euler-manager 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +21 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +22 -0
- data/README.md +37 -0
- data/Rakefile +1 -0
- data/bin/euler +145 -0
- data/data/answers.yml +456 -0
- data/data/problems/1.yml +7 -0
- data/data/problems/10.yml +8 -0
- data/data/problems/100.yml +13 -0
- data/data/problems/101.yml +49 -0
- data/data/problems/102.yml +16 -0
- data/data/problems/103.yml +26 -0
- data/data/problems/104.yml +15 -0
- data/data/problems/105.yml +21 -0
- data/data/problems/106.yml +19 -0
- data/data/problems/107.yml +20 -0
- data/data/problems/108.yml +32 -0
- data/data/problems/109.yml +33 -0
- data/data/problems/11.yml +33 -0
- data/data/problems/110.yml +19 -0
- data/data/problems/111.yml +21 -0
- data/data/problems/112.yml +15 -0
- data/data/problems/113.yml +13 -0
- data/data/problems/114.yml +106 -0
- data/data/problems/115.yml +17 -0
- data/data/problems/116.yml +76 -0
- data/data/problems/117.yml +82 -0
- data/data/problems/118.yml +9 -0
- data/data/problems/119.yml +11 -0
- data/data/problems/12.yml +13 -0
- data/data/problems/120.yml +17 -0
- data/data/problems/121.yml +15 -0
- data/data/problems/122.yml +42 -0
- data/data/problems/123.yml +13 -0
- data/data/problems/124.yml +58 -0
- data/data/problems/125.yml +12 -0
- data/data/problems/126.yml +17 -0
- data/data/problems/127.yml +31 -0
- data/data/problems/128.yml +18 -0
- data/data/problems/129.yml +12 -0
- data/data/problems/13.yml +6 -0
- data/data/problems/130.yml +19 -0
- data/data/problems/131.yml +12 -0
- data/data/problems/132.yml +12 -0
- data/data/problems/133.yml +13 -0
- data/data/problems/134.yml +19 -0
- data/data/problems/135.yml +20 -0
- data/data/problems/136.yml +17 -0
- data/data/problems/137.yml +36 -0
- data/data/problems/138.yml +20 -0
- data/data/problems/139.yml +15 -0
- data/data/problems/14.yml +28 -0
- data/data/problems/140.yml +29 -0
- data/data/problems/141.yml +14 -0
- data/data/problems/142.yml +14 -0
- data/data/problems/143.yml +20 -0
- data/data/problems/144.yml +30 -0
- data/data/problems/145.yml +11 -0
- data/data/problems/146.yml +9 -0
- data/data/problems/147.yml +14 -0
- data/data/problems/148.yml +11 -0
- data/data/problems/149.yml +41 -0
- data/data/problems/15.yml +11 -0
- data/data/problems/150.yml +34 -0
- data/data/problems/151.yml +19 -0
- data/data/problems/152.yml +12 -0
- data/data/problems/153.yml +57 -0
- data/data/problems/154.yml +16 -0
- data/data/problems/155.yml +22 -0
- data/data/problems/156.yml +27 -0
- data/data/problems/157.yml +34 -0
- data/data/problems/158.yml +19 -0
- data/data/problems/159.yml +29 -0
- data/data/problems/16.yml +6 -0
- data/data/problems/160.yml +8 -0
- data/data/problems/161.yml +15 -0
- data/data/problems/162.yml +15 -0
- data/data/problems/163.yml +19 -0
- data/data/problems/164.yml +8 -0
- data/data/problems/165.yml +32 -0
- data/data/problems/166.yml +15 -0
- data/data/problems/167.yml +17 -0
- data/data/problems/168.yml +13 -0
- data/data/problems/169.yml +10 -0
- data/data/problems/17.yml +11 -0
- data/data/problems/170.yml +16 -0
- data/data/problems/171.yml +13 -0
- data/data/problems/172.yml +6 -0
- data/data/problems/173.yml +12 -0
- data/data/problems/174.yml +20 -0
- data/data/problems/175.yml +21 -0
- data/data/problems/176.yml +9 -0
- data/data/problems/177.yml +16 -0
- data/data/problems/178.yml +9 -0
- data/data/problems/179.yml +10 -0
- data/data/problems/18.yml +21 -0
- data/data/problems/180.yml +34 -0
- data/data/problems/181.yml +7 -0
- data/data/problems/182.yml +35 -0
- data/data/problems/183.yml +27 -0
- data/data/problems/184.yml +18 -0
- data/data/problems/185.yml +22 -0
- data/data/problems/186.yml +28 -0
- data/data/problems/187.yml +16 -0
- data/data/problems/188.yml +10 -0
- data/data/problems/189.yml +15 -0
- data/data/problems/19.yml +12 -0
- data/data/problems/190.yml +13 -0
- data/data/problems/191.yml +15 -0
- data/data/problems/192.yml +27 -0
- data/data/problems/193.yml +7 -0
- data/data/problems/194.yml +18 -0
- data/data/problems/195.yml +13 -0
- data/data/problems/196.yml +25 -0
- data/data/problems/197.yml +16 -0
- data/data/problems/198.yml +21 -0
- data/data/problems/199.yml +14 -0
- data/data/problems/2.yml +10 -0
- data/data/problems/20.yml +22 -0
- data/data/problems/200.yml +12 -0
- data/data/problems/201.yml +20 -0
- data/data/problems/202.yml +14 -0
- data/data/problems/203.yml +21 -0
- data/data/problems/204.yml +11 -0
- data/data/problems/205.yml +10 -0
- data/data/problems/206.yml +6 -0
- data/data/problems/207.yml +20 -0
- data/data/problems/208.yml +12 -0
- data/data/problems/209.yml +27 -0
- data/data/problems/21.yml +13 -0
- data/data/problems/210.yml +10 -0
- data/data/problems/211.yml +11 -0
- data/data/problems/212.yml +41 -0
- data/data/problems/213.yml +11 -0
- data/data/problems/214.yml +15 -0
- data/data/problems/215.yml +18 -0
- data/data/problems/216.yml +14 -0
- data/data/problems/217.yml +27 -0
- data/data/problems/218.yml +14 -0
- data/data/problems/219.yml +19 -0
- data/data/problems/22.yml +13 -0
- data/data/problems/220.yml +24 -0
- data/data/problems/221.yml +20 -0
- data/data/problems/222.yml +7 -0
- data/data/problems/223.yml +12 -0
- data/data/problems/224.yml +12 -0
- data/data/problems/225.yml +11 -0
- data/data/problems/226.yml +16 -0
- data/data/problems/227.yml +13 -0
- data/data/problems/228.yml +23 -0
- data/data/problems/229.yml +30 -0
- data/data/problems/23.yml +19 -0
- data/data/problems/230.yml +23 -0
- data/data/problems/231.yml +16 -0
- data/data/problems/232.yml +14 -0
- data/data/problems/233.yml +10 -0
- data/data/problems/234.yml +23 -0
- data/data/problems/235.yml +9 -0
- data/data/problems/236.yml +32 -0
- data/data/problems/237.yml +13 -0
- data/data/problems/238.yml +42 -0
- data/data/problems/239.yml +9 -0
- data/data/problems/24.yml +10 -0
- data/data/problems/240.yml +11 -0
- data/data/problems/241.yml +17 -0
- data/data/problems/242.yml +16 -0
- data/data/problems/243.yml +19 -0
- data/data/problems/244.yml +32 -0
- data/data/problems/245.yml +36 -0
- data/data/problems/246.yml +17 -0
- data/data/problems/247.yml +21 -0
- data/data/problems/248.yml +6 -0
- data/data/problems/249.yml +7 -0
- data/data/problems/25.yml +15 -0
- data/data/problems/250.yml +7 -0
- data/data/problems/251.yml +13 -0
- data/data/problems/252.yml +31 -0
- data/data/problems/253.yml +36 -0
- data/data/problems/254.yml +21 -0
- data/data/problems/255.yml +59 -0
- data/data/problems/256.yml +43 -0
- data/data/problems/257.yml +18 -0
- data/data/problems/258.yml +13 -0
- data/data/problems/259.yml +16 -0
- data/data/problems/26.yml +11 -0
- data/data/problems/260.yml +30 -0
- data/data/problems/261.yml +19 -0
- data/data/problems/262.yml +20 -0
- data/data/problems/263.yml +19 -0
- data/data/problems/264.yml +20 -0
- data/data/problems/265.yml +16 -0
- data/data/problems/266.yml +10 -0
- data/data/problems/267.yml +14 -0
- data/data/problems/268.yml +8 -0
- data/data/problems/269.yml +15 -0
- data/data/problems/27.yml +25 -0
- data/data/problems/270.yml +17 -0
- data/data/problems/271.yml +13 -0
- data/data/problems/272.yml +15 -0
- data/data/problems/273.yml +21 -0
- data/data/problems/274.yml +23 -0
- data/data/problems/275.yml +19 -0
- data/data/problems/276.yml +11 -0
- data/data/problems/277.yml +24 -0
- data/data/problems/278.yml +32 -0
- data/data/problems/279.yml +6 -0
- data/data/problems/28.yml +17 -0
- data/data/problems/280.yml +13 -0
- data/data/problems/281.yml +17 -0
- data/data/problems/282.yml +10 -0
- data/data/problems/283.yml +11 -0
- data/data/problems/284.yml +22 -0
- data/data/problems/285.yml +17 -0
- data/data/problems/286.yml +12 -0
- data/data/problems/287.yml +36 -0
- data/data/problems/288.yml +15 -0
- data/data/problems/289.yml +19 -0
- data/data/problems/29.yml +24 -0
- data/data/problems/290.yml +8 -0
- data/data/problems/291.yml +10 -0
- data/data/problems/292.yml +13 -0
- data/data/problems/293.yml +15 -0
- data/data/problems/294.yml +10 -0
- data/data/problems/295.yml +26 -0
- data/data/problems/296.yml +15 -0
- data/data/problems/297.yml +19 -0
- data/data/problems/298.yml +46 -0
- data/data/problems/299.yml +31 -0
- data/data/problems/3.yml +7 -0
- data/data/problems/30.yml +12 -0
- data/data/problems/300.yml +24 -0
- data/data/problems/301.yml +25 -0
- data/data/problems/302.yml +18 -0
- data/data/problems/303.yml +11 -0
- data/data/problems/304.yml +19 -0
- data/data/problems/305.yml +14 -0
- data/data/problems/306.yml +29 -0
- data/data/problems/307.yml +12 -0
- data/data/problems/308.yml +34 -0
- data/data/problems/309.yml +17 -0
- data/data/problems/31.yml +18 -0
- data/data/problems/310.yml +19 -0
- data/data/problems/311.yml +21 -0
- data/data/problems/312.yml +15 -0
- data/data/problems/313.yml +17 -0
- data/data/problems/314.yml +29 -0
- data/data/problems/315.yml +49 -0
- data/data/problems/316.yml +25 -0
- data/data/problems/317.yml +11 -0
- data/data/problems/318.yml +61 -0
- data/data/problems/319.yml +23 -0
- data/data/problems/32.yml +14 -0
- data/data/problems/320.yml +12 -0
- data/data/problems/321.yml +18 -0
- data/data/problems/322.yml +12 -0
- data/data/problems/323.yml +19 -0
- data/data/problems/324.yml +17 -0
- data/data/problems/325.yml +25 -0
- data/data/problems/326.yml +12 -0
- data/data/problems/327.yml +39 -0
- data/data/problems/328.yml +36 -0
- data/data/problems/329.yml +17 -0
- data/data/problems/33.yml +13 -0
- data/data/problems/330.yml +40 -0
- data/data/problems/331.yml +28 -0
- data/data/problems/332.yml +16 -0
- data/data/problems/333.yml +25 -0
- data/data/problems/334.yml +39 -0
- data/data/problems/335.yml +16 -0
- data/data/problems/336.yml +24 -0
- data/data/problems/337.yml +15 -0
- data/data/problems/338.yml +41 -0
- data/data/problems/339.yml +17 -0
- data/data/problems/34.yml +7 -0
- data/data/problems/340.yml +14 -0
- data/data/problems/341.yml +18 -0
- data/data/problems/342.yml +17 -0
- data/data/problems/343.yml +29 -0
- data/data/problems/344.yml +21 -0
- data/data/problems/345.yml +26 -0
- data/data/problems/346.yml +11 -0
- data/data/problems/347.yml +16 -0
- data/data/problems/348.yml +12 -0
- data/data/problems/349.yml +13 -0
- data/data/problems/35.yml +8 -0
- data/data/problems/350.yml +18 -0
- data/data/problems/351.yml +13 -0
- data/data/problems/352.yml +49 -0
- data/data/problems/353.yml +25 -0
- data/data/problems/354.yml +16 -0
- data/data/problems/355.yml +8 -0
- data/data/problems/356.yml +10 -0
- data/data/problems/357.yml +9 -0
- data/data/problems/358.yml +31 -0
- data/data/problems/359.yml +26 -0
- data/data/problems/36.yml +8 -0
- data/data/problems/360.yml +12 -0
- data/data/problems/361.yml +20 -0
- data/data/problems/362.yml +32 -0
- data/data/problems/363.yml +33 -0
- data/data/problems/364.yml +15 -0
- data/data/problems/365.yml +17 -0
- data/data/problems/366.yml +26 -0
- data/data/problems/367.yml +20 -0
- data/data/problems/368.yml +39 -0
- data/data/problems/369.yml +15 -0
- data/data/problems/37.yml +10 -0
- data/data/problems/370.yml +16 -0
- data/data/problems/371.yml +13 -0
- data/data/problems/372.yml +16 -0
- data/data/problems/373.yml +10 -0
- data/data/problems/374.yml +25 -0
- data/data/problems/375.yml +23 -0
- data/data/problems/376.yml +25 -0
- data/data/problems/377.yml +11 -0
- data/data/problems/378.yml +15 -0
- data/data/problems/379.yml +15 -0
- data/data/problems/38.yml +18 -0
- data/data/problems/380.yml +22 -0
- data/data/problems/381.yml +21 -0
- data/data/problems/382.yml +23 -0
- data/data/problems/383.yml +13 -0
- data/data/problems/384.yml +28 -0
- data/data/problems/385.yml +22 -0
- data/data/problems/386.yml +16 -0
- data/data/problems/387.yml +19 -0
- data/data/problems/388.yml +12 -0
- data/data/problems/389.yml +12 -0
- data/data/problems/39.yml +10 -0
- data/data/problems/390.yml +18 -0
- data/data/problems/391.yml +29 -0
- data/data/problems/392.yml +22 -0
- data/data/problems/393.yml +12 -0
- data/data/problems/394.yml +22 -0
- data/data/problems/395.yml +19 -0
- data/data/problems/396.yml +28 -0
- data/data/problems/397.yml +20 -0
- data/data/problems/398.yml +13 -0
- data/data/problems/399.yml +22 -0
- data/data/problems/4.yml +8 -0
- data/data/problems/40.yml +18 -0
- data/data/problems/400.yml +18 -0
- data/data/problems/401.yml +11 -0
- data/data/problems/402.yml +25 -0
- data/data/problems/403.yml +19 -0
- data/data/problems/404.yml +21 -0
- data/data/problems/405.yml +15 -0
- data/data/problems/406.yml +46 -0
- data/data/problems/407.yml +20 -0
- data/data/problems/408.yml +14 -0
- data/data/problems/409.yml +12 -0
- data/data/problems/41.yml +8 -0
- data/data/problems/410.yml +19 -0
- data/data/problems/411.yml +23 -0
- data/data/problems/412.yml +19 -0
- data/data/problems/413.yml +13 -0
- data/data/problems/414.yml +40 -0
- data/data/problems/415.yml +19 -0
- data/data/problems/416.yml +13 -0
- data/data/problems/417.yml +21 -0
- data/data/problems/418.yml +17 -0
- data/data/problems/419.yml +22 -0
- data/data/problems/42.yml +14 -0
- data/data/problems/420.yml +13 -0
- data/data/problems/421.yml +29 -0
- data/data/problems/422.yml +22 -0
- data/data/problems/423.yml +22 -0
- data/data/problems/424.yml +37 -0
- data/data/problems/425.yml +16 -0
- data/data/problems/426.yml +29 -0
- data/data/problems/427.yml +18 -0
- data/data/problems/428.yml +32 -0
- data/data/problems/429.yml +10 -0
- data/data/problems/43.yml +17 -0
- data/data/problems/430.yml +20 -0
- data/data/problems/431.yml +33 -0
- data/data/problems/432.yml +13 -0
- data/data/problems/433.yml +18 -0
- data/data/problems/434.yml +32 -0
- data/data/problems/435.yml +21 -0
- data/data/problems/436.yml +21 -0
- data/data/problems/437.yml +22 -0
- data/data/problems/438.yml +29 -0
- data/data/problems/439.yml +17 -0
- data/data/problems/44.yml +16 -0
- data/data/problems/440.yml +21 -0
- data/data/problems/441.yml +23 -0
- data/data/problems/442.yml +9 -0
- data/data/problems/443.yml +13 -0
- data/data/problems/444.yml +28 -0
- data/data/problems/445.yml +37 -0
- data/data/problems/446.yml +29 -0
- data/data/problems/447.yml +31 -0
- data/data/problems/448.yml +14 -0
- data/data/problems/449.yml +17 -0
- data/data/problems/45.yml +15 -0
- data/data/problems/450.yml +26 -0
- data/data/problems/451.yml +15 -0
- data/data/problems/452.yml +8 -0
- data/data/problems/453.yml +16 -0
- data/data/problems/454.yml +17 -0
- data/data/problems/455.yml +16 -0
- data/data/problems/456.yml +15 -0
- data/data/problems/46.yml +18 -0
- data/data/problems/47.yml +21 -0
- data/data/problems/48.yml +7 -0
- data/data/problems/49.yml +10 -0
- data/data/problems/5.yml +8 -0
- data/data/problems/50.yml +10 -0
- data/data/problems/51.yml +15 -0
- data/data/problems/52.yml +8 -0
- data/data/problems/53.yml +28 -0
- data/data/problems/54.yml +43 -0
- data/data/problems/55.yml +21 -0
- data/data/problems/56.yml +11 -0
- data/data/problems/57.yml +15 -0
- data/data/problems/58.yml +22 -0
- data/data/problems/59.yml +23 -0
- data/data/problems/6.yml +13 -0
- data/data/problems/60.yml +10 -0
- data/data/problems/61.yml +30 -0
- data/data/problems/62.yml +9 -0
- data/data/problems/63.yml +7 -0
- data/data/problems/64.yml +130 -0
- data/data/problems/65.yml +62 -0
- data/data/problems/66.yml +27 -0
- data/data/problems/67.yml +17 -0
- data/data/problems/68.yml +23 -0
- data/data/problems/69.yml +14 -0
- data/data/problems/7.yml +6 -0
- data/data/problems/70.yml +16 -0
- data/data/problems/71.yml +17 -0
- data/data/problems/72.yml +16 -0
- data/data/problems/73.yml +16 -0
- data/data/problems/74.yml +41 -0
- data/data/problems/75.yml +16 -0
- data/data/problems/76.yml +8 -0
- data/data/problems/77.yml +8 -0
- data/data/problems/78.yml +12 -0
- data/data/problems/79.yml +11 -0
- data/data/problems/8.yml +6 -0
- data/data/problems/80.yml +11 -0
- data/data/problems/81.yml +19 -0
- data/data/problems/82.yml +19 -0
- data/data/problems/83.yml +23 -0
- data/data/problems/84.yml +63 -0
- data/data/problems/85.yml +9 -0
- data/data/problems/86.yml +15 -0
- data/data/problems/87.yml +12 -0
- data/data/problems/88.yml +53 -0
- data/data/problems/89.yml +18 -0
- data/data/problems/9.yml +13 -0
- data/data/problems/90.yml +23 -0
- data/data/problems/91.yml +19 -0
- data/data/problems/92.yml +29 -0
- data/data/problems/93.yml +21 -0
- data/data/problems/94.yml +11 -0
- data/data/problems/95.yml +23 -0
- data/data/problems/96.yml +46 -0
- data/data/problems/97.yml +14 -0
- data/data/problems/98.yml +16 -0
- data/data/problems/99.yml +16 -0
- data/euler-manager.gemspec +31 -0
- data/euler-manager.sublime-project +12 -0
- data/example/1/README.md +6 -0
- data/example/1/ruby/1.rb +5 -0
- data/example/1/scala/1.scala +9 -0
- data/example/2/README.md +9 -0
- data/example/2/python/2.py +5 -0
- data/example/2/python/euler.py +0 -0
- data/example/Eulerfile.rb +87 -0
- data/example/README.md +26 -0
- data/example/lib/euler.py +0 -0
- data/example/lib/euler.rb +0 -0
- data/example/lib/euler.scala +5 -0
- data/lib/euler.rb +190 -0
- data/lib/euler/errors.rb +7 -0
- data/lib/euler/languages.rb +12 -0
- data/lib/euler/languages/coffeescript.rb +25 -0
- data/lib/euler/languages/javascript.rb +25 -0
- data/lib/euler/languages/python.rb +27 -0
- data/lib/euler/languages/ruby.rb +25 -0
- data/lib/euler/languages/scala.rb +27 -0
- data/lib/euler/languages/templates/coffeescript.coffee +5 -0
- data/lib/euler/languages/templates/javascript.js +5 -0
- data/lib/euler/languages/templates/python.py +5 -0
- data/lib/euler/languages/templates/ruby.rb +5 -0
- data/lib/euler/languages/templates/scala.scala +9 -0
- data/lib/euler/problem.rb +60 -0
- data/lib/euler/solution.rb +98 -0
- data/lib/euler/version.rb +3 -0
- data/scripts/update_problems +68 -0
- data/spec/euler/problem_spec.rb +5 -0
- data/spec/euler/solution_spec.rb +69 -0
- data/spec/euler_spec.rb +27 -0
- data/spec/spec_helper.rb +3 -0
- metadata +644 -0
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 129
|
3
|
+
:name: Repunit divisibility
|
4
|
+
:url: http://projecteuler.net/problem=129
|
5
|
+
:content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
|
7
|
+
that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
|
8
|
+
there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
|
9
|
+
and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
|
10
|
+
A(41) = 5.</p>\n<p>The least value of <i>n</i> for which A(<i>n</i>) first exceeds
|
11
|
+
ten is 17.</p>\n<p>Find the least value of <i>n</i> for which A(<i>n</i>) first
|
12
|
+
exceeds one-million.</p>\n\r\n"
|
@@ -0,0 +1,6 @@
|
|
1
|
+
---
|
2
|
+
:id: 13
|
3
|
+
:name: Large sum
|
4
|
+
:url: http://projecteuler.net/problem=13
|
5
|
+
:content: "\r\n\n<p>Work out the first ten digits of the sum of the following one-hundred
|
6
|
+
50-digit numbers.</p>\n<div style=\"font-family:courier new;font-size:10pt;text-align:center;\">\n37107287533902102798797998220837590246510135740250<br>\n46376937677490009712648124896970078050417018260538<br>\n74324986199524741059474233309513058123726617309629<br>\n91942213363574161572522430563301811072406154908250<br>\n23067588207539346171171980310421047513778063246676<br>\n89261670696623633820136378418383684178734361726757<br>\n28112879812849979408065481931592621691275889832738<br>\n44274228917432520321923589422876796487670272189318<br>\n47451445736001306439091167216856844588711603153276<br>\n70386486105843025439939619828917593665686757934951<br>\n62176457141856560629502157223196586755079324193331<br>\n64906352462741904929101432445813822663347944758178<br>\n92575867718337217661963751590579239728245598838407<br>\n58203565325359399008402633568948830189458628227828<br>\n80181199384826282014278194139940567587151170094390<br>\n35398664372827112653829987240784473053190104293586<br>\n86515506006295864861532075273371959191420517255829<br>\n71693888707715466499115593487603532921714970056938<br>\n54370070576826684624621495650076471787294438377604<br>\n53282654108756828443191190634694037855217779295145<br>\n36123272525000296071075082563815656710885258350721<br>\n45876576172410976447339110607218265236877223636045<br>\n17423706905851860660448207621209813287860733969412<br>\n81142660418086830619328460811191061556940512689692<br>\n51934325451728388641918047049293215058642563049483<br>\n62467221648435076201727918039944693004732956340691<br>\n15732444386908125794514089057706229429197107928209<br>\n55037687525678773091862540744969844508330393682126<br>\n18336384825330154686196124348767681297534375946515<br>\n80386287592878490201521685554828717201219257766954<br>\n78182833757993103614740356856449095527097864797581<br>\n16726320100436897842553539920931837441497806860984<br>\n48403098129077791799088218795327364475675590848030<br>\n87086987551392711854517078544161852424320693150332<br>\n59959406895756536782107074926966537676326235447210<br>\n69793950679652694742597709739166693763042633987085<br>\n41052684708299085211399427365734116182760315001271<br>\n65378607361501080857009149939512557028198746004375<br>\n35829035317434717326932123578154982629742552737307<br>\n94953759765105305946966067683156574377167401875275<br>\n88902802571733229619176668713819931811048770190271<br>\n25267680276078003013678680992525463401061632866526<br>\n36270218540497705585629946580636237993140746255962<br>\n24074486908231174977792365466257246923322810917141<br>\n91430288197103288597806669760892938638285025333403<br>\n34413065578016127815921815005561868836468420090470<br>\n23053081172816430487623791969842487255036638784583<br>\n11487696932154902810424020138335124462181441773470<br>\n63783299490636259666498587618221225225512486764533<br>\n67720186971698544312419572409913959008952310058822<br>\n95548255300263520781532296796249481641953868218774<br>\n76085327132285723110424803456124867697064507995236<br>\n37774242535411291684276865538926205024910326572967<br>\n23701913275725675285653248258265463092207058596522<br>\n29798860272258331913126375147341994889534765745501<br>\n18495701454879288984856827726077713721403798879715<br>\n38298203783031473527721580348144513491373226651381<br>\n34829543829199918180278916522431027392251122869539<br>\n40957953066405232632538044100059654939159879593635<br>\n29746152185502371307642255121183693803580388584903<br>\n41698116222072977186158236678424689157993532961922<br>\n62467957194401269043877107275048102390895523597457<br>\n23189706772547915061505504953922979530901129967519<br>\n86188088225875314529584099251203829009407770775672<br>\n11306739708304724483816533873502340845647058077308<br>\n82959174767140363198008187129011875491310547126581<br>\n97623331044818386269515456334926366572897563400500<br>\n42846280183517070527831839425882145521227251250327<br>\n55121603546981200581762165212827652751691296897789<br>\n32238195734329339946437501907836945765883352399886<br>\n75506164965184775180738168837861091527357929701337<br>\n62177842752192623401942399639168044983993173312731<br>\n32924185707147349566916674687634660915035914677504<br>\n99518671430235219628894890102423325116913619626622<br>\n73267460800591547471830798392868535206946944540724<br>\n76841822524674417161514036427982273348055556214818<br>\n97142617910342598647204516893989422179826088076852<br>\n87783646182799346313767754307809363333018982642090<br>\n10848802521674670883215120185883543223812876952786<br>\n71329612474782464538636993009049310363619763878039<br>\n62184073572399794223406235393808339651327408011116<br>\n66627891981488087797941876876144230030984490851411<br>\n60661826293682836764744779239180335110989069790714<br>\n85786944089552990653640447425576083659976645795096<br>\n66024396409905389607120198219976047599490197230297<br>\n64913982680032973156037120041377903785566085089252<br>\n16730939319872750275468906903707539413042652315011<br>\n94809377245048795150954100921645863754710598436791<br>\n78639167021187492431995700641917969777599028300699<br>\n15368713711936614952811305876380278410754449733078<br>\n40789923115535562561142322423255033685442488917353<br>\n44889911501440648020369068063960672322193204149535<br>\n41503128880339536053299340368006977710650566631954<br>\n81234880673210146739058568557934581403627822703280<br>\n82616570773948327592232845941706525094512325230608<br>\n22918802058777319719839450180888072429661980811197<br>\n77158542502016545090413245809786882778948721859617<br>\n72107838435069186155435662884062257473692284509516<br>\n20849603980134001723930671666823555245252804609722<br>\n53503534226472524250874054075591789781264330331690<br>\n</div>\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 130
|
3
|
+
:name: Composites with prime repunit property
|
4
|
+
:url: http://projecteuler.net/problem=130
|
5
|
+
:content: "\r\n\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>; for example, R(6) = 111111.</p>\n<p>Given
|
7
|
+
that <i>n</i> is a positive integer and GCD(<i>n</i>, 10) = 1, it can be shown that
|
8
|
+
there always exists a value, <i>k</i>, for which R(<i>k</i>) is divisible by <i>n</i>,
|
9
|
+
and let A(<i>n</i>) be the least such value of <i>k</i>; for example, A(7) = 6 and
|
10
|
+
A(41) = 5.</p>\n<p>You are given that for all primes, <i>p</i> <img src=\"images/symbol_gt.gif\"
|
11
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
12
|
+
5, that <i>p</i> <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
13
|
+
border=\"0\" style=\"vertical-align:middle;\"> 1 is divisible by A(<i>p</i>). For
|
14
|
+
example, when <i>p</i> = 41, A(41) = 5, and 40 is divisible by 5.</p>\n<p>However,
|
15
|
+
there are rare composite values for which this is also true; the first five examples
|
16
|
+
being 91, 259, 451, 481, and 703.</p>\n<p>Find the sum of the first twenty-five
|
17
|
+
composite values of <i>n</i> for which<br>GCD(<i>n</i>, 10) = 1 and <i>n</i> <img
|
18
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
19
|
+
style=\"vertical-align:middle;\"> 1 is divisible by A(<i>n</i>).</p>\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 131
|
3
|
+
:name: Prime cube partnership
|
4
|
+
:url: http://projecteuler.net/problem=131
|
5
|
+
:content: "\r\n<p>There are some prime values, <i>p</i>, for which there exists a
|
6
|
+
positive integer, <i>n</i>, such that the expression <i>n</i><sup>3</sup> + <i>n</i><sup>2</sup><i>p</i>
|
7
|
+
is a perfect cube.</p>\r\n<p>For example, when <i>p</i> = 19, 8<sup>3</sup> + 8<sup>2</sup><img
|
8
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
9
|
+
style=\"vertical-align:middle;\">19 = 12<sup>3</sup>.</p>\r\n<p>What is perhaps
|
10
|
+
most surprising is that for each prime with this property the value of <i>n</i>
|
11
|
+
is unique, and there are only four such primes below one-hundred.</p>\r\n<p>How
|
12
|
+
many primes below one million have this remarkable property?</p>\r\n\r\n"
|
@@ -0,0 +1,12 @@
|
|
1
|
+
---
|
2
|
+
:id: 132
|
3
|
+
:name: Large repunit factors
|
4
|
+
:url: http://projecteuler.net/problem=132
|
5
|
+
:content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<i>k</i>) to be a repunit of length <i>k</i>.</p>\r\n<p>For example, R(10)
|
7
|
+
= 1111111111 = 11<img src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\"
|
8
|
+
border=\"0\" style=\"vertical-align:middle;\">41<img src=\"images/symbol_times.gif\"
|
9
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">271<img
|
10
|
+
src=\"images/symbol_times.gif\" width=\"9\" height=\"9\" alt=\"×\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\">9091, and the sum of these prime factors is 9414.</p>\r\n<p>Find
|
12
|
+
the sum of the first forty prime factors of R(10<sup>9</sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,13 @@
|
|
1
|
+
---
|
2
|
+
:id: 133
|
3
|
+
:name: Repunit nonfactors
|
4
|
+
:url: http://projecteuler.net/problem=133
|
5
|
+
:content: "\r\n<p>A number consisting entirely of ones is called a repunit. We shall
|
6
|
+
define R(<var>k</var>) to be a repunit of length <var>k</var>; for example, R(6)
|
7
|
+
= 111111.</p>\r\n<p>Let us consider repunits of the form R(10<sup><var>n</var></sup>).</p>\r\n<p>Although
|
8
|
+
R(10), R(100), or R(1000) are not divisible by 17, R(10000) is divisible by 17.
|
9
|
+
Yet there is no value of <var>n</var> for which R(10<sup><var>n</var></sup>) will
|
10
|
+
divide by 19. In fact, it is remarkable that 11, 17, 41, and 73 are the only four
|
11
|
+
primes below one-hundred that can <!-- ever--> be a factor of R(10<sup><var>n</var></sup>).</p>\r\n<p>Find
|
12
|
+
the sum of all the primes below one-hundred thousand that will never be a factor
|
13
|
+
of R(10<sup><var>n</var></sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,19 @@
|
|
1
|
+
---
|
2
|
+
:id: 134
|
3
|
+
:name: Prime pair connection
|
4
|
+
:url: http://projecteuler.net/problem=134
|
5
|
+
:content: "\r\n\n<p>Consider the consecutive primes <i>p</i><sub>1</sub> = 19 and
|
6
|
+
<i>p</i><sub>2</sub> = 23. It can be verified that 1219 is the smallest number such
|
7
|
+
that the last digits are formed by <i>p</i><sub>1</sub> whilst also being divisible
|
8
|
+
by <i>p</i><sub>2</sub>.</p>\n<p>In fact, with the exception of <i>p</i><sub>1</sub>
|
9
|
+
= 3 and <i>p</i><sub>2</sub> = 5, for every pair of consecutive primes, <i>p</i><sub>2</sub><img
|
10
|
+
src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"><i>p</i><sub>1</sub>, there exist values of <i>n</i>
|
12
|
+
for which the last digits are formed by <i>p</i><sub>1</sub> and <i>n</i> is divisible
|
13
|
+
by <i>p</i><sub>2</sub>. Let <i>S</i> be the smallest of these values of <i>n</i>.</p>\n<p>Find
|
14
|
+
<img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\" alt=\"∑\" border=\"0\"
|
15
|
+
style=\"vertical-align:middle;\"><i>S</i> for every pair of consecutive primes with
|
16
|
+
5 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"><i>p</i><sub>1</sub><img src=\"images/symbol_le.gif\"
|
18
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\">
|
19
|
+
1000000.</p>\n\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 135
|
3
|
+
:name: Same differences
|
4
|
+
:url: http://projecteuler.net/problem=135
|
5
|
+
:content: "\r\n<p>Given the positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are
|
6
|
+
consecutive terms of an arithmetic progression, the least value of the positive
|
7
|
+
integer, <i>n</i>, for which the equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\"
|
8
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
|
9
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly two
|
11
|
+
solutions is <i>n</i> = 27:</p>\r\n<p style=\"text-align:center;\">34<sup>2</sup><img
|
12
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 27<sup>2</sup><img src=\"images/symbol_minus.gif\"
|
14
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
20<sup>2</sup> = 12<sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\"
|
16
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 9<sup>2</sup><img
|
17
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
18
|
+
style=\"vertical-align:middle;\"> 6<sup>2</sup> = 27</p>\r\n<p>It turns out that
|
19
|
+
<i>n</i> = 1155 is the least value which has exactly ten solutions.</p>\r\n<p>How
|
20
|
+
many values of <i>n</i> less than one million have exactly ten distinct solutions?</p>\r\n\r\n"
|
@@ -0,0 +1,17 @@
|
|
1
|
+
---
|
2
|
+
:id: 136
|
3
|
+
:name: Singleton difference
|
4
|
+
:url: http://projecteuler.net/problem=136
|
5
|
+
:content: "\r\n<p>The positive integers, <i>x</i>, <i>y</i>, and <i>z</i>, are consecutive
|
6
|
+
terms of an arithmetic progression. Given that <i>n</i> is a positive integer, the
|
7
|
+
equation, <i>x</i><sup>2</sup><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
8
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"><i>y</i><sup>2</sup><img
|
9
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
10
|
+
style=\"vertical-align:middle;\"><i>z</i><sup>2</sup> = <i>n</i>, has exactly one
|
11
|
+
solution when <i>n</i> = 20:</p>\r\n<p style=\"text-align:center;\">13<sup>2</sup><img
|
12
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 10<sup>2</sup><img src=\"images/symbol_minus.gif\"
|
14
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
15
|
+
7<sup>2</sup> = 20</p>\r\n<p>In fact there are twenty-five values of <i>n</i> below
|
16
|
+
one hundred for which the equation has a unique solution.</p>\r\n<p>How many values
|
17
|
+
of <i>n</i> less than fifty million have exactly one solution?</p>\r\n\r\n"
|
@@ -0,0 +1,36 @@
|
|
1
|
+
---
|
2
|
+
:id: 137
|
3
|
+
:name: Fibonacci golden nuggets
|
4
|
+
:url: http://projecteuler.net/problem=137
|
5
|
+
:content: "\r\n\n<p>Consider the infinite polynomial series A<sub>F</sub>(<i>x</i>)
|
6
|
+
= <i>x</i>F<sub>1</sub> + <i>x</i><sup>2</sup>F<sub>2</sub> + <i>x</i><sup>3</sup>F<sub>3</sub>
|
7
|
+
+ ..., where F<sub><i>k</i></sub> is the <i>k</i>th term in the Fibonacci sequence:
|
8
|
+
1, 1, 2, 3, 5, 8, ... ; that is, F<sub><i>k</i></sub> = F<sub><i>k</i><img src=\"images/symbol_minus.gif\"
|
9
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
|
10
|
+
+ F<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\">2</sub>, F<sub>1</sub> = 1 and F<sub>2</sub>
|
12
|
+
= 1.</p>\n<p>For this problem we shall be interested in values of <i>x</i> for which
|
13
|
+
A<sub>F</sub>(<i>x</i>) is a positive integer.</p>\n<table cellpadding=\"0\" cellspacing=\"0\"
|
14
|
+
border=\"0\">\n<tr>\n<td>Surprisingly A<sub>F</sub>(1/2)</td>\n<td> = </td>\n<td>(1/2).1
|
15
|
+
+ (1/2)<sup>2</sup>.1 + (1/2)<sup>3</sup>.2 + (1/2)<sup>4</sup>.3 + (1/2)<sup>5</sup>.5
|
16
|
+
+ ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>1/2 + 1/4 + 2/8 + 3/16 +
|
17
|
+
5/32 + ...</td>\n</tr>\n<tr>\n<td> </td>\n<td> = </td>\n<td>2</td>\n</tr>\n</table>\n<p>The
|
18
|
+
corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\n<div
|
19
|
+
style=\"text-align:center;\">\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
|
20
|
+
align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
|
21
|
+
width=\"50\"><b>A<sub>F</sub>(<i>x</i>)</b></td>\n</tr>\n<tr>\n<td>\n<img src=\"images/symbol_radic.gif\"
|
22
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">2<img
|
23
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
24
|
+
style=\"vertical-align:middle;\">1</td>\n<td>1</td>\n</tr>\n<tr>\n<td>1/2</td>\n<td>2</td>\n</tr>\n<tr>\n<td>(<img
|
25
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
26
|
+
style=\"vertical-align:middle;\">13<img src=\"images/symbol_minus.gif\" width=\"9\"
|
27
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/3</td>\n<td>3</td>\n</tr>\n<tr>\n<td>(<img
|
28
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
29
|
+
style=\"vertical-align:middle;\">89<img src=\"images/symbol_minus.gif\" width=\"9\"
|
30
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/8</td>\n<td>4</td>\n</tr>\n<tr>\n<td>(<img
|
31
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
32
|
+
style=\"vertical-align:middle;\">34<img src=\"images/symbol_minus.gif\" width=\"9\"
|
33
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">3)/5</td>\n<td>5</td>\n</tr>\n</table>\n</div>\n<p>We
|
34
|
+
shall call A<sub>F</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
|
35
|
+
they become increasingly rarer; for example, the 10th golden nugget is 74049690.</p>\n<p>Find
|
36
|
+
the 15th golden nugget.</p>\n\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 138
|
3
|
+
:name: Special isosceles triangles
|
4
|
+
:url: http://projecteuler.net/problem=138
|
5
|
+
:content: "\r\n<p>Consider the isosceles triangle with base length, <i>b</i> = 16,
|
6
|
+
and legs, L = 17.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_138.gif\"
|
7
|
+
width=\"230\" height=\"228\" alt=\"\">\n</div>\r\n<p>By using the Pythagorean theorem
|
8
|
+
it can be seen that the height of the triangle, <i>h</i> = <img src=\"images/symbol_radic.gif\"
|
9
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">(17<sup>2</sup><img
|
10
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
11
|
+
style=\"vertical-align:middle;\"> 8<sup>2</sup>) = 15, which is one less than the
|
12
|
+
base length.</p>\r\n<p>With <i>b</i> = 272 and L = 305, we get <i>h</i> = 273, which
|
13
|
+
is one more than the base length, and this is the second smallest isosceles triangle
|
14
|
+
with the property that <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
|
15
|
+
width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
1.</p>\r\n<p>Find <img src=\"images/symbol_sum.gif\" width=\"11\" height=\"14\"
|
17
|
+
alt=\"∑\" border=\"0\" style=\"vertical-align:middle;\"> L for the twelve smallest
|
18
|
+
isosceles triangles for which <i>h</i> = <i>b</i> <img src=\"images/symbol_plusmn.gif\"
|
19
|
+
width=\"11\" height=\"11\" alt=\"±\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
1 and <i>b</i>, L are positive integers.</p>\r\n\r\n"
|
@@ -0,0 +1,15 @@
|
|
1
|
+
---
|
2
|
+
:id: 139
|
3
|
+
:name: Pythagorean tiles
|
4
|
+
:url: http://projecteuler.net/problem=139
|
5
|
+
:content: "\r\n<p>Let (<i>a</i>, <i>b</i>, <i>c</i>) represent the three sides of
|
6
|
+
a right angle triangle with integral length sides. It is possible to place four
|
7
|
+
such triangles together to form a square with length <i>c</i>.</p>\r\n<p>For example,
|
8
|
+
(3, 4, 5) triangles can be placed together to form a 5 by 5 square with a 1 by 1
|
9
|
+
hole in the middle and it can be seen that the 5 by 5 square can be tiled with twenty-five
|
10
|
+
1 by 1 squares.</p>\r\n<div style=\"text-align:center;\">\r\n<img src=\"project/images/p_139.gif\"
|
11
|
+
width=\"400\" height=\"180\" alt=\"\">\n</div>\r\n<p>However, if (5, 12, 13) triangles
|
12
|
+
were used then the hole would measure 7 by 7 and these could not be used to tile
|
13
|
+
the 13 by 13 square.</p>\r\n<p>Given that the perimeter of the right triangle is
|
14
|
+
less than one-hundred million, how many Pythagorean triangles would allow such a
|
15
|
+
tiling to take place?</p>\r\n\r\n"
|
@@ -0,0 +1,28 @@
|
|
1
|
+
---
|
2
|
+
:id: 14
|
3
|
+
:name: Longest Collatz sequence
|
4
|
+
:url: http://projecteuler.net/problem=14
|
5
|
+
:content: "\r\n<p>The following iterative sequence is defined for the set of positive
|
6
|
+
integers:</p>\r\n<p style=\"margin-left:50px;\"><var>n</var> <img src=\"images/symbol_maps.gif\"
|
7
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"><var>n</var>/2
|
8
|
+
(<var>n</var> is even)<br><var>n</var> <img src=\"images/symbol_maps.gif\" width=\"15\"
|
9
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 3<var>n</var>
|
10
|
+
+ 1 (<var>n</var> is odd)</p>\r\n<p>Using the rule above and starting with 13, we
|
11
|
+
generate the following sequence:</p>\r\n<div style=\"text-align:center;\">13 <img
|
12
|
+
src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
13
|
+
style=\"vertical-align:middle;\"> 40 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
14
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 20 <img src=\"images/symbol_maps.gif\"
|
15
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
16
|
+
10 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
17
|
+
style=\"vertical-align:middle;\"> 5 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
18
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 16 <img src=\"images/symbol_maps.gif\"
|
19
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
20
|
+
8 <img src=\"images/symbol_maps.gif\" width=\"15\" height=\"7\" alt=\"→\" border=\"0\"
|
21
|
+
style=\"vertical-align:middle;\"> 4 <img src=\"images/symbol_maps.gif\" width=\"15\"
|
22
|
+
height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\"> 2 <img src=\"images/symbol_maps.gif\"
|
23
|
+
width=\"15\" height=\"7\" alt=\"→\" border=\"0\" style=\"vertical-align:middle;\">
|
24
|
+
1</div>\r\n<p>It can be seen that this sequence (starting at 13 and finishing at
|
25
|
+
1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it
|
26
|
+
is thought that all starting numbers finish at 1.</p>\r\n<p>Which starting number,
|
27
|
+
under one million, produces the longest chain?</p>\r\n<p class=\"info\"><b>NOTE:</b>
|
28
|
+
Once the chain starts the terms are allowed to go above one million.</p>\r\n\r\n"
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
:id: 140
|
3
|
+
:name: Modified Fibonacci golden nuggets
|
4
|
+
:url: http://projecteuler.net/problem=140
|
5
|
+
:content: "\r\n<p>Consider the infinite polynomial series A<sub>G</sub>(<i>x</i>)
|
6
|
+
= <i>x</i>G<sub>1</sub> + <i>x</i><sup>2</sup>G<sub>2</sub> + <i>x</i><sup>3</sup>G<sub>3</sub>
|
7
|
+
+ ..., where G<sub><i>k</i></sub> is the <i>k</i>th term of the second order recurrence
|
8
|
+
relation G<sub><i>k</i></sub> = G<sub><i>k</i><img src=\"images/symbol_minus.gif\"
|
9
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">1</sub>
|
10
|
+
+ G<sub><i>k</i><img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\">2</sub>, G<sub>1</sub> = 1 and G<sub>2</sub>
|
12
|
+
= 4; that is, 1, 4, 5, 9, 14, 23, ... .</p>\r\n<p>For this problem we shall be concerned
|
13
|
+
with values of <i>x</i> for which A<sub>G</sub>(<i>x</i>) is a positive integer.</p>\r\n<p>The
|
14
|
+
corresponding values of <i>x</i> for the first five natural numbers are shown below.</p>\r\n<div
|
15
|
+
style=\"text-align:center;\">\r\n<table cellspacing=\"0\" cellpadding=\"2\" border=\"1\"
|
16
|
+
align=\"center\">\n<tr style=\"background-color:#c1daf9;\">\n<td><b><i>x</i></b></td>\n<td
|
17
|
+
width=\"50\"><b>A<sub>G</sub>(<i>x</i>)</b></td>\r\n</tr>\n<tr>\n<td>(<img src=\"images/symbol_radic.gif\"
|
18
|
+
width=\"14\" height=\"16\" alt=\"√\" border=\"0\" style=\"vertical-align:middle;\">5<img
|
19
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\">1)/4</td>\n<td>1</td>\r\n</tr>\n<tr>\n<td>2/5</td>\n<td>2</td>\r\n</tr>\n<tr>\n<td>(<img
|
21
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
22
|
+
style=\"vertical-align:middle;\">22<img src=\"images/symbol_minus.gif\" width=\"9\"
|
23
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2)/6</td>\n<td>3</td>\r\n</tr>\n<tr>\n<td>(<img
|
24
|
+
src=\"images/symbol_radic.gif\" width=\"14\" height=\"16\" alt=\"√\" border=\"0\"
|
25
|
+
style=\"vertical-align:middle;\">137<img src=\"images/symbol_minus.gif\" width=\"9\"
|
26
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">5)/14</td>\n<td>4</td>\r\n</tr>\n<tr>\n<td>1/2</td>\n<td>5</td>\r\n</tr>\n</table>\n</div>\r\n<p>We
|
27
|
+
shall call A<sub>G</sub>(<i>x</i>) a golden nugget if <i>x</i> is rational, because
|
28
|
+
they become increasingly rarer; for example, the 20th golden nugget is 211345365.</p>\r\n<p>Find
|
29
|
+
the sum of the first thirty golden nuggets.</p>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 141
|
3
|
+
:name: Investigating progressive numbers, <i>n</i>, which are also square
|
4
|
+
:url: http://projecteuler.net/problem=141
|
5
|
+
:content: "\r\n<p>A positive integer, <i>n</i>, is divided by <i>d</i> and the quotient
|
6
|
+
and remainder are <i>q</i> and <i>r</i> respectively. In addition <i>d</i>, <i>q</i>,
|
7
|
+
and <i>r</i> are consecutive positive integer terms in a geometric sequence, but
|
8
|
+
not necessarily in that order.</p>\r\n<p>For example, 58 divided by 6 has quotient
|
9
|
+
9 and remainder 4. It can also be seen that 4, 6, 9 are consecutive terms in a geometric
|
10
|
+
sequence (common ratio 3/2).<br>\r\nWe will call such numbers, <i>n</i>, progressive.</p>\r\n<p>Some
|
11
|
+
progressive numbers, such as 9 and 10404 = 102<sup>2</sup>, happen to also be perfect
|
12
|
+
squares.<br> The sum of all progressive perfect squares below one hundred thousand
|
13
|
+
is 124657.</p>\r\n<p>Find the sum of all progressive perfect squares below one trillion
|
14
|
+
(10<sup>12</sup>).</p>\r\n\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 142
|
3
|
+
:name: Perfect Square Collection
|
4
|
+
:url: http://projecteuler.net/problem=142
|
5
|
+
:content: "\r\n<p>Find the smallest x + y + z with integers x <img src=\"images/symbol_gt.gif\"
|
6
|
+
width=\"10\" height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\">
|
7
|
+
y <img src=\"images/symbol_gt.gif\" width=\"10\" height=\"10\" alt=\">\" border=\"0\"
|
8
|
+
style=\"vertical-align:middle;\"> z <img src=\"images/symbol_gt.gif\" width=\"10\"
|
9
|
+
height=\"10\" alt=\">\" border=\"0\" style=\"vertical-align:middle;\"> 0 such
|
10
|
+
that x + y, x <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
11
|
+
border=\"0\" style=\"vertical-align:middle;\"> y, x + z, x <img src=\"images/symbol_minus.gif\"
|
12
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">
|
13
|
+
z, y + z, y <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
14
|
+
border=\"0\" style=\"vertical-align:middle;\"> z are all perfect squares.</p>\r\n"
|
@@ -0,0 +1,20 @@
|
|
1
|
+
---
|
2
|
+
:id: 143
|
3
|
+
:name: Investigating the Torricelli point of a triangle
|
4
|
+
:url: http://projecteuler.net/problem=143
|
5
|
+
:content: "\r\n<p>Let ABC be a triangle with all interior angles being less than 120
|
6
|
+
degrees. Let X be any point inside the triangle and let XA = p, XC = q, and XB =
|
7
|
+
r.</p>\r\n<p>Fermat challenged Torricelli to find the position of X such that p
|
8
|
+
+ q + r was minimised.</p>\r\n<p>Torricelli was able to prove that if equilateral
|
9
|
+
triangles AOB, BNC and AMC are constructed on each side of triangle ABC, the circumscribed
|
10
|
+
circles of AOB, BNC, and AMC will intersect at a single point, T, inside the triangle.
|
11
|
+
Moreover he proved that T, called the Torricelli/Fermat point, minimises p + q +
|
12
|
+
r. Even more remarkable, it can be shown that when the sum is minimised, AN = BM
|
13
|
+
= CO = p + q + r and that AN, BM and CO also intersect at T.</p>\r\n<div style=\"text-align:center;\"><img
|
14
|
+
src=\"project/images/p_143_torricelli.gif\" width=\"564\" height=\"560\" alt=\"\"></div>\r\n<p>If
|
15
|
+
the sum is minimised and a, b, c, p, q and r are all positive integers we shall
|
16
|
+
call triangle ABC a Torricelli triangle. For example, a = 399, b = 455, c = 511
|
17
|
+
is an example of a Torricelli triangle, with p + q + r = 784.</p>\r\n<p>Find the
|
18
|
+
sum of all distinct values of p + q + r <img src=\"images/symbol_le.gif\" width=\"10\"
|
19
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 120000 for
|
20
|
+
Torricelli triangles.</p>\r\n\r\n"
|
@@ -0,0 +1,30 @@
|
|
1
|
+
---
|
2
|
+
:id: 144
|
3
|
+
:name: Investigating multiple reflections of a laser beam
|
4
|
+
:url: http://projecteuler.net/problem=144
|
5
|
+
:content: "\r\n<p>In laser physics, a \"white cell\" is a mirror system that acts
|
6
|
+
as a delay line for the laser beam. The beam enters the cell, bounces around on
|
7
|
+
the mirrors, and eventually works its way back out.</p>\r\n<p>The specific white
|
8
|
+
cell we will be considering is an ellipse with the equation 4<i>x</i><sup>2</sup>
|
9
|
+
+ <i>y</i><sup>2</sup> = 100</p>\r\n<p>The section corresponding to <img src=\"images/symbol_minus.gif\"
|
10
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">0.01
|
11
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\"><i>x</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
13
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> +0.01 at
|
14
|
+
the top is missing, allowing the light to enter and exit through the hole.</p>\r\n<div
|
15
|
+
style=\"text-align:center;\">\n<img src=\"project/images/p_144_1.gif\" width=\"268\"
|
16
|
+
height=\"240\" alt=\"\"><img src=\"project/images/p_144_2.gif\" width=\"141\" height=\"287\"
|
17
|
+
alt=\"\">\n</div>\r\n<p>The light beam in this problem starts at the point (0.0,10.1)
|
18
|
+
just outside the white cell, and the beam first impacts the mirror at (1.4,-9.6).</p>\r\n<p>Each
|
19
|
+
time the laser beam hits the surface of the ellipse, it follows the usual law of
|
20
|
+
reflection \"angle of incidence equals angle of reflection.\" That is, both the
|
21
|
+
incident and reflected beams make the same angle with the normal line at the point
|
22
|
+
of incidence.</p>\r\n<p>In the figure on the left, the red line shows the first
|
23
|
+
two points of contact between the laser beam and the wall of the white cell; the
|
24
|
+
blue line shows the line tangent to the ellipse at the point of incidence of the
|
25
|
+
first bounce.</p>\n<p>The slope <i>m</i> of the tangent line at any point (<i>x</i>,<i>y</i>)
|
26
|
+
of the given ellipse is: <i>m</i> = <img src=\"images/symbol_minus.gif\" width=\"9\"
|
27
|
+
height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4<i>x</i>/<i>y</i></p>\n<p>The
|
28
|
+
normal line is perpendicular to this tangent line at the point of incidence.</p>\r\n<p>The
|
29
|
+
animation on the right shows the first 10 reflections of the beam.</p>\r\n\r\n<p>How
|
30
|
+
many times does the beam hit the internal surface of the white cell before exiting?</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 145
|
3
|
+
:name: How many reversible numbers are there below one-billion?
|
4
|
+
:url: http://projecteuler.net/problem=145
|
5
|
+
:content: "\r\n<p>Some positive integers <i>n</i> have the property that the sum [
|
6
|
+
<i>n</i> + reverse(<i>n</i>) ] consists entirely of odd (decimal) digits. For instance,
|
7
|
+
36 + 63 = 99 and 409 + 904 = 1313. We will call such numbers <em>reversible</em>;
|
8
|
+
so 36, 63, 409, and 904 are reversible. Leading zeroes are not allowed in either
|
9
|
+
<i>n</i> or reverse(<i>n</i>).</p>\r\n\r\n<p>There are 120 reversible numbers below
|
10
|
+
one-thousand.</p>\r\n\r\n<p>How many reversible numbers are there below one-billion
|
11
|
+
(10<sup>9</sup>)?</p>\r\n"
|
@@ -0,0 +1,9 @@
|
|
1
|
+
---
|
2
|
+
:id: 146
|
3
|
+
:name: 'Investigating a Prime Pattern '
|
4
|
+
:url: http://projecteuler.net/problem=146
|
5
|
+
:content: "\r\n<p>The smallest positive integer <i>n</i> for which the numbers <i>n</i><sup>2</sup>+1,
|
6
|
+
<i>n</i><sup>2</sup>+3, <i>n</i><sup>2</sup>+7, <i>n</i><sup>2</sup>+9, <i>n</i><sup>2</sup>+13,
|
7
|
+
and <i>n</i><sup>2</sup>+27 are consecutive primes is 10. The sum of all such integers
|
8
|
+
<i>n</i> below one-million is 1242490.</p>\r\n\r\n<p>What is the sum of all such
|
9
|
+
integers <i>n</i> below 150 million?</p>\r\n"
|
@@ -0,0 +1,14 @@
|
|
1
|
+
---
|
2
|
+
:id: 147
|
3
|
+
:name: Rectangles in cross-hatched grids
|
4
|
+
:url: http://projecteuler.net/problem=147
|
5
|
+
:content: "\r\n<p>In a 3x2 cross-hatched grid, a total of 37 different rectangles
|
6
|
+
could be situated within that grid as indicated in the sketch.</p>\r\n<div style=\"text-align:center;\"><img
|
7
|
+
src=\"project/images/p_147.gif\" width=\"361\" height=\"176\" alt=\"\"></div>\r\n<p>There
|
8
|
+
are 5 grids smaller than 3x2, vertical and horizontal dimensions being important,
|
9
|
+
i.e. 1x1, 2x1, 3x1, 1x2 and 2x2. If each of them is cross-hatched, the following
|
10
|
+
number of different rectangles could be situated within those smaller grids:</p>\r\n<p>1x1:
|
11
|
+
1\r\n<br>2x1: 4\r\n<br>3x1: 8\r\n<br>1x2: 4\r\n<br>2x2: 18</p>\r\n\r\n<p>Adding
|
12
|
+
those to the 37 of the 3x2 grid, a total of 72 different rectangles could be situated
|
13
|
+
within 3x2 and smaller grids.</p>\r\n\r\n<p>How many different rectangles could
|
14
|
+
be situated within 47x43 and smaller grids?</p>\r\n"
|
@@ -0,0 +1,11 @@
|
|
1
|
+
---
|
2
|
+
:id: 148
|
3
|
+
:name: Exploring Pascal's triangle
|
4
|
+
:url: http://projecteuler.net/problem=148
|
5
|
+
:content: "\r\n<p>We can easily verify that none of the entries in the first seven
|
6
|
+
rows of Pascal's triangle are divisible by 7:</p>\r\n<table cellpadding=\"0\" cellspacing=\"0\"
|
7
|
+
border=\"0\" align=\"center\">\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 2</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 3</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 4</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td> </td>\r\n<td> 1</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td>10</td>\r\n<td> </td>\r\n<td> 5</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n<tr>\n<td>1</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td>20</td>\r\n<td> </td>\r\n<td>15</td>\r\n<td> </td>\r\n<td> 6</td>\r\n<td> </td>\r\n<td> 1</td>\r\n</tr>\n</table>\n<p>However,
|
8
|
+
if we check the first one hundred rows, we will find that only 2361 of the 5050
|
9
|
+
entries are <i>not</i> divisible by 7.</p>\r\n\r\n<p>Find the number of entries
|
10
|
+
which are <i>not</i> divisible by 7 in the first one billion (10<sup>9</sup>) rows
|
11
|
+
of Pascal's triangle.</p>\r\n"
|
@@ -0,0 +1,41 @@
|
|
1
|
+
---
|
2
|
+
:id: 149
|
3
|
+
:name: Searching for a maximum-sum subsequence
|
4
|
+
:url: http://projecteuler.net/problem=149
|
5
|
+
:content: "\r\n<p>Looking at the table below, it is easy to verify that the maximum
|
6
|
+
possible sum of adjacent numbers in any direction (horizontal, vertical, diagonal
|
7
|
+
or anti-diagonal) <span style=\"white-space:nowrap\">is 16 (= 8 + 7 + 1).</span></p>\r\n\r\n<div
|
8
|
+
style=\"text-align:center\">\r\n<table border=\"1\" cellpadding=\"6\" cellspacing=\"0\"
|
9
|
+
style=\"margin:auto\"><tbody align=\"right\">\n<tr>\n<td>\n<img src=\"images/symbol_minus.gif\"
|
10
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">2</td>\n<td>5</td>\n<td>3</td>\n<td>2</td>\n</tr>\n<tr>\n<td>9</td>\n<td>\n<img
|
11
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
12
|
+
style=\"vertical-align:middle;\">6</td>\n<td>5</td>\n<td>1</td>\n</tr>\n<tr>\n<td>3</td>\n<td>2</td>\n<td>7</td>\n<td>3</td>\n</tr>\n<tr>\n<td>\n<img
|
13
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
14
|
+
style=\"vertical-align:middle;\">1</td>\n<td>8</td>\n<td>\n<img src=\"images/symbol_minus.gif\"
|
15
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">4</td>\n<td>
|
16
|
+
8</td>\n</tr>\n</tbody></table>\n</div>\r\n\r\n<p>Now, let us repeat the search,
|
17
|
+
but on a much larger scale:</p>\r\n\r\n<p>First, generate four million pseudo-random
|
18
|
+
numbers using a specific form of what is known as a \"Lagged Fibonacci Generator\":</p>\r\n\r\n<p>For
|
19
|
+
1 <img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
20
|
+
style=\"vertical-align:middle;\"><i>k</i> <img src=\"images/symbol_le.gif\" width=\"10\"
|
21
|
+
height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"> 55, <i>s</i><sub><i>k</i></sub>
|
22
|
+
= [100003 <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
23
|
+
border=\"0\" style=\"vertical-align:middle;\"> 200003<i>k</i> + 300007<i>k</i><sup>3</sup>]
|
24
|
+
(modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\"
|
25
|
+
border=\"0\" style=\"vertical-align:middle;\"> 500000.<br>\r\nFor 56 <img src=\"images/symbol_le.gif\"
|
26
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><i>k</i>
|
27
|
+
<img src=\"images/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\" border=\"0\"
|
28
|
+
style=\"vertical-align:middle;\"> 4000000, <i>s</i><sub><i>k</i></sub> = [<i>s</i><sub><i>k<img
|
29
|
+
src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\" alt=\"−\" border=\"0\"
|
30
|
+
style=\"vertical-align:middle;\">24</i></sub> + <i>s</i><sub><i>k<img src=\"images/symbol_minus.gif\"
|
31
|
+
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">55</i></sub>
|
32
|
+
+ 1000000] (modulo 1000000) <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
33
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 500000.</p>\r\n\r\n<p>Thus,
|
34
|
+
<i>s</i><sub>10</sub> = <img src=\"images/symbol_minus.gif\" width=\"9\" height=\"3\"
|
35
|
+
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">393027 and <i>s</i><sub>100</sub>
|
36
|
+
= 86613.</p>\r\n\r\n<p>The terms of <i>s</i> are then arranged in a 2000<img src=\"images/symbol_times.gif\"
|
37
|
+
width=\"9\" height=\"9\" alt=\"×\" border=\"0\" style=\"vertical-align:middle;\">2000
|
38
|
+
table, using the first 2000 numbers to fill the first row (sequentially), the next
|
39
|
+
2000 numbers to fill the second row, and so on.</p>\r\n\r\n<p>Finally, find the
|
40
|
+
greatest sum of (any number of) adjacent entries in any direction (horizontal, vertical,
|
41
|
+
diagonal or anti-diagonal).</p>\r\n"
|