,
41
+ diagonal or anti-diagonal).</p>\r\n"